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Collaborators

Covered In This Talk
I w/Bhattacharya, Hosseini, Kovachki [1] (PCA-Net)

I w/Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Anandkumar [19, 10] (FNO)

I w/Lanthaler, Li [14] (Universal Approximation)

I w/Lanthaler [17] (Complexity of Approximation)

I w/Lanthaler, Trautner [18] (Finite Dimensional Implementation)

I w/Lanthaler, Kovachki [11] (Review)

I Kovachki [12] (Machine Learning and Scientific Computing)

Adjacent To This Talk

I w/De Hoop, Huang, Qian [5] (Cost-Accuracy Trade-off)

I w/De Hoop, Kovachki, Nelsen [6] (Learn Linear Operators)

I w/Nelsen [21] (RFM: Random Features)

I w/Bhattacharya, Liu, Trautner [2] (RNO)

I Lanthaler, Nelsen [16] (Complexity of Random Features)

I Lanthaler [13] (Complexity of PCA)
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Pixellated/Discretized Images Versus Functions
Thanks to Dima Burov

Ramsay and Silverman 2002 [23] (Statistics)

S 2010, Cotter et al 2013 [24, 4] (Bayesian Inverse Problems)



Finite Dimensional Vectors Versus Functions
Thanks to Edo Calvello



Don’t



Do
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Operator Learning

Supervised Learning

Determine Ψ† : U → V from samples

{un,Ψ†(un)}Nn=1, un ∼ µ.

Probability measure µ supported on U .

In standard supervised learning U = Rdx and V = Rdy (regression) or V = {1, · · ·K} (classification).

Supervised Learning of Operators

Separable Banach spaces U ,V of vector-valued functions:

U = {u : D → R}, D ⊆ Rd

V = {v : D → R}.



Operator Learning

Training

Consider a family of parameterized functions from U into V :

Ψ : U ×Θ 7→ V.

Here Θ ⊆ Rp denotes the parameter space.

θ∗ = argminθ R∞(θ), R∞(θ) := Eu∼µ‖Ψ†(u)−Ψ(u; θ)‖2
V .

Testing

error = Eu∼µ
(‖Ψ†(u)−Ψ(u; θ?)‖V

‖Ψ†(u)‖V

)
.



Example (Fluid Flow in a Porous Medium)

Darcy Law

Mass conservation −∇ · (a∇v) = f , z ∈ D

Boundary condition v = 0, z ∈ ∂D

Operator Of Interest

Parametric Dependence Ψ† : a 7→ v



Example (Fluid Flow in a Porous Medium)

Input-Output

Input: a ∈ L∞(D) (Left),

Output: v ∈ H1(D). (Right),



Example: Don’t

Zhu and Zabaras 2018 [25]

Example: Do

Bhattacharya et al 2021 [1]



2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
( ∂ψ
∂x2

,− ∂ψ
∂x1

)
.

Operator

Learn the map between ω|t=0 and ω|t=τ

Ψ† : ω|t=0 → ω|t=τ .

Choose ω|t=0 ∼ µ := N
(
0, (−∆ + τ 2)−(ν+1)

)
. τ = 3, ν = 1.



Forward Problem

Figure: Ψ†/Ψ : ω|t=0 → ω|t=τ .

The FNO prediction Ψ matches the true solution operator Ψ†.



Bayesian Inverse Problem

Figure: Posterior mean: using MCMC with Ψ.

State-of-the-art MCMC requires 3× 104 evaluations of forward
operator Ψ†/Ψ. Timings: 12 hours with the pseudo-spectral
solver; under 2 minutes using FNO. (But cost of training · · · ).
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Finding Latent Structure

In A Picture



PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

ΨPCA(u; θ)(y) =
m∑
j=1

αj(Lu; θ)ψj(y), ∀u ∈ U y ∈ Dy .

Details

I {φj} are PCA basis functions in input space U .
I Lu = {〈φj , u〉}j maps to PCA coefficients.

I {ψj} are PCA basis functions in output space V.
I {αj} are finite dimensional neural networks.



DEEPONET

Architecture Lu, Jin, Pang, Zhang, and Karniadakis’19 [20]

ΨDEEP(u; θ)(y) =
m∑
j=1

αj(Lu; θα)ψj(y ; θψ), ∀u ∈ U y ∈ Dy .

