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ABSTRACT

Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution

of the system state, given all the observations on a time window of interest, plays a central conceptual role.

The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which

to evaluate various commonly used data assimilation algorithms.

A key aspect of geophysical data assimilation is the high dimensionality and limited predictability of the

computational model. This paper examines the two-dimensional Navier–Stokes equations in a periodic ge-

ometry, which has these features and yet is tractable for explicit and accurate computation of the posterior

distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that are

evaluated, as quantified by the relative error in reproducing moments of the posterior, are four-dimensional

variational data assimilation (4DVAR) and a variety of sequential filtering approximations based on three-

dimensional variational data assimilation (3DVAR) and on extended and ensemble Kalman filters.

The primary conclusions are that, under the assumption of a well-defined posterior probability distribution,

(i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the

desired probability distribution, (ii) they do not perform as well in reproducing the covariance, and (iii) the

error is compounded by the need to modify the covariance, in order to induce stability. Thus, filters can be

a useful tool in predicting mean behavior but should be viewed with caution as predictors of uncertainty.

These conclusions are intrinsic to the algorithms when assumptions underlying them are not valid and will not

change if the model complexity is increased.

1. Introduction

The positive impact of data assimilation schemes on

numerical weather prediction (NWP) is unquestionable.

Improvements in forecast skill over decades reflect not

only the increased resolution of the computational model

but also the increasing volumes of data available, as well

as the increasing sophistication of algorithms to incor-

porate this data. However, because of the huge scale of

the computational model, many of the algorithms used

for data assimilation employ approximations, based on

both physical insight and computational expediency,

whose effect can be hard to evaluate. The aim of this

paper is to describe a method of evaluating some impor-

tant aspects of data assimilation algorithms by comparing

them with a gold standard: the Bayesian posterior prob-

ability distribution on the system state given observations.

In so doing we will demonstrate that carefully chosen

filters can perform well in predicting mean behavior, but

that they typically perform poorly when predicting un-

certainty, such as covariance information.

In typical operational conditions the observed data,

model initial conditions, and model equations are all

subject to uncertainty. Thus we take the perspective that

the gold standard, which we wish to reproduce as accu-

rately as possible, is the (Bayesian) posterior probability

distribution of the system state (possibly including pa-

rameters) given the observations. For practical weather

forecasting scenarios this is not computable. The two

primary competing methodologies for data assimilation

that are computable, and hence are implemented in

practice, are filters (Kalnay 2003) and variational methods

(Bennett 2002). We will compare the (accurately com-

puted, extremely expensive) Bayesian posterior distri-

bution with the output of the (approximate, relatively

cheap) filters and variational methods used in practice.

Our underlying dynamical model is the 2D Navier–

Stokes equations in a periodic setting. This provides

a high dimensional dynamical system, which exhibits a
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range of complex behaviors yet is sufficiently small that

the Bayesian posterior may be accurately computed by

state-of-the-art statistical sampling in an offline setting.

The idea behind filtering is to update the posterior

distribution of the system state sequentially at each ob-

servation time. This may be performed exactly for linear

systems subject to Gaussian noise, and is then known as

the Kalman filter (Kalman 1960; Harvey 1991). For

nonlinear or non-Gaussian scenarios the particle filter

(Doucet et al. 2001) may be used and provably approxi-

mates the desired probability distribution as the number

of particles is increased (Bain and Crişan 2008). How-

ever, in practice this method performs poorly in high di-

mensional systems (Snyder et al. 2008) and, while there is

considerable research activity aimed at overcoming this

degeneration (van Leeuwen 2010; Chorin et al. 2010;

Bengtsson et al. 2003), it cannot currently be viewed as

a practical tool within the context of geophysical data

assimilation. To circumvent problems associated with the

representation of high dimensional probability distribu-

tions some form of Gaussian approximation is typically

used to create practical filters. The oldest and simplest

such option is to use a nonlinear generalization of the

mean update in the Kalman filter, employing a constant

prior covariance operator, obtained offline through

knowledge coming from the underlying model and past

observations (Lorenc 1986); this methodology is some-

times referred to as three-dimensional variational data

assimilation (3DVAR). More sophisticated approximate

Gaussian filters arise either from linearizing the dynam-

ical model, yielding the extended Kalman filter (ExKF;

Jazwinski 1970), or from utilizing ensemble statistics,

leading to the ensemble Kalman filter (EnKF; Evensen

et al. 1994; Evensen 2003). Information about the un-

derlying local (in time) Lyapunov vectors, or bred vectors

[see Kalnay (2003) for discussion] can be used to guide

further approximations that are made when implement-

ing these methods in high dimensions. We will also be

interested in the use of Fourier diagonal filters (FDFs),

introduced in Harlim and Majda (2008) and Majda et al.

(2010), which approximate the dynamical model by a

statistically equivalent linear dynamical system in a man-

ner that enables the covariance operator to be mapped

forward in closed form; in steady state the version we

employ here reduces to a particular choice of 3DVAR,

based on climatological statistics. An overview of particle

filtering for geophysical systems may be found in van

Leeuwen (2009) and a quick introduction to sequential

filtering may be found in Arulampalam et al. (2002).

Whereas filtering updates the system state sequentially

each time when a new observation becomes available,

variational methods attempt to incorporate data distrib-

uted over an entire time interval. This may be viewed as

an optimization problem in which the objective function

is to choose the initial state, and possibly forcing to the

physical model, in order to best match the data over the

specified time window. As such it may be viewed as a

PDE-constrained optimization problem (Hinze et al.

2009), and more generally as a particular class of regu-

larized inverse problem (Vogel 2002; Tarantola 2005;

Banks and Kunisch 1989). This approach is referred to as

four-dimensional variational data assimilation (4DVAR)

in the geophysical literature when the optimization is

performed over just the initial state of the system

(Talagrand and Courtier 1987; Courtier and Talagrand

1987) and as weak constraint 4DVARwhen optimization

is also over forcing to the system (Zupanski 1997).

From a Bayesian perspective, the solution to an in-

verse problem is statistical rather than deterministic and

is hence significantly more challenging: regularization

is imposed through viewing the unknown as a random

variable, and the aim is to find the posterior probability

distribution on the state of the system on a given time

window, given the observations on that time window.

With the current and growing capacity of computers it is

becoming relevant and tractable to begin to explore

such approaches to inverse problems in differential

equations (Kaipio and Somersalo 2005), even though it

is currently not feasible to do so for NWP. There has,

however, been some limited study of the Bayesian ap-

proach to inverse problems in fluidmechanics using path

integral formulations in continuous time as introduced

in Apte et al. (2007); see Apte et al. (2008a,b), Quinn and

Abarbanel (2010), and Cotter et al. (2011) for further

developments. We will build on the algorithmic experi-

ence contained in these papers here. For a recent over-

view of Bayesian methodology for inverse problems in

differential equations, see Stuart (2010), and for the

Bayesian formulation of a variety of inverse problems

arising in fluid mechanics, see Cotter et al. (2009). The

key ‘‘take home’’ message of this body of work on

Bayesian inverse problems is that it is often possible to

compute the posterior distribution of state given noisy

data with high degree of accuracy, albeit at great expense:

the methodology could not be used online as a practical

algorithm, but it provides us with a gold standard against

which we can evaluate online approximate methods used

in practice.

There are several useful connections to make among

the Bayesian posterior distribution, filtering methods,

and variational methods, all of which serve to highlight

the fact that they are all attempting to represent related

quantities. The first observation is that, in the linear

Gaussian setting, if backward filtering is implemented

on a given timewindow (this is known as smoothing) after

forward filtering, then the resulting mean is equivalent to
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4DVAR (Fisher et al. 2005). The second observation is

that the Bayesian posterior distribution at the end of

the time window, which is a non-Gaussian version of the

Kalman smoothing distribution just described, is equal

to the exact filtering distribution at that time, provided

the filter is initialized with the same distribution as that

chosen at the start of the time window for the Bayesian

posterior model (Stuart 2010). The third observation is

that the 4DVAR variational method corresponds to

maximizing the Bayesian posterior distribution and is

known in this context as a maximum a posteriori esti-

mator (Cox 1964; Kaipio and Somersalo 2005). More

generally, connections between filtering and smoothing

have been understood for some time (Bryson and Frazier

1963).

For the filtering and variational algorithms imple-

mented in practice, these connections may be lost or

weakened because of the approximations made to create

tractable algorithms. Hence we attempt to evaluate these

algorithms by their ability to reproduce moments of the

Bayesian posterior distribution since this provides an

unequivocal notion of a perfect solution, given a com-

plete model description, including sources of error; we

hence refer to it as the gold standard. We emphasize

that we do not claim to present optimal implementations

of any method except the gold standard Markov chain

Monte Carlo (MCMC) sampling. Nonetheless, the phe-

nomena we observe and the conclusions we arrive at will

not change qualitatively if the algorithms are optimized.

They reflect inherent properties of the approximations

used to create online algorithms useable in practical

online scenarios.

The ability of filters to track the signal in chaotic sys-

tems has been the object of study in data assimilation

communities for some time and we point to the paper of

Miller et al. (1994) as an early example of this work,

confined to low dimensional systems, and to the more

recent work of Carrassi et al. (2008) for study of both low

and high dimensional problems, and for further discus-

sion of the relevant literature. As mentioned above, we

develop our evaluation in the context of the 2D Navier–

Stokes equations in a periodic box. We work in param-

eter regimes in which at most O(103) Fourier modes are

active. This model has several attractive features. For

instance, it has a unique global attractor with a tunable

parameter, the viscosity (or, equivalently, the Reynolds

number), which tunes between a one-dimensional stable

fixed point and very high dimensional strongly chaotic

attractor (Temam 2001). As the dimension of the at-

tractor increases, many scales are present, as one would

expect in a model of the atmosphere. By working with

dimensions of size O(103) we have a model of signifi-

cantly higher dimension than the typical toy models that

one encounters in the literature (Lorenz 1996, 1963).

Therefore, while the 2D Navier–Stokes equations do not

model atmospheric dynamics, we expect the model to

exhibit similar predictability issues as arise atmospheric

models, and this fact, together their high dimensionaliy,

makes them a useful model with which to study aspects of

atmospheric data assimilation. However, we do recognize

the need for follow-up studies that investigate similar is-

sues for models such as the Lorenz-96 model, or quasi-

geostrophic models, which can mimic or model the

baroclinic instabilities that drive so much of atmospheric

dynamics.

