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Summary. It is possible to implement importance sampling, and particle filter algorithms, where
the importance sampling weight is random. Such random-weight algorithms have been shown
to be efficient for inference for a class of diffusion models, as they enable inference without any
(time discretization) approximation of the underlying diffusion model. One difficulty of imple-
menting such random-weight algorithms is the requirement to have weights that are positive
with probability 1. We show how Wald’s identity for martingales can be used to ensure positive
weights.We apply this idea to analysis of diffusion models from high frequency data. For a class
of diffusion models we show how to implement a particle filter, which uses all the information in
the data, but whose computational cost is independent of the frequency of the data. We use the
Wald identity to implement a random-weight particle filter for these models which avoids time
discretization error.

Keywords: Diffusions; Exact simulation; Gaussian process; Integrated processes; Negative
importance weights; Poisson estimator; Sequential Monte Carlo methods

1. Introduction

The paper develops novel methods for optimal filtering of partially observed stochastic processes.
There are two contributions which are combined to yield an efficient algorithm for estimating
an unobserved signal when the dynamics of the signal and the observed process are described
by a system of stochastic differential equations (SDEs).

The first contribution relates to so-called random-weight importance sampling (IS) methods.
These methods are based on the simple principle that valid use of IS for stochastic simulation
requires only an unbiased estimator of the likelihood ratio between the target and proposal
distribution, rather than the ratio itself. For brevity we call such estimators random weights.
Note, for instance, that the validity of rejection sampling follows directly from this observation,
since the 0–1 weights (accept–reject) that are associated with the samples proposed are random
weights. The rejection control algorithm (Liu, 2001) is similarly justified.
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Of particular relevance to this paper is the application of this idea when the likelihood ratio is
intractable. Intractable likelihood ratios arise naturally in inference and simulation of continu-
ous time processes. The case of SDEs is discussed in detail in this paper; see Barndorff-Nielsen
and Shephard (2001) for models that are based on Lévy processes. Additionally, it has recently
emerged that the appropriate use of unbiased estimators of likelihood ratios within Markov
chain Monte Carlo sampling ensures the desired limiting distribution; see for example Andrieu
and Roberts (2009), Andrieu et al. (2010) and Beskos et al. (2006). Random weights have also
been used in the context of option pricing; see Glasserman and Staum (2001).

Powerful techniques have been developed for obtaining random weights even in complex
situations. These techniques generate unbiased estimates of non-linear functionals of a quantity
under the assumption that the quantity itself can be unbiasedly estimated, e.g. unbiasedly esti-
mating exp.Φ/ given unbiased estimates of Φ. The Poisson estimator and its generalizations
that are reviewed in Section 3.2 provide one such technique; see Papaspiliopoulos (2009) for an
overview of this methodology.

In the context of sequential IS the use of random weights was first proposed in Rousset and
Doucet (2006) and Fearnhead et al. (2008). Fearnhead et al. (2008) introduced the so-called
random-weight particle filter (RWPF) and demonstrated that substituting intractable weights
with positive unbiased estimators is equivalent to a data augmentation approach. In sequential
IS the weights are involved in resampling steps; therefore for efficient implementation it is
required that they are positive and can be normalized to yield resampling probabilities. Whereas
obtaining random weights might be easy by using the Poisson estimator, controlling their sign
is difficult.

We propose to use Wald’s identity for martingales to generate unbiased estimators which are
guaranteed to be positive. The estimators are defined up to an unknown constant of proportion-
ality, which is removed when IS weights are normalized to sum to 1. This technique can be used
within a particle filter to yield what we call the Wald random-weight particle filter (WRWPF).
We show that under moment conditions on the random weights this modification increases the
computational complexity of the filter by only a logarithmic factor.

Secondly we develop a new approach for optimal filtering of Markov models from high
frequency observations. The approach is particularly suited to the continuous time filtering
problem (Del Moral and Miclo, 2000), where the observed process and the signal evolve accord-
ing to a system of SDEs. Hence, for clarity Section 3 develops the new approach in this context,
and we defer discussion about extensions until Section 5.

Generally, filtering for SDEs is impeded by the fact that transition densities are unavailable,
except for very special cases such as linear SDEs. This intractability renders even the applica-
tion of Monte Carlo methods (i.e particle filters) non-trivial. In contrast, for a certain class of
SDEs (see Section 3.1) unbiased estimators of transition densities can be obtained; thus the
RWPF can be applied. This approach was developed in Fearnhead et al. (2008) to provide
exact (i.e. model-approximation-free) particle approximations to the filtering (and smoothing)
distributions.

Here we show how to obtain particle approximations to the filtering distributions at a set of
auxiliary filtering times which is a subset of the observation times. This extension is particularly
important when we have high frequency observed data, where filtering at every observation time
comes at a large computational cost due to the vast amount of data.

Subsampling the observed data can reduce the computational cost but it throws away infor-
mation. Our new filter applies to the class of SDEs where unbiased estimators of the transition
density are available and is based on the unbiased estimation of the conditional transition density
of the signal between the filtering times given any observed data on that interval. This approach
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still uses all the information within the data, yet the resulting computational cost of calculating
weights for each particle does not increase with the frequency of the data. To be able to imple-
ment the resulting filter we incorporate our unbiased estimates of the conditional transitions
density within a WRWPF.

