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Abstract
We provide an explicit rigorous derivation of a diffusion limit—a stochastic
differential equation (SDE) with additive noise—from a deterministic skew-
product flow. This flow is assumed to exhibit time-scale separation and has the
form of a slowly evolving system driven by a fast chaotic flow. Under mild
assumptions on the fast flow, we prove convergence to a SDE as the time-scale
separation grows. In contrast to existing work, we do not require the flow to
have good mixing properties. As a consequence, our results incorporate a large
class of fast flows, including the classical Lorenz equations.

Mathematics Subject Classification: 37A50, 60H10, 34E13, 60F05, 60F10

1. Introduction

There is considerable interest in understanding how stochastic behaviour emerges from
deterministic systems, both in the mathematics and applications literature. In this note we
provide a simple explicit construction of such emergent stochastic behaviour in the setting
of skew-product flows exhibiting time-scale separation. We prove a diffusion limit for the
following ordinary differential equations (ODEs):

ẋ(ε) = ε−1f0(y
(ε)) + f (x(ε), y(ε)), x(ε)(0) = ξ, (1.1a)

ẏ(ε) = ε−2g(y(ε)), y(ε)(0) = η. (1.1b)

Here x(ε) ∈ R
d , y(ε) ∈ R

�. Roughly speaking we assume that the equation for y(ε) has
a compact attractor � ⊂ R

� supporting an invariant measure µ and satisfying certain ‘mild
chaoticity’ assumptions. These conditions are stated precisely in assumptions 1.2. In addition,
we assume that f0 should average to zero with respect to µ.
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Consider the stochastic differential equation (SDE)

X(t) = ξ +
∫ t

0
F(X(s)) ds +

√
�W(t). (1.2)

where W is unit d-dimensional Brownian motion, � is a d × d covariance matrix (depending
on f0 and g) and F(x) is the average of f (x, ·) with respect to the aforementioned invariant
measure µ. The goal of the note is to prove the following limit theorem relating the solution
x(ε) of (1.1) and X of (1.2). Throughout we use →w to denote weak convergence in the sense
of probability measures [1, 2].

Theorem 1.1. Let assumptions 1.2 hold and let η be a random variable distributed according
to the measure µ on the attractor � ⊂ R

� and fix any ξ ∈ R
d . Then, almost surely with

respect to η and W , there is a unique solution (x(ε), y(ε)) ∈ C1([0, ∞); R
d × R

�) of (1.1) for
each ε > 0, and a unique solution X ∈ C([0, ∞); R

d) of (1.2). Furthermore x(ε) →w X in
C([0, ∞), R

d) as ε → 0.

Throughout the note we make the following standing assumptions.

Assumptions 1.2. The differential equations (1.1) satisfy the following:

(1) Equation (1.1b) with ε = 1 has a compact invariant set �, η ∈ �, and there is an invariant
probability measure µ supported on �; expectation with respect to this measure is denoted
by E.

(2) The vector fields g : � → R
� and f0 : � → R

d are locally Lipschitz, and the vector field
f : R

d × � → R
d is bounded and Lipschitz with uniform Lipschitz constant L.

(3) The vector field f0 : � → R
d averages to 0 under µ : Ef0 = 0.

(4) Define Wn(t) = n− 1
2
∫ nt

0 f0(y
(1)(τ )) dτ , for t � 0. Fix any T > 0. We assume the weak

invariance principle (WIP), namely that Wn →w

√
�W in C([0, T ], R

d) as n → ∞
for unit d-dimensional Brownian motion W and some covariance matrix �, independent
of T .

(5) Define

F(x) = Ef (x, ·) =
∫

�

f (x, y)µ(dy),

noting that it is globally bounded by |f |∞ and globally Lipschitz with constant L, since µ

is a probability measure. Let T > 0. We assume the following large deviation principle
(LDP):

µ
(∣∣∣ 1

T

∫ T

0
f (x, y(1)(τ )) dτ − F(x)

∣∣∣ > a
)

� b(a, T ),

where b(a, T ) is independent of x and b(a, T ) → 0 as T → ∞ for all a > 0.

Remark 1.3.

(a) The regularity conditions on f, f0, g in assumption 2 guarantee global existence and
uniqueness of solutions to the ODEs (1.1) and the SDE (1.2) for all positive time and all
initial conditions ξ ∈ R

d , η ∈ �. We note that uniformity of the Lipschitz constant for f

is automatic in y since � is compact.
(b) Assumptions 4 and 5 hold for a large class of flows. In particular, the WIP and LDP

are proved in [3, 4] for flows that have a Poincaré map modelled by a Young tower [5, 6]
with summable tails. This includes Anosov and Axiom A flows, nonuniformly hyperbolic
flows such as Hénon-like flows (where the Poincaré map has a Hénon-like attractor), and
Lorenz attractors [7] (including the case of the classical parameter values in [8]). In this
class of examples, the Poincaré map has good statistical properties and limit laws such as
the WIP and LDP transfer to the flow [9]. We note that LDP here refers to an explicit but
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possibly subexponential convergence rate in the weak law of large numbers (see [4] and
references therein).