The primary conclusions of our study are as follows:

(i) With appropriate parameter choices, approximate

filters can perform well in reproducing the mean of the

desired probability distribution. (ii) However, these filters

typically perform poorly when attempting to reproduce

information about covariance as the assumptions under-

lying themmay not be valid. (iii) This poor performance is

compounded by the need to modify the filters, and their

covariance in particular, in order to induce filter stability

and avoid divergence. Thus, while filters can be a useful

tool in predicting mean behavior, they should be viewed

with caution as predictors of uncertainty. These conclu-

sions are intrinsic to the algorithms and will not change if

themodel is more complex (e.g., due to a smaller viscosity

in our model). We reiterate that these conclusions are

based on our assumption of well-defined initial prior,

observational error, and hence Bayesian posterior dis-

tributions. Because of the computational cost of com-

puting the latter we look only at one, initial, interval of

observations, but upon our assumption the accuracy over

this first interval will limit accuracy on all subsequent

intervals, and they will not become better. Under the

reasonable assumption that the process has finite corre-

lation time, the initial prior will be forgotten eventually

and, in the present context, this effect would be explored

by choosing different priors coming from approxima-

tion of the asymptotic distribution by some filtering

algorithm and/or climatological statistics and testing

the robustness of conclusions, and indeed of the filter-

ing distribution itself, to changes in prior. The question

of sensitivity of the results to choice of prior is not ad-

dressed here. We also restrict our attention here to the

perfect model scenario.

Many comparisons of various versions of thesemethods

have been carried out recently. For example, Meng and

Zhang (2008) and Zhang et al. (2010) compare the EnKF

forecast with 3DVAR and 4DVAR (without updated

covariance) in the Weather Research and Forecasting

model (WRF). In their real-data experiments, they con-

clude that EnKF and 4DVAR perform better with re-

spect to the root-mean-square error (RMSE), while the
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EnKF forecast performs better for longer lead times. This

result is consistent with ours, although it could be ex-

plained by an improved approximation of the posterior

distribution at each update time. Our results indicate

4DVAR could perform better here, as long as the ap-

proximate filtering distribution of 4DVAR with the

propagated Hessian is used. Of course this is too expen-

sive in practice and often a constant covariance is used;

this will limit performance in reproducing the statistical

variation of the posterior filtering distribution for prior

in the next cycle. This issue is addressed partially in

Meng and Zhang (2008) and Zhang and Zhang (2012),

where EnKF is coupled to 4DVAR and the covariance

comes from the former, while the mean is updated by

the latter, and the resulting algorithm outperforms ei-

ther of the individual ones in the RMSE sense. Two

fundamental classes of EnKFs were compared theo-

retically in the large ensemble limit in Lei et al. (2010),

and it was found that the stochastic version (the one we

employ here) in which observations are perturbed is

more robust to perturbations in the forecast distribution

than the deterministic one. Another interesting com-

parison was undertaken in Hamill et al. (2000) in which

several ensemble filters alternative to EnKF in opera-

tional use are compared with respect to RMSE as well

as other diagnostics such as rank histograms (Anderson

1996). We note that over long times the RMSE values

for the algorithms we consider are in the same vicinity

as the errors between the estimators and the truth that

we present at the single filtering time.

The rest of the paper will be organized in the following

sections. First, we introduce the model and inverse pro-

blem in section 2; then we describe the various methods

used to (approximately) compute posterior smoothing

and filtering distributions in section 3. Then we describe

the results of the numerical simulations in two sections:

The first (section 4) explores the accuracy of the filters

by comparison with the posterior distribution and the

truth; the second (section 5) explains the manifestation

of instability in the filters, describes how they are sta-

bilized, and studies implications for accuracy. We pro-

vide a summary and conclusions in section 6. In the

appendix we describe some details of the numerical

methods.

2. Statement of the model

In this section we describe the dynamical model,

and the filtering and smoothing problems that arise

from assimilating data into that model. The discus-

sion is framed prior to discretization. Details relating

to numerical implementation may be found in the

appendix.

a. Dynamical model: Navier–Stokes equation

The dynamical model we will consider is the two-

dimensional incompressible Navier–Stokes equation in

a periodic box with side of length 2. By projecting into

the space of divergence-free velocity fields, this may be

written as a dynamical equation for the divergence-free

velocity field u with the form

du

dt
1 nAu1F(u)5 f , u(0)5 u0 . (1)

Here A (known as the Stokes operator) models the

dissipation and acts as a (negative) Laplacian on di-

vergence free fields, F(u) is the nonlinearity arising from

the convective time derivative, and f is the body force, all

projected into divergence free functions; n is the vis-

cosity parameter. We also work with spatial mean-zero

velocity fields as, in periodic geometries, themean evolves

independently of the other Fourier modes. See Temam

(2001) for details concerning the formulation of incom-

pressible fluidmechanics in this notation.We letH denote

the space of square-integrable, periodic, and mean-zero

divergence-free functions on the box. To assure that our

results are self-contained apart from the particular choice

ofmodel considered, we define themapC(�; t):H/H so

that the solution of (1) satisfies

u(t)5C(u0; t) . (2)

Equation (1) has a global attractor and the viscosity

parameter n tunes between regimes in which the at-

tractor is a single stationary point, through periodic,

quasi-periodic, chaotic, and strongly chaotic (the last

two being difficult to distinguish between). These regimes

are characterized by an increasing number of positive

Lyapunov exponents, and hence increasing dimension of

the unstablemanifold. In turn, this results in a system that

becomes progressively less predictable. This tunability

through all predictability regimes, coupled to the possi-

bility of high dimensional effective dynamics that can

arise for certain parameter regimes of the PDE, makes

this a useful model with which to examine some of the

issues inherent in atmospheric data assimilation.

b. Inverse problem

The basic inverse problem that underlies data assim-

ilation is to estimate the state of the system, given the

model dynamics for the state, together with noisy ob-

servations of the state. In our setting, since the model

dynamics are deterministic, this amounts to estimating

the initial condition from noisy observations at later

times. This is an ill-posed problem that we regularize by

adopting a Bayesian approach to the problem, imposing
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a prior Gaussian random field assumption on the initial

condition. Itwill be useful to define k�kB 5kB21/2�k for any
covariance operatorB andwe use this notation throughout

the paper, in particular in the observation space with

B 5 G and in the initial condition space with B 5 C0.
Our prior regularization on the initial state is to

assume

u0;m05N (m0, C0) . (3)

The prior mean m0 is our best guess of the initial state

before data are acquired (background mean), and the

prior covariance C0 (background covariance) regularizes
this by allowing variability with specified magnitude at

different length scales. The prior covariance C0:H/H
is self-adjoint and positive, and is assumed to have

summable eigenvalues, a condition that is necessary

and sufficient for draws from this prior to be square

integrable.

Now we describe the noisy observations. We observe

only the velocity field, and not the pressure. Let G:H/
H be a self-adjoint positive operator and let

yk;N [u(tk),G] (4)

denote noisy observations of the state at time tk 5 kh,

which, for simplicity of exposition only, we have as-

sumed to be equally spaced. We assume independence

of the observational noise: yk juk is independent of yj juj
for all j 6¼ k; and the observational noise is assumed in-

dependent of the initial condition u0.

For simplicity and following convention in the field,

we will not distinguish notationally between the ran-

dom variable and its realization, except in the case of

the truth, which will be important to distinguish by uy

in subsequent sections in which it will be simulated

and known. The inverse problem consists of estimat-

ing the posterior probability distribution of u(t), given

noisy observations fykgjk50, with j # J. This is referred

to as

d Smoothing when t , tj;
d Filtering when t 5 tj;
d Predicting when t . tj.

Under the assumption that the dynamical model is de-

terministic, the smoothing distribution at time t 5 0 can

be mapped forward in time to give the exact filtering

distribution, which in turn can be mapped forward in

time to give the exact predicting distribution (and like-

wise the filtering distribution mapped backward, if the

forward map admits an inverse, yields the smoothing

distribution). If the forward map were linear, for in-

stance in the case of the Stokes equation [F(u)5 0], then

the posterior distribution would be Gaussian as well,

and could be given in closed form via its mean and co-

variance. In the nonlinear case, however, the posterior

cannot be summarized through a finite set of quantities

such as mean and covariance and, in theory, requires

infinitely many samples to represent. In the language of

the previous section, as the dimension of the attractor

increases with Reynolds number, the nonlinearity be-

gins to dominate the equation, the dynamics become less

predictable, and the inverse problem becomes more dif-

ficult. In particular, Gaussian approximations can be-

come increasingly misleading. We will see that sufficient

nonlinearity for these misleading effects can arise more

than one way, via the dynamical model or the observa-

tional frequency.

1) SMOOTHING

We start by describing the Bayesian posterior distri-

bution, and link this to variational methods. Let uk 5
u(kh), C(u) 5 C(u; h), and Ck(�) 5 C(�; kh). Further-
more, define the conditional measures for j1, j2 # J:

mj
1
j j

2
(uj

1
)5P(uj

1
j fykg

j
2

k50) .

(For notational convenience we do not distinguish be-

tween a probability distribution and its density, using

m and P interchangeably for both). The posterior dis-

tributions are completely characterized by the dynami-

cal model in (2) and by the random inputs given in (4)

and (3).

We focus on the posterior distribution m0jJ since this

probability distribution, once known, determines mjjJ for
all J $ j $ 0 simply by using (2) to map the probability

distribution at time t 5 0 into that arising at any later

time t. 0. Bayes’ rule gives a characterization ofm0jJ via
the ratio of its density with respect to that of the prior:1

P(u0 j fykgJk50
)

P(u0)
5

P(fykgJk50
j u0)

P(fykgJk50
)

so that

m0j J(u)

m0(u)
} exp[2F(u)] ,

1 Note that our observations include data at time t5 0. Because

the prior is Gaussian and the observational noise is Gaussian we

could alternatively redefine the prior to incorporate this data point,

which can be done in closed form; the observations would then start

at time t 5 h.
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where

F(u)5
1

2

"
�
J

k50

kyk2Ck(u)k2G
#
.

The constant of proportionality is independent of u and

irrelevant for the algorithms that we use below to probe

the probability distribution m0jJ. Note that here, and in

what follows, u denotes the random variable u0.

Using the fact that the prior m0 is Gaussian it follows

that the maximum a posteriori estimator of m0jJ is the

minimizer of the functional:

I(u)5F(u)1
1

2
ku2m0k2C

0

. (5)

We let ~m0 5 argminuI(u); that is, ~m0 returns the value of

u at which I(u) achieves its minimum. This so-called

MAP estimator is, of course, simply the solution of the

4DVAR strong constraint variational method. The

mathematical formulation of various inverse problems

for the Navier–Stokes equations, justifying the formal

manipulations in this subsection, may be found in Cotter

et al. (2009).

2) FILTERING

The posterior filtering distribution at time j given all

observations up to time j can also be given in closed form

by an application of Bayes’ rule. The prior is taken as the

predicting distribution:

mj j j21(uj)5

ð
H
P(uj j uj21)mj21 j j21(duj21)

5

ð
H
d[uj 2C(uj21)]mj21 j j21(duj21) . (6)

The d function appears because the dynamical model is

deterministic. As we did for smoothing, we can apply

Bayes rule to obtain the ratio of the density of mjjj with
respect to mjjj21 to obtain

mjjj(u)

mjjj21(u)
} exp[2Fj(u)] , (7)

where

Fj(u)5
1

2
kyj2 uk2

G
. (8)

Together (6) and (7) provide an iteration that, at the

final observation time, yields the measure mJjJ. As men-

tioned in the introduction, this distribution can be ob-

tained by evolving the posterior smoothing distribution

m0jJ forward in time under the dynamics given by (2).

