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Similarity Solutions of a Heat Equation with Nonlinearty Varying Heat
Capacity
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A reaction-diffusion equation, coupled through variable heat capacity and source
term to a temporally evolving ordinary differential equation, is examined. The
model is a prototype for the study of combustion processes where the heat
capacity of a composite solid medium changes significantly as the reactant within
the medium is consumed.

Similarity solutions are sought by analysing the invariance of the equations to
various stretching groups. The resulting two-point boundary-value problem is
singular at the origin and posed on the semi-infinite domain. By employing series
expansion techniques we derive a regular problem posed on a finite domain. This
problem is amenable to standard numerical solution by means of Newton-
Kantorovich iteration. Results of the computations are presented and interpreted
in terms of the governing partial differential equation.

1. Introduction

IN THIS paper we analyse the time-dependent problem

out = uxx + apu" and a, = -kopuq,

together with the boundary conditions

u(0, t)=A>0 and ]hnu(x,t) = 0,

and initial conditions

u(x, 0) = 0 and a(x, 0) = ao(x) > 0.

We call this the problem (P).
The variable u represents a (non-dimensional) temperature, governed by a

reaction-diffusion equation, and a is a (non-dimensional) heat capacity, governed
by an ordinary differential equation. Our motivation is the study of chemically
reacting systems in which the solid (non-diffusing) reactant forms a significant
proportion of the composite solid comprising the one reactant and various inerts.
In such cases the variation of physical properties associated with the composite
solid, such as the overall heat capacity, must be allowed for—as reactant is
consumed these properties can change significantly. We assume that A > 0 so that
the heat capacity decreases as the reaction progresses. In the theory of
homogeneous combustion it is frequently assumed that the concentration of inerts
is large relative to that of the reactant, and significant progress can be made upon
the assumption of constant heat capacities [3, 9]. However, in the theory of
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2 1 8 ANDREW STUART

heterogeneous combustion it is necessary to allow for the variation of heat
capacity with reactant concentration in order that sustained combustion can occur
(see [10: Theorem 4.1]).

Problem (P) defines the canonical problem for chemically reacting systems in
which the variation of heat capacity is significant. Typically the heat capacity is
linearly related to the reactant concentration so that (P) defines the simplest
system governing evolution of solid temperature and concentration. The form of
reaction term (« opuq) is chosen to have algebraic dependence since this is the
usual form arising in heterogeneous combustion; a more complete description of
the relevance of (P) in porous-medium combustion is given in section 2. However,
we believe that (P) is important in its own right as a prototype problem including
the effect of a nonlinearly varying heat capacity in a reaction-diffusion equation.

In particular we are interested in the limiting behaviour of (P) as t-*•«>. We
note that, for A > 0, a is a monotone decreasing function and that o(x, t)—*0 as
t-K*>. Thus a singularity develops in the equation for u and we examine this
effect. Physically, the effect of a vanishing heat capacity can be interpreted as
modelling a combustion process in a porous solid in which the residue (ash) has a
negligible heat capacity. Thus, as all the reactant is consumed, the composite
solid tends to a limiting state with negligible heat capacity.

In section 2 we derive problem (P) as a distinguished limit of the equations
governing porous-medium combustion. The group invariance of (P) under
stretching transformations is discussed in section 3 and appropriate similarity
variables deduced; thus (P) may be reduced to the study of a third-order
boundary-value problem on K+ with a singularity at the origin. This singularity
forces a constraint on two components of the solution at the origin if the
necessary regularity (for the partial differential equation) is imposed.

In section 4 we prove local existence of a one-parameter family of solutions to
the initial-value problem satisfying the constraint at the origin. The proof employs
the contraction mapping theorem to prove the existence of a solution lying close
to an appropriate series expansion. In section 5 we deduce the asymptotic
behaviour of the ordinary differential equations at infinity.

By employing the series expansion constructed and validated in section 4 we
may define a regular shooting problem for the numerical solution of the
boundary-value problem on R + , avoiding numerical difficulties associated with
the singularity at the origin; furthermore, by utilizing the analysis at infinity from
section 5, we derive a shooting problem posed on a finite domain. This
regularization is described in section 6. We use Newton-Kantorovich iteration to
solve the regularized problem, and a global a priori bound is derived and
employed to simplify the initial guess for the iteration. In section 7 numerical
results are presented and interpreted in the context of problem (P).

