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Abstract

The viewpoint taken in this paper is that data assimilation is fundamentally a statistical problem and that this problem should be cast in a
Bayesian framework. In the absence of model error, the correct solution to the data assimilation problem is to find the posterior distribution
implied by this Bayesian setting. Methods for dealing with data assimilation should then be judged by their ability to probe this distribution. In
this paper we propose a range of techniques for probing the posterior distribution, based around the Langevin equation; and we compare these
new techniques with existing methods.

When the underlying dynamics is deterministic, the posterior distribution is on the space of initial conditions leading to a sampling problem
over this space. When the underlying dynamics is stochastic the posterior distribution is on the space of continuous time paths. By writing down
a density, and conditioning on observations, it is possible to define a range of Markov Chain Monte Carlo (MCMC) methods which sample from
the desired posterior distribution, and thereby solve the data assimilation problem. The basic building-blocks for the MCMC methods that we
concentrate on in this paper are Langevin equations which are ergodic and whose invariant measures give the desired distribution; in the case of
path space sampling these are stochastic partial differential equations (SPDEs).

Two examples are given to show how data assimilation can be formulated in a Bayesian fashion. The first is weather prediction, and the second
is Lagrangian data assimilation for oceanic velocity fields. Furthermore the relationship between the Bayesian approach outlined here and the
commonly used Kalman filter based techniques, prevalent in practice, is discussed. Two simple pedagogical examples are studied to illustrate the
application of Bayesian sampling to data assimilation concretely. Finally a range of open mathematical and computational issues, arising from the
Bayesian approach, are outlined.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we describe a Bayesian approach to data
assimilation. The approach is based on sampling from the
posterior distribution on the model, after data is assimilated.
We believe that this viewpoint may be useful for two primary
reasons: firstly the Bayesian approach gives, in some sense,
the correct theoretical answer to the data assimilation problem
and other approaches which have been adopted, such as
ensemble Kalman filtering, should be evaluated by their ability
to approximate the posterior distribution in the Bayesian
approach [26]; secondly, for any data assimilation problems
which are bimodal or multimodal, Kalman based methods will
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necessarily fail (see [21,35]) and it will be necessary to use a
Bayesian approach, such as the one described here.

From a mathematical viewpoint the main interest in this
paper stems from the fact that we formulate Bayesian data
assimilation in the case where the underlying model dynamics
is stochastic. The basic object to sample is then a continuous
time path (time-dependent solution of a differential equation).
In this context the key concept which needs elucidation is that
of a probability density in the space of paths. Once this density
is defined, and a conditional density is written down which
incorporates observations, the complete Bayesian framework
can be employed to sample in the space of continuous time
paths.

The paper is organized as follows. In Section 2 we formulate
a number of variants of the data assimilation problem abstractly
in the language of stochastic differential equations (SDEs). We
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give two concrete examples, arising in oceanic and atmospheric
science, to motivate the abstract setting. Section 3 introduces
the Bayesian approach to data assimilation in the context of
deterministic dynamics, where the posterior distribution that
we wish to sample is on the initial data; we introduce the
Langevin equation to probe this distribution, and discuss related
MCMC methods. Section 4 carries out a similar program in
the case where the underlying dynamics is stochastic and the
posterior distribution is on the space of paths; we introduces the
central idea of probability density in path space. In Section 4.2
we describe a generalization of the Langevin equation to
path space, leading to nonlinear parabolic stochastic PDEs
(SPDEs) which, when statistically stationary, sample from
the distribution which solves the data assimilation problem;
we also look at a second order Langevin equation, leading
to a nonlinear damped stochastic wave equation. Section 4.3
describes another sampling strategy that might be used to
sample path space, namely a Hybrid Monte Carlo technique.
In Section 5 we discuss MCMC methods in path space in
general terms, discussing how Metropolis–Hastings ideas might
be used to improve the Langevin and Hybrid methods from the
previous section, and more generally to explore a wide range
of sampling techniques. In Section 6 we relate the Bayesian
approach adopted here to other commonly used methods of
data assimilation. Section 7 contains a pedagogical example
in the case where the underlying model is deterministic;
comparisons are made between the Langevin approach and
various Kalman based filters. Section 8 contains a pedagogical
example of Lagrangian data assimilation, based on a Gaussian
random field model of a velocity field, included to illustrate
the Bayesian methodology in the context of path sampling.
Section 9 concludes with a description of a number of
open mathematical and computational questions arising from
adopting our Bayesian viewpoint on data assimilation.

The SPDE based approach to sampling continuous time
paths was introduced in [38] and is subsequently analyzed
in [15,16], building on analysis in [40]. (For paths conditioned
only on knowing the value of the path at two points in time –
bridges – the SPDE based approach was simultaneously written
down in [31].) The SPDE approach generalizes the Langevin
equation to sampling in infinite dimensions. The Langevin
approach to sampling in finite dimensions is outlined in the
book [32] where it is shown how to use a discretization of the
Langevin equation, in conjunction with a Metropolis–Hastings
accept–reject criterion, to create a Markov Chain Monte Carlo
(MCMC) method. The infinite dimensional version of this
MCMC method, arising when sampling the space of paths,
is studied in [4]. Hybrid Monte Carlo methods, which are
widely used in molecular dynamics, were generalized to
sample in path space in [1], as were Langevin based methods;
however that paper proceeded by discretizing the evolution
equations to be sampled and then applying a finite dimensional
sampling method. It is our view that it is conceptually and
algorithmically preferable to formulate the sampling problem
in infinite dimensions (the space of paths). It is conceptually
important to know that the infinite dimensional problem makes
sense mathematically. Once this infinite dimensional problem is
defined, it is algorithmically important to find an efficient way
of approximating it by discretization. Discretizing first, so that
the sampling problem is never written down in continuous time,
and then sampling, may lead to a non-optimal approximation
of the desired infinite dimensional problem; see the end of
Section 4.

The subject of Brownian motion and stochastic calculus is
described in [19], whilst texts on SDEs include [11,29]. The
subject of SPDEs is covered in the text [8].

2. The framework

In this section we write down a precise mathematical
framework into which a variety of data assimilation problems
can be cast. We show how Lagrangian data assimilation can
be expressed as a special case of the general framework
and we also discuss the issue of model error. We then give
two motivational examples, and express them precisely in the
language of the chosen mathematical framework. We conclude
with some technical assumptions and notation that will be used
in the remainder of the paper.

2.1. Mathematical setting

Data assimilation may be viewed as a form of signal
processing. The signal that we wish to determine, and into
which we wish to assimilate observational data, is assumed to
satisfy the SDE

dx

dt
= f (x) + γ

dWx

dt
, (2.1)

where f determines the systematic part of the evolution, and
dWx/dt is Gaussian white noise perturbing it. In the following
we will distinguish between γ = 0 (ODE) and γ 6= 0 (SDE).
In the former case the Bayesian framework requires sampling in
the space of initial conditions x(0) only; in the latter it requires
sampling in the (infinite dimensional) space of paths {x(t)}. The
model equation (2.1) may be viewed as a prior distribution on
the space of paths. We assume that x(0) has prior distribution
with density ζ .

