Sampling Via Gradient Flows In The Space of Probability Measures (With Links To Interacting Particle Systems)

Andrew Stuart, Caltech

Topics on Neuroscience, Collective Migration and Parameter Estimation

Oxford, July 5th 2023.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collaborators

Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance

> https://arxiv.org/abs/2302.11024 [9] Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart

Review paper: Trillos, Hosseini, Sanz-Alonso [30] (2023)

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Goal

The Sampling Problem

 $V: \mathbb{R}^d
ightarrow \mathbb{R}.$ Draw (approximate) samples from

$$ho^{\star}(heta) \propto \exp\Bigl(-V(heta)\Bigr)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MCMC: Brooks, Galin, Jones, Meng [6] (2011)

SMC: Del Moral, Doucet, Jasra [10] (2006)

Unifying Framework

Ingredients For Gradient Flows

- $\blacktriangleright L^2 = L^2(\mathbb{R}^d; \mathbb{R})$
- $\mathcal{P} = L^2$ Probability Densities on \mathbb{R}^d
- $\mathcal{E}: \mathcal{P} \to \mathbb{R}^+, \ \mathcal{E}(\rho^\star) = 0$ (Energy Functional)
- $\frac{\delta \mathcal{E}}{\delta \rho} \in L^2$ (First Variation)
- $M(\rho): L^2 \to L^2$ invertible, positive semi-definite for all $\rho \in \mathcal{P}$

Nonlinearly Preconditioned Gradient Flow in $\mathcal P$

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}(\rho_t)$$

Key Identity

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(\rho_t) = \Big\langle \frac{\delta \mathcal{E}}{\delta \rho}(\rho_t), \frac{\partial \rho_t}{\partial t} \Big\rangle_{L^2} = -\Big\langle \mathcal{M}(\rho_t) \frac{\partial \rho_t}{\partial t}, \frac{\partial \rho_t}{\partial t} \Big\rangle_{L^2} \leq 0$$

Gradient Flows: Ambrosio, Gigili, Savaré [3] (2005).

Sampling via optimization: Wibisono [33] (2018).

Canonical Example 1

At Our Disposal: Energy Functional $\mathcal{E}(\cdot)$, Metric $M(\cdot)$.

Energy Functional

 $\mathsf{Kullback-Leibler}\;(\mathsf{KL})\;\mathsf{Divergence}\;\mathcal{E}:\mathcal{P}\to\mathbb{R}^+,\;\mathcal{E}(\rho^\star)=\mathsf{0},\;\rho^\star=\mathsf{argmin}_{\rho\in\mathcal{P}}\;\mathcal{E}(\rho):$

$$\mathcal{E}(\rho) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log\left(\frac{\rho}{\rho^{\star}}\right) \mathrm{d}\theta$$
$$\frac{\delta \mathcal{E}}{\delta \rho}(\rho; \rho^{\star}) = \log \rho - \log \rho^{\star} + \text{constant}$$

Metric

Wasserstein-2 Metric Tensor:

$$M(\rho)^{-1}\psi = -\nabla_{\theta} \cdot (\rho \nabla_{\theta} \psi)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Canonical Example 2

Gradient Flow: Fokker-Planck Equation

KL for energy: $\mathcal{E} = \mathrm{KL}[\rho \| \rho^*]$; Wasserstein-2 for metric; then:

$$\begin{aligned} \frac{\partial \rho_t}{\partial t} &= -\nabla_\theta \cdot \left(\rho_t \nabla_\theta \log \rho^\star \right) + \nabla_\theta \cdot \left(\rho_t \nabla_\theta \log \rho_t \right) \\ \frac{\partial \rho_t}{\partial t} &= -\nabla_\theta \cdot \left(\rho_t \nabla_\theta \log \rho^\star \right) + \nabla_\theta \cdot \left(\nabla_\theta \rho_t \right) \end{aligned}$$

Trivial Mean Field Model: Langevin Equation Law(θ_t) = ρ_t : $d\theta_t = \nabla_{\theta} \log \rho^*(\theta_t) dt + \sqrt{2} dW_t$

Fokker-Planck and Langevin equations: Risken [26] (1996), Pavliotis [23] (2014)

