Operator Learning: Algorithms, Analysis and Applications Supervised Learning in Function Space

Andrew Stuart

California Institute of Technology

AFOSR, ARO, DoD, NSF, ONR

Slides: http://stuart.caltech.edu/talks/index.html

May 21st 2024

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Collaborators

Covered In This Talk

- \triangleright w/Bhattacharya, Hosseini, Kovachki [\[1\]](#page-29-0) (PCA-Net)
- \triangleright w/Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Anandkumar [\[19,](#page-32-0) [10\]](#page-30-0) (FNO)

KORKARYKERKER POLO

- \triangleright w/Lanthaler, Li [\[14\]](#page-31-0) (Universal Approximation)
- \triangleright w/Lanthaler [\[17\]](#page-31-1) (Complexity of Approximation)
- \triangleright w/Lanthaler, Trautner [\[18\]](#page-31-2) (Finite Dimensional Implementation)
- \triangleright w/Lanthaler, Kovachki [\[11\]](#page-30-1) (Review)
- \triangleright Kovachki $[12]$ (Machine Learning and Scientific Computing)

Adjacent To This Talk

- \triangleright w/De Hoop, Huang, Qian [\[5\]](#page-29-1) (Cost-Accuracy Trade-off)
- \triangleright w/De Hoop, Kovachki, Nelsen [\[6\]](#page-29-2) (Learn Linear Operators)
- \triangleright w/Nelsen [\[21\]](#page-32-1) (RFM: Random Features)
- \triangleright w/Bhattacharya, Liu, Trautner [\[2\]](#page-29-3) (RNO)
- ▶ Lanthaler, Nelsen [\[16\]](#page-31-3) (Complexity of Random Features)
- \blacktriangleright Lanthaler [\[13\]](#page-31-4) (Complexity of PCA)

Overview

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Pixellated/Discretized Images Versus Functions Thanks to Dima Burov

 4 ロ) 4 何) 4 ミ) 4 3)

 \Rightarrow

 2990

Ramsay and Silverman 2002 [\[23\]](#page-32-2) (Statistics)

S 2010, Cotter et al 2013 [\[24,](#page-32-3) [4\]](#page-29-4) (Bayesian Inverse Problems)

Finite Dimensional Vectors Versus Functions

Thanks to Edo Calvello

Don't

$$
N = \infty
$$
 $N = \infty$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Do

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Operator Learning

Supervised Learning

Determine $\Psi^\dagger:\mathcal{U}\to\mathcal{V}$ from samples

$$
\{u_n,\Psi^{\dagger}(u_n)\}_{n=1}^N,\quad u_n\sim\mu.
$$

Probability measure μ supported on \mathcal{U} .

In standard supervised learning $\mathcal{U} = \mathbb{R}^{d_X}$ and $\mathcal{V} = \mathbb{R}^{d_Y}$ (regression) or $\mathcal{V} = \{1, \cdots K\}$ (classification).

Supervised Learning of Operators

Separable Banach spaces U, V of vector-valued functions:

$$
\mathcal{U} = \{u : D \to \mathbb{R}\}, \quad D \subseteq \mathbb{R}^d
$$

$$
\mathcal{V} = \{v : D \to \mathbb{R}\}.
$$

Operator Learning

Training

Consider a family of parameterized functions from U into V :

 $\Psi : \mathcal{U} \times \Theta \mapsto \mathcal{V}$.

Here $\Theta \subseteq \mathbb{R}^p$ denotes the parameter space.

$$
\theta^* = \operatorname{argmin}_{\theta} \, \mathcal{R}_{\infty}(\theta), \quad \mathcal{R}_{\infty}(\theta) := \mathbb{E}^{u \sim \mu} \|\Psi^{\dagger}(u) - \Psi(u; \theta)\|_{\mathcal{V}}^2.
$$

Testing

error =
$$
\mathbb{E}^{u \sim \mu} \left(\frac{\|\Psi^{\dagger}(u) - \Psi(u; \theta^{\star})\|_{\mathcal{V}}}{\|\Psi^{\dagger}(u)\|_{\mathcal{V}}}\right).
$$