In Bayesian data assimilation the ultimate objective is to
probe the posterior probability distribution on x(0) (when γ =

0) or on {x(t)} (when γ 6= 0), conditional on some form of
observation. If the observation is in continuous time then we
denote it by y(t) and assume that it too satisfies an SDE. This
has the form

dy

dt
= g(x, y) + σ

dWy

dt
, (2.2)

where g determines the systematic evolution of the observation,
which depends on the signal x , and dWy/dt is a standard
Gaussian white noise perturbing it, independent of the white
noise dWx/dt .

If the observation is in discrete time then we assume that we
observe y = (y1, . . . , yK ) satisfying

yk = hk(x(tk)) + σkξk, k = 1, . . . , K . (2.3)
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Here hk determines which function of the signal x is observed,
the ξk are standard i.i.d. unit Gaussian random variables
N (0, I ) and the σk determine their covariances; both the hk and
σk are indexed by k because the nature of the observations may
differ at different times. We assume that the ξk are independent
of the white noise driving (2.1), and of x(0). The times {tk} are
ordered and assumed to satisfy

0 < t1 < t2 < · · · < tK ≤ T .

Any observation at t = 0 is incorporated into ζ .

2.2. Lagrangian data assimilation

Lagrangian data assimilation arises frequently in the oceanic
sciences where observations about a fluid velocity field are
frequently given in terms of particles advected by the field:
Lagrangian information. This may be formulated as a special
case of the preceding framework, as we now show; this
approach to Lagrangian data assimilation, showing that it is a
special case of the general set-up, first appears in the literature
in [17,21]. There are subtle differences between the cases
where the observations are in continuous and discrete time and
whether γ = 0 or not.

We start with discrete time observations and consider the
situation where γ = 0. Assume that the Lagrangian information
about x is carried in z, where

dz

dt
= g(x, z).

The observations are

yk = hk(z(tk)) + σkξk, k = 1, . . . , K .

By re-defining x 7→ (x, z), f 7→ ( f, g) and the hk we can
formulate this as in the previous subsection for discrete time
observations and γ = 0. An important point to notice is that
part of the data assimilation process may involve sampling the
initial data for the Lagrangian variables as well as for x . Hence
the reason why the vector x is extended to incorporate z as well
as x .

We now consider the case γ 6= 0 and again study discrete
time observations. Assume that the Lagrangian information
about x is carried in z, where

dz

dt
= g(x, z) + η

dWz

dt
.

The observations are

yk = h(z(tk)) + σkξk, k = 1, . . . , K .

Again, by re-defining x 7→ (x, z), f → ( f, g), Wx 7→

(Wx , Wz), γ 7→ (γ, η) and the hk we can formulate this as
in the previous subsection, now for discrete time observations
and γ 6= 0. Since the Lagrangian data is in discrete time, but the
Lagrangian variables evolve stochastically in continuous time,
part of the data assimilation process involves sampling paths of
the Lagrangian variables between the observations. This is the
reason why the vector x is extended to incorporate z as well
as x .
In the case where the Lagrangian information is carried in
y, and y is a continuous time path satisfying Eq. (2.2), the
observation is in continuous time. Hence this may be directly
formulated as in the case of continuous time observations in the
previous subsection, for both γ = 0 and γ 6= 0.

2.3. Model error

If the model error can be represented as Gaussian white
noise in time then it is already clearly representable in the
mathematical framework given by (2.1). However, typically,
the precise nature of the model error would not be known;
more precisely γ would be unknown. In this context the
methods described in this paper would need to be extended
to include sampling from the distribution on γ , given some
prior information on it. This falls into the realm of parameter
estimation, and is a natural extension of the Bayesian
framework given here.

Of course model error may not be Gaussian white in time:
it may include systematic non-random contributions, as well
as noise which is time correlated. However, the framework
given can be extended to cover such situations, and would
require the estimation of parameters representing the form of
the systematic model error, as well as the memory kernel for
the noise; the latter will be most easily estimated if it is assumed
to be exponentially decaying, since the model can then still be
expressed in Markovian form.

2.4. Motivational examples

When discretized in space, a typical model for numerical
weather prediction is an ODE system with dimension of order
108. In the absence of model error and external forcing, an
equation of the form (2.1) is obtained, with γ = 0. In this
context the state x represents the nodal values of the unknown
quantities such as velocity, temperature, pressure and so forth.
The observations which we wish to assimilate are then various
projections of the state x , possibly different at different times,
and may be viewed as subject to independent Gaussian white
noises. We thus obtain observations y of the form (2.3).

A second motivational example is that of Lagrangian data
assimilation in the ocean (see [21] for work in this direction).
For expository purposes consider trying to make inference
about a 2D velocity field governed by the noisy incompressible
Navier–Stokes equations, by means of Lagrangian particle
trajectories. If we assume periodicity in space then we
may write the velocity field v(y, t) as an (incompressible)
trigonometric series

v(y, t) =

∑
k∈K

ik⊥xk(t) exp(ik · y).

The vector x made up of the xk then satisfies an equation like
(2.1). Now imagine a set of Lagrangian drifters, indexed by `,
and with positions y`(t) governed by

dy`

dt
= v(y`, t) + σ`

dW`

dt
.
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1 For the equation to be well defined the conditional density needs to be
differentiable in x0; if it is not then more care is required in defining the
Langevin equation.
From the representation of the velocity field it is clear that

v(y, t) = χ(x(t), y)

for some function χ linear in x and hence that the collection
of Lagrangian drifters satisfy an equation of the form (2.2),
with g(x, y) found by concatenating the χ(x, y`) over each
drifter y`. If data from the drifters (obtained by GPS for
example) is assumed to be essentially continuous in time then
we may view (2.2) as giving the observational data y which is
to be assimilated. (As mentioned above it is also possible to
formulate Lagrangian data assimilation in the case where the
drifters are observed only at discrete times.)

2.5. Assumptions and notation

In Eq. (2.1) we have f : Rd
→ Rd , γ ∈ Rd×d and Wx is

standard d-dimensional Brownian motion. We assume either
that γ = 0, or that γ is invertible and we define Γ = γ γ T.
In Eq. (2.2) we have g: Rd

× Rm
→ Rm , σ ∈ Rm×m and Wy is

standard m-dimensional Brownian motion, independent of Wx .
We assume that σ is invertible and we define Σ = σσT. In
Eq. (2.3) we have hk : Rd

→ Rm and σk ∈ Rm×m . The ξk
are assumed independent of Wx . We also assume that σk is
invertible and define Σk = σkσ

T
k .