2. Derivation and discussion of the model

In [11] a simplified model for porous medium combustion is derived with the
form

a, = -Xr, (2.1)
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SOLUTIONS OF A HEAT EQUATION 2 1 9

au, = uXJC + (w-u) + r, (2.2)

fiwx = (u - HO, (2.3)

gx = -arln, (2.4)

where the reaction rate r is given by

r = p*H(u - uc)H(o - ae)gf(w). (2.5)

Here //(•) is the Heaviside unit step function defined by H{X) = 0 if X^O and
H(X) = 1 if X>0. Typically f(w) <* w" (see [2, 11]). In [6] it is proved that this
model has a solution globally defined in time (for arbitrary positive f(w)).

The variables a, u, w and g represent respectively, the (scaled) solid heat
capacity, solid and gas temperatures and the flux of oxygen, respectively. The
heat capacity a is related to the solid concentration y by

o = ac + Ay,

where A is proportional to the specific heat of the combustion solid.
The assumptions made in deriving (2.1) to (2.5) are as follows,

(i) The non-dimensional activation energy is large—this results in the
discontinuous form (2.5) for the reaction rate.

(ii) The ratio of gas heat storage to solid heat storage is small—this means that
the time-derivative of the gas temperature may be neglected, resulting in
equation (2.3).

(iii) The rate of consumption of oxygen and the rate of production of carbon
dioxide are nearly equal and the specific heats of these two gases are
nearly equal—this allows the effect of the gas velocity field to be reduced
to a parameter-dependence of equations (2.1) to (2.5) on /i, proportional
to the inlet gas velocity.

We emphasize that the limit process described below does not invalidate any of
the assumptions (i) to (iii) made in deriving (2.1) to (2.5).

The reaction rate (2.5) shows that if either the solid temperature falls below a
certain temperature, or the solid reactant is exhausted, then the reaction
terminates. Otherwise the reaction proceeds at a rate proportional to gf(w)\ this
term represents the product of oxygen concentration and the rate of oxygen
diffusion into the reaction sites in the solid. In [11] an expression for this rate of
oxygen diffusion is employed following the experimental work of Baker [2]. This
expression is independent of the concentration of solid reactant. It is possible,
however, that the effect of reactant concentration can affect the rate of oxygen
diffusion since the surface area of reactant changes significantly as it is consumed
and since the shrinking reactant is surrounded by an increasing quantity of ash.
This effect can be allowed for by letting the expression for oxygen diffusion be
proportional to yp (p >0). If this is done, then an analysis similar to that in [11]
shows that, in the limit of large activation energy, r takes the form

r = ^H{u-uc)gf{w){a-acYIX", p&l.

By considering only the case when p 3= 1 we prevent the possibility of finite-time
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2 2 0 ANDREW STUART

exhaustion of the solid y = (a - ac)IX, so that the H{a - ac) term no longer
appears. We assume that p 2= 1 henceforth. With f{w) in the form prescribed
above we obtain

r = ^dH(u - uc)gw"(a - ocy/kp. (2.6)

We now examine (2.1) to (2.4) and (2.6) in the distinguished limit

/z—>0, n^d—*const., a/i~*-» const., ocn~^-+ const.,

where the constants are of 0(1) with respect to \i. Expanding in powers of \L* and
substituting into (2.1) to (2.5) yields

OQ, = — Xr0, o0uo, = UQTX + r0,

WO = UQ, go = const.,

Here a subscript zero denotes an (9(1) quantity. We have assumed that the initial
conditions are compatible with the assumption that w0 = u0; that is, we assume
that initially the gas and solid phases are at the same temperature to within
variations of 0(/i*). We have also assumed that the oxygen flux at the boundary is
constant so that g0 is constant in both space and time.

If we scale the independent variables appropriately (posing the problem on
x > 0) and neglect the tHu^ - uc) contribution to r0 then we obtain (P) (dropping
the subscripts zero). Ignoring the switch term, H{uo — uc) may be formally
justified provided that uc is small; we make this assumption.