Example (Fluid Flow in a Porous Medium)

Parametric Dependence Ψ^{\dagger} : $a \mapsto v$

Example (Fluid Flow in a Porous Medium)

Input-Output

Example: Don't

Example: Do

Bhattacharya et al 2021 [\[1\]](#page-29-0)

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [\[3\]](#page-29-5)

$$
\frac{\partial \omega}{\partial t} + (v \cdot \nabla)\omega - \nu \Delta \omega = f',\n-\Delta \psi = \omega, \qquad \int \psi(x, t) dx = 0,\n v = \left(\frac{\partial \psi}{\partial x_2}, -\frac{\partial \psi}{\partial x_1}\right).
$$

Operator

Learn the map between $\omega|_{t=0}$ and $\omega|_{t=\tau}$

$$
\Psi^{\dagger} : \omega|_{t=0} \to \omega|_{t=\tau}.
$$

Choose $\omega|_{t=0} \sim \mu := \mathcal{N}(0, (-\Delta + \tau^2)^{-(\nu+1)})$. $\tau = 3, \nu = 1$.

Forward Problem

Figure: $\Psi^{\dagger}/\Psi : \omega|_{t=0} \rightarrow \omega|_{t=\tau}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The FNO prediction Ψ matches the true solution operator $\Psi^{\dagger}.$

Bayesian Inverse Problem

Figure: Posterior mean: using MCMC with Ψ.

State-of-the-art MCMC requires 3×10^4 evaluations of forward operator Ψ^{\dagger}/Ψ . Timings: 12 hours with the pseudo-spectral solver; under 2 minutes using FNO. (But cost of training \cdots).

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Finding Latent Structure

イロト イ部 トイ君 トイ君 トー

重

 299

PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS '19 [\[1\]](#page-29-0)

$$
\Psi_{PCA}(u;\theta)(y)=\sum_{j=1}^m\alpha_j(Lu;\theta)\psi_j(y),\quad \forall u\in\mathcal{U}\qquad y\in D_y.
$$

KELK KØLK VELKEN EL 1990

- $\blacktriangleright \{\phi_i\}$ are PCA basis functions in input space \mathcal{U} .
- \blacktriangleright $Lu = \{\langle \phi_j, u \rangle\}_j$ maps to PCA coefficients.
- \blacktriangleright $\{\psi_i\}$ are PCA basis functions in output space \mathcal{V} .
- $\blacktriangleright \{\alpha_i\}$ are finite dimensional neural networks.

DEEPONET

Architecture Lu, Jin, Pang, Zhang, and Karniadakis'19 [\[20\]](#page-32-4)

$$
\Psi_{DEEP}(u;\theta)(y) = \sum_{j=1}^m \alpha_j(Lu;\theta_\alpha)\psi_j(y;\theta_\psi), \quad \forall u \in \mathcal{U} \qquad y \in D_y.
$$

- I Lu maps to PCA coefficients in input space U .
- In Lu comprising pointwise $\{u(x_\ell)\}\$ is original version.
- $\blacktriangleright \{\psi_i\}$ are finite dimensional neural networks in output space \mathcal{V} .
- $\blacktriangleright \{\alpha_i\}$ are finite dimensional neural networks.

$$
\blacktriangleright \theta = (\theta_\alpha, \theta_\psi).
$$

FNO DNN (Goodfellow et al [\[7\]](#page-30-3)) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al '20 [\[19,](#page-32-0) [10\]](#page-30-0)

$$
\Psi_{FNO}(u;\theta) = \mathcal{Q} \circ \mathcal{L}_L \circ \cdots \mathcal{L}_2 \circ \mathcal{L}_1 \circ \mathcal{R}(u), \forall u \in \mathcal{U},
$$

\n
$$
\mathcal{L}_I(v)(x;\theta) = \sigma(W_Iv(x) + b_I + \mathcal{K}(v)(x;\gamma_I)),
$$

