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SIAM J. APPL. MATH. C 1989 Society for Industrial and Applied Mathematics 
Vol. 49, No. 1, pp. 72-85, February 1989 004 

SINGULAR FREE BOUNDARY PROBLEMS AND LOCAL 
BIFURCATION THEORY* 

A. M. STUARTt 

Abstract. A constructive method applicable to the solution of a wide class of free boundary problems 
is presented. A solution-dependent transformation technique is introduced. By considering a singular limit 
of the transformation, a related problem, to which local bifurcation theory m4y be applied, is derived. By 
inverting the (near singular) mapping between the two problems, an expression for solutions of the original 
problem is obtained. 

The method is illustrated by the study of a singularly perturbed elliptic equation. Approximate solutions 
are constructed and the validity of the approximations established by means of the Contraction Mapping 
Theorem. 

Key words. free boundary problems, bifurcation theory, singular limits 

AMS(MOS) subject classifications. 34A08, 34B15, 35B32, 35R35 

1. Introduction. In this paper we consider elliptic boundary value problems of 
the form 

Au + gH(u - 1)f(u) = 0 in f 

with 

u = 0 on fl. 

Here fQ is the unit ball in R' centered at the origin. We shall analyze this problem in 
the singular limit , -> oo. The function H(*) is the Heaviside unit step function satisfying 

H(y) =0, y'O, H(y) = 1, y>O. 
The analogue of this problem, when the forcing term is continuous, has been widely 
studied in the limit , -* oo (see, for example, [4]). 

We consider the case of the bifurcation parameter , > 0. We assume that f(u) > 0 
for u _1 normalize f(u) so that f(1) = 1 and assume that f(u) E C3 in some neighbor- 
hood of u = 1. The problem is of free boundary type since determination of the sets 
on which u(x) = 1 is necessary to solve the problem. 

We seek nonnegative solutions possessing the symmetry of the ball and obtain 
radial solutions u(x) satisfying 

(1.1) d2u+ (n-i) d" H(u - 1)f(u) 

with 

(1.2) -(0) = u(1) = 0. 
dx 

The maximum principle shows that du/dx < 0 for x E (0, 1). We note that for semilinear 
elliptic problems with continuous forcing terms in a ball in Rn all positive solutions 
are necessarily radial and monotonic decreast'ng (see [5]). 
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SINGULAR FREE BOUNDARY PROBLEMS 73 

We present a new, constructive, approach to the solution of (1.1), (1.2) for the 
cases n = 1 and n = 2, which applies to arbitrary nonlinearities f(u). We also deduce 
rigorous bounds on the errors in the approximate solution. In summary, we show that 
as , ->0oo, solutions of (1.1), (1.2) approach a scaled Green function for the domain 
(with the scaling ensuring that 1u II, = 1). Furthermore, we characterize the approach 
to the singular solutions explicitly. The main results are summarized in Corollaries 5.1 
and 8.1, concerning the cases n = 1 and n = 2, respectively. From an applied mathemati- 
cal standpoint, such an approach is important since approximate solutions are invalu- 
able as starting points for numerical (continuation) procedures and for local stability 
calculations. 

Although u 0 satisfies (1.1), (1.2), all nontrivial solutions must satisfy 1ulK0> 1. 
Consequently local bifurcation theory is not directly applicable to the problem. In fact, 
bifurcation in (1.1), (1.2) occurs from u = oo. This phenomenon is discussed in [12] 
for problems similar to (1.1), (1.2) with a continuous forcing term. In [12], the limiting 
form of the solution as u-> oo is zero. However, as ,u - oo in (1.1), (1.2), the solution 
approaches a scaled Green function and so the problem is highly singular. We describe 
a transformation technique that captures this singularity and enables us to study a 
regular problem to which local bifurcation theory is directly applicable. 

In ? 2 we outline the method presented here in a general context. Sections 3-5 
are concerned with the case n = 1. Section 3 describes the transformations appropriate 
to (1.1), (1.2). In ? 4 we demonstrate that a branch of solutions to (1.1), (1.2) bifurcates 
from A = oo, 11 u II.. = 1 and construct formal series approximations in the neighborhood 
of the bifurcation point. The free boundary problem is singular in this limit in the 
sense that the set on which u > 1 shrinks to zero as , p oo. We prove convergence of 
the series approximation and bound the errors by means of the Contraction Mapping 
Theorem in ? 5. Sections 6-8 concern the case n = 2. The analysis is similar to that 
presented for n = 1 and the details are omitted. 