There are two main routes leading to emergent stochastic behaviour in deterministic
systems. The first is through the elimination of a large number of degrees of freedom, and the
reliance on the central limit theorem to provide fluctuations and the second is through time-scale
separation; see [10] for an overview. The first mechanism does not require any assumption of
chaotic behaviour and may even be observed in large systems of linear oscillators; work in this
area was initiated in [11] and more recent work includes [12, 13]. The second mechanism relies
on the presence of some fast chaotic dynamics to induce white noise and has a long history
in the applied literature; we mention, in particular, the work in [14–17]. Our work provides
a very simple scenario in which the second mechanism may be used, provably, to establish
emergent stochastic dynamics. We anticipate that the basic ideas would apply to a far larger
class of problems as indicated, for example, by the program outlined in [18]. Moreover, the
basic mechanism that underlies the work in this note was identified and studied in the seminal
paper [19]. However, the conditions in that paper can be hard to verify for specific ordinary
differential equations. In contrast our construction holds for explicit systems on R

� such as
the classical Lorenz equations.

An important aspect of our theory is that we require no knowledge of mixing properties
of the flow. In contrast, previous rigorous results in the literature required strong assumptions
on the mixing properties of the flow. See [20] for the most powerful results in this direction
where it is required that the flow has stretched exponential decay of correlations. Even for
Anosov flows this has been proved only in very special cases [21–23]. Superpolynomial decay
has been proved for typical Anosov and Axiom A flows [24, 25] and typical nonuniformly
hyperbolic flows governed by Young towers [26, 27] but only for very smooth observables;
this smoothness would have to be imposed on f0. For the Lorenz equations there are currently
no results at all on rates of mixing (though superpolynomial decay holds for typical nearby
flows by [27]).

2. Weak invariance and large deviation principles

The WIP and LDP assumed above have two useful implications which we detail in this section,
and then use in the next section to prove the main theorem.

Proposition 2.1. Let (x(ε)(t), y(ε)(t)) denote the solution to (1.1) with f ≡ 0, ξ = 0 and
with η a random variable distributed according to the measure µ on �. Let T > 0. Then
x(ε) →w

√
�W in C([0, T ], R

d) as ε → 0. Here, W is unit d-dimensional Brownian motion
and the covariance matrix � is independent of T .

Proof. Note that y(1)(t) is the solution to the IVP ẏ = g(y), y(0) = η. Define
Wn(t) = n− 1

2
∫ nt

0 f0(y
(1)(τ )) dτ , for t ∈ [0, T ]. By the WIP, Wn →w

√
�W in C([0, T ], R

d)

as n → ∞.
Now y(ε)(t) = y(1)(tε−2). Hence

x(ε)(t) = ε−1
∫ t

0
f0(y

(ε)(s)) ds = ε

∫ tε−2

0
f0(y

(1)(τ )) dτ.

Writing n = ε−2, we obtain x(ε)(t) = Wn(t) and the result follows. �
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Proposition 2.2. For any a, T > 0, n � 0, x ∈ R
d ,

E

∣∣∣ 1

T

∫ (n+1)T

nT

f (x, y(1)(τ )) dτ − F(x)

∣∣∣ � a + 2|f |∞ b(a, T ).

Proof. Let S(T , x) = | 1
T

∫ T

0 f (x, y(1)(τ )) dτ − F(x)|. Then, by the LDP,

ES(T , x) =
∫

S(T ,x)�a

S(T , x) dµ +
∫

S(T ,x)>a

S(T , x) dµ

� a + |S|∞ b(a, T ) � a + 2|f |∞ b(a, T ).

This proves the result for n = 0, and the general case follows from invariance of µ. �

3. Diffusion limit

We now prove the diffusion limit contained in theorem 1.1. The method of proof generalizes
that described in chapter 18 of [28] for homogenization in SDEs with additive noise and a
skew-product form.

Proof of theorem 1.1. To prove weak convergence on [0, ∞), it suffices to establish weak
convergence on [0, T ] for each fixed T > 0.

Write W(ε)(t) = ∫ t

0
1
ε
f0(y

(ε)(s)) ds. By integrating the x(ε) equation we have

x(ε)(t) = ξ +
∫ t

0

1

ε
f0(y

(ε)(s)) ds +
∫ t

0
f (x(ε)(s), y(ε)(s)) ds

= ξ + W(ε)(t) +
∫ t

0
F(x(ε)(s)) ds + Z(ε)(t)

where

Z(ε)(t) =
∫ t

0

(
f (x(ε)(s), y(ε)(s)) − F(x(ε)(s))

)
ds.