\n
$$
\mathcal{K}(v)(x;\gamma) = \sum_{m=0}^M \gamma^{(m)} \langle v, \varphi^{(m)} \rangle \varphi^{(m)}(x).
$$

- ▶ R NN pointwise lifts to $\mathcal{U}^c := \{u : D \to \mathbb{R}^{d_c}\}.$
- \triangleright Q NN pointwise projects to $V := \{u : D \to \mathbb{R}\}.$
- \blacktriangleright (W_l, b_l) define pointwise affine maps.
- \triangleright K defines pointwise linear map in transform space.
- \triangleright θ θ θ collects parameters from previous fou[r b](#page-20-0)[ull](#page-22-0)et[s.](#page-21-0)

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Theory

Kovachki, Lanthaler, AMS '24 [\[11\]](#page-30-1) (Review, Handbook of Numerical Analysis)

KO K K Ø K K E K K E K V K K K K K K K K K

Universal Approximation

KORK EXTERNE PROVIDE

Foundational Work: Lanthaler, Mishra, Karniadakis '21 [\[15\]](#page-31-5) (DEEPONET) Kovachki, Lanthaler and Mishra '21 [\[9\]](#page-30-4) (FNO) Kovachki '22 [\[12\]](#page-30-2) (General Theory)

Complexity of Approximation

Theorem Lanthaler, AMS '23 [\[17\]](#page-31-1)

Assume that $\Psi^{\dagger} \in C^{r}(\mathcal{U},\mathcal{V})$ and $K \subset \mathcal{U}$ compact. Then $\exists \Psi^{\dagger}$ and $b, c > 0$ such that approximation by Ψ_{FNO} to achieve

$$
\sup_{u\in K} \|\Psi^{\dagger}(u) - \Psi_{FNO}(u)\|_{\mathcal{V}} \leq \epsilon,
$$

KORKAR KERKER ST VOOR

has complexity which grows like $\exp(c\epsilon^{-b}).$

Exceptions: Lanthaler, Mishra, Karniadakis '21 [\[15\]](#page-31-5) (DEEPONET for Darcy, Hyperbolic Conservation Law) Kovachki, Lanthaler, Mishra '21 [\[9\]](#page-30-4) (FNO for Darcy, NSE) Lanthaler '23 [\[13\]](#page-31-4) (PCA for Darcy) Lanthaler, AMS '23 [\[17\]](#page-31-1) (HJ-Net for HJ)

Finite Dimensional Approximation

Theorem Lanthaler, AMS, Trautner '24 [\[18\]](#page-31-2)

Assume that

- $u \in H^s, s > d/2.$
- \blacktriangleright $\sigma \in C_b^s$.

Then pseudo-spectral approximation $\operatorname{\Psi}^N_{FNO}$ of $\operatorname{\Psi}_{FNO}$ on \mathcal{N}^d grid points satisfies

$$
\|\Psi_{FNO}(u)-\Psi_{FNO}^N(u)\|_{\mathcal{V}}\leq CN^{-s}.
$$

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Conclusions

- \triangleright Conceptualize in the $N = \infty$ limit:
	- \blacktriangleright task;
	- \blacktriangleright algorithm.
- \blacktriangleright Has led to new MCMC for sampling.
- \blacktriangleright Has led to new neural networks for operator learning.
- \triangleright Comparison with standard numerical methods is lacking.
- \blacktriangleright More approximation theory needed; interaction between:

KORK ERKER ADAM ADA

- \blacktriangleright Data volume:
- \blacktriangleright Richness/design of parameterization;
- \blacktriangleright Finite dimensional discretization:
- \triangleright Optimization.
- \triangleright Other $N = \infty$ limits are important to understand:
	- Autoencoders;
	- \blacktriangleright Triangular maps;
	- \blacktriangleright Normalizing flows;
	- Score-based transport;
	- \blacktriangleright \ldots

References I

- [1] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and neural networks for parametric pdes. The SMAI journal of computational mathematics, 7:121–157, 2021.
- [2] K. Bhattacharya, B. Liu, A. Stuart, and M. Trautner. Learning markovian homogenized models in viscoelasticity. arXiv preprint arXiv:2205.14139, 2022.
- [3] G. J. Chandler and R. R. Kerswell.