The problem defined by (1.1), (1.2) has been studied previously for n = 1 by Nistri 
[8] and Douchet [3] in the case f(u)> 0 for u _ 1. Their work employs an analytic 
shooting technique and, while global, is nonconstructive and, in addition, relies heavily 
on the fact that solutions of (1.1), (1.2) are monotonic decreasing so that 1 u j1j = u(0). 
Our approach is local and constructive and is motivated by work of Berger and Fraenkel 
[1] described in the following section. The method has been applied in a formal sense 
to two-point boundary value problems that are not symmetric about the origin (see 
[9a], [9b] for an example of an application to traveling combustion waves). 

Partial differential equations with discontinuous forcing terms have applications 
in the study of a number of biological and chemical processes which, when viewed 
on an appropriate timescale, exhibit switchlike behavior. In particular, we are motivated 
by the study of porous medium combustion where, for small driving gas velocities, 
the time-dependent analogue of (1.1), (1.2) defines the initial evolution of temperature 
u in the combustible solid medium before the consumption of reactant becomes 
appreciable [10], [13]. The parameter ,u represents a scaled heat of reaction. The 
discontinuity represents the sharp division between regions of chemical reaction and 
regions of frozen chemistry, which occurs at large activation energies. Experiments 
indicate that f(u) is proportional to u2-see [9a], [9b] and the references therein. 

In addition to this specific application, nonlinear partial differential equations are 
frequently approximated by simpler problems in which the nonlinearity is replaced by 
a piecewise continuous profile that is simpler to analyze. Such an approach is employed 
by Rinzel and Keller in the analysis of the propagation of nerve impulses [11]; (see 
also Terman [14], [15]). Thus problem (1.1), (1.2) is important not only as a model 
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74 A. M. STUART 

for porous medium combustion, but in its own right since it is a prototype for the 
study of a wider class of free boundary problems described by problem (P) below. 

2. Background and outline of the method. The method described in this paper is 
applicable to a wide class of nonlinear eigenvalue problems of free boundary type. 
Specifically, we consider the problem of finding pairs (y, A) E B x R, where B is some 
Banach space appropriate to the problem, satisfying 

Lu + +uH(a * u + l)f(u) = Q in Q cR R n, 

Du= O on 8f. 

Here L is a differential operator and D defines the boundary conditions, which may 
involve derivatives of u,f(y) is some (smooth) vector-valued function and a is a 
constant vector. 

We assume that the reduced problem 

Lu=O in QcR n 
(R) 

Du= O on 8f 

has the unique solution u 0. 
Clearly there is no bifurcation of nontrivial solution branches of (P) from the 

trivial solution since solutions u of arbitrarily small supremum norm must have a - u < 1 
and consequently satisfy (R), which has only the unique trivial solution u 0. Thus 
we may ask the question whether it is possible to develop a local constructive approach 
to the solution of problem (P), Since local bifurcation theory is not directly applicable 
to this problem, the answer to the question is not straightforward. 

We introduce a transformation technique, applicable to many problems of the 
form (P), which enables the techniques of local bifurcation theory to be used. For 
simplicity we will consider the case n = 1 or problems for n > 1, which may be reduced 
to problems of the form (P) with n = 1 by symmetry considerations. 

The basic idea of the method is that if Lu = 0 can be integrated explicitly, then 
(P) may be converted to a problem of the form 

(P*) Lu +f(u) = Q in Q* c Q c R and continuity conditions D*u = 0 on 8WC. 

Here Q* defines the set on which a * u > 1, and D* is determined by imposing the 
required degree of continuity on u and its derivatives along 8WC, where a * u = 1. Note 
that Sf* is unknown and determined by the continuity conditions. 

By mapping Q* onto a unit interval, a transformed problem (P**) is obtained, 
which, in the singular limit as f*W ->0 (the empty set) possesses a trivial solution (or 
family of trivial solutions) with a * u = 1. The mapping between (P*) and (P**) is, of 
course, singular and noninvertible when Q* = 0, so that the trivial solutions of (P**) 
satisfying a * u = 1 do not correspond to solutions of (P*). However, by applying local 
bifurcation theory, constructing nontrivial solutions of (P**) and mapping back to 
(P*) series solutions of (P*), and hence of (P), may be constructed. 

The fundamental idea underlying this work is that problem (P) simplifies consider- 
ably in the limit as the set WQ, on which a * u > 1, shrinks to zero. This important 
concept was first introduced in the paper of Berger and Fraenkel [1] and has been of 
great value in the study of elliptic free boundary problems (see, for example, Keady 
and Norbury [7]). 

