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The understanding of adaptive algorithms for stochastic differential equations (SDEs) is an open area,
where many issues related to both convergence and stability (long-time behaviour) of algorithms are
unresolved. This paper considers a very simple adaptive algorithm, based on controlling only the drift
component of a time step. Both convergence and stability are studied. The primary issue in the con-
vergence analysis is that the adaptive method does not necessarily drive the time steps to zero with the
user-input tolerance. This possibility must be quantified and shown to have low probability. The primary
issue in the stability analysis is ergodicity. It is assumed that the noise is nondegenerate, so that the
diffusion process is elliptic, and the drift is assumed to satisfy a coercivity condition. The SDE is then
geometrically ergodic (averages converge to statistical equilibrium exponentially quickly). If the drift is
not linearly bounded, then explicit fixed time step approximations, such as the Euler–Maruyama scheme,
may fail to be ergodic. In this work, it is shown that the simple adaptive time-stepping strategy cures this
problem. In addition to proving ergodicity, an exponential moment bound is also proved, generalizing a
result known to hold for the SDE itself.

Keywords: stochastic differential equations; adaptive time discretization; convergence; stability; ergo-
dicity; exponential moment bounds.

1. Introduction

In this paper, we study the numerical solution of the Itô stochastic differential equation (SDE)

dx(t) = f (x(t))dt + g(x(t))dW (t), x(0) = X, (1.1)

by means of an adaptive time-stepping algorithm. Here, x(t) ∈ Rm for each t and W (t) is a d-
dimensional Brownian motion. Thus, f : Rm → Rm and g: Rm → Rm×d . For simplicity, we assume
that the initial condition is deterministic. Throughout, |·| is used to denote either the Euclidean vector
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480 H. LAMBA ET AL.

norm or the Frobenius (trace) matrix norm as appropriate. We assume throughout that f and g are in
C2. Further structural assumptions will be made where needed. The basic adaptive mechanism we study
is detailed at the start of Section 2. It is a simple adaptive algorithm, prototypical of a whole class of
methods for the adaptive integration of SDEs. Our aim is twofold. First, we show convergence, as the
user-input tolerance τ tends to zero; this is a nontrivial exercise because the adaptive strategy does not
imply that the time steps taken tend to zero with the tolerance everywhere in phase space. Second, we
show that the methods have a variety of desirable properties for the long-time integration of ergodic
SDEs, including preservation of ergodicity and exponential moment bounds.

The adaptive method controls the time step of a forward Euler drift step, so that it deviates only
slightly from a backward Euler step. This not only controls an estimate of the contribution to the time-
stepping error from the drift step but also allows the analysis of stability (long time) properties for im-
plicit backward Euler methods to be employed in the explicit adaptive method. Numerical experiments
suggest that both the convergence and the stability analyses extend to a number of more sophisticated
methods which control different error measures; some of these experiments are reported below.

It is of interest to discuss our work in the context of a sequence of interesting papers which study the
optimality of adaptive schemes for SDEs, using various different error measures (Hofmann et al., 2000,
2001, 2002; Müller-Gronbach, to appear). For many of these error measures, which are quite natural in
practice, the asymptotically optimal adaptive schemes are based solely on the diffusion. This is essential
because it is the diffusion term which dominates the (lack of) regularity in paths and this regularity
in turn dominates error measures. Why then have we concentrated on methods which adapt only on
the drift? The reason for this is that, as mentioned above, such methods are advantageous for long-time
integration. In practice, we anticipate that error controls based on both drift and diffusion could combine
the advantages of the asymptotically optimal schemes with the enhanced stability/ergodicity of schemes
which control based on the drift.

In order to prove a strong mean-square convergence result for this algorithm, it is first necessary to
obtain a suitable upper bound on the sequence of time steps used. These bounds mimic those used in the
convergence proofs for adaptive ordinary differential equation (ODE) solvers (Stuart, 1997; Lamba &
Stuart, 1998; Lamba, 2000) and require that the numerical solution does not enter neighbourhoods of
points where the local error estimate vanishes. (Requiring that these neighbourhoods are small excludes
some simple drift vector fields, such as constants. In practice, we would anticipate controlling on both
the drift and the diffusion, minimizing this issue.) An essential part of the analysis is a proof that the
contribution to the mean-square error from paths that violate this condition is suitably small.