For any positive definite n×n covariance matrix A we define
the inner product on Rn given by

〈a, b〉A = aT A−1b

and the induced norm ‖ · ‖
2
A = 〈·, ·〉A. This notation is used

extensively in the following sections, with A equal to Γ , Σ
or Σ j , and also with A = R where R is a covariance matrix
formed by concatenating the discrete time observations into a
single vector.

3. Initial data sampling and SDEs

We start by considering the case where γ = 0 so that the
posterior distribution to be sampled is on the initial data, and is
finite dimensional.

3.1. Density on initial conditions

The dynamics are governed by

dx

dt
= f (x), x(0) = x0 ∼ ζ

and we use the solution operator for the dynamics to write

x(t) = Φ(x0; t). (3.1)

We observe h(x(t)) at discrete times, subject to independent
noises, and write (2.3) as

yk = h(x(tk)) + ηk, ηk ∼ N (0,Σk).

If we define

yT
= {yT

k }
K
k=1, ηT

= {ηT
k }

K
k=1,

H(x0)
T

= {h(Φ(x0; tk))
T
}

K
k=1
and let R be the covariance matrix of the Gaussian random
variable η, then

y = H(x0) + η, η ∼ N (0, R).

From this we find the pdf for the joint random variable (x0, y)

by first conditioning on x0 and then multiplying by the prior on
x0. Define

J (x0, y) =
1
2
‖y − H(x0)‖

2
R .

Then the pdf for (x0, y) is

ρ(x0, y) ∝ ζ(x0) exp(−J (x0, y)). (3.2)

By Bayes’ rule

ρ( x0| y) ∝ ρ(x0, y)

with constant of proportionality depending only on y. Hence
we may use the expression (3.2) as the basis for sampling x0
given y, in any method which requires the pdf only up to a
multiplicative constant. We discuss such methods in the next
two subsections.

It is worth noting at this point that the commonly adopted
4DVAR approach [24] corresponds to choosing x0 to maximize
ρ( x0| y). It may hence be viewed as a maximum likelihood
method for determination of x0. If the random variable x0| y
is Gaussian and has small variance then this is natural. But if
the random variable is far from Gaussian with small variance,
for example if it is bimodal, 4DVAR clearly comprises an
ineffective way to probe the posterior distribution on x0 given
observations y. It is thus of interest to understand the structure
of the posterior distribution in order to know whether 4DVAR
is a useful approach. The structure of the posterior distribution
depends in a complicated way on the underlying dynamics of
x , as well as the nature and number of the observations.

3.2. Langevin SDE

Sampling from the distribution of x0| y can be achieved
by, amongst many possibilities, solving the Langevin equation.
This is simply

dx0

ds
= ∇x0 ln ρ( x0| y) +

√
2

dW

ds
. (3.3)

This equation has ρ( x0| y) as an invariant density and is ergodic
under mild assumptions on ρ.1 Hence the empirical measure
(histogram) generated by a single solution path over a long time
interval will approximate the desired posterior density. More
precisely, under the assumption of ergodicity, we will have

lim
S→∞

1
S

∫ S

0
φ(x0(s))ds →

∫
Rd

φ(x)ρ( x | y)dx, (3.4)

for functions φ of the initial distribution. In practice the limit
S = ∞ cannot be obtained, but a single numerical trajectory
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of (3.3) over a long time interval s ∈ [0, S] can be used to
approximate the desired target density. Notice that the time-
like variable s is an artificial algorithmic time introduced to
facilitate sampling from the desired density.

From (3.2) we see that the Langevin equation becomes

dx0

ds
= ∇x0 ln ζ(x0) − ∇x0 J (x0, y) +

√
2

dW

ds
.

Here

∇x0 J (x0, y) = −∇x0 H(x0)
T R−1

[y − H(x0)]. (3.5)

Notice that the operators H and ∇x0 H are calculated (or
approximated) for the implementation of 4DVAR. Thus this
technology can be transported to numerical algorithms for the
Langevin equation arising in this context.

There are various generalizations of the Langevin equation
that can also be useful for sampling — including the second
order Langevin equation and pre-conditioning. We restrict
discussion of these methods to the (infinite dimensional)
context of sampling path space, described in Section 4.

3.3. Hybrid Monte Carlo

Another method that is successful in the context of sampling
certain high dimensional probability distributions is Hybrid
Monte Carlo. The starting point is the Hamiltonian system of
equations

d2x0

ds2 = ∇x0 ln ρ( x0| y). (3.6)

This equation defines a solution operator

M:
(

x0(0),
dx0

ds
(0)

)
7→

(
x0(S),

dx0

ds
(S)

)
mapping initial conditions to the solution at time S. With the
notation

Px : (x, y) 7→ x

we construct the Markov chain

xn+1
= PxM(xn, ξn)

where the ξn are chosen to be i.i.d. Gaussian random variables
with distribution N (0, I ). This Markov chain has ρ( x0| y) as
an invariant density.

3.4. Continuous time observations

Now assume that the Lagrangian information is carried in y,
where

dy

dt
= g(x, y) + σ

dWy

dt
.

Let

H(x0, y, t) = g(Φ(x0; t), y)
and define

J (x0, y)

=
1
2

∫ T

0

{∥∥∥∥dy

dt
− H(x0, y, t)

∥∥∥∥2

Σ
+ ∇y · H(x0, y, t)

}
dt.

It turns out (and we discuss this further in the next section) that
exp(−J (x0, y)) may be thought of as a density on path space
for y given x0. Hence we may deduce that the pdf for (x0, y) is
again of the form

ρ(x0, y) ∝ ζ(x0) exp(−J (x0, y)), (3.7)

as before, and that Bayes’ rule gives

ρ( x0| y) ∝ ρ(x0, y).

We may again apply any sampling method which requires
knowledge about the posterior for x0 given y only up to
a multiplicative constant. In particular we may employ the
Langevin SDE or Hybrid Monte Carlo. Both of these require
the derivative ∇x0 J (x0, y) and this is∫ T

0

{
−∇x0 H(x0, y, t)TΣ−1

(
dy

dt
− H(x0, y, t)

)
+

1
2
∇x0

(
∇y · H(x0, y, t)

)}
dt. (3.8)

4. Path space sampling and SPDEs

We now consider the case where γ 6= 0 and is invertible.
Now the posterior distribution to be sampled is on the space of
paths, and is hence infinite dimensional.

4.1. Density in path space

In order to develop a Bayesian approach to path sampling
for {x(t)}t∈[0,T ], conditional on observations, we need to define
a probability density in path space. To this end we define the
following functionals:

I (x) =
1
2

∫ T

0

(∥∥∥∥dx

dt
− f (x)

∥∥∥∥2

Γ
+

1
2
∇x · f (x)

)
dt,

J (x, y) =
1
2

∫ T

0

(∥∥∥∥dy

dt
− g(x, y)

∥∥∥∥2

Σ
+

1
2
∇y · g(x, y)

)
dt,

JD(x, y) =
1
2

K∑
k=1

‖yk − hk(x(tk))‖
2
Σk

.