The outline of the paper is as follows. Section 2 introduces the Wald random-weight IS as a
generic simulation method and establishes its validity in theorem 1. Section 3 introduces the new
approach to filtering partially observed diffusion processes and develops a WRWPF. Section
4 applies the new WRWPF to high frequency data from models where the signal evolves at a
much slower rate than the observation process and gives comparisons with alternative methods.
Section 5 closes with a discussion about the scope and extensions of the methodology proposed.

2. Wald random-weight importance sampling

We are interested in sampling from a probability distribution Q by using proposals from a
tractable distribution W that is defined on the same space. Let w.x/ = dQ=dW.x/ be the cor-
responding Radon–Nikodym derivative (i.e. the likelihood ratio). Then, the weighted sample
.x.j/, w.j//, j = 1, . . . , N, with w.j/ = w.x.j//, and x.j/ ∼ W, constitutes an IS approximation of
Q, and expectations EQ.g/ can be consistently estimated (as N →∞) by

N∑
j=1

g.x.j//
w.j/

∑
l

w.l/
: .1/

Note that renormalization by the sum of the weights means that we need only known w up to a
normalizing constant. Since the weighted sample can be used to recover arbitrary expectations,
it is called a particle approximation. We interpret this approximation as approximating Q by a
distribution with discrete support points, the particles x.j/, and the probability associated with
each support point is proportional to the weight w.j/.

However, in several applications (see Section 3 and the discussion in Section 1) w.x/ is not
explicitly available. A common situation is that w.x/=f.x/ r.x/, where f is explicitly known but
r is only expressed as an expectation which cannot be computed analytically. However, powerful
machinery is now available (see Section 3.2) which in many cases provides an unbiased estimator
of w.x/, say W.x/, for any x. W is constructed by simulating auxiliary variables. Thus, for a
given x we can obtain a sequence of estimators Wk.x/, k = 1, 2, . . . , which are conditionally
independent. An important observation is that the random weighted sample .x.j/, W.j// is also a
valid IS approximation of Q and expression (1) applies with w replaced by W . This observation
is a direct consequence of iterated conditional expectation. Therefore, IS can be cast in these
more general terms.

However, the interpretation of IS as a distributional (particle) approximation collapses in the
generalized framework when the estimators are not positive almost surely. This interpretation
is fundamental when the particle approximation replaces Q in probability calculations, such
as the application of Bayes theorem. The collection of techniques that is known as sequential
Monte Carlo (SMC) sampling, a special case of which are particle filters (PFs), relies explicitly
on this interpretation of IS; see Section 3 for details on PFs.

Thus, it is crucial to have a generic methodology which produces positive random weights, to
allow the generalized IS framework to be routinely applied in SMC sampling. One simple way
to achieve this is to truncate all negative weights, W trunc =max{W , 0}. This obviously distorts
the properly weighted principle by introducing a bias, but it has a desirable mean-square error
property:
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E.W trunc −w/2 !E.W −w/2:

The bias will typically decrease with increasing computational cost per estimator. See Section
3.2 for further discussion in the context of the Poisson estimator. However, in practice, it is
difficult to quantify the effect of the bias on the quality of the particle approximation.

We introduce a technique which, rather than setting negative weights to 0, uses extra simula-
tion to make them positive. This is done while ensuring that the weights remain unbiased (up
to a common constant of proportionality) by using the following result.

Theorem 1. Consider an infinite array of independent random variables W.j/
k for j =1, . . . , N

and k = 1, 2, . . . each with finite fourth moment and first moment wj. We assume that, for
fixed j, W.j/

k are identically distributed for all k, with the same distribution as W.j/. Now
define

S
.j/
l =

l∑
k=1

W.j/
k ,

and define the stopping time K =min{l : S.j/
l "0 for all j =1, . . . , N}. Then E.K/<∞, and

E.S
.j/
K /=E.K/E.W.j//:

For a proof of theorem 1, see Appendix A.
The weights that are simulated by this algorithm will have expectation proportional to the

true weights, as required. The unknown normalizing constant causes no complications since
it cancels out in the renormalization of the weights. The method using partial sum weights
according to this procedure is termed Wald random-weight IS.

It is natural to consider the computational cost of applying Wald random-weight IS. Since its
application requires K draws, {W.j/

k , 1 ! k ! K}, the cost is thus proportional to E.K/. How-
ever E.K/ is increasing in N. Therefore, to provide a robust method which can be used for large
particle populations, it is important to understand how rapidly E.K/ increases as a function
of N.

To give a formal result concerning this, we shall strengthen the moment conditions on W.j/
k ,

requiring the existence of some exponential moments, which is still a very reasonable assump-
tion. Weaker results are possible under weaker moment constraints. This result is essentially a
classical result from large deviation theory (see for example Varadhan (1984)) adapted to our
context.

Theorem 2. Suppose that the distributions of {W.j/} admit a stochastic minorant, i.e.