Invariant recurrent solutions embedded in a turbulent two-dimensional kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, 2013.

- [4] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. Mcmc methods for functions: modifying old algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.
- [5] M. De Hoop, D. Z. Huang, E. Qian, and A. M. Stuart. The cost-accuracy trade-off in operator learning with neural networks. Journal of Machine Learning, arXiv: 2203.13181, 2022.
- [6] M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification, arXiv:2108.12515, 11(2):480–513, 2023.

References II

- [7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
- [8] B. T. Knapik, A. W. Van Der Vaart, and J. H. van Zanten. Bayesian inverse problems with gaussian priors. The Annals of Statistics, 39(5):2626–2657, 2011.
- [9] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds for fourier neural operators. arXiv preprint arXiv:2107.07562, 2021.
- [10] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural operator: Learning maps between function spaces. JMLR, arXiv:2108.08481, 2021.

- [11] N. B. Kovachki, S. Lanthaler, and A. M. Stuart. Operator learning: Algorithms and analysis. arXiv preprint arXiv:2402.15715, 2024.
- [12] N. Kovacvhki. Machine Learning and Scientific Computing. PhD thesis, California Institute of Technology, 2022.

References III

[13] S. Lanthaler.

Operator learning with pca-net: upper and lower complexity bounds. Journal of Machine Learning Research, 24(318):1–67, 2023.

- [14] S. Lanthaler, Z. Li, and A. M. Stuart. The nonlocal neural operator: Universal approximation. arXiv preprint arXiv:2304.13221, 2023.
- [15] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for deeponets: A deep learning framework in infinite dimensions. arXiv preprint arXiv:2102.09618, 2021.

- [16] S. Lanthaler and N. H. Nelsen. Error bounds for learning with vector-valued random features. Advances in Neural Information Processing Systems, 36, 2024.
- [17] S. Lanthaler and A. M. Stuart. The curse of dimensionality in operator learning. arXiv preprint arXiv:2306.15924, 2023.
- [18] S. Lanthaler, A. M. Stuart, and M. Trautner. Discretization error of fourier neural operators. arXiv preprint arXiv:2405.02221, 2024.

References IV

- [19] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier neural operator for parametric partial differential equations. ICLR 2021; arXiv:2010.08895, 2020.
- [20] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via deeponet based on the universal approximation theorem of operators.

Nature Machine Intelligence, 3(3):218–229, 2021.

- [21] N. H. Nelsen and A. M. Stuart.
	- The random feature model for input-output maps between banach spaces. SIAM Journal on Scientific Computing, 43(5):A3212–A3243, 2021.

KORKARYKERKER POLO

- [22] A. Rahimi, B. Recht, et al. Random features for large-scale kernel machines. In NIPS, volume 3, page 5. Citeseer, 2007.
- [23] B. Silverman and J. Ramsay.

Applied functional data analysis: methods and case studies. 2002.

[24] A. M. Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.

References V

[25] Y. Zhu and N. Zabaras.

Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Journal of Computational Physics, 366:415–447, 2018.

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Cost-Accuracy Trade-Off

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Test Error vs. Network Size

Figure: Test error vs. network size.

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 299

Þ

Test Error vs. Cost

Figure: Test error vs. cost.

イロメ イ部メ イ君メ イ君メー

ミー 2990

Test Error vs. Training Data

Figure: Test error vs. training data amount N.