Note that where the observation y appears in J it is a function,
and where it appears in JD it is a finite vector. Roughly speaking
these three functionals are sums (or integrals) of squared
independent noises. The extra divergence terms in I and J
occur because all terms are interpreted in a symmetric fashion,
with respect to the time-like variable. Thus all derivatives in the
t-direction below should be approximated in a centred fashion.
The divergence terms arise when converting Itô (non-centred)
to Stratonovich (centred) stochastic integrals in I and J .
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Here I (x) is known as the Onsager–Machlup functional for
(2.1) and the unconditional density for paths x solving (2.1)
may be thought of as being proportional to (see [13])

Q(x) := q(x)ζ(x(0))

where

q(x) := exp{−I (x)}

and ζ is the density of the initial condition for x(t). Similarly
I (x) + J (x, y) is the Onsager–Machlup functional for (2.1)
and (2.2), with unconditional density for paths x, y found by
exponentiating the negative of this functional. Hence, by Bayes’
rule, the conditional density for paths x solving (2.1), given
observation of y solving (2.2), may be thought of as being
proportional to Q(x) := q(x)ζ(x(0)) where

q(x) := exp{−I (x) − J (x, y)}.

Similarly the conditional density for paths x solving (2.1),
given observation of y from (2.3), may be thought of as being
proportional to Q(x) := q(x)ζ(x(0)) where

q(x) := exp{−I (x) − JD(x, y)}.

Note that, in all cases, q maps the Sobolev space of functions
with square integrable first derivative H1([0, T ]) into the
positive reals R+. The observations y parameterize q(x).

In the following two sections we will introduce continuous
and discrete time Markov chains whose invariant measure
samples from densities on path space such as the functionals
Q(x) defined above. This will lead to SPDEs in Section 4.2
and a Markov chain constructed through a PDE with random
initial data in Section 4.3. The development is analogous to that
in the previous section, but is now infinite dimensional.

Defining the SPDEs will require calculation of the
variational derivatives of I (x), J (x, y) and JD(x, y) with
respect to x . We list these derivatives here. To this end it is
useful to define

F(x) =
1
2
‖ f (x)‖2

Γ +
1
2
∇x · f (x)

H(x) = Γ−1d f (x) − d f (x)TΓ−1,

where d f : Rd
→ Rd×d is the Jacobian of f . We also use

dg: Rd
×Rm

→ Rm×d to denote the Jacobian of g with respect
to x and dh j : Rd

→ Rm×d to denote the Jacobian of h j with
respect to x . Then the required variational derivatives are:

δ I

δx
= −Γ−1 d2x

dt2 +H(x)
dx

dt
+ ∇xF(x)

δ J

δx
= −dg(x, y)TΣ−1

[
dy

dt
− g(x, y)

]
+

1
2
∇x {∇y · g(x, y)},

δ JD

δx
= −

K∑
k=1

dh(x(tk))
TΣ−1

k [yk − hk(x(tk))]δ(t − tk). (4.1)

Notice that the last derivative is made up of point sources at
the tk . If tK = T then the jump induced by the delta function
modifies the boundary condition at t = T in the SPDEs that we
write down in the next two sections. Otherwise the delta jumps
are in the interior of the domain for the SPDEs.

One important observation here is that the presence of the
second term in F , namely the divergence of f , is something
which has caused some controversy in the physics literature. A
least squares definition of the density, based on Gaussian white
noise, misses the term. Even if it is included, its magnitude —
the factor 1

2 — has been queried [22]. The analysis in [16,
31] and numerical experiments [38] are unequivocal that its
presence is necessary and that the pre-factor of 1

2 is the correct
choice.

It is also because of this second term in F that we have
concerns about sampling methods which first discretize the
SDE (2.1) and then apply standard finite dimensional sampling
techniques [1]. Such an approach can lead to a very indirect and
numerically unsatisfactory approximation of the second term
(see [38]). For this reason we strongly recommend employing
the methodology outlined in this paper: namely to formulate an
infinite dimensional sampling method in path space, and then
approximate it.

4.2. Langevin SPDEs which sample path space

As illustrated in finite dimensions, the basic idea of Langevin
methods is to construct a potential given by the gradient of
the logarithm of the target density and to consider motion
in this potential, driven by noise [32,33] — see (3.3). In the
path space case the desired target density is proportional to
Q(x) = q(x)ζ(x(0)). Ignoring the boundary conditions (i.e. ζ )
for a moment, we obtain the following SPDE for x(t, s):

∂x

∂s
=

δ ln q(x)

δx
+

√
2
∂W

∂s
, (s, t) ∈ (0, ∞) × (0, T ). (4.2)

Here s is an algorithmic time introduced to facilitate sampling
in the space of paths, parameterized by real time t , and ∂W

∂s
is a white noise in (t, s). The variational derivative of ln q(x)

gives a second order differential operator in t and so the PDE is
of reaction–diffusion type, subject to noise. The details of the
SPDE depend upon whether the sampling of x is unconditional,
or subject to observations y; the latter may be in discrete or
continuous time. The previous section implicitly calculates the
derivative of ln q(x) in each of these three cases, through the
variational derivatives of I (x), J (x) and JD(x).

To find boundary conditions for the SPDE we argue in the
standard fashion adopted in the calculus of variations. Notice
that

ln Q(x + 1x) = ln Q(x) +

(
δ

δx
ln Q(x), 1x

)
+O(‖1x‖

2)

where (·, ·) is the L2([0, T ]) inner product and ‖ · ‖ an
appropriate norm. Now(

δ

δx
ln Q(x), 1x

)
=

(
δ

δx
ln q(x), 1x

)
+

〈
dx(0)

dt
− f (x(0)) + Γ∇x ln ζ(x(0), 1x(0))

〉
Γ

−

〈
dx(T )

dt
− f (x(T )), 1x(T )

〉
Γ

.



56 A. Apte et al. / Physica D 230 (2007) 50–64
The first term on the right hand side gives the contribution to
the derivative of Q(x) appearing in the interior of the SPDE.
Equating the second and third terms to zero, for all possible
variations 1x , we obtain the following boundary conditions for
the SPDE:

∂x

∂t
− f (x) + Γ∇x ln ζ(x) = 0, t = 0, (4.3)

∂x

∂t
− f (x) = 0, t = T . (4.4)

The resulting SPDE (4.2)–(4.4) then has the desired equilibrium
distribution.