Details

I Lu maps to PCA coefficients in input space U .
I Lu comprising pointwise {u(x`)} is original version.

I {ψj} are finite dimensional neural networks in output space V.
I {αj} are finite dimensional neural networks.

I θ = (θα, θψ).



FNO DNN (Goodfellow et al [7]) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al ’20 [19, 10]

ΨFNO(u; θ) = Q ◦ LL ◦ · · · L2 ◦ L1 ◦ R(u), ∀u ∈ U ,
Ll(v)(x ; θ) = σ

(
Wlv(x) + bl +K(v)(x ; γl)

)
,

K(v)(x ; γ) =
M∑

m=0

γ(m)〈v , ϕ(m)〉ϕ(m)(x).

Details

I R NN pointwise lifts to Uc := {u : D → Rdc}.
I Q NN pointwise projects to V := {u : D → R}.
I (Wl , bl) define pointwise affine maps.

I K defines pointwise linear map in transform space.

I θ collects parameters from previous four bullets.

Kovachki, Lanthaler and Mishra ’21 [9] (beating curse of dimensionality, FNO)
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Theory
Kovachki, Lanthaler, AMS ’24 [11] (Review, Handbook of Numerical Analysis)



Universal Approximation

Theorem Lanthaler, Li, AMS ’23 [14]

I U = C s(D;R) and V = C s′(D;R).

I Ψ† : U → V continuous, K ⊂ U compact.

I ϕ(0)(x) = 1 for all x ∈ D.

I L ≥ 1,M ≥ 0.

For any ε > 0 ∃ dc sufficiently large and resulting FNO such that

sup
u∈K
‖Ψ†(u)−ΨFNO(u)‖V ≤ ε.

Foundational Work:
Lanthaler, Mishra, Karniadakis ’21 [15] (DEEPONET)

Kovachki, Lanthaler and Mishra ’21 [9] (FNO)

Kovachki ’22 [12] (General Theory)



Complexity of Approximation

Theorem Lanthaler, AMS ’23 [17]

Assume that Ψ† ∈ C r (U ,V) and K ⊂ U compact. Then ∃Ψ† and
b, c > 0 such that approximation by ΨFNO to achieve

sup
u∈K
‖Ψ†(u)−ΨFNO(u)‖V ≤ ε,

has complexity which grows like exp(cε−b).

Exceptions:
Lanthaler, Mishra, Karniadakis ’21 [15] (DEEPONET for Darcy, Hyperbolic Conservation Law)

Kovachki, Lanthaler, Mishra ’21 [9] (FNO for Darcy, NSE)

Lanthaler ’23 [13] (PCA for Darcy)

Lanthaler, AMS ’23 [17] (HJ-Net for HJ)



Finite Dimensional Approximation

Theorem Lanthaler, AMS, Trautner ’24 [18]

Assume that

I u ∈ Hs , s > d/2.

I σ ∈ C s
b .

Then pseudo-spectral approximation ΨN
FNO of ΨFNO on Nd grid

points satisfies

‖ΨFNO(u)−ΨN
FNO(u)‖V ≤ CN−s .
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Conclusions

I Conceptualize in the N =∞ limit:
I task;
I algorithm.

I Has led to new MCMC for sampling.

I Has led to new neural networks for operator learning.

I Comparison with standard numerical methods is lacking.
I More approximation theory needed; interaction between:

I Data volume;
I Richness/design of parameterization;
I Finite dimensional discretization;
I Optimization.

I Other N =∞ limits are important to understand:
I Autoencoders;
I Triangular maps;
I Normalizing flows;
I Score-based transport;
I · · · .
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Cost-Accuracy Trade-Off



Test Error vs. Network Size
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Figure: Test error vs. network size.



Test Error vs. Cost
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Figure: Test error vs. cost.