 4 ロ) 4 何) 4 ミ) 4 3)

B

 $2Q$

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Learning Linear Operators

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Linear Operators

Setting

Input-Output Spaces: $U \subseteq V = (H, \langle \cdot, \cdot \rangle, \|\cdot\|)$ Target Linear Operator: $\quad L^\dagger : \mathcal{D} (L^\dagger) \subseteq H \to H$ $\Pi(du, dv): v = L^{\dagger}u + \eta, u \perp \eta$ $u \sim \mu = \mathcal{N}(0, \mathcal{C}_1), \quad \eta \sim \mathcal{N}(0, \gamma^2 \,\mathsf{Id}),$ Data: $\{u_n, v_n\}_{n=1}^N \stackrel{\text{iid}}{\sim} \Pi$, $N \in \mathbb{N}$

Approach

Bayesian Formulation: posterior π on L given $\{u_n, v_n\}_{n=1}^N$

Linear Operators: Convergence Theory

Recall: $x_{jn} \sim \mathcal{N}(0, j^{-2\alpha})$ (data), $\ell_j \sim \mathcal{N}(0, j^{-2\beta})$ (prior), $\ell^{\dagger} \in \mathcal{H}^{s}$ (truth)

Theorem (Bayesian Consistency)

$$
\mathbb{E}^{\{u_n,v_n\}}\mathbb{E}^\pi\|L-L^\dagger\|^2_{L^2_\mu(H;H)}=O\Big(N^{-\big(\frac{\alpha+\beta-1/2}{\alpha+\beta}\big)}\Big)+o\Big(N^{-\big(\frac{\alpha+s}{\alpha+\beta}\big)}\Big)\quad (N\to\infty)
$$

KORKARYKERKER POLO

Remarks

- \triangleright Similar lower bounds, with matching rates, in some regimes.
- ▶ Similar results with high probability over $\{u_n\}_{n=1}^N \stackrel{\text{iid}}{\sim} \mu$
- Extensions to error in posterior mean.
- Extensions to test measures $\mu' \not\equiv \mu$.

Analysis builds on Knapik, Van Der Vaart and van Zanten '11 [\[8\]](#page-30-5)

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Random Features Methods

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Architecture Nelson and AMS '21 [21]
\n
$$
\Psi_{RFM}(u;\theta)(y) := \sum_{j=1}^{m} \theta_j \psi(u;\gamma_j)(y) \quad \forall u \in \mathcal{U}, y \in D_y; \quad \gamma_j \text{ i.i.d.}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Fourier Space Random Features

- \blacktriangleright \digamma denotes Fourier transform.
- \blacktriangleright γ a Gaussian random field.
- \blacktriangleright χ Fourier space reshuffle.
- \triangleright σ an activation function.

$$
\blacktriangleright \psi(u;\gamma) = \sigma\big(\mathcal{F}^{-1}(\chi\mathcal{F}\gamma\mathcal{F}u)\big).
$$

Example: Don't

Zhu and Zabaras 2018 [\[25\]](#page-33-0)

Example: Do

Nelsen and S 2021 [\[21\]](#page-32-1)

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Recurrent Neural Operator

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

RNO (Recurrent Neural Operator) $D = (0, T)$

Architecture Bhattacharya, Liu, AMS, Trautner '22 [\[2\]](#page-29-3)

$$
\Psi_{RNO}(e;\theta)(t) = F\Big(e(t), \frac{de}{dt}(t), r(t); \theta\Big), \quad \forall e \in \mathcal{U} \qquad t \in [0, T],
$$

$$
\frac{dr}{dt} = G(r, e; \theta), \quad \forall e \in \mathcal{U} \qquad t \in (0, T], \quad r(0) = 0.
$$

KORKARRA ERKER SAGA

- Finite dimensional neural networks F, G ;
- \blacktriangleright Two-layer used in this talk.