We do not claim that the limiting process described above to derive (P) from
(2.1) to (2.5) corresponds very closely to any naturally occurring combustion
phenomena: the parameter fi represents the inlet gas velocity through the porous
medium, d is a scaled heat of reaction and a determines the rate of oxygen
consumption relative to that of the solid reactant. Thus the limit process above
describes the highly exothermic combustion of a porous solid fuel in a slowly
driven gas flow with negligible oxygen depletion. None the less, by considering
the limit, we have extracted a problem (P) which describes the coupling between
the equations for solid temperature and solid heat capacity. This coupling is of
paramount importance in the analysis of the full model defined by (2.1) to
(2.5)—in particular in determining parameter regimes of existence and non-
existence for sustained combustion; see [10, 12]—and the limiting process may be
justified purely as a means of elucidating this coupling further.

3. The group invariance of (P); Similarity solutions

We examine the group invariance of (P) under the scalings

t' = kYt, x' = Xx.

By determining the values of a, /3 and y for which (P) is invariant under these
transformations we can determine appropriate similarity variables [4]. Substitu-
tion demonstrates that (P) is invariant for a = —2/p, /? = 0 and y = 2(p — I)/p.
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SOLUTIONS OF A HEAT EQUATION 2 2 1

Following Dresner [4] we deduce that (P) admits solutions of the form

u(x,t)=f(r]) and o(x,t) = rv<'-l)g(i1),

where T/=^-p /20 ' -1) .
Substituting these similarity forms into (P) we obtain the following boundary-

value problem: find a pair (/, g) e C2(0, °°) x C(0, °°) satisfying

7 9 = 0, (3.1)

l)g"/«=0, (3.2)

where the prime means differentiate with respect to r/. Here, and throughout the
following, C(a,b) denotes the space of functions whose first n derivatives are
continuous on the closed interval [a, b] (unless b = °° in which case the interval is
open at the right-hand end.)

The initial and boundary conditions on u(x, t) transform to

f(0)=A and Lim/(r/) = 0. (3.3)

If we assume that o{x, 0) is bounded for all x > 0 then we require that

Lim TjVgir,) = 1/C (ofO(l)). (3.4)

Thus (3.3), (3.4) provide three boundary conditions for the third order system
(3.1), (3.2).

Note that we only require continuity of g(r]). In fact g(i]) will be a C1 function
everywhere except at the origin. Since g(ry) is assumed to be uniformly
continuous g'(r/) cannot grow as strongly as 1/rj at the origin. This forces us to
the conclusion that g(0) = A(p - l)gp(0)/<7(0). For non-trivial solutions g(rj) this
implies that

0) = l. (3.5)

Thus all uniformly continuous solutions of (3.1) to (3.4) must satisfy the
constraint (3.5).

If we consider (3.1) to (3.4) as a shooting problem for fixed A and C then we
require two shooting parameters at rj = 0 in order that we may satisfy both (3.3)
and (3.4). In a regular shooting problem it would be natural to choose /'(0) and
g(0) to be the two shooting parameters. However, the constraint (3.5) means that
we are not free to choose g(0). In the following section we prove that there exists
a one-parameter family of solutions to the initial-value problem defined by (3.1),
(3.2) and the constrained initial conditions

f(0) = A, f'(0) = D, X(p-l)g^-lX0)A« = l. (3.6)

Thus, by varying D, we have the two parameters required for a properly posed
shooting problem.

Henceforth we specialize to the case in which p = 2 and q = 1 in order to
simplify the algebra. However, the analysis may be extended to general p and q
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2 2 2 ANDREW STUART

in a fairly straightforward fashion. The case when p = 2 and q =£ 1 is very similar
and differs only in the algebra. The case when p =t 2 requires more care as the
nature of the singularity at r/ = 0 is changed and a form other than (4.4) must be
sought for #(77).