3. Overview of methods

In this section, we provide details of the various

computational methods we use to obtain information

about the probability distribution on the state of the

system, given observations, in both the smoothing and

filtering contexts. To approximate the gold standard, the

Bayesian posterior distribution, we use state-of-the-art

Markov chain Monte Carlo sampling for the inverse

problem to obtain a large number of samples from the

posterior distribution that are sufficient to represent its

mode and the posterior spread around it. We also de-

scribe optimization techniques to compute the MAP es-

timator of the posterior density, namely 4DVAR. Both

the Bayesian posterior sampling and 4DVAR are based

on obtaining information from the smoothing distribu-

tion from section 2b(1). Then we describe a variety of

filters, all building on the description of sequential fil-

tering distributions introduced in section 2b(2), using

Gaussian approximations of one form or another. These

filters are 3DVAR, the Fourier diagonal filter, the ex-

tended Kalman filter, and the ensemble Kalman filter.

We will refer to these filtering algorithms collectively as

approximateGaussian filters to highlight the fact that they

are all derived by imposing a Gaussian approximation in

the prediction step.

a. Markov chain Monte Carlo sampling of the
posterior

We work in the setting of the Metropolis-Hastings

variant of MCMC methods, employing recently de-

veloped methods that scale well with respect to system

dimension; see Cotter et al. (2011) for further details and

references. The resulting random walk method that we

use to sample from m0jJ is given as follows:2

d Draw u(0) ; N (m0, C0) and set n 5 1.
d Define m*5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12b2

p
u(n21) 1 ð12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12b2

p
Þm0 .

d Draw u* ; N (m*, b2C0).
d Let a(n21) 5 minf1, exp[F(u(n21) 2 F(u*)]g and set

u(n) 5

�
u* w. p.a(n21)

u(n21) else.

�

d n 1 n 1 1 and repeat.

After a burn-in period of M steps, fu(n)gNn5M ;m0 j J .
This sample is then pushed forward to yield a sample

of time-dependent solutions, fu(n)(t)g, where u(n)(t) 5
C[u(n); t], or, in particular in what follows, a sample of

the filtering distribution fCJ u(n)g.

2 Here ‘‘w.p.’’ denotes ‘‘with probability.’’
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b. Variational methods: 4DVAR

As described in section 2, theminimizer of I defined in

(5) defines the 4DVAR approximation, the basic vari-

ational method. A variety of optimization routines can

be used to solve this problem. We have found Newton’s

method to be effective, with an initial starting point

computed by homotopy methods starting from an easily

computable problem.

We now outline how the 4DVAR solution may be

used to generate an approximation to the distribution of

interest. The 4DVAR solution (MAP estimator) co-

incides with the mean for unimodal symmetric distribu-

tions. If the variance under m0jJ is small then it is natural

to seek a Gaussian approximation. This has the form

N ( ~m0, ~C0), where

~C21
0 5D2I( ~m0)5D2F( ~m0)1 C21

0 .

Here D2 denotes the second derivative operator. This

Gaussian on the initial condition u0 can be mapped

forward under the dynamics, using linearization for the

covariance, since it is assumed small, to obtain u(t)’
N [ ~m(t), ~C(t)] where ~m(t)5C( ~m0; t) and

~C(t)5DC( ~m0; t)
~C0DC( ~m0; t)*.

HereD denotes the derivative operator and the asterisk

(*) the adjoint.

c. Approximate Gaussian filters

Recall the key update formulas (6) and (7). Note that

the integrals are over the function space H, a fact that

points to the extreme computational complexity of char-

acterizing probability distributions for problems arising

from PDEs or their high dimensional approximation.

We will describe various approximations, which are all

Gaussian in nature, and make the update formulas trac-

table. We describe some generalities relating to this issue

before describing various method dependent specifics in

following subsections.

IfC is nonlinear then the fact that mj21jj21 is Gaussian

does not imply that mjjj21 is Gaussian; this follows from

(6). Thus prediction cannot be performed simply by

mapping mean and covariance. However, the update (7)

has the property that ifmjjj21 is Gaussian then so ismjjj. If
we assume that mjjj21 5 N (mj, Cj), then (7) shows that

mjjj is GaussianN (m̂j, Ĉj) where m̂j is theMAP estimator

given by

m̂j 5 argmin
u

Ij(u) (9)

[so that m̂j minimizes Ij(u)] and

Ij(u)5Fj(u)1
1

2
ku2mjk2C

j

.

Note that, using (8), we see that Ij is a quadratic form

whose minimizer is given in closed form as the solution

of a linear equation with the form

m̂j 5 Ĉj(C21
j mj 1G21yj), (10)

where

Ĉ21

j 5 C21
j 1G21 . (11)

If the output of the prediction step given by (6) is ap-

proximated by a Gaussian, then this provides the basis

for a sequential Gaussian approximation method. To be

precise, if we have that

mj21 j j215N (m̂j21, Ĉj21)

andwe have formulas, based on an approximation of (6),

that enable us to compute the map

(m̂j21, Ĉj21)1(mj, Cj) (12)

then together (10)–(12) provide an iteration for Gauss-

ian approximations of the filtering distribution mjjj of the
form

(m̂j21, Ĉj21)1(m̂j, Ĉj) .

In the next few subsections we explain a variety of such

approximations, and the resulting filters.

1) CONSTANT GAUSSIAN FILTER (3DVAR)

The constant Gaussian filter, referred to as 3DVAR,

consists of making the choices mj 5C(m̂j21) and Cj [ C
in (12). It is natural, theoretically, to choose C5 C0 as the
prior covariance on the initial condition. However, as we

will see, other issues may intervene and suggest or ne-

cessitate other choices.

2) FOURIER DIAGONAL FILTER

A first step beyond 3DVAR, which employs constant

covariances when updating to incorporate new data, is

to use some approximate dynamics in order to make the

update (12). In Harlim and Majda (2008) and Majda

et al. (2010) it is demonstrated that, in regimes exhibit-

ing chaotic dynamics, linear stochastic models can be

quite effective for this purpose: this is the idea of the

FDF. In this subsection we describe how this idea may

be used in both the steady and turbulent regimes of the
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Navier–Stokes system under consideration. For our pur-

poses, and as observed in Harlim and Majda (2008), this

approach provides a rational way of deriving the co-

variances in 3DVAR, based on climatological statistics.

The basic idea is, for the purposes of filtering, to re-

place the nonlinear map uj11 5 C(uj) by the linear

(stochastic when Q 6¼ 0) map

uj115Luj 1
ffiffiffiffi
Q

p
jj . (13)

Here it is assumed that L is negative definite and di-

agonal in the Fourier basis,Q has summable eigenvalues

and is diagonal in the Fourier basis, and jj is a random

noise chosen from the distribution N (0, I). More so-

phisticated linear stochastic models could (and should)

be used, but we employ this simplest of models to convey

our ideas.

If L 5 exp(2Mh) and Q 5 [I 2 exp(22Mh)]J, then

(13) corresponds to the discrete time h solution of the

Ornstein–Uhlenbeck (OU) process

du1Mudt5
ffiffiffiffiffiffiffiffiffiffiffi
2MJ

p
dW ,

where dW is the infinitesimal Brownian motion incre-

ment with identity covariance. The stationary solution is

N (0, J) and letting Mk,k 5 ak, the correlation time for

mode k can be computed as 1/ak.We employ twomodels

of the form (13) in this paper, labeled A and B and de-

tailed below. Before turning to them, we describe how

this linear model is incorporated into the filter.

In the case of linear dynamics such as these, the map

(12) is given in closed form:

mj 5Lm̂j21, Cj 5LĈj21L*1Q .

This can be improved, however, in the spirit of 3DVAR,

by updating only the covariance in this way andmapping

the mean under the nonlinear map, to obtain the fol-

lowing instance of (12):

mj 5C(m̂j21), Cj 5LĈj21L*1Q .

We implement the method in this form. We note that,

because L , 1, the covariance Cj converges to some C‘
that can be computed explicitly and, asymptotically,

the algorithm behaves like 3DVAR with a systematic

choice of covariance. We now turn to the choices of L

and Q.

d Model A is used in the stationary regime. It is found

by setting L 5 exp(2nAh) and taking Q 5 �I where

� 5 10212. Although this does not correspond to an

accurate linearization of the model in low wavenum-

bers, it is reasonable for high wavenumbers.
d Model B is used in the strongly chaotic regime, and is

based on the original idea in Harlim andMajda (2008)

andMajda et al. (2010). The two quantitiesJk,k and ak

are matched to the statistics of the dynamical model,

as follows. Let u(t) denote the solution to the Navier–

Stokes equation (1) which, abusing notation, we

assume to be represented in the Fourier domain, with

entries uk(t). Then u and J are given by the formulas

u5 lim
T/‘

1

T

ðT
0
u(t) dt ,

J5 lim
T/‘

1

T

ðT
0
[u(t)2 u]5[u(t)2 u]* dt .

In practice these integrals are approximated by finite

discrete sums. Furthermore, we set the off-diagonal

entries of J to zero to obtain a diagonal model. We set

s2
k 5Jk,k . Then the ak is computed using the formulas

C(t, t)5 [u(t2 t)2 u]5[u(t)2 u]* ,

Corrk(t)5 lim
T/‘

1

s2
k

ðT
0
Ck,k(t, t) dt ,

ak 5

ð‘
0
Re[Corrk(t)]dt

� �21

.

Again, finite discrete sums are used to approximate the

integrals.

3) LOW RANK EXTENDED KALMAN FILTER

(LREXKF)

The idea of the extended Kalman filter is to assume

that the desired distributions are approximatelyGaussian

with small covariance. Then linearization may be used to

show that a natural approximation of (12) is the map3

mj 5C(m̂j21), Cj 5DC(m̂j21)Ĉj21DC(m̂j21)*. (14)

Updating the covariance this way requires one forward

tangent linear solve and one adjoint solve for each di-

mension of the system, and is therefore prohibitively

expensive for high dimensional problems. To overcome

3 As an aside, we note that a more sophisticated improved ver-

sionwe have not seen yet in the literaturewould include the higher-

order drift term involving the Hessian. Although adding significant

expense there could be scenarios in which it would be worthwhile

to attempt this.
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this we use a low rank approximation to the covariance

update.

We write this explicitly as follows. Compute the

dominant m eigenpairs of Cj as defined in (14); these

satisfy

DC(m̂j21)Ĉj21DC(m̂j21)*V5VL .

Define the rankmmatrixM5 VLV* and note that this

captures the essence of the covariance implied by the

extended Kalman filter, in the directions of the m domi-

nant eigenpairs. When the eigenvalues are well sepa-

rated, as they are here, a small number of eigenvalues

capture the majority of the action and this is very effi-

cient. We then implement the filter

mj 5C(m̂j21), Cj 5M1 �I , (15)

where � 5 10212 as above. The perturbation term pre-

vents degeneracy.