Fokker-Planck as gradient flow for $\mathcal{E}(\rho)$: Jordan, Kinderlehrer, Otto [15] (1998)

Langevin equation and MCMC: Roberts, Tweedie [28] (1996); Roberts, Rosenthal [27] (2001)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Canonical Example 3

Theorem Markowich, Villani [21] (2000);

Assume $\exists \lambda > 0$:

 $D^2V(\cdot) \succeq \lambda I$

Then, for all $t \geq 0$,

 $\mathrm{KL}[\rho_t \| \rho^{\star}] \leq \mathrm{KL}[\rho_0 \| \rho^{\star}] e^{-2\lambda t}$

Rate of exponential convergence depends on problem

Probabilistic methods: Mattingly, S and Higham [22] (2002)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

Choice of \mathcal{E}

f-divergence

Consider f: f(1) = 0 and f convex and define:

$$D_f[
ho\|
ho^{\star}] = \int
ho^{\star} f\left(rac{
ho}{
ho^{\star}}
ight) \mathrm{d} heta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

► ...

► Kullback–Leibler divergence: f(x) = x log x

•
$$\chi^2$$
 divergence: $f(x) = (x-1)^2$

• Hellinger distance: $f(x) = (\sqrt{x} - 1)^2$

Choice of \mathcal{E} : Kullback–Leibler (KL) is Special

Energy: Kullback-Leibler

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log\left(\frac{\rho}{\rho^{\star}}\right) \mathrm{d}\theta$$
$$\frac{\delta \mathcal{E}}{\delta \rho}(\rho; \rho^{\star}) = \log \rho - \log \rho^{\star} + \mathrm{constant}$$
$$\mathcal{E}(\rho; c\rho^{\star}) = \mathcal{E}(\rho; \rho^{\star}) - \log(c)$$

Theorem Chen, Huang, Huang, Reich, AMS [9] (2023)

KL is the only f-divergence whose first variation leads to a gradient flow which is independent of the normalization constant of ρ^*

Use Kullback-Leibler from now on

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Two Metrics

Nont

Wasserstein Metric Jordan, Kindelehrer, Otto [15] (1998) Metric: $M(\rho)^{-1}\psi = -\nabla_{\theta} \cdot (\rho\nabla_{\theta}\psi)$ Flow: $\frac{\partial \rho_t}{\partial t} = -\nabla_{\theta} \cdot (\rho_t \nabla_{\theta} \log \rho^*) + \nabla_{\theta} \cdot (\nabla_{\theta} \rho_t)$ Trivial Mean Field Model: $d\theta_t = \nabla_{\theta} \log \rho^*(\theta_t) dt + \sqrt{2} dW_t$

Fisher-Rao Metric Rao [24] (1945); Amari [1] (1998)

Metric:
$$M(\rho)^{-1}\psi = \rho(\psi - \mathbb{E}_{\rho}[\psi])$$

Flow: $\frac{\partial \rho_t}{\partial t} = \rho_t (\log \rho^* - \log \rho_t) - \rho_t \mathbb{E}_{\rho_t}[\log \rho^* - \log \rho_t]$
rivial Mean Field Models: discuss later

Optimal transport: Villani [31] (2008) Information geometry: Amari [2] (2016); Ay, Jost, Lê, Schwachhöfer [4] (2017)

Fisher-Rao Flow: Invariance Under Diffeomorphisms

Pushforward

Given diffeomorphism $\varphi:\mathbb{R}^d\to\mathbb{R}^d$

- $\tilde{\rho}_t = \varphi_{\#} \rho_t$ is the transformed distribution at time t
- $\tilde{\rho}^{\star} = \varphi_{\#} \rho^{\star}$ is the transformed target distribution

Proposition

Fisher-Rao gradient flow is invariant under any diffeomorphism:

$$\frac{\partial \rho_t}{\partial t} = \rho_t \left(\log \rho^* - \log \rho_t \right) - \rho_t \mathbb{E}_{\rho_t} [\log \rho^* - \log \rho_t]$$
$$\frac{\partial \tilde{\rho}_t}{\partial t} = \tilde{\rho}_t \left(\log \tilde{\rho}^* - \log \tilde{\rho}_t \right) - \tilde{\rho}_t \mathbb{E}_{\tilde{\rho}_t} [\log \tilde{\rho}^* - \log \tilde{\rho}_t]$$