When the observations are in discrete time and the last
observation coincides with the last point at which we wish to
sample x (so that tK = T ) the delta function at t = tK in the
variational derivative of ln q(x) does not appear in the interior
t ∈ (0, T ) and instead modifies the second boundary condition
to read

∂x

∂t
− f (x) − ΓdhK (x)TΣ−1

K [yK − hK (x)] = 0, t = T .

(4.5)

The nonlinear boundary conditions (4.4) and (4.5) both arise
from jumps in the derivative induced by the Dirac masses
contained in the boundary term with tK = T in (4.1).

Note that the case h(x) = x and yJ = x+ gives, in the limit
where ΣK → 0, the Dirichlet boundary condition x = x+

at t = T . Choosing ζ to be a Gaussian centred at x−, and
taking the limit of variance to zero, will also give a Dirichlet
boundary condition x = x− at t = 0. These Dirichlet boundary
conditions arise naturally in some applications of path sampling
when bridges are studied [31,38].

By generalizing the second order Langevin method we
obtain the following SPDE for x(t, s):

∂2x

∂s2 + ι
∂x

∂s
=

δ ln q(x)

δx
+

√
2ι

∂W

∂s
,

(s, t) ∈ (0, ∞) × (0, T ), (4.6)

with boundary conditions (4.3) and (4.4). Here ι > 0 is an
arbitrary positive parameter whose value may be optimized
to improve sampling. This SPDE is a damped driven wave
equation which yields the desired equilibrium distribution,
when marginalized to x . The equilibrium distribution gives
white noise in true time direction t for the momentum variable
∂x
∂s and this is hence natural initial data for the momentum
variable.

It is also of interest to discuss preconditioned Langevin
equations. Let G denote an arbitrary positive definite self-
adjoint operator on the space of paths and consider the
following SPDEs derived from (4.2) and (4.6) respectively:

∂x

∂s
= G

δ ln q(x)

δx
+

√
2G

∂W

∂s
, (s, t) ∈ (0, ∞) × (0, T )

and

G−1 ∂2x

∂s2 + ι
∂x

∂s
= G

δ ln q(x)

δx
+

√
2ιG

∂W

∂s
,

(s, t) ∈ (0, ∞) × (0, T ).
Some examples substantiating this idea are given in [16]
and [4]; in particular they show how to incorporate
inhomogeneous boundary conditions in this context. Formally
both these SPDEs preserve the desired invariant measure, for
any choice of G.

The simplest way to use any of the Langevin SPDEs
described above to probe the desired (conditional) distri-
bution on path space is as follows. Given some function
φ: C([0, T ], Rd) → R (such as the maximum value along the
path, or the value of |x(t)|2 at some time point t = τ ) solve
one of the Langevin SPDEs numerically, discretizing with in-
crement 1s in the algorithmic time direction, thereby generat-
ing a sequence xn(t) ≈ x(t, n1s) (in practice this will need
to be discretized along the path in t as well as in s). For M
sufficiently large, the collection {xn(t)}n≥M form approximate
samples from the desired distribution in path space. Hence, as
N → ∞, the average

1
N

N−1∑
n=0

φ(xn(t)) (4.7)

will converge, by ergodicity, to an approximation of the
average of φ in the desired conditional distribution. This is a
discrete time analogue of (3.4). (The fact that we obtain an
approximation, rather than the exact stationary value, results
from discretization of the SPDE in t, s — see [37,39].) The
role of G is to accelerate convergence as N → ∞ and this point
is discussed in the conclusions.

4.3. Hybrid Monte Carlo methods which sample path space

By generalizing the Hybrid Monte Carlo method we obtain
the following Markov chain xn(t). Setting ι = 0 in the SPDE
(4.6) gives the PDE

∂2x

∂s2 =
δ ln q(x)

δx
, (s, t) ∈ (0, ∞) × (0, T ). (4.8)

The boundary conditions are again (4.3) and (4.4). This
equation defines a solution operator

M:
(

x(0),
∂x

∂s
(0)

)
7→

(
x(S),

∂x

∂s
(S)

)
mapping initial conditions to the solution at algorithmic time
s = S. With the notation

Px : (x, y) 7→ x

we construct the Markov chain

xn+1
= PxM(xn, ξn) (4.9)

where the ξn are chosen to be i.i.d. Gaussian white noises in
the true time direction t . This yields the desired equilibrium
distribution. The formula (4.7) can again be used to probe
the desired conditional distribution. Each step of the Markov
chain requires the solution of a nonlinear wave equation over
an interval of length S in s. Because numerical approximation
of the wave equation (and hence M) can lead to errors the
formula (4.7) will in practice again only give an approximation
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of the true ergodic limit as N → ∞. Pre-conditioning can
also be used in the context of the Hybrid Monte Carlo method,
replacing (4.8) by

∂2x

∂s2 = G2 δ ln q(x)

δx
, (s, t) ∈ (0, ∞) × (0, T ).

Again, G is used to accelerate convergence to stationarity. In
this case the Markov chain (4.9) is generated by Gaussian ξ

with mean zero and covariance G2.
The Hybrid Monte Carlo method was introduced and studied

for discretizations of the path sampling problem in [1] where
choices for the operator G were also discussed.

5. Remarks on other MCMC methods

The Langevin S(P)DEs and the Hybrid Monte Carlo
methods both give rise to Markov chains which, if solved
exactly (which is impossible in almost all practical situations),
sample exactly from the desired distribution in their stationary
measure. They are all examples of MCMC methods. But
there is no reason to restrict sampling methods to these
particular MCMC methods and in this section we briefly
outline directions which might be fruitfully pursued to get
improved sampling. We restrict our discussion to the case of
path sampling as this high (infinite) dimensional setting is
particularly challenging.

5.1. Metropolis–Hastings

In practice the MCMC methods in the previous section
require numerical approximation of an (S)PDE in (s, t). This
will incur errors and hence the stationary distribution will only
be sampled approximately. The errors arising from integration
in s can be corrected by means of a Metropolis–Hastings
accept–reject criterion (see [25,32]). Furthermore, optimizing
the choice of time-step in s can improve efficiency of the
algorithm — we outline this below.

To apply the Metropolis–Hastings idea in path space, first
discretize the path {x(t)} giving rise to a vector x at the grid
points. In the case of discrete observations this grid should
ideally be chosen to include the observation times {t j }. The
signal {y(t)} in the case of continuous time observations should
also be discretized on the same grid.

The target density Q(x) can then be approximated, using
finite differences on the integrals, to define a finite dimensional
target density Q D(x). By discretizing the SPDEs in the
previous section on the same grid of points in t , as well as
discretizing in s, we obtain a proposal distribution. Moves
according to this proposal distribution (discretized SPDE)
are then accepted or rejected with the Metropolis–Hastings
probability leading to a Markov chain with invariant density
Q D(x). Thus the effect of error introduced by integrating in s
is removed; and the error due to approximation in t is controlled
by the approximation of Q(x) by Q D(x).