P.W.j/ !x/!F.x/

for all x ∈ R, j = 1, 2, . . . , with F a proper distribution function. We shall assume that, for
some "> 0, if X∼F then

E{exp.sX/}=µ.s/<∞

for all s∈ [−", 0], and that E.X/> 0. Then there is a positive constant a such that, for all N ,

E.K/!a log.N/:

For a proof of theorem 2, see Appendix B.
In most applications it is reasonable to assume exponential moments for any given W.j/. For

example, in the diffusion application that is considered below, W.j/ are IS weights which are
based on polynomial functions of Gaussian random variables. In IS applications we would have
that W.j/ has the same distribution for all j, in which case the conditions of theorem 2 would
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then hold. However, in particle filtering applications, the distributions of W.j/ will vary with j,
and there may not be an appropriate stochastic minorant. Extending the above result is possible,
but will require specific assumptions on how the distributions of W.j/ vary with j, and is beyond
the scope of this paper. However, in Section 4 we look empirically at how E.K/ depends on N
for particle filtering applications.

3. High frequency particle filtering

Let Z = .Y , X/ be a Markov process, where Y is the observable (‘the data’) and X the unobser-
vable (‘the signal’) component of the process. We are interested in estimating X at a sequence
of times given all available data up to that given time. This is known as the filtering problem.

Here we focus on models where both X and Y evolve continuously in time and their dynamics
are given by a system of SDEs. Our methodology extends beyond this and also includes cases
where Y is partially observed, or other observations schemes. Discussion of these extensions is
left until Section 5.

In our set-up Z is a multi-dimensional diffusion process. Exact solution of the filtering problem
in this framework is available only when the system is linear in X and Y (Kalman and Bucy,
1961). For non-linear models, the filtering problem is commonly solved by using a collection
of Monte Carlo algorithms known as PFs; see Liu and Chen (1998), Doucet et al. (2000) or
Fearnhead (2008) for a detailed introduction. PFs are based on sequential application of IS (see
Section 2). However, application of PFs to the continuous time filtering problem is hindered
by the intractability of the transition density of diffusion processes. For certain classes of diffu-
sions unbiased estimators of transition densities are available, and for these models we can use
random-weight IS to solve the filtering problem. In the rest of the section we restrict attention
to such processes.

Let Z be a multivariate diffusion process satisfying the SDE

dZs =−Σ∇A.Zs/ds+√
.2Σ/dBs, s∈ [0, T ], Z0 = z, .2/

where A : Rd →R is a potential function, ∇A denotes the vector of d partial derivatives of A, B
is a d-dimensional standard Brownian motion and Σ is a symmetric positive definite matrix;√

Σ is the square root of the matrix given by the Cholesky decomposition. Z is decomposed into
Z= .Y , X/ with Y ∈Rd1 and X∈Rd2 . SDE (2) defines a time reversible process, with invariant den-
sity exp{−A.z/}, when the latter is integrable in z. We assume that Y is observed at a collection
of times 0= t0 < t1 < . . . < tn =T , with observed values ytj , j =1, . . . , n, yti:tj , for ti < tj, denotes
the vector .yti , yti+1 , . . . , ytj /. We are particularly interested in cases where n is large compared
with T , i.e. high frequency observations.

Compared with a general multivariate diffusion, SDE (2) poses two important restrictions.
The first is the constant diffusion matrix Σ. Therefore, the components of the process are coupled
solely in the drift. The second is that the drift is driven by the gradient of a potential function.
However, the dynamics (2) are standard in the analysis of many physical systems. For example,
in the context of molecular dynamics A is a potential energy, describing interactions between
components of the system, and the noise term models thermal activation.

Apart from the intractability of diffusion dynamics, we wish to address the problem of obtain-
ing computationally efficient methods for filtering given high frequency observations. The main
idea behind our approach is as follows. We consider a sequence of filtering times 0 = s0 < s1 <
. . . < sm = T , which is a subset of the observation times. The choice of the sis is made by the
user. The choice does effect the performance of the filter (see Section 4), but for high frequency
applications they can be chosen such that m(n where n is the number of observations.
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We design PFs which at each time si estimate the filtering distribution of Xsi . Our methods
involve simulating a skeleton of .Y , X/ at Poisson-distributed times on [si−1, si] according to a
simulation smoother and associating each such skeleton with appropriate random weights. A
key feature of the method is that the number of points at which we simulate .Y , X/ does not
increase with the frequency of the observed data. This is achieved by exploiting the particular
coupling of the diffusion components in SDE (2) and the characteristics of the unbiased
estimators of the transition density.

3.1. Mathematical development
To complete our model we need a prior density for X0, which we denote by π0. When SDE
(2) is ergodic, a natural choice is the conditional invariant density, π0.x0/ ∝ exp{−A.y0, x0/}.
Given π0 and a set of observations, our aim is to obtain particle approximations to the filtering
densities of X at the collection of times 0 = s0 < s1 < . . . < sm = T . The ith filtering density
is the density of Xsi given y0:si , and it is denoted by πsi .xi/. Moreover, we denote the joint
density of .Xsi−1 , Xsi/ given y0:si by πsi .xi−1, xi/, and the corresponding conditional density by
πsi .xi|xi−1/. Clearly, πsi .xi/ is a marginal of πsi .xi−1, xi/. Generally, a density that is super-
scripted by (N) will denote its particle approximation; for example π.N/

si is a set of N weighted
particles, {x

.j/
i , w.j/

i }N
j=1, with w.j/

i−1 "0, for all j, approximating πsi .xi/. There are four main steps
in the process of deriving the particle approximations. The second and third steps are common
to most PFs.

