Operator Learning: Algorithms, Analysis and Applications Supervised Learning in Function Space

Andrew Stuart

California Institute of Technology

AFOSR, ARO, DoD, NSF, ONR

Slides: http://stuart.caltech.edu/talks/index.html

May 21st 2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Collaborators

Covered In This Talk

- w/Bhattacharya, Hosseini, Kovachki [1] (PCA-Net)
- ▶ w/Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Anandkumar [19, 10] (FNO)

- w/Lanthaler, Li [14] (Universal Approximation)
- w/Lanthaler [17] (Complexity of Approximation)
- w/Lanthaler, Trautner [18] (Finite Dimensional Implementation)
- w/Lanthaler, Kovachki [11] (Review)
- Kovachki [12] (Machine Learning and Scientific Computing)

Adjacent To This Talk

- w/De Hoop, Huang, Qian [5] (Cost-Accuracy Trade-off)
- w/De Hoop, Kovachki, Nelsen [6] (Learn Linear Operators)
- w/Nelsen [21] (RFM: Random Features)
- w/Bhattacharya, Liu, Trautner [2] (RNO)
- Lanthaler, Nelsen [16] (Complexity of Random Features)
- Lanthaler [13] (Complexity of PCA)

Overview

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Pixellated/Discretized Images Versus Functions

* □ > < □ > < □ > < □ > < □ >

э

Ramsay and Silverman 2002 [23] (Statistics)

S 2010, Cotter et al 2013 [24, 4] (Bayesian Inverse Problems)

Finite Dimensional Vectors Versus Functions

Thanks to Edo Calvello

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Don't

$$\boxed{N=\infty}$$

|▲□▶|▲□▶|▲三▶|▲三▶| 三 のへで

Do

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Operator Learning

Supervised Learning

Determine $\Psi^{\dagger}: \mathcal{U} \to \mathcal{V}$ from samples

$$\{u_n, \Psi^{\dagger}(u_n)\}_{n=1}^N, \quad u_n \sim \mu.$$

Probability measure μ supported on \mathcal{U} .

In standard supervised learning $\mathcal{U} = \mathbb{R}^{d_{\chi}}$ and $\mathcal{V} = \mathbb{R}^{d_{\chi}}$ (regression) or $\mathcal{V} = \{1, \cdots, K\}$ (classification).

Supervised Learning of Operators

Separable Banach spaces \mathcal{U}, \mathcal{V} of vector-valued functions:

$$\mathcal{U} = \{ u : D \to \mathbb{R} \}, \quad D \subseteq \mathbb{R}^d$$
$$\mathcal{V} = \{ v : D \to \mathbb{R} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Operator Learning

Training

Consider a family of parameterized functions from ${\mathcal U}$ into ${\mathcal V}$:

 $\Psi: \mathcal{U}\times \Theta \mapsto \mathcal{V}.$

Here $\Theta \subseteq \mathbb{R}^p$ denotes the parameter space.

$$heta^* = \mathrm{argmin}_ heta \; \mathcal{R}_\infty(heta), \quad \mathcal{R}_\infty(heta) := \mathbb{E}^{u \sim \mu} \| \Psi^\dagger(u) - \Psi(u; heta) \|_\mathcal{V}^2.$$

Testing

error =
$$\mathbb{E}^{u \sim \mu} \Big(\frac{\|\Psi^{\dagger}(u) - \Psi(u; \theta^{\star})\|_{\mathcal{V}}}{\|\Psi^{\dagger}(u)\|_{\mathcal{V}}} \Big).$$

Example (Fluid Flow in a Porous Medium)

Operator Of Interest

Parametric Dependence $\Psi^{\dagger}: a \mapsto v$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example (Fluid Flow in a Porous Medium)

Input-Output

Example: Don't

Example: Do

Bhattacharya et al 2021 [1]

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

$$\begin{split} &\frac{\partial\omega}{\partial t} + (\mathbf{v}\cdot\nabla)\omega - \nu\Delta\omega = f', \\ &-\Delta\psi = \omega, \qquad \int \psi(\mathbf{x},t)d\mathbf{x} = 0, \\ &\mathbf{v} = \Big(\frac{\partial\psi}{\partial x_2}, -\frac{\partial\psi}{\partial x_1}\Big). \end{split}$$

Operator

Learn the map between $\omega|_{t=0}$ and $\omega|_{t=\tau}$

$$\Psi^{\dagger}: \omega|_{t=0} \to \omega|_{t=\tau}.$$

Choose $\omega|_{t=0} \sim \mu := \mathcal{N}(0, (-\Delta + \tau^2)^{-(\nu+1)})$. $\tau = 3, \nu = 1$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Forward Problem

Figure: $\Psi^{\dagger}/\Psi: \omega|_{t=0} \to \omega|_{t=\tau}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The FNO prediction Ψ matches the true solution operator $\Psi^{\dagger}.$

Bayesian Inverse Problem

Figure: Posterior mean: using MCMC with Ψ .