Consequence of Invariance of Fisher-Rao Gradient Flow

Theorem Lu, Slepčev, Wang [19] (2022); Chen, Huang, Huang, Reich, AMS [9] (2023)

Assume

 $\blacktriangleright \exists K > 0$:

$$e^{-\kappa(1+| heta|^2)} \leq rac{
ho_0(heta)}{
ho^\star(heta)} \leq e^{\kappa(1+| heta|^2)}$$

► $\exists B > 0$ bounding first and second moments of ρ_0, ρ^* Then, for all $t \ge \log((1+B)K)$,

 $\mathrm{KL}[\rho_t \| \rho^{\star}] \leq (2 + B + eB) K e^{-t}$

Unconditional uniform exponential convergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mean-Field Models For Fisher-Rao Gradient Flow

Mean-Field ODE Chen, Huang, Huang, Reich, AMS [9] (2023)

$$\begin{aligned} \frac{\mathrm{d}\theta_t}{\mathrm{d}t} &= -\nabla_\theta F(\theta;\rho_t,\rho^*) \big|_{\theta=\theta_t} \\ -\nabla_\theta \cdot \left(\rho(\theta) \nabla_\theta F(\theta;\rho,\rho^*) \right) &= \rho(\theta) \mathbb{E}_\rho \left(\log \rho^* - \log \rho \right) - \rho(\theta) \left(\log \rho^*(\theta) - \log \rho(\theta) \right) \\ \end{aligned}$$
Particle approximation: $\{\theta_{t,\ell}\}_{\ell=1}^N$

Birth-Death Process Lu, Lu, Nolen [18] (2019); Lu, Slepčev, Wang [19] (2022)

$$\begin{split} \Omega_t^{\ell} &= \log \Bigl(\frac{1}{N} \sum_{j=1}^N K(\theta_{t,\ell} - \theta_{t,j}) \big/ \rho^{\star}(\theta_{t,\ell}) \Bigr), \quad K \approx \delta \\ \Lambda_t^i &= \Omega_t^i - \frac{1}{N} \sum_{\ell=1}^N \Omega_t^{\ell} \quad \text{Particle } i \text{ birth-death rate} \end{split}$$

Both face significant obstacles in order to implement a source of the second se

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

Invariance Revisited

Theorem Ay, Jost, Lê, Schwachhöfer [4] (2015); Bauer, Bruveris, Michor [5] (2016); Cencov [8] (2000)

The Fisher-Rao metric is the only Riemannian metric on smooth positive densities (up to scaling) that is invariant under any diffeomorphism of the parameter space

Affine Invariance

Given an affine transformation $\varphi: \mathbb{R}^d \to \mathbb{R}^d$

- $\tilde{\rho}_t = \varphi_{\#} \rho_t$ is the transformed distribution at time t
- $\tilde{\rho}^{\star} = \varphi_{\#} \rho^{\star}$ is the transformed target distribution

Flow is affine invariant if, for all affine φ , $(\tilde{\rho}_t, \tilde{\rho}^*)$ satisfy same equation as (ρ_t, ρ^*) .

For parallel MCMC: Goodman, Weare [13] (2010); generalization: Leimkuhler, Matthews, Weare [17] (2018) For ensemble Kalman: Garbuno-Inigo, Nüsken and Reich [12] (2020) For ensemble Kalman: Huang, Huang, Reich, AMS [14] (2022)

Examples

Fisher-Rao Gradient Flow

The Fisher-Rao gradient flow is affine invariant

Kalman-Wasserstein Gradient Flow Garbuno-Inigo, Hoffman, Li and AMS [11] (2020) The Kalman-Wasserstein gradient flow is affine invariant.

