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Collaborators

Covered In This Talk
▶ w/Cotter, Roberts, White [4] (MCMC for functions)

▶ w/Hairer, Vollmer [8] (Spectral gaps for MCMC for functions)

▶ w/Bhattacharya, Hosseini, Kovachki [1] (PCA-Net)

▶ w/Nelsen [17] (RFM: Random features – using FFT)

▶ w/Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Anandkumar [14, 11] (FNO)

▶ Kovachki [12] (Machine learning and scientific computing)

▶ w/De Hoop, Huang, Qian [5] (Cost-Accuracy trade-off)

Adjacent To This Talk

▶ w/De Hoop, Kovachki, Nelsen [6] (Learn linear operators)

▶ w/Bhattacharya, Liu, Trautner [2] (RNO)
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Pixellated Images Versus Functions

Thanks to Dima Burov



Finite Dimensional Vectors Versus Functions

Thanks to Edo Calvello



Don’t



Do
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The Problem

Target Measure

Consider probability measures π, π0 supported on U and Φ : U → R+:

π0 = N (0,C),

π(u) ∝ exp
(
−Φ(u)

)
π0(u).

Goal: to draw approximate samples from π on vector space RN approximating U .

MCMC
Construct Markov chain with kernel p so that

un+1 ∼ p(un, ·),
Law(un) → π, as n → ∞.



Randon Walk Metropolis (RWM) Algorithm

Metropolis et al 1953 [16]

Applies to any π.

Proposal

For some δ ∈ (0,∞):

u⋆n+1 = un +
√
2δξn,

ξn ∼ N (0,C).

Accept-Reject

a(u, v) = min
{π(v)
π(u)

, 1
}
,

un+1 = u⋆n+1, with probability a(un, u
⋆
n+1),

un+1 = un, otherwise.



The pCN Algorithm

Cotter et al 2013 [4]

Applies to π ∝ exp
(
−Φ(u)

)
N (0, C).

Proposal

For some δ ∈ (0, 1
2
]:

u⋆n+1 = (1− 2δ)
1
2 un +

√
2δξn,

ξn ∼ N (0,C).

Accept-Reject

a(u, v) = min
{
exp

(
Φ(u)− Φ(v)

)
, 1

}
,

un+1 = u⋆n+1, with probability a(un,u
⋆
n+1),

un+1 = un, otherwise.



Comparison of RWM (Don’t) and pCN (Do)

Applies to π ∝ exp
(
−Φ(u)

)
N (0, C).

Theorem (RWM) Hairer et al ’14 [8]

For optimal step-size choice δ = Θ(N− 1
2 ) spectral gap sg satisfies

1− sg ≤ O(N− 1
2 ).

Thus Ω(N
1
2 ) steps are required to sample.

Theorem (pCN) Hairer et al ’14 [8]

For all δ ∈ (0, 1
2
] spectral gap sg satisfies

sg = Θ(1).

Thus Θ(1) steps are required to sample.
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Operator Learning

Supervised Learning

Determine Ψ† : U → V from samples

{un,Ψ†(un)}Nn=1, un ∼ µ.

Probability measure µ supported on U .

In standard supervised learning U = Rdx and V = Rdy (regression) or V = {1, · · ·K} (classification).

Supervised Learning Of Operators

Separable Banach spaces U ,V of vector-valued functions:

U = {u : Dx → Rdi }, Dx ⊆ Rdx

V = {v : Dy → Rdo }, Dy ⊆ Rdy .



Operator Learning

Training

Consider a family of parameterized functions from U into V :

Ψ : U ×Θ 7→ V.

Here Θ ⊆ Rp denotes the parameter space.

θ∗ = argminθ R∞(θ), R∞(θ) := Eu∼µ∥Ψ†(u)−Ψ(u; θ)∥2V .

Testing

error = Eu∼µ
(∥Ψ†(u)−Ψ(u; θ⋆)∥V

∥Ψ†(u)∥V

)
.