4. Similarity solutions; 77«1

In the case when p = 2 and q = 1 equations (3.1), (3.2) reduce to

f + rigf'+g2f = 0, (4.1)

rig'+8-^ = 0. (4.2)

For fixed A, D and A we prove the local existence of a one-parameter family of
solutions satisfying (4.1), (4.2) and the initial conditions

f(0) = A, f'(0) = D, Ag(0)A = l. (4.3)

Thus, although the singularity at r; = 0 in (4.2) forces a constraint on the initial
conditions for (4.1), (4.2), this is compensated for by the fact that a one-
parameter family of solutions satisfies the constrained initial-value problem (4.1)
to (4.3). This result is important since the existence of this family of solutions is
necessary to define a shooting problem which solves (3.1) to (3.4).

The proof proceeds by constructing power-series solutions to (4.1) to (4.3) and
employing the contraction mapping theorem [7] to prove the existence of a
solution lying close to the power-series construction. The key to the analysis is to
find an appropriate integral-equation formulation for (4.2) subject to the
(constrained) initial condition. Once this has been done, the proof follows by
fairly standard use of the contraction mapping theorem, and we shall omit the
tedious algebraic details.

We seek a solution of (4.2) satisfying

= [A/(r?) - AT? Ln (r,)/'(r?) + Br, + Ar^r,)]"1 (4.4)

for arbitrary fleR, with Aj(r/) (a continuous function) to be found. Since B is
arbitrary we set k(0) = 0. Note that (4.4) implies that g(0) = ^/(O)]"1 as required
by (4.3).

Substituting (4.4) into (4.2) yields k'(r}) = Ln (r/)/"(rj). Thus we deduce from
(4.4) that g(rj) satisfies the integral equation

" AIJ Ln Wit,) + BT, + Ar,J\n (§)/"(§) d§] \ (4.5)

Equivalently, by (4.1),

8(V) = [A/(i?) - Ar, Ln (r,)/'(r/) + Br,

] '. (4.6)
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SOLUTIONS OF A HEAT EQUATION 2 2 3

Note that (4.5), (4.6) are parametrized by B e R and this is the key to
establishing the existence of a one-parameter family of solutions of (4.1) to (4.3).

We now construct power series solutions of (4.1) to (4.3) and (4.5), seeking
expansions for/(?j) and g(r/) of the form

+/3r/3 Ln (IJ) + O(r,3), (4.7)

g^go + giV Ln 77 +g2r) + 0(r/2 Ln (TJ)). (4.8)

Substituting (4.7), (4.8) into (4.5) yields the following expressions for the gt:

A2/2o •
(4.9)

Multiplying (4.1) through by g 2 and substituting (4.7) for/(rj) and (4.8), (4.9)
for g(t]) we obtain the following expressions for the /,:

/2 = - l /2A 2 / 0 and / 3 = - / , / 3 A % (4.10)

Since, by (4.3) fo = A and /i = D , equations (4.9), (4.10) determine series
expansions for / (r / ) and g(r/) respectively. We may now prove the following
theorem.

THEOREM 4.1 There exists r j > 0 such that equations (4.1) to (4.3) possess a
one-parameter family of solutions (J, g) e C2(0, fj) x C(0, rj), satisfying

where

V), H' l l=ol"Sf)'' ' ' /( r ' )= /o+/i 'y+/2'/2+/3'?3Ln(r;),

:/i + 2/2r/ + 3/3r/
2 Ln (77), |(rj) = g0 + giH Ln (rj) + g2T}.

ifere /,, i = 0 , . . . , 3 and gt, i = 0,. .. , 2 are as defined preceding the theorem, for
arbitrary B e R.

Proof. The proof is a fairly standard application of the contraction mapping
theorem and the details are omitted. Using equation (4.6), we may write (4.1) to
(4.3) as the equivalent nonlinear integral equations:

8(1) = [A/(I?) - Af, Ln
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224 ANDREW STUART

We now define the associated fixed point mappings

hn+1(rt) = D-

8n+itn) = [A/B+i(t?) - AT? Ln (r/)/in+1(r/) + Br/ - AT?

(4.12)

We denote by Z the set of functions (/, /», g) e C(0, fj) x C(0, f\) x C(0, r^), and
by X, the closed subset of X such that (4.11) holds. Clearly a fixed point of (4.12)
is a solution of the integral equations above, and hence of (4.1) to (4.3); functions
(/, g,h) eXsatisfying (4.1) automatically yield/ e C2^), rj) and so a fixed point of
(4.12) has the desired regularity properties for/and g.