Adaptivity is widely used in the solution of ODEs in an attempt to optimize effort expended per
unit of accuracy. The adaptation strategy can be viewed heuristically as a fixed time-step algorithm ap-
plied to a time rescaled differential equation (Griffiths, 1988) and it is of interest to study convergence
of the algorithms as the tolerance employed to control adaptation is reduced to zero (Lamba & Stuart,
1998). However, adaptation also confers stability on algorithms constructed from explicit time integra-
tors, resulting in better qualitative behaviour than for fixed time-step counter-parts. This viewpoint was
articulated explicitly in Sanz-Serna (1992) and subsequently pursued in Aves et al. (1997), Higham &
Stuart (1998) and Stuart & Humphries (1995), e.g. In particular, the reference Stuart & Humphries
(1995) studies the effect of time discretization on dissipative structures such as those highlighted in
Hale (1988) and Temam (1989). It is shown that certain adaptive strategies have the desirable property
of constraining time steps of explicit integrators, so that the resulting solution update differs in a con-
trolled way from an implicit method. Since many implicit methods have desirable stability properties
(see Dekker & Verwer, 1984; Stuart & Humphries, 1996, Chapter 5), this viewpoint can be used to
facilitate analysis of the stability of adaptive algorithms (Stuart & Humphries, 1995).
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In Mattingly et al. (2002), SDEs with additive noise and vector fields satisfying the dissipativity
structures of Hale (1988) and Temam (1989) are studied. There, and in Roberts & Tweedie (1996)
and Talay (1999, 2002), it is shown that explicit time integrators such as Euler–Maruyama may fail
to be ergodic even when the underlying SDE is geometrically ergodic. The reason is that the (mean)
dissipativity induced by the drift is lost under time discretization. Since this is exactly the issue arising
for explicit integration of dissipative ODEs, and since this issue can be resolved in that context by means
of adaptation, it is natural to study how such adaptive methods impact the ergodicity of explicit methods
for SDEs. In recent years, the numerical solution of SDEs with gradient drift vector fields has been
used as the proposal for a Markov chain Monte Carlo method for sampling from a prescribed density,
known only up to a multiplicative constant—a technique referred to as Metropolis-adjusted Langevin
algorithm (Cassella & Robert, 2002). In this context, it is very desirable that the time discretization
inherits ergodicity. The adaptive scheme proposed here is an approach to ensure this. In this sense,
our work complements a number of recent papers concerned with constructing approximation schemes
which are ergodic in situations where the standard fixed-step Euler–Maruyama scheme fails to be: in
Roberts & Tweedie (1996), a Metropolis–Hastings rejection criterion is used to enforce ergodicity; in
Hansen (2002) and Stramer & Tweedie (1999), local linearization is used and in Mattingly et al. (2002),
implicit methods are used. Although the adaptive method that we analyse here is proved to be convergent
on finite time intervals, it would also be of interest to extend the work of Talay (1990), concerned with
convergence proofs for invariant measure under time discretization, to the adaptive time-step setting
considered here.

In Section 2, we introduce the adaptive algorithm, together with some notations. In Section 3, the
finite-time convergence result for the adaptive method is stated. The proof is given in Section 4 and
proceeds by extending the fixed-step proof given in Higham et al. (2002); the extension is nontrivial
because the adaptivity does not force time steps to zero with the tolerance in all parts of the phase space.
In Section 5, we state the main results of the paper on the stability of the adaptive method. All results
are proved under the dissipativity condition

∃α,β ∈ (0,∞): 〈 f (x), x〉 ! α − β|x |2 ∀ x ∈ Rm, (1.2)

where 〈·, ·〉 is the inner product inducing the Euclidean norm, as well as a boundedness and invertibility
condition on the diffusion matrix g. The results proven include ergodicity and an exponential moment
bound; all mimic known results about the SDE itself under (1.2). Section 6 starts with a number of
a priori estimates for the adaptive scheme of Section 2 and proceeds to proofs of the stability stated in
Section 5. Numerical results studying both convergence and ergodicity are presented in Sections 7–9.
Some concluding remarks and generalizations are given in Section 10.