State-of-the-art MCMC requires 3×10^4 evaluations of forward operator Ψ^{\dagger}/Ψ . Timings: 12 hours with the pseudo-spectral solver; under 2 minutes using FNO. (But cost of training \cdots).

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Finding Latent Structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS '19 [1]

$$\Psi_{PCA}(u;\theta)(y) = \sum_{j=1}^{m} \alpha_j(Lu;\theta)\psi_j(y), \quad \forall u \in \mathcal{U} \qquad y \in D_y.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Details

- $\{\phi_i\}$ are PCA basis functions in input space \mathcal{U} .
- $Lu = \{\langle \phi_j, u \rangle\}_j$ maps to PCA coefficients.
- $\{\psi_j\}$ are PCA basis functions in output space \mathcal{V} .
- $\{\alpha_j\}$ are finite dimensional neural networks.

DEEPONET

Architecture Lu, Jin, Pang, Zhang, and Karniadakis'19 [20]

$$\Psi_{DEEP}(u;\theta)(y) = \sum_{j=1}^{m} \alpha_j(Lu;\theta_\alpha)\psi_j(y;\theta_\psi), \quad \forall u \in \mathcal{U} \qquad y \in D_y.$$

Details

- Lu maps to PCA coefficients in input space U.
- Lu comprising pointwise $\{u(x_{\ell})\}$ is original version.
- $\{\psi_j\}$ are finite dimensional neural networks in output space \mathcal{V} .
- $\{\alpha_j\}$ are finite dimensional neural networks.

$$\blacktriangleright \ \theta = (\theta_{\alpha}, \theta_{\psi}).$$

FNO DNN (Goodfellow et al [7]) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al '20 [19, 10]

$$\begin{split} \Psi_{FNO}(u;\theta) &= \mathcal{Q} \circ \mathcal{L}_L \circ \cdots \mathcal{L}_2 \circ \mathcal{L}_1 \circ \mathcal{R}(u), \, \forall u \in \mathcal{U}, \\ \mathcal{L}_I(v)(x;\theta) &= \sigma \big(W_I v(x) + b_I + \mathcal{K}(v)(x;\gamma_I) \big), \\ \mathcal{K}(v)(x;\gamma) &= \sum_{m=0}^M \gamma^{(m)} \langle v, \varphi^{(m)} \rangle \varphi^{(m)}(x). \end{split}$$

Details

- \mathcal{R} NN pointwise lifts to $\mathcal{U}^c := \{u : D \to \mathbb{R}^{d_c}\}.$
- \mathcal{Q} NN pointwise projects to $\mathcal{V} := \{u : D \to \mathbb{R}\}.$
- (W_I, b_I) define pointwise affine maps.
- K defines pointwise linear map in transform space.
- \blacktriangleright θ collects parameters from previous four bullets.

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Theory

Kovachki, Lanthaler, AMS '24 [11] (Review, Handbook of Numerical Analysis)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Universal Approximation

Theorem Lanthaler, Li, AMS '23 [14] • $\mathcal{U} = C^{s}(D; \mathbb{R})$ and $\mathcal{V} = C^{s'}(D; \mathbb{R})$. • $\Psi^{\dagger} : \mathcal{U} \to \mathcal{V}$ continuous, $K \subset \mathcal{U}$ compact. • $\varphi^{(0)}(x) = 1$ for all $x \in D$. • $L \ge 1, M \ge 0$. For any $\epsilon > 0 \exists d_{c}$ sufficiently large and resulting FNO such that $\sup_{u \in K} \|\Psi^{\dagger}(u) - \Psi_{FNO}(u)\|_{\mathcal{V}} \le \epsilon$.