The work of Berger and Fraenkel, however, is concerned solely with the case n = 2 
and L a second-order elliptic operator, and employs a variational approach. Problems 
of the form (P), which may be reduced to the study of ordinary differential equations 
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SINGULAR FREE BOUNDARY PROBLEMS 75 

and which do not necessarily possess a variational structure, can be tackled by working 
directly with the governing differential equations. This approach is related to, but 
somewhat different from, that of Berger and Fraenkel. It has been employed in [9] to 
establish the existence of traveling wave solutions to the fourth-order partial differential 
equations governing porous medium combustion. It is the purpose of this paper to 
illustrate the method by recourse to the slightly simpler, but fundamental, problem 
defined by (1.1), (1.2). 

3. The transformation; the case n = 1. In this section we transform (1.1), (1.2) for 
n = 1 into a form to which local bifurcation theory is directly applicable. We define 
the unique point s E [0, 1) by 

(3.1) u(s) = 1. 

We seek solutions u(x) E C2[0, 1] except at x = s where d2u/dx2 is discontinuous. 
Integrating (1.1) subject to (1.2) and (3.1), we obtain 

I-x 
(3.2) 1 = x for s<x< 1. 

Thus, imposing continuity of u and du/dx at x = s, and symmetry of u(x) about x = 0, 
we obtain the following nonlinear eigenvalue problem. 

Find (u(x), s, A) E C2[0, s] x R2 satisfying 

d2u + pf(u) = 0, 

(PI*) du(O) = , u(s) = 1, dx 

du -1 
-(s ) = 

dx (1- s)' 

This is a specific case of problem (P*) described in ? 2. Provided that solutions of 
(P1*) satisfy u(x) > 1 for x E [0, s) and s E [0, 1) they correspond to genuine solutions 
of (1.1), (1.2). 

As described in ? 2, we map the interval 0 < x < s onto a unit interval and consider 
the singular limit s -> 0. In addition we rescale the bifurcation parameter by defining 
A = As. We set z = xls, and, for convenience, define w(z) = u(sz) -1. We obtain, for 
'-d/dz, the following nonlinear eigenvalue problem. 

Find (w(z), s, A) E C2[0, 1] x R2 satisfying 

(P1**) w"+ Asf(1 + w) = O, w'(O) = w(l) = 0, w'( ) =-S/(1-s). 

This is a specific case of Problem (P**) described in ? 2. Provided s is nonzero the 
mapping between (P1*) and (P1**) is a bijection so that solutions of (P1**) satisfying 
w(z)> 0 for z c [0, 1) and s c (0, 1) correspond to genuine solutions of (1.1), (1.2). 

Notice that (P1**) possesses the trivial solution w(z) = s = 0 for all values of the 
(scaled) bifurcation parameter A. Thus, by considering the singular limit of a solution, 
dependent transformation of independent variable, we have created an artificial trivial 
solution. Since s =0 this does not correspond to a genuine solution of (1.1), (1.2); 
however, by seeking solutions of (P1**), which bifurcate from the trivial solution 
w(z) = s = 0 and mapping back to (1.1), (1.2), we may obtain genuine solutions. 
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76 A. M. STUART 

The transformation z = x/s, which maps 0< x < s onto a unit interval, is funda- 
mental to the technique described here for all problems of the form (P). The transforma- 
tion A = As of the bifurcation parameter is, however, specific to problem (1.1), (1.2); 
the problem tackled in [9a], [9b], for example, does not require a tfransformation of 
bifurcation parameter. 

4. Formal bifurcation analysis for (P1**). Let (fp(z), ') denote the linearizations 
of (w(z), s) about (0, 0). From (P1**) we deduce that (p(z), ') satisfies 

0"+ A; = O, 90'() = 90(1) = o, (P'M1 = 

This eigenvalue problem (which, on appropriate definition of function spaces, defines 
the Frechet derivative of (P1**) with respect to the trivial solution) has a nontrivial 
solution if and only if A = 1. Thus we expect bifurcation of a nontrivial solution to 
(P1**) at A = 1. 

Since bifurcating solutions are of small amplitude, we seek formal series solutions 
of (P1**) with s<< 1. We expand w(z) and the bifurcation parameter A in powers of 
s in the form 

00 00 

w(z)= E s'+'wi(z) and A= E s'A,. 
i=O i=O 

Substituting into (P1**), we obtain 

(4.1) E s+ w'(z)+ E si+lAif 1+ E si+lw,(z) =0 
i=O i=O i=O 

together with boundary conditions 

(4.2) w'(O)= wi(l)=0 and w'(I)=-1. 
Equating powers of s in (4.1) we obtain the problems 

(4.3) w' +AO = O, 
(4.4) wl' +Al +AOf,(I)wo = 0, 

(4.5) w2 + A2 + Af(lf)wu + Af)(W)w + Aff (1)w2/2 =.0. 