2. Algorithm

The adaptive algorithm for (1.1) is as follows:

kn = G(xn, kn−1), k−1 = K ,

xn+1 =H(xn,∆n) +
√
∆ng(xn)ηn+1, x0 = X,

where ∆n = 2−kn∆max. Here,

H(x, t) = x + t f (x)
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and

G(x, l) = min{k ∈ Z+: | f (H(x, 2−k∆max)) − f (x)| ! τ and k " l − 1}.

The random variables η j ∈ Rd form an i.i.d. sequence distributed as N (0, I ). The parameter K de-
fines the initial time step and τ > 0 the tolerance. Note that the algorithm defines a Markov chain for
(xn, kn−1) on Rd × Z+.

We may write

x&n = xn +∆n f (xn),

xn+1 = x&n +
√
∆ng(xn)ηn+1.

(2.1)

If K ∈ Z+, then kn ∈ Z+ and the error control enforces the condition

∆n ! min{2∆n−1,∆max},
where ∆max is the fixed maximum time step. Furthermore, we have

| f (x&n) − f (xn)| ! τ.
In the absence of noise, this implies that the difference between an Euler approximation at the next time
step and an explicit second-order approximation is of size O(∆nτ ). In the presence of noise, it imposes a
similar restriction on the means. As mentioned in Section 1, in practice we would anticipate combining
this drift error control with others tuned to the diffusion.

2.1 Notation

The most important notation conceptually is concerned with making relationships between the numer-
ical approximations at discrete steps and the true solution at certain points in time. To do this, we define
Fn to be the sigma-algebra generated by n steps of the Markov chain for (xn, kn−1). Let

tn = tn−1 +∆n−1, t0 = 0,

δ > 0 and define the stopping times N j by N0 = 0 and, for j " 1,
N j = inf

n!0
{
n: tn " δ + tN j−1

}
.

Where the dependence on δ is important we will write N j (δ). It is natural to examine the approximate
process at these stopping times since they are spaced approximately at fixed times in the time variable t.
Theorem 5.2 in Section 5 shows that these stopping times are almost surely finite, under the dissipativity
condition (1.2). Note that

δ− := δ ! tN j − tN j−1 ! δ +∆max := δ+.

When considering strong convergence results, it is necessary to interpret
√
∆nηn+1 in the adaptive

algorithm as the Brownian increment W (tn+1) −W (tn).
We let

y j = xN j+1 and l j = kN j .

The Markov chain for {y j , l j } will be important in our study of long-time behaviour and we will prove
that it is ergodic. Let G j = FN j , the filtration of events up to the j th stopping time.
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It is convenient to define two continuous-time interpolants of the numerical solution. We set

X (t) = xn, t ∈ [tn, tn+1), (2.2)

X(t) = X +
∫ t

0
f (X (s))ds +

∫ t

0
g(X (s))dW (s). (2.3)

Hence, for t ∈ [tn, tn+1)

X(t) = xn + (t − tn) f (xn) + g(xn)[W (t) −W (tn)] (2.4)

= (1− αn(t))xn + αn(t)x&n + g(xn)[W (t) −W (tn)] (2.5)

for αn(t) = (t − tn)/(tn+1 − tn) ∈ [0, 1).
It is sometimes important to know the smallest step size beneath which the error control is always

satisfied, at a given point x . Hence, we define

k&(x) = min{k ∈ Z+: | f (H(x, 2−l∆max)) − f (x)| ! τ ∀ l " k} and k&(B) = sup
x∈B

k&(x),

noting that, by continuity of f , k&(B) is finite if B is bounded.
Because of the boundedness of g, we deduce that there are functions σ (x) and constants σ, a > 0

such that, for η distributed as η1 and independent of x ,

E|g(x)η|2 := σ 2(x) ! σ 2 and E||g(x)η|2 − σ 2(x)|2| ! aσ 4.

The following definitions will be useful:

α̃ = α + 1
2
τ, β̃ = β − 1

2
τ, βn = 1

1+ 2β̃∆n
, γ̄ = 1+ β̃∆max.

We will always assume that τ is chosen small enough so that β̃ > 0. The constant γ− is chosen so that

(1+ t)−1 ! (1− γ−t) ! e−γ−t ∀ t ∈ [0, 2β̃∆max].