The first step is to express the filtering densities as marginals of distributions defined on the
space of paths of the diffusion Z. Let Q.ysi−1:si , πsi−1/ denote the law of Z, conditionally on
Ytj =ytj for all si−1 ! tj ! si, and with initial measure at time si−1, Xsi−1 ∼πsi−1 . This is a prob-
ability measure on the space of paths of Z on [si−1, si] which are consistent with the data. It
follows easily from the Markov property of Z that πsi .xi−1, xi/ is a marginal density obtained
from Q.ysi−1:si , πsi−1/ by integrating out the path connecting the end points.

The second step of the approach is to replace πsi−1 by an existing particle approximation
π.N/

si−1 . Then, a particle approximation at time si is obtained by sampling from Q.ysi−1:si , π
.N/
si−1/

and storing only the xsi -value. As we cannot sample directly from Q.ysi−1:si , π
.N/
si−1/ we use IS.

It is easy to obtain a particle approximation to π.N/
0 by IS. Thus, the scheme that we describe

below can be used iteratively to build the approximations for all filtering times, since it shows
how to propagate the particle approximations from each time point to the next.

The third step is to devise an appropriate proposal distribution, and corresponding IS weight,
to approximate Q.ysi−1:si , π

.N/
si−1/ by using IS. We specify the proposal distribution by first choos-

ing the marginal distribution of the end points, xsi−1 , xsi , and then selecting a stochastic process
for interpolation between the end points. For the former, we follow the generic proposal dis-
tribution that was used in the PF of Pitt and Shephard (1999). The proposal is denoted by
ν.N/

si−1,si .xi−1, xi/ and takes the generic form

ν.N/
si−1,si

.x
.j/
i−1, xi/∝β.j/

i−1 qsi .xi|x.j/
i−1, y0:si /:

Note that the proposal distribution has the same discrete support as π.N/
si−1 for xsi−1 , though with

potentially different probabilities. Simulation from ν.N/
si−1,si is achieved by choosing an existing

particle x
.j/
i−1 with probability β.j/

i−1, and then simulating xi from the density qsi .xi|x.j/
i−1, y0:si /.

The optimal choice of ν.N/
si−1,si is discussed in Section 3.4.

For interpolation we use a conditioned Gaussian Markov process. We define the stochastic
process W = .Y , X/ on [si−1, si], with Y ∈Rd1 , X∈Rd2 and

Ws =Wsi−1 +√
.2Σ/Bs−si−1
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for s " si−1, where B is a standard d-dimensional Brownian motion. Let W.ysi−1:si , ν
.N/
si−1,si /

denote the law of W conditionally on Ytj =ytj for all si−1 ! tj ! si, where .Xsi−1 , Xsi/∼νsi−1,si .
W.ysi−1:si , ν

.N/
si−1,si / is a mixed Gaussian law, where the mixing is induced by ν.N/

si−1,si . The
conditional Gaussian law corresponds to what is sometimes called a simulation smoother in
the literature (see for example de Jong and Shephard (1995)). W.ysi−1:si , ν

.N/
si−1,si / has tractable

finite dimensional distributions due to the Markovian structure of W : see Appendix C. We shall
use this mixture of simulation smoothers as a proposal distribution within IS to sample from
Q.ysi−1:si , π

.N/
si−1/. The following theorem then gives the likelihood ratio between proposal and

target distribution, which by definition is the IS weight.

Theorem 3. Under mild technical and standard conditions (see Appendix D) Q.ysi−1:si , π
.N/
si−1/

is absolutely continuous with respect to W.ysi−1:si , ν
.N/
si−1,si /, with density given by

w.j/
i−1

β.j/
i−1

Gsi−si−1.xi|x.j/
i−1/

qsi .xi|x.j/
i−1, y0:si /

exp
[
−1

2
{A.ysi , xi/−A.ysi−1 , x

.j/
i−1/}

]
exp

{
−

∫ si

si−1

φ.Ys, Xs/ ds

}
, .3/

where φ is given in Appendix D, and G is the conditional density of Xsi given Xsi−1 and Ytj for
si−1 ! tj ! si, when W = .X, Y/ is the Gaussian interpolating process that was defined above
(see part (b) of proposition 1 in Appendix C). The constant of proportionality is a function
of y0:si .

For a proof of theorem 3, see Appendix D.
Theorem 3 implies that each pair .x

.j/
i−1, xi/ proposed from ν.N/

si−1,si will have to be weighted
according to expression (3) to provide a sample from π.N/

si .xi−1, xi/. However, the weight cannot
be explicitly computed owing to the last term in the product, which is of the form

exp
{

−
∫ si

si−1

φ.Ys, Xs/ds

}
: .4/

The fourth component of the approach is to replace this term by an unbiased estimator and to
resort to random-weight IS. Random weights can be obtained by the following generic method.

3.2. The Poisson estimator for exponential functionals
Let Φ be an unknown quantity, possibly the realization of a random variable. Consider esti-
mating w=exp.−Φ/. Let Φ̃j, j =1, 2, . . . , be a collection of independent identically distributed
random variables with E.Φ̃j|Φ/=Φ. Note that

E

{
i∏

j=1
.c− Φ̃j/|Φ

}
= .c−Φ/i,

where we define the product Π0
j=1 to be equal to 1. Then, for any c∈R, δ > 0 we have

w = exp.−Φ/= exp.−c/
∞∑

i=0

(
c−Φ

δ

)i δi

i!