Note that each second-order differential equation has three boundary conditions, 
given by (4.2), the extra one determining the Ai. Solving these successive problems 
yields Ao 1 (as expected from the analysis above) and 

(1 - Z2) 
(4.6) wo(z)= 2 

(4.7) wj(z)= + (1z2)2, 2 24 

(4.8) Af1 fu (l) 3 

(4*9) A2 =1 _2fu ( 1) + 4[fu (I t ] uu (1 ) 
3 45 1 5 

In the next section we prove rigorously that (P1**) possesses a solution (w(z), s, A) 
satisfying 

W W(Z) - wO(z)s - wl(z)s2II00C 0(s3) and IAS-1-As ? (S2), 
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SINGULAR FREE BOUNDARY PROBLEMS 77 

for s << 1, with error constants independent of z E [0, 1]. Note that, since A = pAs and 
u(x)= 1+ w(z), this demonstrates that A-> oo and II uIKco,--1 as s->0. 

5. Rigorous bifurcation analysis for (P1**). We rigorously establish the existence 
of small amplitude nontrivial solutions of (P1**) bifurcating from w(z) = s = 0 at A = 1. 
Furthermore we find explicit approximations to w(z) and for s << 1 and prove that they 
are accurate up to terms of o(s3) and 0(s2), respectively. To achieve these results we 
employ the Contraction Mapping Theorem. It is possible to establish bifurcation from 
A =1 in the transformed problem (P1**) by application of the known results of 
bifurcation theory [2] and this is done in [13]. However, the results in [13] rely purely 
on an analysis of the eigenvalue problem arising from the linearization of (P1**) about 
the trivial solution. The nonlinear effects, which determine whether the bifurcation in 
(P1**) is of transcritical or pitchfork type, are not analyzed. The estimates of the 
solution obtained in this paper are an order of magnitude more accurate than those 
obtained in [13] and account for the effect of the nonlinearities. The degree of accuracy 
obtained here is often required for initiating numerical continuation procedures near 
the bifurcation point or for time-dependent stability calculations [10]. We demonstrate 
that bifurcation in (P1**) is transcritical provided that fu(1) is not equal to three. Only 
the branches of solutions in (P1**) with s E (0, 1) are relevant to problem (P1). 

In order to employ the Contraction Mapping Theorem we formulate (P1**) as 
an integral equation. We denote by g(z; y) the Green function satisfying the problem 

g"(Z; Y) = 8(z -y), g'(0; y) = g(1; y) = 0, 

with solution 

g(z;y)=(y-1), 0<z<y<1, 

(g(z;y)=(z-1), 0<y<z<1. 

Thus (P1**) is equivalent to finding (w(z), s, A)E C[O, 1] x2 satisfying 

(5.2) w(z) = -As { g(z; y)f(l + w(y)) dy 
0 

with the continuity condition on w'(1): 

1 
(5.3) A { f(l+w(y)) dy=(-s)-1. 

0 

Here we have used the fact that g,(1; y) = 1, by (5.1). 
By employing the Green function (5.1), (4.3)-(4.5) subject to (4.2) yield the 

following expressions for wO, wl, w2, A0, A1, and A2: 

wo(z) =-3 Aog(z; y) dy, 

(5.4a) wl(z) =- g(z; y)[A1 +A ofu (1) wo(y)] dy, 
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78 A. M. STUART 

Ao dy = 1, 

(5.4b) { [A1 +kAofu(1)wo(y)] dy = 1, 
o 

|[Ak2+k Alfu (1)) WO 0o"lw()+ ou()2(y)12] dy =1. 

Here we have again used the fact that g_(1; y) = 1. We are now in a position to prove 
the following theorem. 

THEOREM 5.1. For each s > 0, sufficiently small, problem (P1**) possesses a unique 
nontrivial solution satisfying 

(5.5) Iw(z) - Wa(Z)I1 |O Os', 

(5.6) IA-A I?Xs2 
where wa(z) =WO(Z)S+ Wl(Z)S2, Aa = 1 +Als+A2s2, w/2 = Cl = supze[O,l] 1W2(z)I and = 
2C1/3. Here wo(z), w1(z), W2(Z), A1, and A2 are defined by (4.6)-(4.9), respectively, and 
also implicitly by (5.4a), (5.4b). 

Proof We define the fixed point mapping: 

(5.7) vn+l(z) = -rnS { g(z, y)f(1 + Vn(y)) dy, 
0 

(5.8) '7n+l = L (-S) f(1 + Vn+l(Y)) dy] 

We prove that, for s sufficiently small, this mapping has a unique fixed point (w(z), A) E 

C[O, 1] x R satisfying (5.5), (5.6). Such a fixed point is clearly a solution of (5.2), (5.3), 
and hence (P1**). We define X to be the closed subset of C[O, 1] x R satisfying (5.5), 
(5.6) and prove that the iteration (5.7), (5.8) maps X into itself and is contractive in 
the norm of the product Banach space C[0, 1] x R for elements of X. By the Contraction 
Mapping Theorem [6] this establishes the required result. 