3. Convergence result

We start by discussing the error-control mechanism. We define F1(u) by

F1(u) = d f (u) f (u),

the function F2(u, h) by

F2(u, h) := h−1( f (u + h f (u)) − f (u) − hF1(u))

and E(u, h) by

E(u, h) = f (u + h f (u)) − f (u).

Now, since f ∈ C2, Taylor series expansion gives

E(u, h) = h[F1(u) + hF2(u, h)], (3.1)
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where F1 and F2 are as defined above. Note that the error control forces a time step so that the norm of
E(xn,∆n) is of order O(τ ). Estimating the implications of this for the time step ∆n forms the heart of
the convergence proof below.

In order to state the assumptions required for the convergence result, we define, for R, ε " 0, the
sets

Ψ (ε) = {u ∈ Rm : |F1(u)| ! ε}, BR = {u ∈ Rm : |u| ! R} and BR,ε = BR\Ψ (ε)

and introduce the constant KR = supu∈BR ,h∈[0,∆tmax] |F2(u, h)|. Now define the following:

σR := inf{t " 0: |X(t)| " R}, ρR := inf{t " 0: |x(t)| " R}, θR := σR ∧ ρR,

σε := inf{t " 0: |F1(X(t))| ! ε}, ρε := inf{t " 0: |F1(x(t))| ! 2ε}, θε := σε ∧ ρε,
σR,ε := σR ∧ σε, ρR,ε := ρR ∧ ρε, θR,ε := θR ∧ θε .

The first assumption is a local Lipschitz condition on the drift and diffusion coefficients, together
with moment bounds on the true and numerical solutions.

ASSUMPTION 3.1 For each R > 0, there exists a constant CR , depending only on R, such that

| f (a) − f (b)|2 ∨ |g(a) − g(b)|2 ! CR |a − b|2 ∀ a, b ∈ Rm with |a| ∨| b| ! R. (3.2)

For some p > 2, there is a constant A, uniform in τ → 0, such that

E
[

sup
0"t"T

|X(t)|p
]

∨ E
[

sup
0"t"T

|x(t)|p
]

! A. (3.3)

Note that inequality (3.2) is a local Lipschitz assumption which will be satisfied for any f and g in
C2. The inequality (3.3) states that the pth moments of the exact and numerical solution are bounded
for some p > 2. Theorem 5.4 proves (3.3) for the numerical interpolant, under natural assumption on f
and g (see Assumption 5.1). Under the same assumption, such a bound is known to hold for x(t); see
Mao (1997).

We clearly also need an assumption on the local error estimate since if, e.g. the drift term f (u)
were constant, then E(u, h) ≡ 0 and the step-size would, through doubling, reach ∆max, no matter how
small τ is, and convergence cannot occur as τ → 0. Because the function F1(u)maps Rm into itself, the
following assumption on the zeros of F1(u)will hold for generic drift functions f which are nonconstant
on any open set; it does exclude, however, the case of constant drift. Furthermore, the assumption on the
hitting time rules out dimension m = 1.

ASSUMPTION 3.2 Define

.(ε, R) = dH{Ψ (2ε)c ∩ BR,Ψ (ε) ∩ BR}.

For any given R > 0, we assume that .(ε, R) > 0 for all sufficiently small ε > 0, and that .(ε, R) → 0
as ε → 0. Furthermore, the hitting time ρε satisfies, for any X /∈ Ψ (0),

ρε → ∞ as ε → 0 a.s.
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Here, dH denotes the Hausdorff distance. The preceding assumption requires that the contours defin-
ing the boundary of Ψ (ε) are strictly nested as ε increases and bounded. This enables us to show that
the probability of (x(t), X(t)) ∈ (Ψ (2ε)c ∩ BR) × (Ψ (ε) ∩ BR) is small, a key ingredient in the proof.

We now state the strong convergence of the adaptive numerical method, using the continuous-time
interpolant X(t). Note that we do not assume ∆max → 0 for this theorem. Hence, the nonstandard part
of the proof comes from estimating the contribution to the error from regions of phase space where the
time step is not necessarily small as τ → 0.