Finding Latent Structure

In A Picture



Example (Fluid Flow in a Porous Medium)

Darcy Law

Mass conservation −∇ · (a∇v) = f , z ∈ D

Boundary condition v = 0, z ∈ ∂D

Operator Of Interest

Parametric Dependence Ψ† : a 7→ v



Example (Fluid Flow in a Porous Medium)

Input-Output

Input: a ∈ L∞(D) (Left),

Output: v ∈ H1(D). (Right),



Example: Don’t

Zhu and Zabaras 2018 [19]

Example: Do

Bhattacharya et al 2021 [1]



Theoretical Justification – PCA-NET

Theorem Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

Let Ψ† ∈ Lpµ(U ;V). For any ϵ > 0, there are latent dimensions, data volume and
network size such that ΨPCA = GV ◦ φ ◦ FU satisfies

Edata∥Ψ† −ΨPCA∥Lpµ(U ;V) ≤ ϵ.
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RFM Random Features Method (Rahimi and Recht [18]) Extended to Operators

Architecture Nelsen and AMS ’21 [17]

ΨRFM(u; θ)(y) :=
m∑
j=1

θjψ(u; γj )(y) ∀u ∈ U y ∈ Dy ; γj i.i.d. .

Fourier Space Random Features

▶ F denotes Fourier transform.

▶ γ a Gaussian random field.

▶ χ Fourier space reshuffle.

▶ σ an activation function.

▶ ψ(u; γ) = σ
(
F−1(χFγFu)

)
.

Practical Matters
▶ Quadratic optimization for θ.

▶ Monte Carlo approximation of GP/Kernel methods.



Example: Don’t

Zhu and Zabaras 2018 [19]

Example: Do

Nelsen and S 2021 [17]



FNO DNN (Goodfellow et al [7]) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al ’20 [14, 11]

ΨFNO(u; θ) = Q ◦ LL ◦ · · · L2 ◦ L1 ◦ R(u), ∀u ∈ U ,
Ll (v)(x ; θ) = σ

(
Wlv(x) + bl +K(v)(x ; γl )

)
.

Details
▶ Q,R pointwise NNs or linear transformations.

▶ (Wl , bl ) define pointwise affine transformations.

▶ K convolutional integral operator (FFT on kmax modes, parameterized by γ).

▶ θ collects parameters from previous three bullets.

▶ Nonlinear Approximation.

Kovachki, Lanthaler and Mishra ’21 [10] (beating curse of dimensionality, FNO),
Lanthaler, Mishra and Karniadakis ’21 [13] (beating curse of dimensionality, DeepONet),
Kovachki ’22 [12] (general neural operator framework)



Universal Approximation

Theorem Kovacvhki ’22 [12, 11]

▶ U , V Banach spaces with the approximation property (AP).

▶ Ψ† : U → V continuous.

For any K ⊂ U compact and ϵ > 0 there exist bounded linear maps FU : U → RdU ,
GV : RdV → V, and a continuous map φ ∈ C(RdU ;RdV ) such that

sup
x∈K

∥Ψ†(x)− (GV ◦ φ ◦ FU )(x)∥V ≤ ϵ.

Theorem Kovacvhki ’22 [12, 11]

▶ U Banach space with AP, V separable Hilbert space.

▶ µ probability measure on U .

▶ Ψ† ∈ Lpµ(U ;V) for 1 ≤ p <∞.

Then
∥Ψ† − GV ◦ φ ◦ FU∥Lpµ(U ;V) ≤ ϵ.

Lanthaler, Mishra and Karniadakis ’21 [13] (DeepONet)
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Bayesian Inverse Problem

Figure: Posterior mean: using MCMC with Ψ.

For this problem, state-of-the-art MCMC requires 3× 104

evaluations of the forward operator Ψ†/Ψ. This takes 12 hours
with the pseudo-spectral solver; under 2 minutes using FNO.



Test Error vs. Network Size

16 128 256 512
Network width w

10 3

10 2

10 1

Te
st

 e
rro

r

PCA-Net

16 128 256 512
Network width w

DeepONet

16 128 256 512
Network width w

PARA-Net

2 4 8 16 32
Lifting dimension df

FNO
N = 2500 N = 5000 N = 10000 N = 20000

Figure: Test error vs. network size.



Test Error vs. Cost
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Figure: Test error vs. cost.



Test Error vs. Training Data
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Figure: Test error vs. training data amount N.
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Conclusions

▶ Conceptualize in the N = ∞ limit:
▶ task;
▶ algorithm.

▶ Has led to new MCMC for sampling.

▶ Has led to new neural networks for operator learning.

▶ Comparison with standard numerical methods is lacking.
▶ More approximation theory needed; interaction between:

▶ Data volume;
▶ Richness/design of parameterization;
▶ Finite dimensional discretization;
▶ Optimization.