If a small time-step is used in s then the proposal distribution
is not far from the current position of the Markov chain.
This is known as a local proposal and for these there is a
well-developed theory of optimality for the resulting MCMC
methods [33]. The variance of an estimator in a Markov chain
is given by the integrated autocorrelation function. Roughly
speaking, very small steps in s are undesirable because the
correlation in the resulting Markov chain is high, leading
to high variance in estimators, which is inefficient; on the
other hand, large steps in s lead to frequent rejections, which
is also inefficient, again because correlation between steps
is high when rejections are included. Choosing the optimal
scaling of the step in s, with respect to the number of
discretization points used along the path {x(t)}, is an area of
current research activity [4], building on the existing studies
of MCMC methods in high dimensions [33]. In the context of
Metropolis–Hastings, good choices for the pre-conditioner G
are ones which approximately equilibrate the convergence rates
in different Fourier modes of the distribution. With this in mind,
an interesting choice for G is a Green’s operator for −

d2

dt2 with
homogeneous boundary conditions (see [16,4,1]).

If the integration time S is small in the Hybrid Monte Carlo
method, then again the proposal distribution is local in nature.
However, larger S will lead to better decorrelation, and hence
efficiency, if the rejection rate is not too large. Hence it is of
interest to study optimal choices for S, as a function of the
number of discretization points, for this problem.

5.2. Global moves

Langevin methods have a potential problem for the sampling
of multimodal distributions, namely that they can get stuck in
a particular mode of the distribution for long times, because
of the local (in state space) nature of the proposals. The
Hybrid Monte Carlo method goes some way to ameliorating
this issue as it allows free vibrations in the Hamiltonian given
by the logarithm of the target density, and this is known to
be beneficial in many finite dimensional sampling problems.
However it is undoubtedly the case that sampling in path space
will frequently be accelerated if problem specific global moves
are incorporated into the proposal distributions. This is an open
area for investigation. In the context of bridges the paper [20]
contains some ideas that might form the basis of global proposal
moves; but these are not likely to extend to data assimilation
directly.

6. Relationship to other approaches

The purpose of this section is to discuss the approach
advocated in this paper in relation to others prevalent in
practice.

The first observation is that 4DVAR is, in general, likely to be
a highly ineffectual way of probing the posterior distribution; it
will only be of value when the distribution is close to Gaussian,
and has small variance — see the discussion in Section 3.
4DVAR was first studied for data assimilation in [24,6,36].
More recent references include [23,18,27,28,14,2,3].

The second observation is that, in the language of signal
processing, the Bayesian method proposed here is performing
smoothing, not filtering. This is because we sample from
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x(t), t ∈ [0, T ] given the entire set of observations on
[0, T ], whereas filtering would sample from x(t) given only
observations in [0, t]. Filtering is appropriate in applications
where the data is on-line. But for off-line data, smoothing
is quite natural. Off-line situations arise when performing
parameter estimation, for example. There are also applications
in Lagrangian data assimilation for oceanic velocity fields
where data is only available infrequently and the off-line setting
is appropriate.

The third observation concerns the relationship between
what we advocate here, and the standard method for performing
filtering for nonlinear SDEs conditional on observations.
The rest of this section is devoted to this relationship.
Standard methods are based on the Zakai equation and
its generalizations. The Zakai equation is a linear partial
differential equation for the probability density of the signal,
conditional on observations. It is thus in the form of a
Fokker–Planck equation, driven by noise (the observation).
Informally it may be derived by employing the unconditional
Fokker–Planck equation for (2.1) as a prior, and incorporating
the observations via Bayes’ law; the Markovian structure of
the signal and observations allows filtering to be performed
sequentially 0 → T . Smoothing can then be performed by
means of a backward sweep, using a similar linear SPDE,
incorporating data in reverse time T → 0. See [34], Chapter 6,
and the bibliographical Notes on Chapter 6, for further details
and references.

A significant problem with use of the Zakai equation in
the context of high dimensional problems (d � 1) is that
the independent variables are in Rd and it is notoriously
difficult to solve PDEs in high dimensions. Particle filters
are a good tool for approximation of the Zakai equation in
moderate dimension [7], but can be difficult to use in very
high dimension. Weather prediction leads to d of order 108 and
solution of the Zakai equation by particle filters is impractical.
In this context two simplifications are usually introduced.
The first is to use the extended Kalman filter (EKF) [5]
which proceeds by linearizing the system and propagating a
Gaussian model for the uncertainty; it is hence necessary to
update the mean in Rd and the covariance matrix in Rd×d

sequentially, a task which is significantly easier than solving the
Zakai equation. However even this approximation is impractical
for large d and further approximations, primarily to effect
dimension reduction on the covariance matrix, are performed;
this leads to the ensemble Kalman filter (EnKF) [9] and its
generalizations [30].

The approach we advocate in this paper is conceptually
quite different from those based on the Zakai equation, and
its Gaussian approximations. Instead of trying to sample from
the probability distribution of the signal, at each point in time,
by sequential means, we try to sample an entire path of the
signal, from a distribution on path space. This leads to a
nonlinear SPDE in one space dimension (t) and one time-like
dimension indexing the sampling (s). The high dimension d
enters as dimension of the dependent variable x(t, s) which
solves the SPDE; in contrast the Zakai equation has dimension
d in the independent variable. The nonlinear SPDE proposed
here hence has a considerable computational advantage over
methods based on the Zakai equation, at least for problems
which cannot be approximated in a Gaussian fashion.

7. Pedagogical example — sampling initial data

We study an example to illustrate Langevin sampling in the
initial data space — i.e. when γ = 0 in (2.1). Thus we are
in the framework of Section 3. We use the Langevin equation
to probe the desired probability distribution, and compare our
results with both the extended Kalman filter (EKF), and the
ensemble Kalman filter (EnKF). We choose an example where
the posterior can be calculated exactly, and then pushed forward
to the final time where it is fair to compare both filtering
methods (EKF, EnKF) and smoothing methods (our posterior
sampling).

In order to illustrate our comparison between numerical
methods we take the following explicitly solvable example. We
study the equation

dx

dt
= x − x3, x(0) = x0 ∼ N (a, σ 2

init),

noting that this equation, and its linearization, can both be
solved exactly. The observations are in discrete time and take
the form

yk = x(kδ) +N (0, σ 2
obs), i = 1, . . . , K .

Given the observations, the posterior on the initial data
can be calculated exactly, using the fact that the solution
operator Φ(x0; t) in (3.1) can be calculated analytically, and
no numerical approximation is needed. The exact solution
operator is also used in the Langevin sampler and particle
filters. Furthermore, we also use the fact that the derivative of
Φ with respect to x0 can be calculated analytically; this enables
us to find the term ∇x0 H(x0) in the Langevin equation (3.5)
explicitly, without resorting to numerical approximation. For
more complex problems these tasks will have to be carried out
by numerical approximation, of course.