THEOREM 3.3 Assume that X /∈ Ψ (0). Let Assumptions 3.1 and 3.2 hold. Then, there is ∆c(τ ) such
that, for all ∆−1 < ∆c(τ ) and any T > 0, the numerical solution with continuous-time extension X(t)
satisfies

E
[

sup
0"t"T

|X(t) − x(t)|2
]

→ 0 as τ → 0.

4. Proof of convergence result

The primary technical difficulty to address in convergence proofs for adaptive methods is to relate the
time step to the tolerance τ . Roughly speaking, the formula (3.1) shows that, provided F1(u) 0= 0,
the error control will imply ∆n = O(τ ). We now make this precise. We provide an upper bound on
the time step sequence of numerical solutions that remain within BR,ε , for sufficiently small τ . For
given R, ε > 0, we define the quantities

hR,ε = ε

6KR
and τR,ε = ε2

12KR
.

LEMMA 4.1 For any R, ε > 0, if {xn}Nn=0 ⊆ BR,ε , τ < τR,ε and ∆−1 < 2τ
ε , then

∆n ! min
{
hR,ε,

2τ
ε

}
∀ n : 0 ! n ! N . (4.1)

Proof. The error control implies

|E(xn,∆n)| = ∆n|F1(xn) +∆n F2(xn,∆n)| ! τ.

Note that

∆−1 < 2τR,ε/ε = hR,ε .

We first proceed by contradiction to prove ∆n ! hR,ε ∀ n : 0 ! n ! N . Let 0 ! m ! N be the first
integer such that ∆m > hR,ε . Then, since there is a maximum time step ratio of 2, we have

∆m ∈
(

ε

6KR
,
ε

3KR

]
⇒∆m |F2(xm,∆m)| <

ε

2

⇒ |E(xm,∆m)| > ∆m(ε − ε/2) " εhR,ε

2
= ε2

12KR
= τR,ε > τ.
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Thus, ∆m is not an acceptable time step, contradicting our original assumption and hence the first result
follows. The proof of the bound on the time step in (4.1) now follows immediately since

∆n !
τ

|F1(xn) +∆n F2(xn,∆n)|
! τ

(ε − ε/2) !
2τ
ε

∀ n : 0 ! n ! N .

#Proof of Theorem 3.3. We denote the error by

e(t) := X(t) − x(t).

Recall the Young’s inequality: for r−1 + q−1 = 1,

ab ! δ

r
ar + 1

qδq/r b
q ∀ a, b, δ > 0.

We thus have for any δ > 0,

E
[

sup
0"t"T

|e(t)|2
]

= E
[

sup
0"t"T

|e(t)|21{θR,ε > T }
]

+ E
[

sup
0"t"T

|e(t)|21{θR,ε ! T }
]

! E
[

sup
0"t"T

|e(t ∧ θR,ε)|21{θR,ε > T }
]

+ 2δ
p
E

[

sup
0"t"T

|e(t)|p
]

+
1− 2

p

δ2/(p−2)
P(θR,ε ! T ). (4.2)

Now

P(θR,ε ! T ) = P{θR ! T } + P{θε ! T, θR > T }.

But

P{θR ! T } ! P{σR ! T } + P{ρR ! T },

while

P{θε ! T, θR > T } ! P{ρε ! T } + P{θε ! T, θR > T, ρε > T }.

Thus, we have

P(θR,ε ! T ) ! P(σR ! T ) + P(ρR ! T ) + P(ρε ! T ) + P{θε ! T, θR > T, ρε > T }.

To control the last term, note that whenever θε ! T , θR > T and ρε > T , we know that |e(σε)| "
.(ε, R). Hence, we have

P{θε ! T, θR > T, ρε > T } ! P{|e(T ∧ θR,ε)| " .(ε, R)} ! E|e(T ∧ θR,ε)|2/.(ε, R)2.