Covariance:
$$C(\rho) = \operatorname{Cov}(\rho)$$

Metric: $M(\rho)^{-1}\psi = -\nabla_{\theta} \cdot (\rho C(\rho)\nabla_{\theta}\psi)$
Flow: $\frac{\partial \rho_t}{\partial t} = -\nabla_{\theta} \cdot (\rho_t C(\rho_t)\nabla_{\theta}\log\rho^*) + \nabla_{\theta} \cdot (C(\rho_t)\nabla_{\theta}\rho_t)$
Mean Field Model: $d\theta_t = C(\rho_t)\nabla_{\theta}\log\rho^*(\theta_t)dt + \sqrt{2C(\rho_t)}dW_t$

Kalman-Wasserstein metric first identified: Reich and Cotter [25] (2015)

Consequence of Affine Invariance of Kalman-Wasserstein Gradient Flow

Theorem Garbuno-Inigo, Hoffman, Li and AMS [11] (2022); Carrillo and Vaes [7] (2023)

Assume V is quadratic. Then there is constant C > 0 such that, for all $t \ge 0$,

 $\mathcal{W}_2(\rho_t, \rho^\star) \leq C \mathcal{W}_2(\rho_0, \rho^\star) e^{-t}$

Unconditional uniform exponential convergence

Universal convergence to equilibirum for Gaussian targets: Garbuno-Inigo, Hoffman, Li and AMS [11] (2020) Universal convergence to equilibirum for Gaussian targets (non-Gaussian initialization): Carrillo and Vaes [7] (2021)

Numerical Example Illustrating Affine Invariance

Experimental Set-Up

2D Rosenbrock potential:

$$V(heta) = rac{\lambda}{20} \left(heta_2 - heta_1^2
ight)^2 + rac{1}{20} \left(1 - heta_1
ight)^2$$

for $\theta = (\theta_1, \theta_2)$ and $\lambda = 10^{-k}$, k = 0, 1, 2

• Goal: sample
$$ho^{\star} \propto \exp(-V(heta))$$

- Method 1: Wasserstein using noninteracting Langvein, 10³ particles.
- Method 2: Kalman-Wasserstein using interacting Langevin, 10³ particles
- Configuration: Integrate to t = 15, initialized from

$$\theta_0 \sim \mathcal{N} \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical Example Illustrating Affine Invariance

Figure: 10^3 particles at t = 15 from Langevin (top row) and affine invariant Langevin (bottom row). Grey lines represent the contour of the true posterior

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Variational Bayes

Energy Functional

Kullback-Leibler (KL) Divergence:

$$\mathcal{E}(
ho) = \mathrm{KL}[
ho\|
ho^{\star}] = \int
ho \log\Bigl(rac{
ho}{
ho^{\star}}\Bigr) \,\mathrm{d} heta$$

$$\blacktriangleright \ \mathcal{E}: \mathcal{P} \to \mathbb{R}^+, \ \mathcal{E}(\rho^\star) = 0$$

$$\rho^{\star} = \operatorname{argmin}_{\rho \in \mathcal{P}} \mathcal{E}(\rho)$$

▶ \mathcal{P}_a : parameterized subset of probability density functions on \mathbb{R}^d , $a \in \mathbb{R}^p$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$P_{a_{\star}} = \operatorname{argmin}_{\rho \in \mathcal{P}_{a}} \mathcal{E}(\rho)$$

Variational Bayes: Mackay [20] (2008); Wainright, Jordan [32] (2008)

Gradient Descent for Variational Bayes

Ingredients For Gradient Flows

- $\mathcal{E}: \mathcal{P} \to \mathbb{R}_+, \ \mathcal{E}(\rho^{\star}) = 0$ (Energy Functional)
- ▶ $\mathcal{P}_a \subset \mathcal{P}, \ a \in \mathbb{R}^p, \ \rho(a) \in \mathcal{P}_a$ (Candidate Density)
- $(M(\rho)\nabla_{a}\rho(a)\cdot\sigma_{1},\nabla_{a}\rho(a)\cdot\sigma_{2})_{L^{2}} = \langle \mathfrak{M}(a)\sigma_{1},\sigma_{2}\rangle_{\mathbb{R}^{p}}$ (Induced Metric)