= exp.−c/
∞∑

i=0
E

(
i∏

j=1

c− Φ̃j

δ

∣∣∣∣∣Φ, c, δ

)
δi

i!
= exp.δ − c/E

(
κ∏

j=1

c− Φ̃j

δ

∣∣∣∣∣Φ, c, δ

)
.5/

where κ∼Poisson.δ/. Thus, we have an unbiased estimator of w given by

W = exp.δ − c/
κ∏

j=1

c− Φ̃j

δ
: .6/
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This is the basic Poisson estimator as introduced in Wagner (1987); see Beskos et al. (2006) for
its use in estimation of diffusions, Fearnhead et al. (2008) for extensions and its use in sequen-
tial IS and Papaspiliopoulos (2009) for an overview of techniques for unbiased estimation
using power series expansions. When w is an IS weight, we shall call W a random weight (see
Section 2).

The introduction of auxiliary randomness is not without cost, and the choice of parameters c
and δ is critical to the stability of W . This is discussed in detail in Fearnhead et al. (2008), who
showed that for stability as c increases δ should also increase linearly with c.

In the context of expression (4),Φ=
∫ si

si−1
φ.Ys, Xs/ds, and we can take Φ̃= .si − si−1/φ.Yψ, Xψ/,

for ψ uniformly distributed on .si−1, si/. Thus, we obtain the following unbiased estimator of
expression (4):

exp{.λ− r/.si − si−1/}λ−κ
κ∏

j=1
{r −φ.Yψj , Xψj /}, .7/

where κ∼Poisson{λ.si − si−1/} and the ψjs are an ordered uniform sample on .si−1, si/. Note
that, compared with the general Poisson estimator (6), we have taken c = r.si − si−1/, and δ =
λ.si − si−1/, for some λ > 0. Calculating expression (7) involves simulating .Y , X/ at κ time
points. The distribution of .Y , X/ is that of the proposal process W, conditioned on Xsi−1 =x

.j/
i−1

and Xsi =xi. The pairs .Yψj , Xψj / can be simulated sequentially; see part (d) of proposition 1 in
Appendix C.

If φ is bounded we can choose r =max.φ/ to ensure that estimator (7), and hence the random
weight, is positive. When φ is unbounded it is impossible to choose a constant r which will
ensure positive random weights. Of course, we can make the probability of negative weights
arbitrarily small by choosing r arbitrarily large. However, this comes at a computational cost.
As mentioned above, to control the variance of the weights we need to choose λ= O.r/, and
thus the computational cost of estimator (7) is proportional to r. Instead we propose to choose
r to be an estimate of the likely maximum of φ.Y , X/ for our proposed path, and then use the
Wald identity of Section 2 to ensure positivity of the weights.

3.3. A Wald random-weight particle filter
Having developed the four main components of the filtering algorithm, we can combine them
with Wald random weight IS to provide a PF for the continuous time filtering problem under
study. In what follows, the random weight of a proposed path (in steps 3(a) and 3(b)) refers to
an unbiased estimator of expression (3), composed by exact computation of the first two terms
for given end points, and an unbiased estimator of the last term using the Poisson estimator
and the simulation smoother. We have the following algorithm.

3.3.1. Wald random weight particle filter
First, simulate x

.j/
0 , j = 1, . . . , N, from νs0 and weight each value by w.j/

0 = .dπs0=dνs0/.x
.j/
0 /.

Then for i=1, . . . , m carry out the following steps.

Step 1: calculate the effective sample size of the {β.k/
i−1}

N
k=1, ESS :={ΣN

k=1.β.k/
i−1/2}−1.

Step 2: if ESS<C, for some fixed constant C, then for j =1, . . . , n simulate ki−1,j from p.k/∝
β.k/

i−1, k =1, . . . , N, and set δ.j/
i =1. Otherwise for j =1, . . . , n set ki−1,j = j and δ.j/

i =β.j/
i−1.

Step 3:

(a) for j = 1, . . . , n simulate x
.j/
i from qsi .xi|x

.ki,j/
i−1 , y0:si / and generate a random weight

Wi
.j/;
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(b) if W.j/
i < 0 for at least one j, then for j = 1, . . . , N simulate new random weight WÅ.j/

i ,
and set W.j/

i =W.j/
i +WÅ.j/

i . Repeat.

Step 4: assign particle x
.j/
i a weight wi = δ.j/

i W.j/
i .

Note that our specification of the PF allows for the choice of whether to resample at each time
step. This choice is based on the effective sample size of the particle weights (see for example
Liu and Chen (1998)). Additionally, step 3(b) generates random weights for all particles until
they are all positive. This is according to the Wald random-weight IS of Section 2.

3.4. Implementation
To implement the WRWPF we first need to choose the joint proposal density ν.N/

si−1,si .x
.j/
i−1, xi/

for the current particle at time si−1 and the new particle at time si. This density should be easy
to simulate from and to provide an approximation to π.N/

si .xi−1, xi/. A simple approach is to
approximate the SDE via the Euler discretization. The Euler discretization defines an approxi-
mate transition density over time interval si − si−1, which can be factorized as p.ysi |xi−1, ysi−1/×
p.xi|ysi , xi−1, ysi−1/. We then define β.j/

i−1 =p.ysi |x
.j/
i−1, ysi−1/ and qsi .xi|x.j/

i−1, y0:si /=p.xi|ysi , x
.j/
i−1,

ysi−1/. For alternative approaches for designing this proposal distribution for general state space
models see Pitt and Shephard (1999).