First we establish that (5.7), (5.8) maps X into itself. From (5.7) we obtain, by 
Taylor series expansion, 

|Vn+l(Z)-W.(Z)|= |77nS | -(Z;Y) [I +fu(1) Vn (Y)+ u()n(y 

+fuu (e) 3n'(y)] dy - w(z)| 

Assuming that (vn(z), rn) E X, we have 

Ivn?1(Z)-W (Z)I? (s+Aks2+ s3+A2s3) {-g(z;y) 

* [1~ ~ ~~ Wlul)oy +{t(l,y) +fuu(1) W2o(y )/21+ O(S3)] dy-W. (Z)| 

where the o(s3) term is bounded uniformly with respect to y. Note that e lies between 
one and 1 + vn(y); since f(u) E C3 in a neighborhood of u = 1 we deduce that Ifuu (e)I 
is bounded for s sufficiently small, since (vn(z), rn) E X. 
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Collecting terms of equal powers of s and employing (5.4) to simplify the 
expressions, we obtain 

Ivn+1(z)-w_(z)I-{X { g(z; y) dy + Iw2(z) } S3+ 0(s1). 

Maximizing over z E [0, 1], using definition (5.1) of g(z; y), we obtain 

Ivn+?1(z)-wa(z))IIc3c (X/2+ C1)s3 + 0(s4), 
where C1 is defined in the statement of the theorem. For s sufficiently small we eliminate 
the o(s4) term and write 

1l Vn+1(z) - w.(z) ll.-<-_ (3A/4+3 C,/2) S3. 
Thus, by the definitions of A and iwv in the theorem, vn+l(z) satisfies the bound (5.5) 
whenever (vn (z), r77n) E X. 

From (5.8) we obtain 

I7n+l AaI1 [(1-S) {f(l + Vn+l(Y)) dYl -Aa 

[1+S+S2+ (1-S)l 
I + J Vn+l(Y)f.(l) + Vn+ yuu (1)/2 

+ V (y)fuuu ()16} dy -Aa 

Here Ifuuu(g)j is bounded for s sufficiently small because Vn+1(Z) satisfies (5.5). 
Since IVn+l(Z)-Wa(Z)I <W3 we have 

1I7n+l-"Aal= [1+ S + S2 + O(S3)] [1+ {wo(y)fu(1)s} dy 

+ { {w(Y)fu(1) + W2(y)fuu(1)/2}s2 dy+ o(s3)] A 

C [1+ S +S2+ o(S3) -|{ ()f()}d 

- {Wl(Y)fu(1) + W2(y)fuu(1)/2}s2 dy 

Wo(Y)f (1) dy} S2+ 0(S3)] Aa | 

Now, 

Aa = l+AlS+A2S2. 

Using (5.4b) to eliminate A1 and A2, noting that A0 = 1 we obtain 

Aa=+ [1-{ f (1)wO(y) dy s 

+ [1 - { fu(1)Wo(y) dy+fu(l)wl(y)+fuu(1)w0(Y)/2 dy 

+(j fu(1)w0(y) dy) s2. 
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80 A. M. STUART 

Substituting this into the upper bound for I7n+, -kAaI, we obtain 

Irn+i-Aa |_ O(S3). 

Thus 71n+i satisfies (5.6) automatically for s sufficiently small. This completes the proof 
that (5.7), (5.8) maps X into itself. We now proceed to demonstrate that (5.7), (5.8) 
defines a contraction. 

Consider two sets of iterates (On(z), an) and (4On(z), 8,3) satisfying (5.7), (5.8) and 
contained in X. Then 

1On+I(Z)-On -l(z))I= 3AnS g(z; y)f(1 + n(y)) dy - anS g(z; y)(1 + On(y)) dy 

= anS J g(Z; y)[f(1 + kn(Y))-f(1 + On(Y))] dy 

+ (3n - an)S J g(Z y)f(1 + On(Y)) dy 

_| (z;y)dy lanC2SIIOn(Z)-(n(Z)11oo+C3SI,3n-anll, 

where C2 = maxze[o,l] If,(1 + w(z))l and C3 = maxz,[ol] If(1 + w(z))I, for w(z) satisfying 
(5.5). 