We prove that (4.12) maps X, into itself and is contractive in the (supremum)
norm of the product Banach space X. By the contraction mapping theorem this
proves the existence of a unique solution lying in X,. Since X, is parametrized by
B eU (throughg2) this yields the required result.

We note first that if (fn, hn, gn) e X then (fn+l, hn+l, gn+l) e X for r\
sufficiently small. The requirement that r/ be sufficiently small is necessary
only to ensure that gn+i(0) remains bounded; this is achieved for r / « 1 since
gn+1 = [XA + O(TJ Ln (IJ))]"1 . This last fact is verified below, since /n+i(rj)
satisfies (4.13).

Standard manipulations show that, if (fn, hn, gn) e X, then

The constants C4 and C3 are independent of Cu C2 and C3 and depend only upon
the f, and g,. Thus, by setting

C - | D | | I Q I
!^9/i2>l2 3 '

C2 = 2C4 and C3 = 2C5 then we deduce that (4.13) maps X, into itself. The proof
that (4.13) is contractive for t] sufficiently small is standard and not of sufficient
interest to warrant presentation. This completes the proof of the theorem.

5. Similarity solutions; r /»1

We now examine the asymptotic behaviour of (4.1), (4.2) subject to (3.3) and
(3.4). In the case when p = 2 equation (3.4) implies that g(r}) has the asymptotic
form

(5.1)
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SOLUTIONS OF A HEAT EQUATION 225

as TJ-»OO. With the ansatz (5.1), equation (4.1) becomes

r / 2 ( / "+ /7C)+ / /C 2 = 0. (5.2)

We seek solutions of (5.2) with the form

/(r/) = exp(-i,/2C)u(i7/C) (5.3)

which symmetrizes the leading-order part (in powers of r\~2) of the differential
operator in (5.2). For z = T//C this yields Whittakers' equation [1: equation
13.1.31], namely

(J^) = 0. (5.4)

From [5] we deduce that (5.4) has linearly independent solutions with the
asymptotic behaviour

^I l + OQzr1)]

as z -x» . Thus, as 77—»00, f{q) has solutions of the form

)], ( 5 6 )

Since we are interested in solutions of (4.1) satisfying/—*0 as j)->t»we deduce
that

/ ( r j )« £e(~I)/C) asT/-*«>. (5.7)

Thus, in solving the boundary-value problem defined by (4.1), (4.2), (3.3),
(5.1) we wish to choose values of the shooting parameters B and D (see the end
of section 3) such that (5.1) and (5.7) are satisfied. A numerical procedure for
achieving this is described in the following section.

6. Numerical approximation of similarity solutions

We wish to find solutions (f, g) e C2(0,<») x C(0, °°) of (4.1), (4.2) satisfying

f(0) = A, Lim/(fj) = 0, Lim ng(r,) = l/C.

To solve this problem directly by a numerical method is inpractical for two
reasons: first equation (4.2) is singular at r; = 0 and secondly the problem is posed
on the semi-infinite domain. We overcome these problems by taking account of
the asymptotic form of the solutions for 77«1 and r / » 1 derived in the two
preceding sections. By so doing we obtain a regular two-parameter shooting
problem on a finite domain. This problem may be solved directly by means of
Newton-Kantorovich iteration.

The expansions in section 4 show that for r\ = rj,« 1 solutions of (4.1), (4.2)
with the required regularity, subject to f(0) = A, are approximated by the
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2 2 6 ANDREW STUART

two-parameter ((B, £>) e R2) family

X2A X2A2

»TJ, Ln (r/,) XD +

(6.2)

(6.3)

For 77»1 we want the pair (/, g) to have asymptotic behaviour defined by
(5.1) and (5.7). From the two linearly independent solutions in (5.6) we deduce
that satisfying (5.7) is equivalent to choosing initial conditions (6.1) to (6.3) so
that the (approximately constant) solution f(j))«1 + O^" 1 ) is not picked up for
I J » 1 . This unwanted solution may be difficult to eradicate if equations (4.1),
(4.2) are solved directly. However, by using the approximate symmetrization of
the differential equation governing /(r/) described in section 5, we convert the
unwanted constant solution into an exponentially growing solution (see equation
(5.5)). As such it is far more easily identified and eradicated by a numerical
procedure.