We show below that Z(ε) → 0 in L1(C([0, T ], R
d); µ). By proposition 2.1, W(ε) →w

√
�W

in C([0, T ], R
d). It follows that W(ε) + Z(ε) →w

√
�W in C([0, T ], R

d). Now consider the
continuous map G : C([0, T ], R

d) → C([0, T ], R
d) given by G(u) = v where v is the unique

solution to the integral equation

v(t) = ξ + u(t) +
∫ t

0
F(v(s)) ds.

Define v(ε) = G(W(ε) + Z(ε)). Since continuous maps preserve weak convergence, it follows
that v(ε) →w G(

√
�W) = X. But v(ε) = x(ε) by uniqueness of solutions, so x(ε) →w X as

required.
It remains to show the L1 convergence of Z(ε) to 0 in C([0, T ], R

d). Define g(x, y) =
f (x, y) − F(x) and note that |g|∞ � 2|f |∞ and Lip(g) � 2L. Then Z(ε)(t) =∫ t

0 g(x(ε)(s), y(ε)(s)) ds. Let N = [t/δ] and write Z(ε)(t) = Z(ε)(Nδ) + I0 where I0 = ∫ t

Nδ

g(x(ε)(s), y(ε)(s)) ds. We have

|I0| � (t − Nδ)|g|∞ � 2|f |∞δ. (3.1)
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We now estimate Z(ε)(Nδ) as follows:

Z(ε)(Nδ) =
N−1∑
n=0

∫ (n+1)δ

nδ

g(x(ε)(s), y(ε)(s)) ds

=
N−1∑
n=0

∫ (n+1)δ

nδ

(
g(x(ε)(s), y(ε)(s)) − g(x(ε)(nδ), y(ε)(s))

)
ds

+
N−1∑
n=0

∫ (n+1)δ

nδ

g(x(ε)(nδ), y(ε)(s)) ds

= I1 + I2.

For s ∈ [nδ, (n + 1)δ], we have |x(ε)(s) − x(ε)(nδ)| � (|f0|∞ + |f |∞)δε−1. Hence

|I1| � NδLip(g)(|f0|∞ + |f |∞)δε−1 � 2L(|f0|∞ + |f |∞)T δε−1. (3.2)

Next,

I2 =
N−1∑
n=0

∫ (n+1)δ

nδ

(f (x(ε)(nδ), y(ε)(s)) − F(x(ε)(nδ)) ds = δ

N−1∑
n=0

Jn,

where

Jn = δ−1
∫ (n+1)δ

nδ

f (x(ε)(nδ), y(ε)(s)) ds − F(x(ε)(nδ))

= δ−1ε2
∫ (n+1)δε−2

nδε−2
f (x(ε)(nδ), y(1)(s)) ds − F(x(ε)(nδ)).

Let a > 0. Applying proposition 2.2, E|Jn| � a + 2|f |∞ b(a, δε−2). It follows that

E sup
t∈[0,T ]

|I2(t)| � T (a + 2|f |∞ b(a, δε−2)). (3.3)

Finally, we set δ = ε
3
2 . By (3.1) and (3.2), limε→0 E supt∈[0,T ] |I0(t)| =

limε→0 E supt∈[0,T ] |I1(t)| = 0. Moreover, by (3.3) and the assumption on b in the LDP
in assumption 1.2(5), we have

lim sup
ε→0

E sup
t∈[0,T ]

|I2(t)| � T a,

and, since a > 0 is arbitrary,

lim
ε→0

E sup
t∈[0,T ]

|I2(t)| = 0.

Altogether, limε→0 E supt∈[0,T ] |Z(ε)(t)| = 0 as required.

4. Conclusions

The construction in this paper shows how some new ideas in the theory of dynamical systems
can be used to prove a homogenization principle in ODEs, leading to emergent stochastic
behaviour. The arguments are very straightforward, and are given only in the case of additive
noise. However, in the situation where the limiting SDE is one dimensional the ideas of
Sussmann [29] can be used to derive a limiting SDE in which noise appears multiplicatively.
Generalizing these ideas to skew-product flows where the SDE is of higher dimension will
require the theory of rough paths [30] and is the subject of ongoing work.
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Finally a comment on the differences between [28] homogenization and averaging in
ODE systems like (1.1). There is current interest [31] in the derivation of averaging principles
for systems of ODEs exhibiting three time scales of order O(ε−2), O(ε−1) and O(1). The
motivation is the construction of efficient numerical schemes for computation of the averaged
solution, which is deterministic. Theorem 1.1, which also concerns the limiting behaviour
of a system containing three time-scales, corresponds to a homogenization principle with a
stochastic limit, rather than an averaging principle with deterministic limit. Thus our work
provides an example of a three scale system for which an effective deterministic averaged
equation cannot exist.
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