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Numerical Experiments

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [\[3\]](#page-29-5)

$$
\frac{\partial \omega}{\partial t} + (v \cdot \nabla)\omega - \nu \Delta \omega = f',
$$

- $\Delta \psi = \omega$, $\int \psi(x, t) dx = 0$,

$$
v = \left(\frac{\partial \psi}{\partial x_2}, -\frac{\partial \psi}{\partial x_1}\right).
$$

Operator

Learn the map between forcing f' and the vorticity at time T :

$$
\Psi^{\dagger} : f' \to \omega|_{t=T}.
$$

Choose $f' \sim \mu := \mathcal{N}(0, (-\Delta + \tau^2)^{-\delta}). \tau = 3, \delta = 4.$

Navier Stokes Equation

Figure: Learned model predictions for inputs resulting in median test errors for networks of size $w = 128 / d_f = 16$ trained on $N = 10000$ data.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Navier Stokes Equation

Figure: Learned model predictions for inputs resulting in worst test errors for networks of size $w = 128 / d_f = 16$ trained on $N = 10000$ data.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Navier-Stokes Equation Output Space

Leading PCA basis functions

Figure: Comparison of output space bases: PCA-Net and DeepONet.

−0.050

Advection Equation

Formulation

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \qquad x \in [0, 1),
$$

$$
u(0) = u_0
$$

Operator

Learn the map between the initial condition u_0 and the solution at time 0.5, $u|_{t=0.5}$:

$$
\Psi^{\dagger}: u_0 \to u|_{t=0.5}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where $u_0 = -1 + 2\mathbb{1}_{\{\tilde{u_0} \ge 0\}}$ and $\tilde{u_0} \sim \mathcal{N}(0, (-\Delta + \tau^2)^{-d}).$

Advection Equation

Figure: Learned solution predictions for inputs resulting in median test errors for networks of size $w = 128 / d_f = 16$ trained on $N = 10000$ data.

Advection Equation

Figure: Learned solution predictions for inputs resulting in worst test errors for networks of size $w = 128 / d_f = 16$ trained on $N = 10000$ data.

Test Error vs. Cost

Figure: Test error vs. cost.

イロト 不優 トイ磨 トイ磨 トー 磨っ

 299

Advection Equation Output Space

Figure: Comparison of output space bases: PCA-Net and DeepONet.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

sectionUniversal Approximation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Talk Outline

[Algorithms on Function Space](#page-3-0)

[Supervised Learning For Functions](#page-8-0)

[Neural Operators](#page-17-0)

[Theory](#page-22-0)

[Closing](#page-27-0)

Universal Approximation

Theoretical Justification – PCA-NET

Theorem Bhattacharya, Hosseini, Kovachki and AMS '19 [\[1\]](#page-29-0)

Let $\Psi^{\dagger} \in L^p_{\mu}(\mathcal{U}; \mathcal{V})$. For any $\epsilon > 0$, there are latent dimensions, data volume and network size such that $\Psi_{PCA} = G_V \circ \varphi \circ F_U$ satisfies

$$
\mathbb{E}^{\mathsf{data}} \|\Psi^{\dagger} - \Psi_{\mathit{PCA}}\|_{\mathsf{L}_{\mu}^p(\mathcal{U};\mathcal{V})} \leq \epsilon.
$$

Encoder-Decoder Approach

Theorem Kovacvhki '22 [\[12,](#page-30-2) [10\]](#page-30-0)

- \triangleright U, V Banach spaces with the approximation property (AP).
- $\blacktriangleright \Psi^{\dagger} : \mathcal{U} \to \mathcal{V}$ continuous, $K \subset \mathcal{U}$ compact.

For any $\epsilon > 0$ \exists bounded linear $F_{\mathcal{U}}: \mathcal{U} \to \mathbb{R}^{d_{\mathcal{U}}}$, $G_{\mathcal{V}}: \mathbb{R}^{d_{\mathcal{V}}} \to \mathcal{V}$, and a continuous map $\varphi \in C(\mathbb{R}^{d_{\mathcal U}};\mathbb{R}^{d_{\mathcal V}})$ such that

$$
\sup_{x\in K} \|\Psi^{\dagger}(x) - (G_{\mathcal{V}}\circ\varphi\circ F_{\mathcal{U}})(x)\|_{\mathcal{V}} \leq \epsilon.
$$

KOD KAR KED KED E YOUN

Lanthaler, Mishra and Karniadakis '21 [\[15\]](#page-31-5) (DeepONet)