The notion of keeping track of the unstable directions

of the dynamical model is not new, although our par-

ticular implementation differs in some details. For dis-

cussions and examples of this idea see Toth and Kalnay

(1997), Palmer et al. (1998), Kalnay (2003), Leutbecher

(2003), Auvinen et al. (2009), and Hamill et al. (2000).

4) ENSEMBLE KALMAN FILTER

The ensemble Kalman filter, introduced in Evensen

et al. (1994) and overviewed in Evensen (2003, 2009), is

slightly outside the framework of the previous three

filters and there are many versions [see Lei et al. (2010)

for a comparison between two major categories]. This is

because the basic object that is updated is an ensemble

of particles, not amean and covariance. This ensemble is

used to compute an empirical mean and covariance. We

describe how the basic building blocks of approximate

Gaussian filters, namely (10), (11), and (12), are modi-

fied to use ensemble statistics.

We start with (12). Assuming one has an ensemble

fm̂(n)
j21g;N (m̂j21, Ĉj21), (12) is replaced by the ap-

proximations

m
(n)
j 5C[(m̂

(n)
j21)] ,

mj 5
1

N
�
N

n51

m
(n)
j ,

and

Cj 5
1

N
�
N

n51

[m
(n)
j 2mj][m

(n)
j 2mj]* . (16)

Equation (10) is approximated via an ensemble of

equations found by replacing mj by m
(n)
j and replacing

yi by independent draws fy(n)j g fromN (yj, G) This leads
to updates of the ensemble membersm

(n)
j 1m̂

(n)
j whose

sample mean yields m̂j. For infinite particles, the sam-

ple covariance yields Ĉj. In the comparisons we con-

sider the covariance to be the analytical one, Ĉj 5
[I2 Cj(Cj 1 G)21]Cj, as in (11), rather than the ensemble

sample covariance, which yields the one implicitly in the

next update (12). The discrepancy between these can be

large for small samples and in different situations it may

have either a positive or negative effect on the filter di-

vergence discussed in section 5. Solutions of the ensemble

of equations of form (10) are implemented in the stan-

dard Kalman filter fashion; this does not involve com-

puting the inverse covariances that appear in (11). There

are many variants on the EnKF and we have simply

chosen one representative version. See, for example,

Tippett et al. (2003) and Evensen (2009).

4. Filter accuracy

In this section we describe various aspects of the ac-

curacy of both variational methods (4DVAR) and ap-

proximate Gaussian filters, evaluating themwith respect

to their effectiveness in reproducing the following two

quantities: (i) the posterior distribution on state given

observations and (ii) the truth uy that gives rise to the

observations. The first of these is found by means of

accurate MCMC simulations and is then characterized

by three quantities: its mean, variance, and MAP esti-

mator. It is our contention that, where quantification of

uncertainty is important, the comparison of algorithms

by their ability to predict (i) is central; however many

algorithms are benchmarked in the literature by their

ability to predict the truth [(ii)] and so we also include

this information. A comparison of the algorithms with

the observational data is also included as a useful check

on the performance of the algorithms. Note that study-

ing the error in (i) requires comparison of probability

distributions; we do this primarily through comparison

of mean and covariance information. In all our simula-

tions the posterior distribution and the distributions

implied by the variational and filtering algorithms are

approximately Gaussian; for this reason studying the

mean and covariance is sufficient. We note that we have

not included model error in our study: uncertainty in the

dynamical model comes only through the initial condi-

tion, and thus attempting to match the ‘‘truth’’ is not

unnatural in our setting. Matching the posterior distri-

bution is, however, arguably more natural and is a con-

cept that generalizes in a straightforward fashion to the

inclusion of model error. In this section all methods are
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presented in their ‘‘raw’’ form, unmodified and not op-

timized. Modifications that are often used in practice are

discussed in the next section.

a. Nature of approximations

In this preliminary discussion we make three obser-

vations that help to guide and understand subsequent

numerical experiments. For the purposes of this dis-

cussion we assume that the MCMC method, our gold

standard, provides exact samples from the desired pos-

terior distribution. There are then two key approxima-

tions underlying themethods that we benchmark against

MCMC in this section. The first is the Gaussian ap-

proximation, which is made in 3DVAR–FDF, 4DVAR

(when propagating from t 5 0 to t 5 T), LRExKF, and

EnKF; the second additional approximation is sampling,

which is made only in EnKF. The 3DVAR and FDF

methods make a universal, steady approximation to the

covariance while 4DVAR, LRExKF, and EnKF all

propagate the approximate covariance using the dy-

namical model. Our first observation is thus that we ex-

pect 3DVAR and FDF to underperform the othermethods

with regard to covariance information. The second ob-

servation arises from the following: the predicting (and

hence smoothing and filtering) distribution will remain

close to Gaussian as long as there is a balance between

dynamics remaining close to linear and the covariance

being small enough (i.e., there is an appropriate level of

either of these factors that can counteract any instance of

the other one). In this case the evolution of the distribu-

tion is well approximated to leading order by the non-

autonomous linear system update of ExKF, and similarly

for the 4DVAR update from t 5 0 to t 5 T. Our second

observation is hence that the bias in the Gaussian ap-

proximation will become significant if the dynamics is

sufficiently nonlinear or if the covariance becomes large

enough. These two factors that destroy the Gaussian ap-

proximation will be more pronounced as the Reynolds

number increases, leading to more, and larger, growing

(local) Lyapunov exponents and, as the time interval

between observations increases, allowing further growth

or, for 4DVAR, as the total time interval grows. The third

and final observation concerns EnKF methods. In addi-

tion tomaking theGaussian approximation, these rely on

sampling to capture the resulting Gaussian. Hence the

error in the EnKF methods will become significant if the

number of samples is too small, even when the Gaussian

approximation is valid. Furthermore, since the number of

samples required tends to grow both with dimension and

with the inverse of the size of the quantity being mea-

sured, we expect that EnKF will encounter difficulties in

this high dimensional system that will be exacerbated

when the covariance is small.

We will show in the following that in the stationary

case, and for high-frequency observations in the strongly

chaotic case, the ExKF does perform well because of an

appropriate balance of the level of nonlinearity of the

dynamics on the scale of the time between observations

and the magnitude of the covariance. Nonetheless, a

reasonably sized ensemble in the EnKF is not sufficiently

large for the error from that algorithm to be dominated

by the ExKF error, and it is instead determined by the

error in the sample statistics with which EnKF approxi-

mates the mean and covariance; this latter effect was

demonstrated on a simpler model problem in Apte et al.

(2008a). When the observations are sufficiently sparse in

time in the strongly chaotic case, the Gaussian approxi-

mation is no longer valid and even the ExKF fails to re-

cover accurate mean and covariance.

b. Illustration via two regimes

This section is divided into two subsections, each

devoted to a dynamical regime: stationary and strongly

chaotic. The true initial condition uy in the case of

strongly chaotic dynamics is taken as an arbitrary point

on the attractor obtained by simulating an arbitrary initial

condition until statistical equilibrium. The initial condi-

tion for the case of stationary dynamics is taken as a draw

from the Gaussian prior evolved a short time forward in

the model, since the statistical equilibrium is the trivial

one. Note that in the stationary dynamical regime the

equation is dominated by the linear term and hence this

regime acts as a benchmark for the approximate Kalman

filters, since they are exact in the linear case. Each of

these sections in turn explores the particular character-

istics of the filter accuracy inherent to that regime as

a function of time between observations, h. The final time

T will mostly be fixed, so that decreasing h will increase

the density of observations of the system on a fixed time

domain; however, on several occasions we study the ef-

fect of fixing h and changing the final time T. Studies of

the effect on the posterior distribution of increasing the

number of observations are undertaken for some simple

inverse problems in fluidmechanics in Cotter et al. (2011)

and are not undertaken here.

We now explain the basic format of the tables that

follow and indicate the major features of the filters that

they exhibit. The first eight rows each correspond to a

method of assimilation, while the final two rows corre-

spond to the truth, at the start and end of the time

window studied, for completeness. Labels for these rows

are given in the far left column. The posterior distribution

(MCMC) and MAP estimator (4DVAR) are each ob-

tained via the smoothing distribution, and hence com-

parison is made at the initial time, t 5 0, and at the final

time, t 5 T, by mapping forward. For all other methods,
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the comparison is only with the filtering distribution at the

final time, t 5 T. The remaining columns each indicate

the relative error of the given filter with a particular di-

agnostic quantity of interest. The second, fourth, fifth,

and sixth columns show e 5 kM(t) 2 m(t)k/kM(t)k,
where, for a given t (either 0 or T), m(t) is the time t

mean of the filtering (or smoothing) distribution ob-

tained from each of the various methods along the rows

and M(t) is, respectively, the mean of the posterior

distribution found by MCMC, E [u(t)]; the truth, uy(t);
the observation y(t); or the MAP estimator (4DVAR).

The norm used is the L2f[21, 1) 3 [21, 1)g norm. The

third column shows

e5
kvar[u(t)]2 var[U(t)]k

kvar[u(t)]k ,

where var indicates the variance, u is sampled from the

posterior distribution (via MCMC), and U is the

Gaussian approximate state obtained from the various

methods. The subscripts in the titles in the top row in-

dicate which relative error is given in that column.

The following universal observations can be made

independent of model parametric regime:

d The numerical results support the three observations

made in the previous subsection.
d Most algorithms do a reasonably god job of reproduc-

ing the mean of the posterior distribution.
d The LRExKF and 4DVARboth do a reasonably good

job of reproducing the variance of the posterior dis-

tribution if the Reynolds number is sufficiently small

and/or the observation frequency high; otherwise there

are circumstances in which the approximations un-

derlying the ad hoc filters are not justified and they

then fail to reproduce covariance information with

any accuracy.
d All other algorithms perform poorly when reproduc-

ing the variance of the posterior distribution.
d All estimators of the mean are uniformly closer to the

truth than the observations for all h.
d In almost all cases, the estimators of the mean are

closer to the mean of the posterior distribution than to

the truth.