Foundational Work: Lanthaler, Mishra, Karniadakis '21 [15] (DEEPONET) Kovachki, Lanthaler and Mishra '21 [9] (FNO) Kovachki '22 [12] (General Theory)

Complexity of Approximation

Theorem Lanthaler, AMS '23 [17]

Assume that $\Psi^{\dagger} \in C^{r}(\mathcal{U}, \mathcal{V})$ and $K \subset \mathcal{U}$ compact. Then $\exists \Psi^{\dagger}$ and b, c > 0 such that approximation by Ψ_{FNO} to achieve

$$\sup_{u\in K} \|\Psi^{\dagger}(u) - \Psi_{FNO}(u)\|_{\mathcal{V}} \leq \epsilon,$$

has complexity which grows like $\exp(c\epsilon^{-b})$.

Exceptions:

Lanthaler, Mishra, Karniadakis '21 [15] (DEEPONET for Darcy, Hyperbolic Conservation Law) Kovachki, Lanthaler, Mishra '21 [9] (FNO for Darcy, NSE) Lanthaler '23 [13] (PCA for Darcy) Lanthaler, AMS '23 [17] (HJ-Net for HJ)

・ロト・西ト・山田・山田・山口・

Finite Dimensional Approximation

Theorem Lanthaler, AMS, Trautner '24 [18]

Assume that

- ▶ $u \in H^{s}, s > d/2.$
- $\blacktriangleright \ \sigma \in C^s_b.$

Then pseudo-spectral approximation Ψ_{FNO}^N of Ψ_{FNO} on N^d grid points satisfies

$$\|\Psi_{FNO}(u)-\Psi_{FNO}^{N}(u)\|_{\mathcal{V}}\leq CN^{-s}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Conclusions

- Conceptualize in the $N = \infty$ limit:
 - task;
 - algorithm.
- Has led to new MCMC for sampling.
- Has led to new neural networks for operator learning.
- Comparison with standard numerical methods is lacking.
- More approximation theory needed; interaction between:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Data volume;
- Richness/design of parameterization;
- Finite dimensional discretization;
- Optimization.
- Other $N = \infty$ limits are important to understand:
 - Autoencoders;
 - Triangular maps;
 - Normalizing flows;
 - Score-based transport;
 - • • .

References I

- K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and neural networks for parametric pdes. *The SMAI journal of computational mathematics*, 7:121–157, 2021.
- [2] K. Bhattacharya, B. Liu, A. Stuart, and M. Trautner. Learning markovian homogenized models in viscoelasticity. arXiv preprint arXiv:2205.14139, 2022.
- [3] G. J. Chandler and R. R. Kerswell.

Invariant recurrent solutions embedded in a turbulent two-dimensional kolmogorov flow.

Journal of Fluid Mechanics, 722:554-595, 2013.

- [4] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. Mcmc methods for functions: modifying old algorithms to make them faster. *Statistical Science*, 28(3):424–446, 2013.
- [5] M. De Hoop, D. Z. Huang, E. Qian, and A. M. Stuart. The cost-accuracy trade-off in operator learning with neural networks. *Journal of Machine Learning, arXiv:2203.13181*, 2022.
- [6] M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart. Convergence rates for learning linear operators from noisy data. *SIAM/ASA Journal on Uncertainty Quantification, arXiv:2108.12515*, 11(2):480–513, 2023.

References II

- [7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
- [8] B. T. Knapik, A. W. Van Der Vaart, and J. H. van Zanten. Bayesian inverse problems with gaussian priors. *The Annals of Statistics*, 39(5):2626–2657, 2011.
- [9] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds for fourier neural operators. arXiv preprint arXiv:2107.07562, 2021.
- N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural operator: Learning maps between function spaces. *JMLR, arXiv:2108.08481*, 2021.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- [11] N. B. Kovachki, S. Lanthaler, and A. M. Stuart. Operator learning: Algorithms and analysis. arXiv preprint arXiv:2402.15715, 2024.
- N. Kovacvhki. *Machine Learning and Scientific Computing*. PhD thesis, California Institute of Technology, 2022.

References III

[13] S. Lanthaler.

Operator learning with pca-net: upper and lower complexity bounds. *Journal of Machine Learning Research*, 24(318):1–67, 2023.

- [14] S. Lanthaler, Z. Li, and A. M. Stuart. The nonlocal neural operator: Universal approximation. arXiv preprint arXiv:2304.13221, 2023.
- [15] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for deeponets: A deep learning framework in infinite dimensions. arXiv preprint arXiv:2102.09618, 2021.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- [16] S. Lanthaler and N. H. Nelsen. Error bounds for learning with vector-valued random features. Advances in Neural Information Processing Systems, 36, 2024.
- [17] S. Lanthaler and A. M. Stuart. The curse of dimensionality in operator learning. arXiv preprint arXiv:2306.15924, 2023.
- [18] S. Lanthaler, A. M. Stuart, and M. Trautner. Discretization error of fourier neural operators. arXiv preprint arXiv:2405.02221, 2024.