▶ Other N = ∞ limits are important to understand:
▶ Autoencoders;
▶ Triangular maps;
▶ Normalizing flows;
▶ Score-based transport;
▶ · · · .
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Linear Operators

Setting

Input-Output Spaces: U ⊆ V = (H, ⟨·, ·⟩, ∥ · ∥)

Target Linear Operator: L† : D(L†) ⊆ H → H

Π(du, dv) : v = L†u + η, u ⊥⊥ η

u ∼ µ = N (0, C1), η ∼ N (0, γ2 Id),

Data: {un, vn}Nn=1
iid∼ Π, N ∈ N

Approach

Bayesian Formulation: posterior π on L given {un, vn}Nn=1



Linear Operators: Convergence Theory

Recall: xjn ∼ N (0, j−2α) (data), ℓj ∼ N (0, j−2β ) (prior), ℓ† ∈ Hs (truth)

Theorem (Bayesian Consistency)

E{un,vn}Eπ∥L− L†∥2
L2µ(H;H)

= O
(
N

−
(

α+β−1/2
α+β

))
+ o

(
N

−
(

α+s
α+β

))
(N → ∞)

Remarks
▶ Similar lower bounds, with matching rates, in some regimes.

▶ Similar results with high probability over {un}Nn=1
iid∼ µ

▶ Extensions to error in posterior mean.

▶ Extensions to test measures µ′ ̸≡ µ.

Analysis builds on Knapik, Van Der Vaart and van Zanten ’11 [9]



PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

ΨPCA(u; θ)(y) =
m∑
j=1

αj (Lu; θ)ψj (y), ∀u ∈ U y ∈ Dy .

Details
▶ {ϕj} are PCA basis functions under µ.

▶ Lu = {
〈
ϕj , u

〉
}j maps to PCA coefficients under µ.

▶ {ψj} are PCA basis functions under (Ψ†)♯µ.

▶ {αj} are finite dimensional neural networks.



DEEPONET

Architecture Lu, Jin, Pang, Zhang, and Karniadakis’19 [15]

ΨDEEP(u; θ)(y) =
m∑
j=1

αj (Lu; θα)ψj (y ; θψ), ∀u ∈ U y ∈ Dy .

Details
▶ Lu maps to PCA coefficients under µ.

▶ Lu comprising pointwise observations {u(xℓ)} is also possible.

▶ {αj , ψj} are finite dimensional neural networks.

▶ θ = (θα, θψ).



RNO (Recurrent Neural Operator) D = (0,T )

Architecture Bhattacharya, Liu, AMS, Trautner ’22 [2]

ΨRNO(e; θ)(t) = F
(
e(t),

de

dt
(t), r(t); θ

)
, ∀e ∈ U t ∈ [0,T ],

dr

dt
= G(r , e; θ), ∀e ∈ U t ∈ (0,T ], r(0) = 0.

Details
▶ Finite dimensional neural networks F ,G ;

▶ Two-layer used in this talk.



2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
( ∂ψ
∂x2

,−
∂ψ

∂x1

)
.

Operator

Learn the map between ω|t=0 and ω|t=τ

Ψ† : ω|t=0 → ω|t=τ .

Choose ω|t=0 ∼ µ := N
(
0, (−∆+ τ2)−δ

)
. τ = 3, δ = 2.



Forward Problem

Figure: Ψ†/Ψ : ω|t=0 → ω|t=τ .

The FNO prediction Ψ matches the true solution operator Ψ†.



2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
( ∂ψ
∂x2

,−
∂ψ

∂x1

)
.

Operator

Learn the map between forcing f ′ and the vorticity at time T :

Ψ† : f ′ → ω|t=T .

Choose f ′ ∼ µ := N
(
0, (−∆+ τ2)−δ

)
. τ = 3, δ = 4.



Navier Stokes Equation

f′
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Figure: Learned model predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.



Navier Stokes Equation

f′

PCA-Net DeepONet PARA-Net FNO
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Figure: Learned model predictions for inputs resulting in worst test errors
for networks of size w = 128 / df = 16 trained on N = 10000 data.



Navier-Stokes Equation Output Space
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Figure: Comparison of output space bases: PCA-Net and DeepONet.



Advection Equation

Formulation

∂u

∂t
+
∂u

∂x
= 0 x ∈ [0, 1),

u(0) = u0

Operator

Learn the map between the initial condition u0 and the solution at time 0.5, u|t=0.5 :

Ψ† : u0 → u|t=0.5

where u0 = −1 + 21{ũ0≥0} and ũ0 ∼ N (0, (−∆+ τ2)−d ).



Advection Equation
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Figure: Learned solution predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.



Advection Equation
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Test Error vs. Cost
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Advection Equation Output Space
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Figure: Comparison of output space bases: PCA-Net and DeepONet.
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