FIG. 1. Low Reynolds number, stationary solution regime (n 5 0.1). (left) The vorticity

w(0) of the smoothing distribution at t5 0 and (right) its Fourier coefficients for T5 10h5 2,

for (top) the MCMC sample mean and (bottom) the truth. The MAP estimator is not dis-

tinguishable from the mean by eye and so is not displayed. The prior mean is taken as a draw

from the prior and hence is not as smooth as the initial condition. It is the influence of the

prior that makes the MAP estimator and mean rough, although structurally the same as the

truth (the solution operator is smoothing, so these fluctuations are immediately smoothed

out; see Fig. 2).
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d The error of the estimators of themean with respect to

the truth tends to increase with increasing h.
d The error of the mean with respect to the truth de-

creases for increasing number of observations.
d LRExKF usually has the smallest error with respect to

the posterior mean and sometimes accurately recovers

the variance.
d The error in the variance is sometimes overestimated

and sometimes underestimated, and usually this is

wavenumber dependent in the sense that the variance

of certain modes is overestimated and the variance of

others is underestimated. This will be discussed fur-

ther in the next section.
d The posterior smoothing distribution becomes notice-

ably non-Gaussian although still unimodal, while the

filtering distribution remains very close to Gaussian.

c. Stationary regime

In the stationary regime, n 5 0.1, the basic time step

used is dt5 0.05, the smallest h considered is h5 0.2, and

we fix T 5 2 as the filtering time at which to make

comparisons of the approximate filters with the mo-

ments of the posterior distribution via samples from

MCMC, the MAP estimator from 4DVAR, the truth,

and the observations. Figure 1 shows the vorticity,w (left),

and Fourier coefficients, jukj (right), of the smoothing

distribution at t 5 0 in the case when h 5 0.2. The top

panels are the mean of the posterior distribution found

with MCMC, E(u), and the bottom panels are the

truth, uy(0). The MAP estimator [minimizer of I(u),

m̂0 5 argminI] is not shown because it is not discernible

from the mean in this case. Notice that the mean and

MAP estimator on the initial condition resemble the

large-scale structure of the truth but are rougher. This

roughness is caused by the presence of the prior mean

m0 drawn according to the distribution N [uy(0), C0].
The solution operator C immediately removes this

roughness as it damps high wavenumbers; this effect

can be seen in the images of the smoothing distribu-

tion mapped forward to time t 5 T (i.e., the filtering

distribution) in Fig. 2 (here only the mean is shown, as

neither the truth nor theMAP estimator is distinguishable

FIG. 2. Low Reynolds number, stationary solution regime (n5 0.1). (left) The vorticityw(T)

of the filtering distribution at t5T and (right) its Fourier coefficients for T5 10h5 2. Only the

MCMC sample mean is shown, since the solutions have been smoothed out and the differences

among the MAP, mean, and truth are imperceptible.

FIG. 3. The MCMC histogram for (left) t 5 0 and (right) t 5 T 5 10h 5 2 together with the

Gaussian approximation obtained from 4DVAR for low Reynolds number, stationary state

regime (n 5 0.1).
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from it). This is apparent in the data in the tables discussed

below, in which the distances between the truth, the

posterior distribution, and the MAP estimator are all

mutuallymuch closer for the final time than the initial; this

contraction of the errors in time is caused by the un-

derlying dynamics that involves exponential attraction to

a unique stationary state. This is further exhibited in Fig. 3,

which shows the histogram of the smoothing distribution

for the real part of a sample mode, u1,1, at the initial time

(left) and final time (right).

Table 1 presents data for increasing h5 0.2, 1, 2, with

T 5 2 fixed. Notable trends, in addition to those men-

tioned at the start of this section, are as follows: (i) the

4DVAR smoothing distribution has much smaller error

with respect to the mean at t 5 T than at t 5 0, with

the former increasing and the latter decreasing for

increasing h; (ii) the errors of 4DVAR with respect to

the mean and the variance at t5 0 and t5T are close to

or below the threshold of accuracy of MCMC; and (iii)

the errors of both the mean and the variance of

3DVAR tend to decrease with increasing h.

d. Strongly chaotic regime

In the strongly chaotic regime, n5 0.01, the basic time

step used is dt 5 0.005, the smallest h considered is h 5
0.02, and we fix T 5 0.2 or T 5 1 as the filtering time at

which to make comparisons of the approximate filters. In

this regime, the dynamics are significantlymore nonlinear

and less predictable, with a high dimensional attractor

spanning many scales. Indeed, the average squared ve-

locity spectrum decays approximately like hu2ki } k25/3 for

jkj , kf, with kf being the magnitude of the forcing

TABLE 1. Stationary state regime, n 5 0.1, T 5 2, with (top) h 5 0.2, (middle) h 5 1, and (bottom) h 5 2. The first column defines the

method corresponding to the given row. The second, fourth, fifth, and sixth columns show the norm difference, e5 kM2mk/kMk, where
m is the mean obtained from the method for a given row andM is, respectively, the mean of the posterior distribution (MCMC), the truth,

the observation, and theMAP estimator. The third column is the norm difference, e5 kvar[u]2 var[U]k/kvar[u]kwhere var indicates the
variance, u is sampled from the posterior (via MCMC), and U is the approximate state obtained from the various methods.

h 5 0.2 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.171 77 0.819 094 0.001 534 43

4DVAR (t 5 0) 0.001 535 23 0.006 203 45 0.185 876 0.740 612 0

MCMC (t 5 T) 0 0 0.016 460 5 0.558 026 0.000 051 720 7

4DVAR (t 5 T) 0.000 051 723 0.004 590 55 0.016 461 8 0.558 024 0

3DVAR 0.138 652 108.516 0.137 38 0.545 85 0.138 646

FDF 0.001 730 93 0.423 299 0.015 351 3 0.558 228 0.001 724 55

LRExKF 0.000 063 456 6 0.003 209 37 0.016 479 6 0.558 022 0.000 022 220 2

EnKF 0.003 596 69 0.119 076 0.015 858 5 0.558 032 0.003 623 09

Truth (t 5 0) 0.171 77 — 0 0.816 333 0.156 072

Truth (t 5 T) 0.016 460 5 — 0 0.713 754 0.016 434 2

h 5 1 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.295 424 0.791 832 0.001 109 27

4DVAR (t 5 0) 0.001 109 69 0.003 754 62 0.333 225 0.748 439 0

MCMC (t 5 T) 0 0 0.028 831 0.662 342 0.000 165 39

4DVAR (t 5 T) 0.000 165 408 0.008 963 81 0.028 777 9 0.662 373 0

3DVAR 0.128 956 41.6646 0.139 419 0.646 462 0.128 929

FDF 0.004 001 94 0.458 239 0.031 512 0.654 203 0.004 038 53

LRExKF 0.000 165 666 0.002 679 76 0.028 778 7 0.654 13 0.000 018 453 7

EnKF 0.002 896 35 0.122 461 0.030 199 1 0.654 205 0.002 854 58

Truth (t 5 0) 0.295 424 — 0 0.780 891 0.279 57

Truth (t 5 T) 0.028 831 — 0 0.770 11 0.028 706 8

h 5 2 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.320 43 0.747 756 0.000 965 003

4DVAR (t 5 0) 0.000 965 294 0.003 842 39 0.357 404 0.633 977 0

MCMC (t 5 T) 0 0 0.038 71 0.688 46 0.000 208 273

4DVAR (t 5 T) 0.000 208 299 0.002 505 71 0.038 660 6 0.688 46 0

3DVAR 0.105 535 35.9905 0.108 918 0.684 345 0.105 48

FDF 0.001 778 39 0.475 338 0.038 700 6 0.688 477 0.001 731 64

LRExKF 0.000 210 6 0.002 720 41 0.038 660 2 0.688 46 0.000 002 991

EnKF 0.003 197 56 0.106 976 0.038 530 5 0.688 464 0.003 120 47

Truth (t 5 0) 0.320 43 — 0 0.771 936 0.299 957

Truth (t 5 T) 0.038 71 — 0 0.688 664 0.038 578
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wavenumber, and much more rapidly for jkj . kf. See

the left panel of Fig. 4 for the average spectrum of the

solution on the attractor and Fig. 5 for an example

snapshot of the solution on the attractor. The flow is not

in any of the classical regimes of cascades, but there

is an upscale transfer of energy because of the forcing

at intermediate scale. The viscosity is not negligible

even at the largest scales, thereby allowing statistical

equilibrium; this may be thought of as being generated

by the empirical measure on the global attractor whose

FIG. 4. (left) Average squared velocity spectrum on the attractor for n 5 0.01. (right)

Difference between quantity a and quantity b, where a is the difference of the truth uy(t) with
a solution ut(t) initially perturbed in the direction of the dominant local Lyapunov vectors yt on

a time interval of length t with t 5 0.02, 0.2, and 0.5 [thus ut(0) 5 uy(t) 1 «yt], and b is the

evolution of that perturbation under the linearized model Ut(t) 5 DC(uy(0); t)«yt. The mag-

nitude of perturbation « is determined by the projection of the initial posterior covariance in the

direction yt. The difference plotted thus indicates differences between linear and nonlinear

evolution with the direction of the initial perturbations chosen to maximize growth and with

size of the initial perturbations commensurate with the prevalent uncertainty. The relative

error j[ut(t) 2 uy(t)] 2 Ut(t)j/jUt(t)j (in l2) is 0.01, 0.15, and 0.42, respectively, for the three

chosen values of increasing t.

FIG. 5. The MCMC mean as in Fig. 1 for high Reynolds number, strongly chaotic solution

regime for n 5 0.01, T 5 10h 5 0.2: (top) t 5 0 and (bottom) t 5 T.
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existence is assured for all n . 0. We confirmed this

with simulations to times of orderO(103n) givingO(107)

samples withwhich to compute the converged correlation

statistics used in FDF.

Small perturbations in the directions of maximal

growth of the dynamics grow substantially over the larger

times between observations we look at, while over the

shorter times the dynamics remain well approximated by

the linearization. See the right panel of Fig. 4 for an ex-

ample of the local maximal growth of perturbations.

Figure 5 shows the initial and final time profiles of the

mean as in Figs. 1 and 2. Now that the solutions them-

selves are rougher, it is not possible to notice the influence

of the priormean at t5 0, and the profiles of the truth and

MAP are indistinguishable from the mean throughout

the interval of time. The situation in this regime is sig-

nificantly different from the situation close to a stationary

solution, primarily because the dimension of the attractor

is very large and the dynamics on it are very unpredict-

able. Notice in Fig. 6 (top) that the uncertainty in u11 now

barely decreases as we pass from initial time t5 0 to final

time t 5 T. Indeed for moderately high modes, the un-

certainty increases [see Fig. 6 (bottom) for the distribu-

tion of u55].

Table 2 presents data for increasing h 5 0.02, 0.1, 0.2,

with T 5 0.2 fixed. Table 3 shows data for increasing

h5 0.2, 0.5, with T5 1 fixed. Notable trends, in addition

to those mentioned at the start of the section, are as fol-

lows: (i) When computable, the variance of the 4DVAR

smoothing distribution has smaller error at t 5 0 than at

t5 T. (ii) The 4DVAR smoothing distribution error with

respect to the variance cannot be computed accurately

for T 5 1 because of accumulated error for long times

in the approximation of the adjoint of the forward op-

erator by the discretization of the analytical adjoint.