References IV

- Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
 Fourier neural operator for parametric partial differential equations. *ICLR 2021; arXiv:2010.08895*, 2020.
- [20] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via deeponet based on the universal approximation theorem of operators.

Nature Machine Intelligence, 3(3):218-229, 2021.

- [21] N. H. Nelsen and A. M. Stuart.
 - The random feature model for input-output maps between banach spaces. *SIAM Journal on Scientific Computing*, 43(5):A3212–A3243, 2021.

- [22] A. Rahimi, B. Recht, et al. Random features for large-scale kernel machines. In *NIPS*, volume 3, page 5. Citeseer, 2007.
- [23] B. Silverman and J. Ramsay.

Applied functional data analysis: methods and case studies. 2002.

[24] A. M. Stuart.

Inverse problems: a bayesian perspective. *Acta numerica*, 19:451–559, 2010.

References V

[25] Y. Zhu and N. Zabaras.

Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Journal of Computational Physics, 366:415-447, 2018.

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Cost-Accuracy Trade-Off

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Test Error vs. Network Size

Figure: Test error vs. network size.

(日)

э

Test Error vs. Cost

Figure: Test error vs. cost.

<ロト <回ト < 回ト < 回ト

æ

Test Error vs. Training Data

Figure: Test error vs. training data amount N.

(日)

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Learning Linear Operators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Linear Operators

Setting

Approach

Bayesian Formulation: posterior π on L given $\{u_n, v_n\}_{n=1}^N$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear Operators: Convergence Theory

 $\textbf{Recall:} \ \textbf{x}_{jn} \sim \mathcal{N}(0, j^{-2\alpha}) \ \textbf{(data)}, \quad \ell_j \sim \mathcal{N}(0, j^{-2\beta}) \ \textbf{(prior)}, \quad \ell^{\dagger} \in \mathcal{H}^s \ \textbf{(truth)}$

Theorem (Bayesian Consistency)

$$\mathbb{E}^{\{u_n,v_n\}}\mathbb{E}^{\pi}\|L-L^{\dagger}\|^2_{L^2_{\mu}(H;H)} = O\left(N^{-\left(\frac{\alpha+\beta-1/2}{\alpha+\beta}\right)}\right) + o\left(N^{-\left(\frac{\alpha+s}{\alpha+\beta}\right)}\right) \quad (N \to \infty)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remarks

- Similar lower bounds, with matching rates, in some regimes.
- Similar results with high probability over $\{u_n\}_{n=1}^N \stackrel{\text{iid}}{\sim} \mu$
- Extensions to error in posterior mean.
- Extensions to test measures $\mu' \not\equiv \mu$.

Analysis builds on Knapik, Van Der Vaart and van Zanten '11 [8]

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Random Features Methods

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Architecture Nelsen and AMS '21 [21]

$$\Psi_{RFM}(u;\theta)(y) := \sum_{j=1}^{m} \theta_{j} \psi(u;\gamma_{j})(y) \quad \forall u \in \mathcal{U}, \ y \in D_{y}; \quad \gamma_{j} \text{ i.i.d.}.$$

Fourier Space Random Features

- *F* denotes Fourier transform.
- \blacktriangleright γ a Gaussian random field.
- χ Fourier space reshuffle.
- \blacktriangleright σ an activation function.

•
$$\psi(u;\gamma) = \sigma(\mathcal{F}^{-1}(\chi \mathcal{F}\gamma \mathcal{F}u))$$

Example: Don't

Zhu and Zabaras 2018 [25]

Example: Do

Nelsen and S 2021 [21]

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Recurrent Neural Operator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

RNO (Recurrent Neural Operator) D = (0, T)

Architecture Bhattacharya, Liu, AMS, Trautner '22 [2]

$$\mathcal{V}_{RNO}(e;\theta)(t) = F\left(e(t), \frac{de}{dt}(t), r(t); \theta\right), \quad \forall e \in \mathcal{U} \qquad t \in [0, T],$$

 $\frac{dr}{dt} = G(r, e; \theta), \quad \forall e \in \mathcal{U} \qquad t \in (0, T], \quad r(0) = 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Details

- Finite dimensional neural networks F, G;
- Two-layer used in this talk.