Maximizing over z and noting that, since (un(z), an) E X, we have an < Aa + As2, 
yielding 

(5.9) || On+1(Z)-) n+i(Z) II Cx 12{(Aa + Xs2)C2S II On(Z) - On(Z) Iloo+ C3S 11n- anI} 
Also, by (5.8) 

- 1(1 - sf1 JO {f(1 + 4n+l(Y)) f(1 + On+1(Y))} dYl 

Ia5+i - Pfl+lI [Jof(i + On+l(Y)) dy][Jff(1 + On+l(Y)) dy] 

(5.10) _ (1-s)1 C211 On+1 - On+1 |lo/C4 

Here C4=minze[o,l]lf(1+w(z))II, for w(z) satisfying (5.5). Since f(1)=1 we deduce 
that C4 may be bounded away from zero independently of s, sufficiently small. 

Combining (5.9) and (5.10) we show that 

OInI +1(z)On+1( )IIo+ I an, - On+1A < C5S{ 6On(Z) - On(Z)Ill + I an -pnI}1 

where 

C= {2+ 2C } max {(Aa+ks2)C2, C3}. 

Since I w(z) II+ IA I is the appropriate norm for the product Banach space C[0, 1] x R 
we deduce that, for s sufficiently small, (5.7), (5.8) define a contraction on X. This 
completes the proof. O 

COROLLARY 5.1. For each s > 0 sufficiently small (1.1), (1.2) with n = 1 possesses 
a unique nontrivial solution satisfying 

sup Iu(X)-ua(X)I=I|u(X)-ua(x)|loocs3 

(5.11) XE[0,1] 

I/-/aL IXs 

This content downloaded from 137.205.50.42 on Thu, 11 Feb 2016 10:35:29 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SINGULAR FREE BOUNDARY PROBLEMS 81 

where 

Ua(X)=1+W0(X/S)S+W1(X/S)S2 for O< x<s, 
Ua(X) = (1-X)/(1-s) for s <x< 1, 

ila = S lkl+k2S 

and wO(z), W(z), w, A1, A2, and X are defined in Theorem 5.1. 
Proof Solutions of (P1**) are in a one-to-one correspondence with solutions of 

(1.1), (1.2) provided that s e (0, 1) and w(z)> 0 for z e [0, 1). These conditions are 
satisfied by the solution constructed in Theorem 5.1; mapping back from (P1**) to 
(1.1), (1.2), we obtain the required result. 0 

Examination of this corollary shows that for n = 1 (1.1), (1.2) possesses a branch 
of solutions bifurcating from A = o and I/u (x) jj o = 1. Furthermore we have character- 
ized the form of the solution accurately in the neighborhood of this bifurcation point. 
If we extend the solution constructed, by symmetry, to x E [-1, 1] then we find that, 
as , e- oo(s - O), u(x) - 2G(x; O) where the Green function G(x, y) satisfies 
d2G/dx2(x; y) = 8(x -y) for x E [-1] and G(? l; y) = O. Here the scale factor two in 
front of the Green function ensures that tIu(x) II,, 1 as ,u - oo. 

6. The transformation; the case n = 2. In this section we transform (1.1), (1.2) for 
n = 2 into a form to which local bifurcation theory is directly applicable. As in ? 3 we 
define the unique point s E [0, 1) by u(s) = 1. We seek solutions u(x) E C2[O, 1] except 
at x = s where d2u/dx2 is discontinuous. Integrating (1.1) with n = 2 subject to (1.2) 
and (3.1), we obtain 

Lnx 
(6.1) u=-L for s<x<1. 

Thus, imposing continuity of u and du/dx at x = s, and symmetry of u(x) about x = 0, 
we obtain the following nonlinear eigenvalue problem. 

Find (u(x), s, ,) E C2[O, s] x R2 satisfying 
Ild / du\ ~X )+LfWM)0O x dx( dx) f 

(P2*) du du 
-(0) = 0 u(s) = 1 -(s) = I/s(Lns). dx dx 

This is a specific case of problem (P*) described in ? 2. Provided that solutions of 
(P2*) satisfy u(x) > 1 for x E [0, s) and s e [0, 1) they correspond to genuine solutions 
of (1.1), (1.2) with n = 2. 

Again, as described in ? 2, we map the interval 0 < x < s onto a unit interval and 
consider the singular limit s -> 0. As in ? 3 it is necessary to make an additional solution 
dependent rescaling of the bifurcation parameter by defining A = -(Lns)s2A. We set 
z = x/s, and, for convenience, define w(z) = u(sz) -1. We obtain, for d d/dz, the 
following nonlinear eigenvalue problem. 