The exact posterior distribution on x0 can be mapped
forward explicitly to obtain the exact posterior at any time
t , including t = T = K δ. Notice that the exact posterior
corresponds to solving the smoothing problem. The Langevin
approach hence directly approximates the smoothing problem.
Both EKF and EnKF approximate the filtering problem.
Filtering and smoothing, if exact, only coincide at the final time
t = T . Hence we compare the methods at this time, for which
EKF (resp. EnKF) is identical to the smoother analogue EKS
(resp. EnKS).

We now present three numerical experiments illustrating the
behaviour of the Langevin sampler, in comparison with Kalman
based methods. We use the perturbed observation EnKF as
presented in [9]. In all of the three figures presented in this
section, the solid black curve is the exact posterior. Our interest
is hence in how well this is replicated by the different sampling
methods. We choose a = −0.1, σinit = 0.2, σobs = 0.8,
and K = 10. The three figures differ only in the frequency
of observations δ (which is 0.095, 0.09, and 0.3 for Figs. 1–3
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Fig. 1. Comparison of the exact posterior distribution, the Langevin
approximation, and approximations by EnKF and EKF.

Fig. 2. Comparison of the exact posterior distribution, the Langevin
approximation, and approximations by EnKF and EKF.

respectively) and the initial condition x0 (which is 0.5 for
Figs. 1 and 2 but 0.0001 for Fig. 3). Note that the actual initial
condition used is not the mean of the prior distribution on
x(0). We chose a very large sample size (50 000) for both the
EnKF and Langevin method, so that we can compare the results
without dealing with sampling issues.

Fig. 1 shows a situation in which both the Langevin sampling
and EnKF reproduce the target posterior density very well; the
EKF, performs quite poorly. That the EKF performs poorly
is fairly typical for problems with any appreciable nonlinear
effects and Fig. 2 again shows the EKF performing poorly.
In this case the EnKF is appreciably better than the EKF,
but is outperformed by the Langevin method. Finally, Fig. 3
shows a situation where the EnKF fails to produce a reasonable
approximation at all, but once again the Langevin method
performs excellently. (The EKF is not shown here.)

The moral of these numerical experiments is that
standard techniques, widely used in practice, and based on
approximations of the Kalman filter, can fail when applied to
nonlinear problems which are far from Gaussian. The Langevin
method, however, is very robust (although this does come
at the expense of a considerable increase in computational
complexity). For this reason we proceed in the next section
Fig. 3. Comparison of the exact posterior distribution, the Langevin
approximation, and approximations by EnKF.

to generalize the Langevin method to the sampling of path
space, necessary whenever the basic model dynamics (2.1) is
stochastic — γ 6= 0.

8. Pedagogical example — sampling path space

We discuss a simple example motivated by Lagrangian data
assimilation. We use the example to illustrate the use of the (first
order) Langevin SPDE for sampling conditional paths of (2.1)
when γ 6= 0. In the previous example the exact posterior was
available analytically so that evaluation of the methods studied
was straightforward. In this path space example we choose a
problem where the posterior mean can be calculated so that we
may again evaluate the sampling method.

Consider a one dimensional velocity field of the form

v(y, t) = x1(t) + x2(t) sin(y) + x3(t) cos(y)

where the xk(t) are Ornstein–Uhlenbeck processes solving

dxk

dt
= −αxk + γ

dWx,k

dt
. (8.1)

We assume that the particles are initially stationary and
independent so that each xk(0) is distributed as N (0, γ 2/2α),
with density ζ(x) ∝ exp{−αx2/γ 2

}.
We study the question of making inference about the paths

{xk(t)} from the observation of L drifters {y`}
L
`=1 moving in the

velocity field, and subject to random forcing idealized as white
noise (e.g. molecular diffusion):

dy`

dt
= v(y`, t) + σ

dWy,`

dt
. (8.2)

Here the Wx,k and Wy,` are independent standard Brownian
motions. The initial conditions for the y` are i.i.d. random
variables drawn from the distribution N (0, 2π).

Writing y = (y1, . . . , yL)T and Wy = (Wy,1, . . . , Wy,L)T

we obtain

dy

dt
= h(y)x + σ

dWy

dt
, (8.3)

where h: RL
→ RL×3, σ ∈ R+.
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Fig. 4. Reconstruction of the xi solving (8.1), together with one standard deviation bounds, on s ∈ [0, 100]; 5 drifters are used.
In this case the Langevin SPDE (4.2)–(4.4) is hence

∂x

∂s
=

1

γ 2

∂2x

∂t2 −
α2

γ 2 x +
1

σ 2 h(y)T
[

dy

dt
− h(y)x

]
−

1
2
∇y · h(y)T

+
√

2
∂W

∂s
, (s, t) ∈ (0, ∞) × (0, T )

∂x

∂t
= +αx, (s, t) ∈ (0, ∞) × {0}

∂x

∂t
= −αx, (s, t) ∈ (0, ∞) × {T }

x = x0, (s, t) ∈ 0 × [0, T ].

Because the SPDE is linear, the mean x̄ in the stationary
measure is found by removing the derivative in s and the noise
to obtain

1

γ 2

d2 x̄

dt2 −
α2

γ 2 x̄ −
1

σ 2 h(y)Th(y)x̄

= −
1

σ 2 h(y)T dy

dt
+

1
2
∇y · h(y)T, t ∈ (0, T ),

dx̄

dt
= +α x̄, t = 0,

dx̄

dt
= −α x̄, t = T .

Note that if σ � min(γ, 1) then, formally, the equation for the
mean is dominated by the normal equations

h(y)T
[

dy

dt
− h(y)x̄

]
≈ 0

which arise from trying to solve the overdetermined Eq. (8.3)
for x , when the noise is ignored. But when noise is present,
however small, dy

dt exists only as a distribution (it has the
regularity of white noise) and so the second order differential
operator in x , which incorporates prior information on x , is
required to make sense of the mean.

Our numerical experiments are conducted as follows. We
set α = γ = σ = 1 and generated a single path for each
xk , k = 1, 2, 3 solving (8.1) on the interval t ∈ [0, 10],
using stationary initial conditions as described above. We also
generated the trajectories of 500 drifters yi moving according to
(8.2), with initial conditions drawn from a Gaussian distribution
as described above. We then chose L drifter paths, with L =

5, 50 and 500 respectively, and solved the Langevin SPDE
to sample from the distribution of the xk . We integrated over
100 algorithmic time units in s and approximated the mean
of the xk , together with one standard deviation, using (4.7).
We also calculated the mean directly by solving the boundary
value problem for x̄ . In all cases we used a formally second
order accurate approximation in the spatial variable t , and
for time integration we used a linearly implicit method with
Crank–Nicolson approximation of the leading order differential
operator. We emphasize that the signals xk are not available
to the Langevin SPDE or the boundary value problem: only
information about the drifters y` is used to reconstruct the
xk . The signals are shown in the following figures so that the
reconstruction of the signal may be judged.