Thus we apply the transformation (5.3) to equation (4.1) and change the
independent variable to z = r\IC. Under this transformation, equations (4.1), (4.2)
become

utz + {gzC2 - l)uz + ( c y - \gzC2 + \)u = 0, (6.4)

zgz+g = Xg2uexp(-$z). (6.5)

Note that setting g(z) ~ 1/zC2 reduces (6.4) to (5.4) as expected.
From the asymptotic relations (5.1) and (5.5) we deduce that appropriate end

conditions for (6.4) and (6.5) are, for zu » 1 ,

«*(*«)+ ii«te.) = 0, (6.6)
Zug(zu) = \IC2. (6.7)

Thus, numerically, we solve the two-parameter shooting problem for (B, D) e R2

so that solutions of (6.4), (6.5) subject to appropriately transformed initial
conditions (6.1) to (6.3) satisfy (6.6), (6.7). This is now a regular two-point
boundary-value problem readily solvable by standard numerical techniques. We
employ Newton-Kantorovich iteration for the solution (see, for example, [8]).
This requires tripling the dimensionality of the ordinary differential equation
system to be solved; we solve the resulting ninth-order system by means of a
Runge-Kutta method, as implemented in the NAG library. We use different values
of T], and r/u (*zuC) to verify the robustness of the solutions obtained.

We now derive an important bound on D which is useful as a guide to making
initial approximations to D for the Newton iteration. In the following we assume
that A > 0 as discussed in the introduction.
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SOLUTIONS OF A HEAT EQUATION 2 2 7

LEMMA 6.1 The shooting parameter D satisfies

D=£l/AC. (6.8)

Proof. Integrate equation (4.1) from rj=O to 77 = 00, employing parts on the
second term. This yields

Noting, from (4.2), that (r/g)' = kg2/, we obtain

so that

This completes the proof.

7. Results and conclusions

In this section we present some numerical results obtained by employing the
method described in section 6. We also interpret these results in the context of
the partial differential equation problem (P).

Extensive computations indicate the existence of only a single solution pair
(/, g) satisfying (3.1) to (3.4) (in the case when p = 2 and q = 1) for each value of
the parameters A, A, C. This is not surprising since solutions of (3.1) to (3.4) are
solutions of the initial-value problem (P) with the (singular) initial condition

o(x, 0) = 1/Cx*". (7.1)

Although this singular initial condition is clearly unrealistic, the similarity
solutions are still important since they may describe the limiting behaviour of the
system (P) for large time. The stability of the similarity solutions will be analysed
in a subsequent paper.

To fix ideas, we set A = C = 1 for all the graphical output discussed in this
section. First we examine the variation of solution pairs (/, g) with A. Figures 1
and 2 show the graphs of the values of the shooting parameters B and D, which
solve (3.1) to (3.4), against A. The variation of D with A is consistent with
equation (6.8). From Fig. 2 we deduce the existence of a critical value of A, Ac,
for which D = 0.

Figures 3 and 4 show profiles of/, / ' , t]g and g against 77 for two different
values of A, one greater than and the other less than Ac. In Fig. 3a, / contains a
single maximum; this is consistent with equation (4.1) which implies (by the
maximum principle) that / has no positive minimum. In Fig. 4a, however, / is
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228 ANDREW STUART

1 1.5 2
FIG 1. B versus A

monotonic decreasing since A>AC. Figures 3c and 4c show clearly that T/g(T/)
tends to a limiting constant value of C (= 1 in this case) as required by (5.1).