Secondly we need to choose r and λ for the Poisson estimator. The approach that we took for
the study in Section 4 was to choose r dependent on x

.j/
i−1 and xi, the start and end points of the

path. Given these end points, and the data, we can estimate an interval for each component of
.Y , X/, that the proposal path will lie in with high probability. For high frequency data the interval
for each component of Y will be close to the minimum and maximum of the observations in
ysi−1:si . For the X -components we use the fact that the proposal process is a Gaussian process
with known mean and covariance to obtain appropriate intervals. We set r to an estimate of the
maximum value of φ.Y , X/ under the assumption that each component of the path lies within
its respective interval. Once we have chosen r we use the guidelines in Fearnhead et al. (2008)
to choose λ.

The advantage of using the Wald identity to produce positive random weights is that on the
basis of the above recipe we can construct relatively crude estimates for r, which are quick to
calculate. If we do obtain a poor value for r, then it affects only the computational cost within
step 3(b) of the WRWPF. By comparison, methods based on, for example, truncating negative
weights can introduce a large bias if we choose too small a value for r.

4. Illustration of the methodology

We illustrate our methods on the following two examples. The first is a linear SDE for which the
exact filtering densities can be calculated by using the Kalman filter. We use this example to eval-
uate the performance of our method and compare it with filters that require discretization. We
then consider a model problem that is taken from molecular dynamics based on a double-well
potential (see for example Metzner et al. (2006)).

In both cases we implemented the WRWPF, using the stopping time idea of theorem 1 to
correct for negative weights. In all cases we used 1000 particles. Resampling for the PFs was
via the stratified sampling approach of Carpenter et al. (1999) and was used when the effective
sample size of the particle weights dropped below N=2. For simplicity we have considered two-
dimensional systems with Σ=diag{1=.2"/, 1

2}. In this setting the value of " governs the relative
speed of the observed and unobserved processes, and we investigate the performance of our
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method for various values of ". See Givon et al. (2009) for alternative PF methods for such
problems.

4.1. Example 1: Ornstein–Uhlenbeck process
Taking A.u/= .u−µ/Å Q.u−µ/=2, u, µ∈Rd , gives rise to a subset of the family of Ornstein–
Uhlenbeck processes. If Q is a symmetric positive definite matrix, Z is ergodic with Gaussian
invariant law with mean µ and inverse covariance matrix Q. We take d = 2, set Q11 = Q22 = 1
and Q12 =Q21 =−0:9, and without loss of generality µ= .0, 0/. This produces a process with
a symmetric stationary distribution, with correlation of 0.9 between the two components. An
example realization of the process is given in Fig. 1 with "=1=100. We then applied the WRWPF
to analyse these data, using 105 observations. We chose 100 equally spaced filtering times. The
filtered mean and regions of ±2 standard deviations are shown in Fig. 1 together with the exact
quantities as calculated by the Kalman filter. By eye, there is no noticeable difference between
the Kalman filter and WRWPF results.

We also compared the performance of the WRWPF with a filter based on discretizing time.
For this latter filter, given a set of filtering times inference is performed based just on the obser-
vations at those times. The state dynamics between filtering times are approximated through an
Euler approximation to the SDE. A standard PF can then be applied to the resulting discrete
time problem; in practice we implemented a fully adapted version of the PF of Pitt and Shephard
(1999). We implemented such a particle filter with 1000 particles, which we call a discrete time
particle filter (DTPF). For this problem, after discretizing time we have a simple linear Gauss-
ian state space model, for which we can calculate the exact filtering distributions by using the
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Fig. 1. (a) Simulated realization of the Ornstein–Uhlenbeck process ( , (slow) unobserved state;
, (fast) observed state) and (b) posterior mean and intervals of two posterior standard deviations

away from the mean, computed exactly by using the Kalman filter ( ) (shown at every observation time)
and estimated by the WRWPF (φ) (shown at 20 observation times) based on 100 filtering times
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Kalman filter. We also looked at this approach, which we denote the discrete time Kalman filter
(DTKF). The DTKF is equivalent to the performance of the DTPF with an infinite number of
particles.

A comparison of the three methods is shown in Fig. 2, for various numbers of filtering times
and various values of ". We plot the mean-square error MSE between each filter’s estimate of
the mean of the filtering distribution, and the exact filtering mean. Note that the effect of " on
the results is small, except in terms of the best choice of the frequency of filtering times, with
this reducing as " increases.

The WRWPF gives a substantial reduction in mean-square error over the other two filters.
Furthermore we see that the Monte Carlo error within the particle filter is small, as both the
DTPF and the DTKF give almost identical results. The WRWPF’s performance is also robust
to the number of filtering times, as it uses all the information in the data regardless, unlike the
DTPF or DTKF. Its performance is slightly worse for smaller numbers of filtering times, owing
to the increased Monte Carlo variation in simulating the weights in these cases. The computa-
tional cost of the WRWPF is reasonably robust to the choice of the number of filtering times.
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Fig. 2. Comparison of the WRWPF ( ), DTPF (-- - - - - - ) and DTKF (. . . . . . .) at approximating the filtered
mean: the results are for the mean-square error relative to the truth, and for (a) " D 1=10, (b) " D 1=25,
(c) " D1=100 and (d) " D1=400
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For example, for "= 1=100 the total number of simulations per particle (which is equal to the
number of filtering steps plus the number of points simulated in calculating the weights) ranges
from 800 (300 filtering times) to 1250 (1000 filtering times) over the different choices, though it
would start to increase linearly as the number of filtering times increases beyond 1000.