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Numerical Experiments

(ロ)、(型)、(E)、(E)、 E) の(()

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

$$\begin{split} &\frac{\partial\omega}{\partial t} + (\mathbf{v}\cdot\nabla)\omega - \nu\Delta\omega = f', \\ &-\Delta\psi = \omega, \qquad \int \psi(\mathbf{x},t)d\mathbf{x} = 0, \\ &\mathbf{v} = \Big(\frac{\partial\psi}{\partial x_2}, -\frac{\partial\psi}{\partial x_1}\Big). \end{split}$$

Operator

Learn the map between forcing f' and the vorticity at time T:

$$\Psi^{\dagger}: f' \to \omega|_{t=T}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Choose $f' \sim \mu := \mathcal{N}(0, (-\Delta + \tau^2)^{-\delta})$. $\tau = 3, \delta = 4$.

Navier Stokes Equation

Figure: Learned model predictions for inputs resulting in **median** test errors for networks of size $w = 128 / d_f = 16$ trained on N = 10000 data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Navier Stokes Equation

Figure: Learned model predictions for inputs resulting in **worst** test errors for networks of size $w = 128 / d_f = 16$ trained on N = 10000 data.

・ロト・西・・田・・田・・日・

Navier-Stokes Equation Output Space

Leading PCA basis functions

Figure: Comparison of output space bases: PCA-Net and DeepONet.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Advection Equation

Formulation

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \qquad x \in [0, 1),$$
$$u(0) = u_0$$

Operator

Learn the map between the initial condition u_0 and the solution at time 0.5, $u|_{t=0.5}$:

$$\Psi^{\dagger}: u_0 \rightarrow u|_{t=0.5}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $u_0 = -1 + 2\mathbb{1}_{\{\widetilde{u_0} \ge 0\}}$ and $\widetilde{u_0} \sim \mathcal{N}(0, (-\Delta + \tau^2)^{-d})$.

Advection Equation

Figure: Learned solution predictions for inputs resulting in **median** test errors for networks of size $w = 128 / d_f = 16$ trained on N = 10000 data.

Advection Equation

Figure: Learned solution predictions for inputs resulting in **worst** test errors for networks of size $w = 128 / d_f = 16$ trained on N = 10000 data.

Test Error vs. Cost

Figure: Test error vs. cost.

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへぐ

Advection Equation Output Space

Figure: Comparison of output space bases: PCA-Net and DeepONet.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

sectionUniversal Approximation

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Talk Outline

Algorithms on Function Space

Supervised Learning For Functions

Neural Operators

Theory

Closing

Universal Approximation

(ロ)、(型)、(E)、(E)、 E) の(()

Theoretical Justification – PCA-NET

Theorem Bhattacharya, Hosseini, Kovachki and AMS '19 [1]

Let $\Psi^{\dagger} \in L^{p}_{\mu}(\mathcal{U}; \mathcal{V})$. For any $\epsilon > 0$, there are latent dimensions, data volume and network size such that $\Psi_{PCA} = G_{\mathcal{V}} \circ \varphi \circ F_{\mathcal{U}}$ satisfies

$$\mathbb{E}^{\mathsf{data}} \| \Psi^{\dagger} - \Psi_{\mathsf{PCA}} \|_{L^p_{\mu}(\mathcal{U};\mathcal{V})} \leq \epsilon.$$

Encoder-Decoder Approach

Theorem Kovacvhki '22 [12, 10]

- \mathcal{U} , \mathcal{V} Banach spaces with the *approximation property* (AP).
- $\Psi^{\dagger}: \mathcal{U} \to \mathcal{V}$ continuous, $K \subset \mathcal{U}$ compact.

For any $\epsilon > 0 \exists$ bounded linear $F_{\mathcal{U}} : \mathcal{U} \to \mathbb{R}^{d_{\mathcal{U}}}, G_{\mathcal{V}} : \mathbb{R}^{d_{\mathcal{V}}} \to \mathcal{V}$, and a continuous map $\varphi \in C(\mathbb{R}^{d_{\mathcal{U}}}; \mathbb{R}^{d_{\mathcal{V}}})$ such that

$$\sup_{x\in K} \|\Psi^{\dagger}(x) - (G_{\mathcal{V}}\circ\varphi\circ F_{\mathcal{U}})(x)\|_{\mathcal{V}} \leq \epsilon.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lanthaler, Mishra and Karniadakis '21 [15] (DeepONet)