Find (w(z), , A) E C2[0, 1] x gR2 satisfying 

(P2**) -(zw')'+ yAf(1 + w) = 0, w'(O) = w(1) = 0, w'(1) =--y, z 

where y = -/(Lns). 
As in ? 3 (P2**) defines a genuine solution of (1.1), (1.2) with n = 2 whenever 

w(z)> 0 for z E [0, 1) and s c (0, 1). We note that (P2**) has the trivial solution 
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w(z) = y =0 for all values of A. Again, since y -e 0+ corresponds to s -e 0+, the solution 
does not correspond to a true solution of (P2*), since the mapping from (P2*) to 
(P2**) is noninvertible when s = 0. However, as in the case n = 1, we now apply local 
bifurcation theory and construct solutions of (P2**) with 0< y << 1, which correspond 
to true solutions of (P2). 

7. Formal bifurcation analysis for (P2**). A regular bifurcation argument similar 
to that in ? 4 shows that A = 2 is the only bifurcation point for (P2**). Thus we seek 
formal series solutions of (P2**) with y<< 1 and expand w(z) and A in the form 

00 00 

w(z)= E y'1wi (z) and A= y'A. 
i=O i=O 

Expanding (P2**) in powers of y and equating coefficients, we obtain the equations 

(7.1) (zw')'+AO = O, z 

(7.2) (zw') + A, + of,(1)wo = O, z 

(7.3) -(ZW2)'+ A2+k (1) WO + ou (1) W/2 =, z 

subject to 

(7.4) w'(0) = wi(1) = 0 for i-O, 

(7.5) W'(1) = -1 and w'(1) = 0, i-' 1. 

Solving these successive problems, with the Ai determined by (7.5), we obtain 

(7.6) wo~~~~~~~~(z) (1- _Z2) 
2' 

(7.7) wJ(z)= U 

Z 

16 

(7.8) AO= 2, 

(7.9) A1-= 2f () 

(7.10) A2 = 3fu(1) _u (1) 

In the next section we prove rigorously that (P2**) possesses a solution (w(z), , A) 
satisfying 

W (Z) - Wo(Z)y - Wi(Z)y211 0-? 0(Y3) 

IA -2-AlyI? O(Y2) 

for y = -1/(Lns) << 1, with error constants independent of z E [0, 1]. 

8. Rigorous bifurcation analysis for (P2**). We establish rigorously the existence 
of small amplitude nontrivial solutions of (P2**) bifurcating from w(z) = y =0 at A = 2. 
The analysis and conclusions of this section are very similar to those in ? 5 for (P1**) 
and the details are omitted. 
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We denote by g(z; y) the Green function satisfying the problem 

I 
(zg'(Z; y))' = (z -y), g'(O; y) = g(1; y) = 0, 

z 

with solution 

g(z; y) = y(Lny), O<z<y<1, 

g(z; y) = y(Lnz), 0< y < z < 1. 

Thus (P2**) is equivalent to finding (w(z), y, A) E C[0, 1] x R2 satisfying 
1 

(8.2) w(z) = -Ay g(z; y)f(l + w(y)) dy 
0 

with the continuity condition on w'(1): 

(8.3) AJ gz(1; y)f(l + w(y)) dy = 1. 
0 

By employing the definition of g(z; y) in (8.1) we may write (7.1)-(7.4)- for wo(z), 
w1(z), and w2(z) as in (5.4a). The matching conditions (7.5) yield 

{ gz(1; y)AO dy = 1, 
0 

1 (8.4) { gz(1; y)[A1+Aof.(1)wo(y) ] dy = 0, 

0 

We may now prove the following result. 
THEOREM 8.1. For each y > 0, sufficiently small, problem (P2**) possesses a unique 

nontrivial solution satisfying 

(8.5) IIW(Z) - Wa(Z)1100x Cy 3 

(8.6) IA-A I C72 
where wa(z) = wo(Z)Y + Wi(Z)W 2 AAY +Aa = AO+ AlY+ A2Y2, w/2-C6 = supz.[0o1] w2(z)I and 
A=4C6/3. Here wo(z), W1(Z), W2(Z), A0, A1, and A2 are defined by (7.6)-(7.10), respec- 
tively, and also implicitly by (5.4a) and (8.4). 

Proof The proof is nearly identical to that of Theorem 5.1 differing only in the 
form of the Green function and in the continuity condition on w'(1). Consequently 
we omit the details. We define the fixed point mapping 

(8.7) vn+l(z)= -n f g(Z;y)f(1+Vn(Y)) dy, 

(8.8) 77n+1 = gz(1; y)f(1 + vn+l(y)) dy] 

We prove that, for s sufficiently small, this mapping has a unique fi-xed point (w(z), A ) E 
C[, 1] x R satisfying (8.5), (8.6). Such a fixed point clearly solves (8.2), (8.3), and 
hence (P2**). We define X to be the closed subset of C[O, 1] x R satisfying (8.5), (8.6) 
and prove that the iteration (8.7), (8.8) maps X into itself and is contractive in the 
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norm of the product Banach space C[0, 1] x R; for elements of X. By the Contraction 
Mapping Theorem [6] this establishes the required result. 