The cost of analysing the whole data set with our new algorithm with 1000 particles is of the
order of a few minutes (programmed in R). The WRWPF has the advantage over the DTPF of
unbiased weights, but at the cost of an increased variability (the WRWPF performs resampling
roughly 10 times as often as the DTPF). However, the results from our study compare both
methods on the basis of their mean-square error—and the extra variability of the WRWPF’s
weights is small compared with the increased accuracy through using unbiased weights.

Note that a direct comparison of WRWPF and DTPF for the same number of filtering times
is unfair—as the amount of simulation per particle for the DTPF is just equal to the number
of filtering times. However, even taking this into account (for "=1=100 compare the WRWPF
with 300 times versus the DTPF with 800 filtering times) the WRWPF is substantially more
accurate. The WRWPF is also more accurate if we allow the DTPF to have more particles. The
WRWPF outperforms the DTKF, and the DTKF gives the limiting performance of the DTPF
as the number of particles tends to ∞.

We also investigate the effect that the number of particles has on the computational effi-
ciency of the WRWPF. As mentioned above, increasing the number of particles will increase
the amount of simulation per particle required to ensure positive weights. To investigate this
empirically we reanalysed the Ornstein–Uhlenbeck model with " = 1=100 under the WRWPF
with various numbers of particles. The results suggest that the amount of simulation per particle
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Time
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Fig. 3. Results for the double-well model (the WRWPF was run for 500 filtering times, but for clarity results
at only 50 are shown): (a) true state ( ) and observed process ( ); (b) true state ( ), filtered
means (!) and regions ˙2 standard errors (j)
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increases with the logarithm of the number of particles, increasing by roughly 150 each time the
number of particles doubles. This is consistent with theorem 2.

4.2. Example 2: double-well potential
A more challenging example is specified by the following potential function, where we take
d1 =d2 =1, and

A.y, x/=q1.y2 −µ/2 +q2.y −q3x/2, q1, q2 > 0, µ, q3 ∈R: .8/

The potential produces a stationary distribution with two modes, at .y, x/= .1, 1/ and .y, x/=
.−1, −1/. We set "=1=100.

Here we focus solely on the performance of the WRWPF. We simulated data over two units of
time, with 2 ×105 observations. Our simulated data were chosen to include a transition of the
process between the two modes. We analysed the data by using 500 filtering times. The results
are shown in Fig. 3. In this example we simulated the process at an average of eight Poisson
time points between each time point, which suggests that having more frequent filtering times
would be preferable. However, even in this case, resampling was required only at every other
time step.

5. Discussion

In this paper we have introduced the idea of using the Wald identity to ensure positivity of
random IS weights and developed filtering methods for high frequency observations whose com-
putational cost is independent of the observation frequency. Although we have implemented
the two ideas together, there is scope for implementing each independently.

Our high frequency filtering application focused on models for which we can do the filtering
without introducing time discretization approximations. The practical advantage of such an
approach was discussed in Fearnhead et al. (2008). Although we considered only partial obser-
vations from the SDE model (2), our method can be extended to models with other observations
schemes (see those discussed in Fearnhead et al. (2008)), and also to models where the drift of
the SDE is of the form −Σ∇ A.Zs/+DZs, where D is a d ×d matrix. (For the latter extension
we need to redefine the proposal process Wt so that it is the solution of an SDE with drift DWs.)

The idea of calculating the filtering distributions at a subset of the observation times, but in
a way that still uses all the information in the data, can be applied even more generally. For
example we could analyse models where the instantaneous variance is not constant. In this case
our proposal process Wt must have the same non-constant instantaneous variance, and thus
simulation of the path in between filtering times must be done from an approximation to the
true diffusion process. Although introducing time discretization error, such an approach will still
keep the computational savings, with computational cost being independent of the frequency
of the observations. There is similar scope to apply the filtering idea to discrete time models.

Wald random-weight IS can also be applied more generally than considered here. For example
it is simple to apply this idea to ensure positivity of weights for the models that were considered
in Fearnhead et al. (2008). The alternative approach that was used in Fearnhead et al. (2008)
to ensure positive weights was based around a method for simulating the skeleton of a path
of Brownian motion together with bounds on the path (Beskos et al., 2008). The advantage of
using the Wald identity is primarily simplicity of implementation. An important area of future
research is to investigate whether existing convergence results (as N →∞) for PFs apply directly
to WRWPFs.
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Appendix A: Proof of theorem 1

Theorem 1 is essentially Wald’s identity (see for example proposition 2.18 of Siegmund (1985)). All we
need to do is to verify the finiteness of E.K/. However, by a standard expansion

E{.S
.j/
l − lwj/

4}= lvj +6l.l−1/σ4
j

where vj = E{.W .j/
k − wj/

4} and σ2
j = E{.W .j/

k − wj/
2}. Now set σ2 = maxj{σ2

j }, v = maxj{vj} and w =
minj{wj} so that

P.K>r/!P

{
N⋃

j=1

.S.j/
r < 0/

}
!