The results are shown in Figs. 4–6, corresponding to L =

5, 50 and 500 respectively. In each figure we consider x1 in the
top panel, x2 in the middle and x3 at the bottom. The actual
signal xk is the non-smooth curve whilst the mean of the desired
conditional distribution, found by solving the equation for x̄ ,
is the smooth curve. The shaded bands show an estimate of
one standard deviation about the mean, with both mean and
standard deviation estimated by time averaging solution of the
Langevin SPDE in s.

The figures illustrate two facts, one a property of the path
sampling procedure we propose in this paper, the second a
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Fig. 5. Reconstruction of the xi solving (8.1), together with one standard deviation bounds, on s ∈ [0, 100]; 50 drifters are used.

Fig. 6. Reconstruction of the xi solving (8.1), together with one standard deviation bounds, on s ∈ [0, 100]; 500 drifters are used.
property of the desired conditional distribution for this data
assimilation problem. The first fact is this: because the true
mean x̄ lies in the middle of the shaded band, it is clear that
the estimate of the mean, calculated through time averaging, is
accurate at s = 100. The second fact is this: as L is increased
our ability to recover the actual signal increases; this is manifest
in the fact that the mean gets closer to the signal, and the
standard deviation bounds get tighter.

To give some insight into how long the Langevin SPDE
has to be integrated to obtain accurate time averages, we
generated data analogous to that in Fig. 4, but only integrated to
algorithmic time s = 10. The results are shown in Fig. 7. The
fact that x̄ no longer lies in the middle of the shaded bands, at
least for some parts of the paths, indicates that the time average
of the path has not converged to the mean value in the stationary
distribution.

9. Challenges

We have presented an approach to data assimilation that
will be useful for problems which are highly non-Gaussian.
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Fig. 7. Reconstruction of the xi solving (8.1), together with one standard deviation bounds, on s ∈ [0, 10]; 5 drifters are used. Note that the estimate of the mean
(the middle of the shaded bands) is not always close to the actual mean (the smooth curve). This should be contrasted with Fig. 4 which is on a longer interval in
algorithmic time s.
It is a Bayesian framework based on sampling the posterior
distribution by MCMC methods, especially the Langevin
equation. Both deterministic and stochastic model dynamics
are considered. In the former case the posterior is on the initial
data; in the latter case it is on the space of paths. The approach
outlined here presents a number of significant scientific
challenges. We outline some of these, breaking the challenges
down into three categories: applications, mathematical and
computational.

9.1. Applications

• In the context of short term weather prediction, Gaussian
based Kalman filter approximation often appears quite
effective; it would be interesting to quantify this by
comparing with the Bayesian approach described here.

• In the context of Lagrangian data assimilation for oceans, it
would be of interest to use the methodology proposed here
to study the multimodal problems which often arise quite
naturally, and for which the extended Kalman filter diverges.

• For both weather prediction and ocean modelling it would
be of interest to incorporate the methodology proposed here
for the purposes of parameter estimation. In this context the
paths of (2.1) are treated as missing data which are sampled
to enable estimation of parameters appearing in (2.1) itself.
A Gibbs sampler [32] could be used to alternate between the
missing data and the parameters.

• There are many other potential applications of this
methodology in chemistry, physics, electrical engineering
and econometrics, for example.
9.2. Mathematical

• The SPDEs which arise as the formal infinite dimensional
Langevin equations, and the related PDE which arises in the
Hybrid Monte Carlo method, all lead to significant problems
in analysis concerned with the existence, uniqueness,
ergodicity and rate of convergence to stationarity. Some
of these issues have been resolved for particular forms
of nonlinearity in (2.1) and (2.2) (see [15,16]) primarily
for vector fields f , and g in the case of continuous time
observations, which are combinations of gradients and linear
vector fields.

• For non-gradient vector fields the presence of the term
H(x) ∂x

∂t causes particular problems in the development of
a theory for the SPDE as, when the solution operator for the
linear part of the Langevin SPDE is applied to it, a definition
of stochastic integral is required. Numerical evidence as
well as the derivation of I (x) by means of the Girsanov
formula, suggests that this should be a Stratonovich-type
centred definition, but the mathematical analysis remains to
be developed. A related, but simpler, mathematical question
arises in the interpretation of the stochastic integral with
respect to y arising in (3.8).

• In some applications the underlying path to be sampled
arises from an SPDE itself: i.e. Eq. (2.1) is itself an SPDE;
it would be of interest to derive the relevant Langevin
SPDE here, in which the variable t would appear as a
spatial variable, in addition to the spatial derivatives already
appearing in (2.1).

• We have assumed for simplicity that white noise affects
all components of the signal and observation equations;
relaxing this assumption is natural in some applications,
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and it would be of interest to find the relevant SPDEs for
sampling in this case; as mentioned in Section 2 this case
arises when studying model error.

9.3. Computational

• Sampling the posterior distribution of the smoothing
problem is, in general, costly in terms of computational
time. A major challenge is to understand situations where
sampling the posterior of the smoothing problem is
necessary from an applied viewpoint, and then to develop
efficient algorithms for doing so.

• If the dimension d is high then, since the number of
dependent variables in the SPDEs proposed here will scale
like d , techniques are required to reduce the dimensionality
for sampling; multiscale methods are likely to be useful in
this context [12]. Some interesting work in this direction,
using relative entropy, may be found in [10].

• Within the context of Langevin algorithms it would be
of interest to study choices of the pre-conditioner G,
and discretization method for the SPDE, which lead to
efficient algorithms; efficiency in this context should be
measured through the integrated autocorrelation function
which quantifies the fluctuations in estimates of the form
(4.7), for expectations of φ(x(·)) with respect to the desired
conditional measure [33].

• Similar considerations apply to Hybrid Monte Carlo
methods, and the choice of pre-conditioner.

• It is also of interest to compare first order and second order
Langevin based methods with one another and with the
Hybrid Monte Carlo method, once good pre-conditioners
have been found. See [1] for a step in this direction.

• The use of other MCMC methods to sample the desired
probability measures on path space should also be explored.
It is common practical experience that, whilst Langevin-type
methods are provably efficient within the context of methods
using local (in state space) proposals [33], greater speed-
ups can often be obtained by incorporating additional global
moves, based on problem specific knowledge.

• The issue of how to discretize the SPDE is also non-trivial.
In particular for non-gradient vector fields in (2.1) and
(2.2), the term H(x) ∂x

∂t needs to be discretized carefully
(as discussed above centred differencing is necessary in our
formulations of the SPDE) essentially for the same reasons
that the SPDE theory is hard to develop in this case.
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