(iii) The error of 4DVAR with respect to the mean at

t 5 0 for h # 0.1 is below the threshold of accuracy of

MCMC. (iv) The error in the variance for the FDF al-

gorithm is very large because the Q is an order of mag-

nitude larger than G. (v) The FDF algorithm is consistent

in recovering the mean for increasing h, while the other

algorithms deteriorate. (vi) The error of FDF with re-

spect to the variance decreases with increasing h. (vii) For

h 5 0.5 and T 5 1 the FDF performs best and these de-

sirable properties of the FDF variant on 3DVAR are

associated with stability and will be discussed in the

next section. (viii) For increasing h, the error in the

mean of LRExKF increases first when h 5 0.1 and T 5
0.2 and becomes close to the error in the variance which

can be explained by the bias induced by neglecting the

next order of the expansion of the dynamics. Finally,

(ix) the error in LRExKF is substantial when T5 1 and

FIG. 6. As in Fig. 3, but for strongly chaotic regime, n5 0.01, T5 0.2, and h5 0.02. (top) Mode

u1,1 and (bottom) mode u5,5.
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it significantly fails when h 5 0.5, which is consistent

with the time scale on which nonlinear effects become

prominent (see Fig. 4) and the linear approximation

would not be expected to be valid. The error in the

mean is larger, again as expected from the Ito correc-

tion term.

5. Filter stability

Many of the accuracy results for the filters described

in the previous section are degraded if, as is common

practice in applied scenarios, modifications are made to

ensure that the algorithms remain stable over longer

time intervals; that is, if some form of variance inflation

is performed to keep the algorithm close to the true

signal, or to prevent it from suffering filter divergence

(see Jazwinski 1970; Fisher et al. 2005; Evensen 2009,

and references therein). In this section we describe some

of the mathematics that underlies stabilization, describe

numerical results illustrating it, and investigate its effect

on filter accuracy. The basic conclusion of this section is

that stabilization via variance inflation enables algorithms

to be run for longer time windows before diverging, but

may cause poorer accuracy in both the mean (before di-

vergence) and the variance predictions. Again, we make

no claims of optimal implementation of these filters,

but rather aim to describe the mechanism of stabili-

zation and the common effect, in general, as measured

by ability to reproduce the gold standard posterior

distribution.

We define stability in this context to mean that the

distance between the truth and the estimated mean re-

mains small. As we will demonstrate, whether or not this

distance remains small depends on whether the observa-

tions made are sufficient to control any instabilities in-

herent in the model dynamics. To understand this issue it

is instructive to consider the 3DVAR, FDF, andLRExKF

filters, all of which use a prediction step [(12)] that

TABLE 2. As in Table 1, but for the strongly chaotic regime with n 5 0.01, T 5 0.2, and h 5 (top) 0.02, (middle) 0.1, and (bottom) 0.2.

h 5 0.02 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.033 146 8 0.337 233 0.000 731 645

4DVAR (t 5 0) 0.000 731 491 0.093 274 8 0.033 153 1 0.310 411 0

MCMC (t 5 T) 0 0 0.042 394 3 0.322 24 0.001 301 05

4DVAR (t 5 T) 0.001 301 12 0.045 048 0.042 431 0.322 306 0

3DVAR 0.063 455 3 6.340 57 0.063 289 0.321 959 0.063 402 6

FDF 0.165 732 28.9155 0.175 397 0.307 159 0.165 844

LRExKF 0.005 992 14 0.030 054 0.041 652 9 0.322 277 0.005 441 5

EnKF 0.035 271 0.274 428 0.052 356 6 0.323 074 0.035 462 4

Truth (t 5 0) 0.033 146 8 — 0 0.335 933 0.036 139 5

Truth (t 5 T) 0.042 394 3 — 0 0.339 539 0.042 902 1

h 5 0.1 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.049 698 2 0.294 743 0.000 815 864

4DVAR (t 5 0) 0.000 815 762 0.028 749 8 0.049 700 9 0.280 425 0

MCMC (t 5 T) 0 0 0.069 866 5 0.357 98 0.003 069 96

4DVAR (t 5 T) 0.003 071 05 0.011 878 5 0.069 83 0.358 094 0

3DVAR 0.159 393 2.2339 0.203 165 0.374 188 0.159 658

FDF 0.200 044 13.259 0.215 136 0.308 921 0.200 045

LRExKF 0.023 073 0.031 368 6 0.076 650 5 0.357 915 0.021 511 8

EnKF 0.053 900 1 0.174 878 0.109 402 0.358 301 0.054 372 6

truth (t 5 0) 0.049 698 2 — 0 0.303 742 0.054 139 1

truth (t 5 T) 0.069 866 5 — 0 0.368 335 0.070 554 6

h 5 0.2 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.045 912 5 0.293 686 0.001 229 36

4DVAR (t 5 0) 0.001 836 17 0.023 195 5 0.046 201 3 0.281 137 0

MCMC (t 5 T) 0 0 0.072 738 0.352 456 0.003 857 95

4DVAR (t 5 T) 0.003 861 62 0.019 622 7 0.072 317 8 0.352 145 0

3DVAR 0.285 461 1.721 54 0.300 853 0.384 43 0.286 161

FDF 0.202 274 10.7793 0.203 287 0.316 707 0.202 862

LRExKF 0.075 090 8 0.054 741 7 0.088 693 2 0.350 73 0.072 679 2

EnKF 0.096 405 3 0.094 896 7 0.113 806 0.352 625 0.096 234 1

Truth (t 5 0) 0.045 912 5 — 0 0.301 899 0.049 625 1

Truth (t 5 T) 0.072 738 — 0 0.368 331 0.072 049 2
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updates the mean usingmj 5C(m̂j21). When combined

with the data incorporation step [(10)] we get an update

equation of the form

m̂j115 (I2Kj)C(m̂j)1Kjyj11 , (17)

where Kj 5 (C2 1
j 1 G2 1)21G21 is the Kalman gain ma-

trix. If we assume that the data are derived from a true

signal uyj satisfying u
y
j11 5C(uyj ) and that

yj115 u
y
j11 1hj 5C(u

y
j )1hj ,

where the hj denote the observation errors, then we see

that (17) has the form

m̂j115 (I2Kj)C(m̂j)1KjC(u
y
j )1Kjhj11 . (18)

If the observational noise is assumed to be consistent with

the model used for the assimilation, then hj ; N (0, G)
are independent and identically distributed (i.i.d.) ran-

dom variables and we note that (18) is an inhomogenous

Markov chain.

Note that

u
y
j115 (I2Kj)C(u

y
j )1KjC(u

y
j ) (19)

so that by defining the error ej :5 m̂j 2 u
y
j and subtracting

(19) from (18) we obtain the equation

ej11 ’ (I2Kj)Djej 1Kjhj11 ,

where Dj 5DC(uyj ). The stability of the filter will be

governed by families of products of the form

P
k21

j50
[(I2Kj)Dj], k5 1, . . . , J .

We observe that I 2 Kj will act to induce stability, as it

has a norm less than one in appropriate spaces; Dj,

however, will induce some instability whenever the dy-

namics themselves contain unstable growingmodes. The

balance between these effects—stabilization through

observation and instability in the dynamics—determines

whether the overall algorithm is stable.

The operatorKjweights the relative importance of the

model and the observations, according to covariance

information. Therefore, this weighting must effectively

stabilize the growing directions in the dynamics. Note

that increasing Cj—variance inflation—has the effect of

moving Kj toward the identity, so the mathematical

mechanism of controlling the instability mechanism by

variance inflation is elucidated by the discussion above.

TABLE 3. As in Table 2, butT5 1, and h5 (top) 0.2 and (bottom) 0.5. The variance is omitted from the 4DVAR solutions here because

we are unable to attain a solution with zero derivative. We must note here that we have taken the approach of differentiating and then

discretizing. Therefore, over longer time intervals such as this, the error between the discretization of the analytical derivative and

derivative of the finite-dimensional discretized forward map accumulates and the derivative of the objective function is no longer well

defined because of this error. Nonetheless, we confirm that we do obtain the MAP estimator because the MCMC run does not yield any

point of higher probability.

h 5 0.2 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.032 239 7 0.294 722 0.001 226 67

4DVAR (t 5 0) 0.001 226 57 — 0.031 649 4 0.280 742 0

MCMC (t 5 T) 0 0 0.048 092 4 0.279 97 0.004 849 99

4DVAR (t 5 T) 0.004 851 9 — 0.047 482 1 0.279 995 0

3DVAR 0.355 71 3.178 03 0.357 351 0.419 614 0.355 57

FDF 0.141 426 19.2983 0.152 064 0.260 197 0.142 169

LRExKF 0.101 179 0.283 08 0.090 069 7 0.291 704 0.101 287

EnKF 0.202 724 0.230 518 0.173 947 0.320 302 0.202 665

Truth (t 5 0) 0.032 239 7 — 0 0.303 376 0.027 292 2

Truth (t 5 T) 0.048 092 4 — 0 0.281 553 0.047 496 4

h 5 0.5 emean evariance etruth eobs emap

MCMC (t 5 0) 0 0 0.031 853 1 0.293 871 0.003 098 9

4DVAR (t 5 0) 0.003 097 69 — 0.031 338 2 0.280 152 0

MCMC (t 5 T) 0 0 0.046 082 1 0.288 812 0.008 315 16

4DVAR (t 5 T) 0.008 318 86 — 0.044 842 4 0.289 043 0

3DVAR 0.458 527 1.8214 0.453 53 0.487 658 0.460 144

FDF 0.189 832 11.4573 0.199 99 0.251 11 0.191 364

LRExKF 0.644 427 0.325 391 0.650 004 1.221 45 0.646 233

EnKF 0.901 703 0.554 611 0.895 878 0.908 817 0.902 438

Truth (t 5 0) 0.031 853 1 — 0 0.303 185 0.026 992 9

Truth (t 5 T) 0.046 082 1 — 0 0.294 524 0.044 804 6
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In particular, when the assimilation is proceeding in a

stable fashion, the modes in which growing directions

have support typically overestimate the variance to

induce this stability. In unstable cases, there are at least

some times when some modes in which growing direc-

tions have support underestimate the variance, leading to

instability of the filter. It is always the case that the onset

of instability occurs when the distance from the estimated

mean to the truth persistently exceeds the estimated

standard deviation. In Brett et al. (2012) we provide the

mathematical details and rigorous proofs that underpin

the preceding discussion.

In the following, two observations concerning the size

of the error are particularly instructive. First, using the

distribution assumed on thehj, the following lower bound

on the error is immediate:4

Ekej11k2$EkKjhj11k25 tr(KjGK
*
j ) . (20)

This implies that the average scale of the error of the

filter, with respect to the truth, is set by the scale of

the observation error, and it shows that the choice of

the covariance updates, and hence the Kalman gain Kj,

will affect the exact size of the average error, on this scale.

The second observation follows from considering the

trivial ‘‘filter’’ obtained by setting Kj [ I, which cor-

responds to simply setting m̂j 5 yj so that all weight is

placed on the observations. In this case the average error

is equal to

E j ej11j2 5E jhj11j25 tr(G) . (21)

As we would hope that incorporation of the model itself

improves errors, we view (21) as providing an upper

bound on any reasonable filter and we will consider the

filter ‘‘unstable’’ if the squared error from the truth ex-

ceeds tr(G). Thus we use (21) and (20) as guiding upper

and lower bounds when studying the errors in the filter

means in what follows.