Combining the two preceding inequalities gives

P(θR,ε ! T ) ! P(σR ! T ) + P(ρR ! T ) + P(ρε ! T ) + E
(

sup
0"t"T

|e(t ∧ θR,ε)|2
) /

.(ε, R)2.
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By Markov’s inequality,

P{σR ! T },P{ρR ! T } ! A
Rp

so that

P(θR,ε ! T ) ! 2A
Rp + P(ρε ! T ) + E

(

sup
0"T

|e(t ∧ θR,ε)|2
) /

.(ε, R)2. (4.3)

Furthermore,

E
[

sup
0"t"T

|e(t)|p
]

! 2p−1E
[

sup
0"t"T

(|X(t)|p + |x(t)|p)
]

! 2p A. (4.4)

Using (4.3) and (4.4) in (4.2) gives, for ε sufficiently small,

E
[

sup
0"t"T

|e(t)|2
]

!
(
1+ p − 2

pδ2/(p−2).(ε, R)2

)
E

[

sup
0"t"T

|e(t ∧ θR,ε)|2
]

+ 2p+1δA
p

+ (p − 2)
pδ2/(p−2)

[
2A
Rp + P{ρε ! T }

]
. (4.5)

Take any κ > 0. To complete the proof, we choose δ sufficiently small so that the second term on
the right-hand side of (4.5) is bounded by κ/4 and R and ε sufficiently large/small so that the third and
fourth terms are bounded by κ/4. Now reduce τ so that Lemma 4.1 applies. Then, by further reduction
of τ in Lemma 4.2, we upper bound the first term by κ/4. (Lemma 4.2 calculates the error conditioned
on the true and numerical solutions staying within a ball of radius R, and away from small sets where
the error-control mechanism breaks down. With this conditioning, it follows from Lemma 4.1 that we
have ∆n = O(τ ), which is the essence of why Lemma 4.2 holds.)

Consequently, we have

E
[

sup
0"t"T

|X(t) − x(t)|2
]

! κ

and since κ is arbitrary the required result follows. #
In the following, C is a universal constant independent of T, R, ε, δ and τ . Likewise, CR is a

universal constant depending upon R, but independent of T, ε, δ and τ , CR,T is a universal constant
depending upon R and T , but independent of ε, δ and τ and CR,ε,T and so forth are defined similarly.
The actual values of these constants may change from one occurrence to the next.

LEMMA 4.2 Assume that X /∈ Ψ (0) and that τ is sufficiently small for the conditions of Lemma 4.1
to hold. Then, the continuous interpolant of the numerical method, X(t), satisfies the following error
bound:

E
[

sup
0"t"T

|X(t ∧ θR,ε) − x(t ∧ θR,ε)|2
]

! CR,ε,T τ.
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Proof. Using

x(t ∧ θR,ε) := X +
∫ t∧θR,ε

0
f (x(s))ds +

∫ t∧θR,ε

0
g(x(s))dW (s),

(2.3) and the Cauchy–Schwartz inequality, we have that χ := |X(t ∧ θR,ε) − x(t ∧ θR,ε)|2 satisfies

χ =
∣∣∣∣

∫ t∧θR,ε

0
( f (X (s)) − f (x(s)))ds +

∫ t∧θR,ε

0
(g(X (s)) − g(x(s)))dW (s)

∣∣∣∣
2

! 2
[

T
∫ t∧θR,ε

0
| f (X (s)) − f (x(s))|2 ds +

∣∣∣∣

∫ t∧θR,ε

0
(g(X (s)) − g(x(s)))dW (s)

∣∣∣∣
2]

.

Let

E(s) :=
[

sup
0"t"s

|X(t ∧ θR,ε) − x(t ∧ θR,ε)|2
]

.

Then, from the local Lipschitz condition (3.2) and the Doob–Kolmogorov martingale inequality
(Rogers & Williams, 2000), we have for any t∗ ! T

EE(t∗)! 2CR(T + 4)E
∫ t∗∧θR,ε

0
|X (s) − x(s)|2 ds

! 4CR(T + 4)E
∫ t∗∧θR,ε

0
[|X (s) − X(s)|2 + |X(s) − x(s)|2]ds

! 4CR(T + 4)

[

E
∫ t∗∧θR,ε

0
|X (s) − X(s)|2 ds +

∫ t∗

0
EE(s)ds

]

. (4.6)

Given s ∈ [0, T ∧ θR,ε), let ks be the integer for which s ∈ [tks , tks+1). Note that tks is a stopping
time because∆ks is a deterministic function of (xks ,∆ks−1). We now bound the right-hand side in (4.6).
From the local Lipschitz condition (3.2), a straightforward calculation shows that

|X (s) − X(s)|2 ! CR

(∣∣xks
∣∣2 + 1

) (
∆2ks +

∣∣W (s) −W
(
tks

)∣∣2
)

.