The Gradient Flow in \mathbb{R}^p (and in \mathcal{P}_a)

$$\frac{\mathrm{d}}{\mathrm{d}t}a_t = -\mathfrak{M}(a_t)^{-1}\frac{\partial}{\partial a}\mathcal{E}(\rho_a)\Big|_{a=a_t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Identifying The Gradient Flow: Gaussian Case 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Gaussian Variational Bayes

• \mathcal{G} : all Gaussian probability measures on \mathbb{R}^d

$$\blacktriangleright \ \mathcal{G} = \mathcal{P}_a, \ a = (m, C) \in \mathbb{R}^d \times \mathbb{R}^{d \times d}_{\mathrm{sym}, \geq 0}$$

Theorem Chen, Huang, Huang, Reich, AMS [9] (2023)

Moment closure gives the gradient flow

Identifying The Gradient Flow: Gaussian Case 2

Consequence

Consider a gradient flow in P:

$$\frac{\partial \rho_t(\theta)}{\partial t} = \sigma_t(\theta, \rho_t)$$

Then mean and covariance evolve according to

$$\frac{\mathrm{d}m_t}{\mathrm{d}t} = \int \sigma_t(\theta, \rho_t) \theta \mathrm{d}\theta, \qquad \frac{\mathrm{d}C_t}{\mathrm{d}t} = \int \sigma_t(\theta, \rho_t) (\theta - m_t) (\theta - m_t)^T \mathrm{d}\theta$$

Closure: to obtain gradient flow in \mathcal{P}_a use $\rho_t = \rho_{a_t} = \mathcal{N}(m_t, C_t)$

Moment closure in variational Kalman filtering: Särkkä [29] (2007)

Moment closure in Wasserstein gradient flow: Lambert, Chewi, Bach, Bonnabel, Rigollet [16] (2022)

Convergence Rates

Theorem Chen, Huang, Huang, Reich, AMS [9] (2023)

Assume Gaussian target ρ^* and consider Fisher-Rao variational inference. If $\rho^* = \mathcal{N}(m_\star, C_\star)$, and $C_0 = \lambda_0 I, \lambda_0 > 0$, then

$$||m_t - m_\star||_2 = \Theta(e^{-t}), \quad ||C_t - C_\star||_2 = \Theta(e^{-t})$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

See also: Lambert, Chewi, Bach, Bonnabel, Rigollet [16] (2022)

Numerical Example: Gaussian Gradient Flows

Experimental Set-Up

2D convex potential:

$$V(heta)=rac{1}{20}(\sqrt{\lambda} heta_1- heta_2)^2+rac{1}{20}(heta_2)^2$$

for $\theta = (heta_1, heta_2)$ and $\lambda = 10^{-k}$, k = 0, 1, 2

- Goal: sample $\rho^* \propto \exp(-V(\theta))$
- Method 1: Gaussian approximation of Fisher-Rao GF
- Method 2: Gaussian approximation of Wasserstein GF
- Method 3: Gaussian approximation of vanilla GF
- Configuration: Integrate to t = 15 initialized from the Gaussian

$$\mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}4&0\\0&4\end{bmatrix}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical Examples

Figure: x axis is from t = 0 to 15. Gaussian approximate Fisher-Rao gradient flows perform the best. Convergence rate not influenced by different values of λ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Unifying Framework

Choice of Energy Functional

Choice of Metric

Affine Invariant Metrics

Gaussian Variational Bayes

Conclusions

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Summary

Gradient Flows for Sampling Chen, Huang, Huang, Reich, AMS [9] (2023)

- Energy Functional: KL divergence
 - invariant to normalization consts
 - unique property among all f divergences
- Fisher-Rao Metric:
 - invariant to any diffeomorphism of the parameters
 - unique property among all metrics on probability space
 - uniform exponential convergence
 - implementing mean field models is difficult
 - works well within Gaussian variational inference

Affine Invariance:

- uniform exponential convergence for Gaussian target
- affine invariant Kalman-Wasserstein
- implementation of mean field models is straightforward

Thank-you

https://arxiv.org/abs/2302.11024 [9]

Gradient flows for sampling: mean-field models, Gaussian approximations and affine invariance

Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, Andrew M. Stuart

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References I

[1] S.-I. Amari.

Natural gradient works efficiently in learning. *Neural computation*, 10(2):251–276, 1998.