Similar manipulations to those in the proof of Theorem 5.1 yield 

Ivn+1(z)-ww (z)I<? {A { g(z; y) dy + I w2(z)I} yI + 0(y4) 

From (8.1) we obtain 

IIvn+l(z) - Wa(Z)I (X/4+ C6) y3+ 0(y4), 

where C6 is defined in the statement of the theorem. For y sufficiently small we deduce 
that 

(8.9) 11Vn+l(Z)-Wa(Z) IIc < (3X/8+ 3 C6/2) Y3. 

Also, as in the proof of Theorem 5.1, we find that 

(8.10) Ivn+1-AaI ) 

Using the definitions of A and w in the theorem, (8.9) and (8.10) imply that (8.7), (8.8) 
maps X into itself. We now proceed to demonstrate that (8.7), (8.8) defines a con- 
traction. 

Consider two sets of iterates (On(z) an) and (4On (z) 13n) satisfying (8.7), (8.8) and 
contained in X. Analysis identical to that in the proof of Theorem 5.1 (except that 
(8.1) now defines g(z; y)) gives 

(8.11) 11 On+l(Z)-( 4n+1(Z) llooC-41{(Aa + Xs2) C7S II on (Z) - On (Z) II + C8SO,n - an I} 

where C7 = maxz,[0,l] If,(1 + w(z))I and C8 = maxz,[ojl] If(1 + w(z))I for w(z) satisfying 
(8.5). 

We may also show that 

(8.12) Ian+1 -3n+1 711 On+1 -i/n+ IIw/C 9 

where Cg = minzE[0,l] If(1 + w(z))II, for w(z) satisfying (8.5). Since f(1) = 1 we deduce 
that Cg may be bounded away from zero independently of s, sufficiently small. 

Combining (8.11) and (12) we show that 

II(On+1(Z) - 4n+l(z) an+1 - 6n+)II Ci0{II(On(z) - 41(z) p3n. an)II} 

where C10= {+ C7/4C} max {(Aa+ay2)C7, C8} and II(w(z),kA)II| Iw(z)Iko+ IAI, the 
appropriate norm for the product Banach space C[0, 1] x R. We deduce that, 
for y sufficiently small, (8.7), (8.8) defines a contraction on X. This completes the 
proof. 0 

COROLLARY 8.1. For each s > 0 sufficiently small (1.1), (1.2) with n = 2 possesses 
a unique nontrivial solution satisfying 

sup Iu(x)-ua(x)I= IIu(x)-ua(x)II,oO-1'/(Lns)3, 
(8.13) xE[O,1] 

I-A /a I <-X/-(Lns)3s2 

where 

ua(x) = 1-wo(x/s)/(Lns) + wi(x/s)/(Lns)2 for O<x,<s 

Ua(x) = Lnx/Lns for s < x < 1 

a = -(2-AI/(Lns) + A2(Lns)2)/(s2Lns), 

wo(z), w1(z), Wi', A1 X, and A2 are defined as in Theorem 8.1. 
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Proof Solutions of (P2**) are in a one-to-one correspondence with solutions of 
(1.1), (1.2) with n = 2, provided that s E (0, 1) and w(z) > 0 for z E [O, 1). These condi- 
tions are satisfied by the solution constructed in Theorem 8.1; mapping back from 
(P2**) to (1.1), (1.2), noting that A='-(Lns)s2A and -y=-I/(Lns), we obtain the 
required result. 0 

Note that, as u -e oo(s -* ), we find that the solution u(x) of (1.1), (1.2) with n = 2 
satisfies u(x) -e Lnx/Lns for s < x < 1, which is a scaled version of the Green function 
for the Laplacian in a ball in R2. As s - 0 this function ceases to be continuous, since 
u(s) = 1 and u(x) -> for x E (O, 1]. Thus we have essentially constructed a smoothing 
perturbation of a singular solution. This is the process described as "nonlinear 
desingularization" in the paper of Berger and Fraenkel [1]. 

The results of Corollary 8.1 (the case n = 2) are weaker than those of Corollary 
5.1 (the case n = 1), since the bound (8.13) merely yields an asymptotic expression for 
,u as s -*0, whereas the bound (5.11) provides a strict upper bound of 0(s) on the 
error in the expression for ,u as s -> . The weaker results in two dimensions are caused 
by the fact that the Green function for the Laplacian in a ball in R n is a more singular 
function in two dimensions than in one. For identical reasons the methods described 
here break down when applied to (1.1), (1.2) in dimensions n_ 3. Similar difficulties 
are encountered for n ?3 in the alternative approach of Berger and Fraenkel [1]. 
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