In cases where our basic algorithm is unstable in the

sense just defined we will also implement a stabilized

FIG. 7. Example of an unstable trajectory for 3DVAR with n 5 0.01, h 5 0.2. (top left) The norm-

squared error between the estimatedmeanm(tn) 5 m̂n and the truth u
y(tn) in comparison to the preferred

upper bound [i.e., the total observation error tr(G), (21)] and the lower bound tr[KnGK*
n ] (20). The other

three plots show the estimator,m(t) together with the truth uy(t) and the observations yn for (top right) Im
(u0,1) and (bottom) (left) Re(u1,2) and (right) Re(u7,7).

4 Here E denotes expectation with respect to the random vari-

ables hj.
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algorithm by adopting the commonly used practice of

variance inflation. The discussion above demonstrates

how this acts to induce stability by causing the Kj to

move closer to the identity. For 3DVAR this is achieved

by taking the original C0 and redefining it via the trans-

formation C0/(1/�)C0. In all the numerical computa-

tions presented in this paper that concern the stabilized

version of 3DVAR we take � 5 0.01 The FDF(b) algo-

rithm remains stable since it already has an inflated

variance via the model error term. For LRExKF we

achieve variance inflation by replacing the perturbation

term of (15) with (I2VV*)~Cj(I2VV*), where ~Cj is the
covariance arising from FDF(b). Finally we discuss

stabilization of the EnKF. This is achieved by taking the

original Cj’s given by (16) and redefining them via the

transformations C0/(1/�)C0, and Cj / (11 «i)Cj 1 «pC0
with � 5 1024, «i 5 0.1, «p 5 0.01. The parameter � pre-

vents initial divergence, «i maintains stability with direct

incremental inflation, and «p provides rank correction.

This is only one option out of a wide array of such pos-

sible heuristically derived transformations. For example,

rank correction is often performed by some form of

localization that preserves trace and eliminates long-

range correlations, while our rank correction preserves

long-range correlations and provides trace inflation. The

point here is that our transformation captures the es-

sential mechanism of stabilization by inflation, which,

again, is our objective.

We denote the stabilized versions of 3DVAR,

LRExKF, and EnKF by [3DVAR], [LRExKF], and

[EnKF]. Because FDF itself always remains stable we

do not show results for a stabilized version of this algo-

rithm. Note that we use ensembles in EnKF of equal size

to the number of approximate eigenvectors in LRExKF,

in order to ensure comparable work. This is always 100,

except for large h, when some of the largest 100 eigen-

values are too close to 0 to maintain accuracy, and so

fewer eigenvectors are used in LRExKF in these cases.

Also, note again that we are looking for general features

across methods and are not aiming to optimize the in-

flation procedure for any particular method.

Examples of an unstable instance of 3DVAR and the

corresponding stabilized filter, [3DVAR], are depicted

in Figs. 7 and 8, respectively , with n 5 0.01, h 5 0.2. In

this regime the dynamics are strongly chaotic. The first

point to note is that both simulations give rise to an error

that exceeds the lower bound (20); and that the unstable

algorithm exceeds the desired bound (21), while the

FIG. 8. Example of a variance-inflated stabilized trajectory [C0/(1/�)C0] for [3DVAR] with the same

external parameters as in Fig. 7. Panels are as in Fig. 7.
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stabilized algorithm does not; note also that the stabi-

lized algorithm output is plotted over a longer time in-

terval than the original algorithm. A second noteworthy

point relates to the power of using the dynamical model:

this is manifest in the bottom right panels of each figure,

in which the trajectory of a high wavenumber mode,

close to the forcing frequency, is shown. The assimila-

tion performs remarkably well for the trajectory of this

wavenumber relative to the observations in the stabi-

lized case, owing to the high weight on the dynamics and

stability of the dynamical model for that wavenumber.

Examples of an unstable instance of LRExKF and the

corresponding stabilized filter, [LRExKF], are depicted

in Figs. 9 and 10, respectively, with n5 0.01, h5 0.5. The

behavior illustrated is very similar to that exhibited for

3DVAR and [3DVAR].

In the following tables we make a comparison be-

tween the original form of the filters and their stabilized

forms, using the gold standard Bayesian posterior dis-

tribution as the desired outcome. Table 4 shows data for

h5 0.02 and 0.2 with T5 0.2 fixed. Tables 5 and 6 show

data for h 5 0.2 and 0.5, respectively, with T 5 1 fixed.

We focus our discussion on the approximation of the

mean. It is noteworthy that, on the shorter time horizon

T 5 0.2, the stabilized algorithms are less accurate with

respect to the mean than their original counterparts, for

both values of observation time h; this reflects a lack of

accuracy caused by inflating the variance. As would be

expected, however, this behavior is reversed on longer

time intervals, as is shown when T 5 1.0, reflecting en-

hanced stability caused by inflating the variance. Table 5

shows the case T 5 1.0 with h 5 0.2, and the stabilized

version of 3DVAR outperforms the original version,

although the stabilized versions of EnKF and LRExKF

are not as accurate as the original version. In Table 6,

with h5 0.5 and T5 1.0, the stabilized versions improve

upon the original algorithms in all three cases. Further-

more, in Table 6, we also display the FDF showing that,

without any stabilization, this outperforms the other three

filters and their stabilized counterparts.

6. Conclusions

Incorporating noisy data into uncertain computa-

tional models presents a major challenge in many areas

of the physical sciences, and in atmospheric modeling

and NWP in particular. Data assimilation algorithms in

NWP have had measurable positive impact on forecast

skill. Nonetheless, assessing the ability of these algorithms

FIG. 9. Example of an unstable trajectory for LRExKF with n 5 0.01, h 5 0.5. Panels are as in Fig. 7.
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to forecast uncertainty ismore subtle. It is important to do

so, however, especially as prediction is pushed to the

limits of its validity in terms of time horizons considered,

or physical processes modeled. In this paper we have

proposed an approach to the evaluation of the ability of

data assimilation algorithms to predict uncertainty. The

cornerstone of our approach is to adopt a fully non-

Gaussian Bayesian perspective in which the probability

distribution of the system state over a time horizon, given

data over that time horizon, plays a pivotal role: we

contend that algorithms should be evaluated by their

ability to reproduce this probability distribution, or im-

portant aspects of it, accurately.

Tomake this perspective useful it is necessary to find a

model problem that admits complex behavior reminis-

cent of atmospheric dynamics, while being sufficiently

FIG. 10. Example of a variance-inflated stabilized trajectory (updated with model B from section 2

on the complement of the low-rank approximation) for [LRExKF] with the same external parameters

as in Fig. 9. Panels are as in Fig. 9.

TABLE 4. The data of unstable algorithms fromTable 2 (n5 0.01,T5 0.2) are reproduced above [with h5 (top) 0.02 and (bottom) 0.2],

along with the respective stabilized versions in brackets. Here the stabilized versions usually perform worse. Note that over longer time

scales, the unstabilized version will diverge from the truth, while the stabilized one remains close.

h 5 0.02 emean evariance etruth eobs emap

3DVAR 0.063 455 3 6.340 57 0.063 289 0.321 959 0.063 402 6

[3DVAR] 0.142 759 22.2668 0.153 141 0.309 838 0.143 005

EnKF 0.035 271 0.274 428 0.052 356 6 0.323 074 0.035 462 4

[EnKF] 0.167 776 28.1196 0.175 359 0.304 352 0.167 919

h 5 0.2 emean evariance etruth eobs emap

3DVAR 0.285 461 1.721 54 0.300 853 0.384 43 0.286 161

[3DVAR] 0.195 222 6.336 08 0.204 883 0.339 108 0.196 339

LRExKF 0.075 090 8 0.054 741 7 0.088 693 2 0.350 73 0.072 679 2

[LRExKF] 0.156 973 7.641 23 0.169 354 0.310 298 0.156 596

EnKF 0.137 844 0.372 259 0.159 744 0.353 934 0.137 969

[EnKF] 0.248 081 6.349 03 0.267 746 0.368 067 0.249 475
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small to allow computation of the Bayesian posterior

distribution, so that data assimilation algorithms can be

compared against it. Although MCMC sampling of the

posterior can, in principle, recover any distribution, it

becomes prohibitively expensive for multimodal dis-

tributions, depending on the energy barriers between

modes. However for unimodal problems, state-of-the-

art sampling techniques allow fully resolved MCMC

computations to be undertaken. We have found that

the 2D Navier–Stokes equations provide a model for

which the posterior distribution may be accurately

sampled using MCMC, in regimes where the dynamics

is stationary and where it is strongly chaotic. We have

confined our attention to strong constraint models and

have implemented a range of variational and filtering

methods, evaluating them by their ability to reproduce

the Bayesian posterior distribution. The setup is such

that the Bayesian posterior is unimodal and approxi-

mately Gaussian. Thus the evaluation is undertaken by

comparing the mean and covariance structure of the

data assimilation algorithms against the actual Bayesian

posterior mean and covariance. Similar studies were un-

dertaken in the context of a subsurface geophysical in-

verse problem in Liu and Oliver (2003), although the

conclusions were less definitive. It would be interesting to

revisit such subsurface geophysical inverse problems us-

ing the state-of-the-art MCMC techniques adopted here,

in order to compute the posterior distribution. Moreover

it would be interesting to conduct a study, similar to that

undertaken here, for models of atmospheric dynamics

such as Lorenz-96 or for quasigeostrophic models, which

admit baroclinic instabilities.

These studies, under the assumption of a well-defined

posterior probability distribution, lead to four conclu-

sions: (i) Most filtering and variational algorithms do

a reasonably good job of reproducing the mean. (ii) For

most of the filtering and variational algorithms studied

and implemented here, there are circumstances when

the approximations underlying the ad hoc filters are not

justified and they then fail to reproduce covariance in-

formation with any accuracy. (iii) Most filtering algo-

rithms exhibit instability on longer time intervals causing

them to lose accuracy in evenmean prediction. (iv) Filter

stabilization, via variance inflation of one sort or the

other, ameliorates this instability and can improve long-

term accuracy of the filters in predicting the mean, but

can reduce the accuracy on short time intervals and of

course makes it impossible to predict the covariance. In

summary, most data assimilation algorithms used in

practice should be viewed with caution when using them

to make claims concerning uncertainty although, when

properly tuned, they will frequently track the signal mean

accurately for fairly long time intervals. These conclu-

sions are intrinsic to the algorithms, and result from the

nature of the approximations made in order to create

tractable online algorithms; the basic conclusions are not

expected to change by use of different dynamical models

or by modifying the parameters of those algorithms.