Test Error vs. Training Data
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Figure: Test error vs. training data amount N.
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Learning Linear Operators



Linear Operators

Setting

Input-Output Spaces: U ⊆ V = (H, 〈·, ·〉, ‖ · ‖)

Target Linear Operator: L† : D(L†) ⊆ H → H

Π(du, dv) : v = L†u + η, u ⊥⊥ η

u ∼ µ = N (0, C1), η ∼ N (0, γ2 Id),

Data: {un, vn}Nn=1
iid∼ Π, N ∈ N

Approach

Bayesian Formulation: posterior π on L given {un, vn}Nn=1



Linear Operators: Convergence Theory

Recall: xjn ∼ N (0, j−2α) (data), `j ∼ N (0, j−2β ) (prior), `† ∈ Hs (truth)

Theorem (Bayesian Consistency)

E{un,vn}Eπ‖L− L†‖2
L2
µ(H;H)

= O
(
N
−
(
α+β−1/2
α+β

))
+ o
(
N
−
(
α+s
α+β

))
(N →∞)

Remarks
I Similar lower bounds, with matching rates, in some regimes.

I Similar results with high probability over {un}Nn=1
iid∼ µ

I Extensions to error in posterior mean.

I Extensions to test measures µ′ 6≡ µ.

Analysis builds on Knapik, Van Der Vaart and van Zanten ’11 [8]
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Random Features Methods



RFM Random Features Method (Rahimi and Recht [22]) Extended to Operators

Architecture Nelsen and AMS ’21 [21]

ΨRFM(u; θ)(y) :=
m∑
j=1

θjψ(u; γj)(y) ∀u ∈ U , y ∈ Dy ; γj i.i.d. .

Fourier Space Random Features

I F denotes Fourier transform.

I γ a Gaussian random field.

I χ Fourier space reshuffle.

I σ an activation function.

I ψ(u; γ) = σ
(
F−1(χFγFu)

)
.



Example: Don’t

Zhu and Zabaras 2018 [25]

Example: Do

Nelsen and S 2021 [21]
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Recurrent Neural Operator



RNO (Recurrent Neural Operator) D = (0,T )

Architecture Bhattacharya, Liu, AMS, Trautner ’22 [2]

ΨRNO(e; θ)(t) = F
(
e(t),

de

dt
(t), r(t); θ

)
, ∀e ∈ U t ∈ [0,T ],

dr

dt
= G(r , e; θ), ∀e ∈ U t ∈ (0,T ], r(0) = 0.

Details
I Finite dimensional neural networks F ,G ;

I Two-layer used in this talk.
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Numerical Experiments



2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
( ∂ψ
∂x2

,−
∂ψ

∂x1

)
.

Operator

Learn the map between forcing f ′ and the vorticity at time T :

Ψ† : f ′ → ω|t=T .

Choose f ′ ∼ µ := N
(
0, (−∆ + τ2)−δ

)
. τ = 3, δ = 4.



Navier Stokes Equation

f′
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Figure: Learned model predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.



Navier Stokes Equation

f′
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Figure: Learned model predictions for inputs resulting in worst test errors
for networks of size w = 128 / df = 16 trained on N = 10000 data.



Navier-Stokes Equation Output Space
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Figure: Comparison of output space bases: PCA-Net and DeepONet.



Advection Equation

Formulation

∂u

∂t
+
∂u

∂x
= 0 x ∈ [0, 1),

u(0) = u0

Operator

Learn the map between the initial condition u0 and the solution at time 0.5, u|t=0.5 :

Ψ† : u0 → u|t=0.5

where u0 = −1 + 21{ũ0≥0} and ũ0 ∼ N (0, (−∆ + τ2)−d ).



Advection Equation
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Figure: Learned solution predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.



Advection Equation
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Figure: Learned solution predictions for inputs resulting in worst test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.



Test Error vs. Cost
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Advection Equation Output Space
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sectionUniversal Approximation
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Universal Approximation



Theoretical Justification – PCA-NET

Theorem Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

Let Ψ† ∈ Lpµ(U ;V). For any ε > 0, there are latent dimensions,
data volume and network size such that ΨPCA = GV ◦ ϕ ◦ FU
satisfies

Edata‖Ψ† −ΨPCA‖Lpµ(U ;V) ≤ ε.



Encoder-Decoder Approach

Theorem Kovacvhki ’22 [12, 10]

I U , V Banach spaces with the approximation property (AP).

I Ψ† : U → V continuous, K ⊂ U compact.

For any ε > 0 ∃ bounded linear FU : U → RdU , GV : RdV → V, and
a continuous map ϕ ∈ C (RdU ;RdV ) such that

sup
x∈K
‖Ψ†(x)− (GV ◦ ϕ ◦ FU )(x)‖V ≤ ε.

Lanthaler, Mishra and Karniadakis ’21 [15] (DeepONet)
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