By employing the similarity variables described at the beginning of section 3
we can determine solutions u(x, t) and o(x, t) of (P). Figures 5 and 6 show
profiles of u and a against x at successive time intervals. We note that the
temperature profile u behaves like a progressive wave with ignition initiated at
the boundary, and the temperature raised to the value A (the boundary value). In

-0.3
1.5 2

Fig. 2. D versus A
2.5 3A
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0 1 2 3 4 5 6 7
FtG 3a f(rj) versus rj. A=0.8

8 9 10

the case shown (A < Ac) D is positive and the wave has a peak temperature
greater than A; for A > Ac this is not the case. The heat capacity profile, shown in
Fig. 6, behaves as a progressive, damped wave with a limiting value of zero as
r->oo.

The limiting behaviour of u{x, t) and a{x, t) as f—•» can be verified directly
from the form of the similarity solutions. From the discussion at the beginning of

2 3 4 5 6 7
FIG 3b. f (TJ) versus r). A=0.8
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section 3 we deduce that, for p = 2,

u{x,t)=f(xlt) and o(x,t) =

Thus, as f—*•<», with x fixed, we obtain

u(x, t)^f(0) = A, to{x, f)-*g(O) = 1/AA

This demonstrates an important balance between the limiting profiles of u(x, t)
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FIG 4b. f (rj) versus rj. A=2.0

and o(x, t), namely that

Lim to(x, t)u(x, t) = I/A. (7.2)

This result is independent of the prescribed boundary and initial conditions,
that is, the dependence of (P) and (7.1) on A and C. Equation (7.2) reflects the
delicate balance between heat produced and solid consumed (since the heat
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2 3 4 5 6 8 9
FIG 4C. Tjg(T]) versus t). A=2.0

2 3 4 5 6 7 8 9 10
FIG 4d. g(r]) versus rj. A=2.0

capacity a is linearly related to solid concentration). As mentioned before, this
balance is crucial in determining regions of existence and non-existence for
sustained combustion in the full model for porous-medium combustion described
in section 2 [10, 12]. Equation (7.2) provides another interpretation of this
balance in the context of the limiting behaviour of the simplified problem (P).
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FIG 5. u(x,t) versus x at intervals of 2 units from f=1 to t =7. A=0.8

1 2 3 4 5 6 7 8 9 10x
FIG 6. o(x,f) versus x at (-intervals of 2 units from f=1 to t=7. A=0.8

Admowtedgemeiits

Part of this work was conducted at the Mathematical Institute, Oxford
University, where I was funded by the Science and Engineering Research
Council. I wish to thank Dr T. Boddington, of Leeds University, for valuable
discussions about the form of the reaction rate.

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


234 ANDREW STUART

REFERENCES

1. ABRAMOWTTZ, M., & STEOUN, I. A. 1972 Handbook Of Mathematical Functions. New
York: Dover.

2. BAKER, R. R. 1976 The kinetics of tobacco pyrolysis. Thermochim. Acta. 17, 29-63.
3. BUCKMASTER, J. D. , & LUDFORD, G. S. S. 1982 Theory of Laminar Flames.

Cambridge: University Press.
4. DRESNER, L. 1983 Similarity Solutions for Nonlinear Partial Differential Equations.

London: Pitman.
5. ERDELYI, A. 1955 Higher Transcendental Functions. New York: McGraw-Hill.
6. FRIEDMAN, A., & TZAVARAS, A. E. 1988 Combustion in a porous medium. S1AM J.

math. Anal. 19, 509-519.
7. GRIFFEL, D. H. 1981 Applied Functional Analysis. New York: Ellis Horwood.
8. KELLER, H. B. 1976 Numerical Solution Of Two-Point Boundary Value Problems.

CBMS Regional Conference Series in Applied Mathematics. Philadelphia: SIAM.
9. MATKOWSKY, B. J., & SIVASHINSKY, G. I. 1978 Propagation of a pulsating reaction

front in solid fuel combustion. SIAM J. appl. Math. 35, 465-478.
10. NORBURY, J., & STUART, A. M. 1988 Travelling combustion waves in a porous

medium. Part I—Existence. SIAM J. appl. Math. 48, 155-169.
11. NORBURY, J., & STUART, A. M. 1988 A model for porous-medium combustion. Q. Jl

Mech. appl. Math, to appear.
12. STUART, A. M. 1987 Existence of solutions of a two-point free-boundary problem

arising in the theory of porous medium combustion. IMA J. appl. Math. 38, 23-34.

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/