TABLE 5. As in Table 4, but T 5 5h 5 1 and h 5 0.2. The [3DVAR] performs better with respect to the mean.

h 5 0.2 emean evariance etruth eobs emap

3DVAR 0.355 71 3.178 03 0.357 351 0.419 614 0.355 57

[3DVAR] 0.131 964 11.5997 0.135 572 0.277 895 0.133 265

LRExKF 0.101 179 0.283 08 0.090 069 7 0.291 704 0.101 287

[LRExKF] 0.129 62 16.3692 0.135 92 0.256 617 0.129 742

EnKF 0.073 661 3 0.276 947 0.075 523 2 0.282 247 0.074 214 4

[EnKF] 0.1231 14.8557 0.133 171 0.261 061 0.124 203

TABLE 6. As in Table 5, but h 5 0.5. All stabilized algorithms now perform better with respect to the mean. [LRExKF] above uses 50

eigenvectors in the low rank representation, and performsworse for larger numbers, indicating that the improvement is largely due to the

FDF component. The stable FDF data are included here as well, since FDF is now competitive as the optimal algorithm in terms of mean

estimator. This is expected to persist for larger time windows and lower-frequency observations, since the LRExKF is outside of the

regime of validity, as shown in Fig. 4.

h 5 0.5 emean evariance etruth eobs emap

3DVAR 0.458 527 1.8214 0.453 53 0.487 658 0.460 144

[3DVAR] 0.271 85 6.623 28 0.285 351 0.307 263 0.274 663

LRExKF 0.644 427 0.325 391 0.650 004 1.221 45 0.646 233

[LRExKF] 0.201 327 11.2449 0.207 526 0.244 101 0.201 081

EnKF 0.901 703 0.554 611 0.895 878 0.908 817 0.902 438

[EnKF] 0.169 262 4.072 38 0.178 74 0.244 571 0.170 245

FDF 0.189 832 11.4573 0.199 99 0.251 11 0.191 364
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Finally we note that we have not addressed in this

paper the important but complicated issue of how to

choose the prior distribution on the initial condition.We

finish with some remarks concerning this. The ‘‘accuracy

of the spread’’ of the prior is often monitored in practice

with a rank histogram (Anderson 1996). This can be

computed even in the absence of an ensemble for any

method in the class of those discussed here, by parti-

tioning the real line in bins according to the assumed

Gaussian prior density. It is important to note that uni-

form component-wise rank histograms in each direction

guarantee that there are no directions in which the

variance is consistently underestimated, and this should

therefore be sufficient for stability. It is also necessary

for the accurate approximation of the Bayesian posterior

distribution, but by no means sufficient (Hamill et al.

2000). Indeed, one can iteratively compute a constant

prior with the cycled 3DVAR algorithm (Hamill et al.

2000) such that the estimator from the algorithmwill have

statistics consistent with the constant prior used in the

algorithm. The estimator produced by this algorithm is

guaranteed by construction to yield uniform rank histo-

grams of the type described above, and yet the actual

prior coming from the posterior at the previous time is

not constant, so this cannot be a good approximation of

the actual prior. See Fig. 11 for an image of the posterior

and prior variance that is consistent with the statistics of

the estimator over 100 iterations of 3DVARwith n5 0.01

and h 5 0.5 at time T 5 1, as compared with the true

posterior and converged FDF variance. Notice that

FDF overestimates in the high-variance directions and

underestimates in the low-variance directions (which

correspond in our case to the unstable and stable di-

rections, respectively). The RMSE of 3DVAR with

constant converged FDF variance is smaller than with

constant variance from converged statistics, and yet

the former clearly will yield component-wise rank

histograms that appear to always underestimate the

‘‘spread’’ in the low-variance, stable directions and

overestimate in the high-variance, unstable directions. It

is also noteworthy that the FDF variance accurately re-

covers the decay of the posterior variance but is about an

order of magnitude larger. Further investigation of how

to initialize statistical forecasting algorithms clearly re-

mains a subject presentingmany conceptual and practical

challenges.
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APPENDIX

Some Numerical Details

Here we provide some details of the numerical algo-

rithms underlying the computations that we present in

the main body of the paper. First, we will describe the

numerical methods used for the dynamical model. Sec-

ond, we study the adjoint solver. Third, we discuss various

issues related to the resulting optimization problems and

large linear systems encountered. Finally, we discuss the

MCMC method used to compute the gold standard pos-

terior probability distribution.

In the dynamical and observational models the forc-

ing in (1) is taken to be f5 =?c, where c5 cos(kx) and

=? 5 J$, with J being the canonical skew-symmetric

matrix, and k 5 (1, 1) for stationary (n 5 0.1) regime,

while k 5 (5, 5) for the strongly chaotic regime in order

to allow an upscale cascade of energy. Furthermore, we

set the observational noise to white noise G5 g2I, where

g 5 0.04 is chosen as 10% of the maximum standard

deviation of the strongly chaotic dynamics, andwe choose

FIG. 11. The (left) posterior and (right) prior of the covariance from converged innovation

statistics from the cycled 3DVAR algorithm in comparison to the converged covariance from

the FDF algorithm and the posterior distribution.
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an initial smoothness prior C0 5 A22, where A is the

Stokes operator. We notice that only the observations on

the unstable manifold of the underlying solution map

need to be assimilated. A similar observation was made

in Chorin and Krause (2004) in the context of particle

filters. Our choice of prior and observational covariance

reflects this in the sense that the ratio of the prior to the

observational covariance is larger for smaller wave-

numbers (and greater than 1, in particular), in which

the unstable manifold has support, while this ratio

tends to 0 as jkj/ ‘. The initial mean, or background

state, is chosen as m0 ; N (uy, C0), where uy is the true

initial condition. In the case of strongly chaotic dy-

namics it is taken as an arbitrary point on the attractor

obtained by simulating an arbitrary initial condition

until statistical equilibrium. The initial condition for the

case of stationary dynamics is taken as a draw from

the Gaussian prior, since the statistical equilibrium is the

trivial one.

Our numerical method for the dynamical model is

based on a Galerkin approximation of the velocity field

in a divergence-free Fourier basis. We use a modifica-

tion of a fourth-order Runge–Kutta method, ETD4RK

Cox and Matthews (2002), in which the heat semigroup

is used together with Duhamel’s principle to solve ex-

actly for the diffusion term. A spectral Galerkin method

Hesthaven et al. (2007) is used in which the convolutions

arising from products in the nonlinear term are com-

puted via FFTs. We use a double-sized domain in each

dimension, buffered with zeros, resulting in 642 grid-

point FFTs, and only half the modes are retained when

transforming back into spectral space in order to prevent

dealiasing, which is avoided as long as fewer than 2/3 the

modes are retained. Data assimilation in practice always

contends with poor spatial resolution, particularly in the

case of the atmosphere in which there are many billions

of degrees of freedom. For us the important resolution

consideration is that the unstable modes, which usually

have long spatial scales and support in low wavenumbers,

are resolved. Therefore, our objective here is not to

obtain high spatial resolution but rather to obtain high

temporal resolution in the sense of reproducibility. We

would like the divergence of two nearby trajectories to

be dictated by instability in the dynamical model rather

than the numerical time-stepping scheme.

It is also important that we have accurate adjoint

solvers, and this is strongly linked to the accuracy of the

forward solver. The same time-stepper is used to solve

the adjoint equation, with twice the time step of the

forward solve, since the forward solution is required at

half-steps in order to implement this method for the

nonautonomous adjoint solve. Many issues can arise

in the implementation of adjoint or costate methods

(Banks 1992; Vogel and Wade 1995) and the practi-

tioner should be aware of these. The easiest way to en-

sure convergence is to test that the tangent linearized

map is indeed the linearization of the solution map and

then confirm that the adjoint is the adjoint to a suitable

threshold. We have taken the approach of ‘‘optimize

then discretize’’ here, and as such our adjoint model is

the discretization of the analytical adjoint. This effect

becomes apparent in the accuracy of the linearization

for longer time intervals, and we are no longer able to

compute accurate gradients and Hessians as a result.

Regarding linear algebra and optimization issues we

make the following observations. A Krylov method

(GMRES) is used for linear solves in theNewtonmethod

for 4DVAR, and theArnoldimethod is used for low-rank

covariance approximations in LRExKF and for the fil-

tering time T covariance approximation in 4DVAR. The

LRExKF always sufficiently captures more than 99%

of the full rank version as measured in the Frobenius

(matrix l2) norm. The initialHessian in 4DVARaswell as

the ones occurring within Newton’s method are com-

puted by finite difference. Using a gradient flow (pre-

conditioned steepest descent) computation, we obtain an

approximate minimizer close to the actual minimizer and

then a preconditioned Newton–Krylov nonlinear fixed-

point solver is used (NSOLI; Kelley 2003). This approach

is akin to the Levenburgh–Marquardt algorithm. See

Trefethen and Bau (1997) and Saad (1996) for over-

views of the linear algebra and Nocedal and Wright

(1999) for an overview of optimization. Strong constraint

4DVAR can be computationally challenging and, al-

though we do not do so here, it would be interesting to

study weak constraint 4DVAR from a related perspec-

tive; see Bröcker (2010) for a discussion of weak con-

straint 4DVAR in continuous time. It is useful to employ

benchmarks in order to confirm that gradients are being

computed properly when implementing optimizers (see,

e.g., Lawless et al. 2003).

Finally, we comment on the MCMC computations,

which, of all the algorithms implemented here, lead to

the highest computational cost. This, of course, is because

it fully resolves the posterior distribution of interest

whereas the other algorithms use crude approximations,

the consequences of which we study by comparison with

accurate MCMC results. Each time step requires four

function evaluations, and each function evaluation re-

quires eight FFTs, so it costs 32 FFTs for each time step.

We fix the lengths of paths at 40 time steps for most of the

computations, but nonetheless this is on the order of 1000

FFTs per evaluation of the dynamical model. If a 642 FFT

takes 1 ms, then this amounts to 1 s per sample. Clearly

this is a hurdle as it would take on the order of 10 days to

obtain on the order of millions of samples in series. We
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overcome this by using the MAP estimator (4DVAR

solution) as the initial condition in order to accelerate

burn-in, and then run independent batches of 104 samples

in parallel with independent seeds in the random number

generator. We also minimize computational effort within

themethod by employing the technique of early rejection

introduced by Haario (H. Haario 2010, personal com-

munication), which means that rejection can be detected

before the forward computation required for evaluation

ofF reaches the end of the assimilation time window; the

computation can then be stopped and hence computa-

tional savings made.

It is important to recognize that we cannot rely too

heavily on results of MCMCwith smaller relative norms

than 1023 for the mean or 1022 for the variance, because

we are bound toO(N21/2) convergence and it is already

prohibitively expensive to get several million samples.

More than 107 is not tractable. Convergence is measured

by a version of the potential scale reduction factor

(Brooks and Gelman 1998), ey1:8 5 kvar[u1(t)] 2
var[u8(t)]k/kvar[u1(t)]k, where u1 corresponds to sam-

ple statistics with one chain and u8 corresponds to sample

statistics over eight chains. We find ey1:8 5 O(1022) for

N5 3.23 105 samples in each chain. If we define em1:85
kE[u1(t)] 2 E[u8(t)]k/kE[u1(t)]k, then we have em1:8 5
O(1023).
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