N∑
j=1

P.S.j/
r < 0/

!
N∑

j=1
P.|S.j/

r − rwj|>rwj/!
N∑

j=1

E{.S.j/
r − rwj/

4}
r4w4

j

!
N∑

j=1

rvj +6r.r −1/σ4
j

r4w4
j

! Nv

r3w4
+ 6Nσ4

r2w4
=O.r−2/: .9/

Since this expression has a finite sum (in r) this implies the finiteness of E.K/ as required.

Appendix B: Proof of theorem 2

By Markov’s inequality, for −"! s!0,
P.S

.j/
k < 0/!µ.s/k:

Now, from the conditions imposed on µ, it is continuously differentiable with µ′.0/=E.X/>0. Therefore
for some s< 0 sufficiently close to 0, sÅ say, µ.sÅ/< 1.

P.∪N
j=1S

.j/
k < 0/!N µ.sÅ/k:

Therefore

P.K>r/!min{1, N µ.sÅ/r}:

Now set

c=
⌊ − log.N/

log{µ.sÅ/}

⌋
+1

(where -·. denotes the integer part) so that

P.K>r + c/!min{1, µ.sÅ/r}:

Then

E.K/=
∞∑

r=0
P.K>r/

!
c∑

r=0
P.K>r/+

∞∑
r=c+1

P.K>r/

! c+1+
∞∑

i=1
µ.sÅ/i

=O{log.N/}

as required.
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Appendix C: Properties of W -process

Proposition 1. Consider the process W = .Y , X/ that was defined in Section 3, and an arbitrary collection
of times t0 <t1 < . . . <tn. Assume that Σ is blocked in terms of Σ1 (corresponding to instantaneous variance
of Y ), Σ2 (corresponding to X ) and Σ12 (corresponding to the instantaneous covariance of Y with X ).
Then, we have the following properties.

(a) The joint distribution of .Yt1 , . . . , Ytn / conditionally on Yt0 =yt0 is independent of Xt0 , and it is given
by the Markov transitions Yti |Yti−1 ∼N{Yti−1 , .ti − ti−1/Σ1}.

(b) For any l = 1, . . . , n, the distribution of Xtl conditionally on Xt0 =x0 and Yti =yti , 0 ! i! l, is inde-
pendent of Ys for any s> tl, and it has a Gaussian distribution,

N{x0 +ΣÅ
12Σ

−1
1 .ytl −yt0 /, 2.Σ2 −ΣÅ

12Σ
−1
1 Σ12/.tl − t0/},

evaluated at a point x1 ∈Rd2 , by Gtl−t0 .x1|x0/.
(c) For any l=1, . . . , n−1, the conditional distribution of Xtl given Xt0 =x0, Xtn =xn and Yti =yti , 0!

i!n, is Gaussian, with mean and variance respectively
tn − tl

tn − t0
{x0 +ΣÅ

12Σ
−1
1 .ytl −yt0 /}+ tl − t0

tn − t0
{xn +ΣÅ

12Σ
−1
1 .ytl −ytn /},

2
.tn − tl/.tl − t0/

tn − t0
.Σ2 −ΣÅ

12Σ
−1
1 Σ12/:

.10/

(d) Assume that Yti =yti , 0! i!n, and that X has also been observed at two time points, X0 =x0 and
Xlk =xk, for some k !n. Consider a time tl−1 < s < tl, for some 1 < l ! k. Then, conditionally on all
observed values, the law of .Ys, Xs/ can be decomposed as follows. Ys is distributed according to a
Gaussian distribution,

N

{
s− tl−1

tl − tl−1
ytl +

tl − s

tl − tl−1
ytl−1 ,

.s− tl−1/.tl − s/

tl − tl−1
Σ1

}
,

specified in property (c).

The use of properties (b)–(d) is for simulating values of the proposed path at arbitrary times. Property (b)
gives the conditional distribution of the X -process at a time point where an observation has been made,
and properties (c) and (d) give the conditional distribution of .Y , X/ at an arbitrary, non-observation,
time.

These equations simplify substantially when Σ12 =0, in which case the proposal distributions for the X -
and Y -processes are independent.

Appendix D: Proof of theorem 3

The mild regularity conditions that are referred to in the statement of theorem 3 are those that per-
mit Girsanov’s formula to hold. A particularly useful and weak set of conditions to ensure this are
given in Rydberg (1997). In the case of unit-diffusion-coefficient diffusions on Rd with locally bounded
drift functions, these conditions boil down to just requiring non-explosivity of the SDE satisfying expres-
sion (2).

Girsanov’s formula gives an expression for the density of the law of the diffusion sample path with
respect to the appropriate Brownian dominating measure, on an interval conditional on the left-hand end
points. The log-density is given by

−1
2

∫ †

0
∇ A.Zs/

Å dZs −
1
4

∫ Å

0
∇A.Zs/

ÅΣ∇ A.Zs/ ds, .11/

where the asterisk denotes the Euclidean inner product. Assuming that ∇A is continuously differentiable
in all its arguments, we apply Itô’s formula to eliminate the stochastic integral and rewrite the log-density
as in expression (3), where

φ.u/ := 1
4

{
∇A.u/ÅΣ∇ A.u/−2

∑
i,j

Σij

@2

@ui @uj

A.u/

}
: .12/
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