- S.-i. Amari. *Information Geometry and its Applications*, volume 194. Springer, 2016.
- [3] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, 2005.
- [4] N. Ay, J. Jost, H. V. Lê, and L. Schwachhöfer. *Information Geometry*, volume 64. Springer, 2017.
- [5] M. Bauer, M. Bruveris, and P. W. Michor. Uniqueness of the Fisher–Rao metric on the space of smooth densities. Bulletin of the London Mathematical Society, 48(3):499–506, 2016.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[6] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov chain Monte Carlo. CRC press, 2011.

References II

 J. Carrillo and U. Vaes.
 Wasserstein stability estimates for covariance-preconditioned fokker-planck equations.
 Nonlinearity, 34(4):2275, 2021.

[8] N. N. Cencov. Statistical decision rules and optimal inference. American Mathematical Soc., 2000.

[9] Y. Chen, D. Z. Huang, J. Huang, S. Reich, and A. M. Stuart. Gradient flows for sampling: Mean-field models, gaussian approximations and affine invariance.

arXiv preprint arXiv:2302.11024, 2023.

 P. Del Moral, A. Doucet, and A. Jasra.
 Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

 [11] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical Systems, 19(1):412–441, 2020.

References III

- [12] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.
- J. Goodman and J. Weare.
 Ensemble samplers with affine invariance.
 Communications in applied mathematics and computational science, 5(1):65–80, 2010.
- [14] D. Z. Huang, J. Huang, S. Reich, and A. M. Stuart. Efficient derivative-free Bayesian inference for large-scale inverse problems. arXiv preprint arXiv:2204.04386, 2022.
- [15] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. *SIAM journal on mathematical analysis*, 29(1):1–17, 1998.
- [16] M. Lambert, S. Chewi, F. Bach, S. Bonnabel, and P. Rigollet. Variational inference via Wasserstein gradient flows. arXiv preprint arXiv:2205.15902, 2022.
- [17] B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain Monte Carlo simulations. *Stat. Comput.*, 28:277–290, 2018.

References IV

[18] J. Lu, Y. Lu, and J. Nolen.

Scaling limit of the Stein variational gradient descent: The mean field regime. *SIAM Journal on Mathematical Analysis*, 51(2):648–671, 2019.

[19] Y. Lu, D. Slepčev, and L. Wang.

Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics.

arXiv preprint arXiv:2211.00450, 2022.

- [20] D. J. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
- [21] P. A. Markowich and C. Villani.

On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis.

Mat. Contemp, 19:1-29, 2000.

[22] J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for sdes and approximations: locally lipschitz vector fields and degenerate noise.

Stochastic processes and their applications, 101(2):185–232, 2002.

References V

[23] G. A. Pavliotis.

Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations, volume 60. Springer, 2014.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[24] C. R. Rao.

Information and the accuracy attainable in the estimation of statistical parameters.

Reson. J. Sci. Educ, 20:78-90, 1945.

[25] S. Reich and C. Cotter.

Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press, 2015.

- [26] H. Risken. Fokker-Planck Equation. Springer, 1996.
- [27] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various metropolis-hastings algorithms. *Statistical science*, 16(4):351–367, 2001.

References VI

[28] G. O. Roberts and R. L. Tweedie.

 $\ensuremath{\mathsf{Exponential}}$ convergence of Langevin distributions and their discrete approximations.

Bernoulli, pages 341-363, 1996.

[29] S. Särkkä.

On unscented Kalman filtering for state estimation of continuous-time nonlinear systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

IEEE Transactions on automatic control, 52(9):1631–1641, 2007.

- [30] N. G. Trillos, B. Hosseini, and D. Sanz-Alonso. From optimization to sampling through gradient flows. arXiv preprint arXiv:2302.11449 (To appear in Notices of AMS), 2023.
- [31] C. Villani. Optimal transport: old and new, volume 338. Springer, 2009.
- [32] M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and variational inference. Foundations and Trends(R) in Machine Learning, 1(1-2):1-305, 2008.

References VII

[33] A. Wibisono.

Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In Conference on Learning Theory, pages 2093-3027. PMLR, 2018.