Now, for s < θR,ε , using Lemma 4.1,

∣∣W (s) −W
(
tks

)∣∣2 = s − tks + 2
∫ s

tks

[
W (l) −W

(
tks

)]
dW (l)

!
(
s − tks

)
[1+ I (s)] ! 2τ

ε
[1+ I (s)].

Here,

I (s) = 2(
s − tks

)

∣∣∣∣∣

∫ s

tks

[
W (l) −W

(
tks

)]
dW (l)

∣∣∣∣∣ .
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LetHs denote the σ -algebra of Brownian paths up to time tks . Then, conditioned onHs , we have

EI (s) !
√
2. (4.7)

Thus, using Lemma 4.1, (3.3) and the Lyapunov inequality (Kloeden & Platen, 1991),

E
∫ t∗∧θR,ε

0
|X (s) − X(s)|2 ds !E

∫ t∗∧θR,ε

0
CR

(∣∣xks
∣∣2 + 1

) (
4τ 2/ε2 +

∣∣W (s) −W
(
tks

)∣∣2
)
ds

!CR,ετE
∫ t∗

0

(
1+

∣∣xks
∣∣2

)
(1+ I (s))ds

!CR,ε,T (A2/p+1)τ.

To obtain the last line, we condition on Hs so that |xks |2 and I (s) are independent; we then use (4.7)
and the assumed moment bound.

In (4.6), we then have by Lemma 4.1,

EE(t∗)!CR,ε,T τ + 4CR,T

∫ t∗

0
EE(s)ds.

Applying the Gronwall inequality, we obtain

E
[

sup
0"t"T

(X(t ∧ θR,ε) − x(t ∧ θR,ε))
2

]

! C(R, ε, T )τ.

#

5. Stability results

For all our stability results, in this and the following sections, we make the assumption that (1.2)
holds, together with some conditions on the diffusion matrix. To be explicit, we make the following
assumption:

ASSUMPTION 5.1 There exists finite positive α,β such that

〈 f (x), x〉 ! α − β|x |2 ∀ x ∈ Rm,

where 〈·, ·〉 is the inner product inducing the Euclidean norm |·|. Furthermore, m = d and g is globally
bounded and globally invertible.

The assumption is made, without explicit statement, for the remainder of the paper. We also as-
sume, without explicit statement, that τ < 2β so that β̃ > 0. Finally, we assume, also without explicit
statement, that there is at least one point y ∈ Rm such that

k∗(y) = G(y, 1). (5.1)

This may implicitly force upper bounds on τ and∆max, although neither is necessarily restricted by this
assumption. The existence of such a y is implied by Assumption 5.1, which rules out f being identically
constant. Then there exists y for which the function

| f (y + h f (y)) − f (y)|
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is nonzero in a neighbourhood of h = 0 and (5.1) must hold, possibly after enforcing bounds on τ
and ∆max.

Under Assumption 5.1, the solution of (1.1) exists for all t > 0 (Has’minskii, 1980; Mao, 1997)
and the equation is geometrically ergodic (Has’minskii, 1980; Meyn & Tweedie, 1992; Mattingly et al.,
2002). The first stability result ensures that the method will not decrease its step-size in such a way that
it is unable to reach arbitrary finite times.

THEOREM 5.2 The stopping times N j are almost surely finite.

The next result is the main ergodic result of the paper. It ensures that the adaptive method has
an attracting statistical steady state. Letting Ey,l denote the expectation under the Markov chain started
at x0 = y and k−1 = l, we have the following result. (Recall δ occurring in the definition of stopping
times N j .)

THEOREM 5.3 Assume that δ > 5∆max. The Markov chain {y j , l j } =
{
xN j+1, kN j

}
has a unique

invariant measure π . Furthermore, if h: Rm × Z+ → R is measurable and

|h(y, l)| ! 1+ |y|2 ∀ (y, l) ∈ Rm × Z+,

then there exists λ ∈ (0, 1), κ ∈ (0,∞) such that

|Ey0,l0h(yn, ln) − π(h)| ! κλn[1+ |y0|2].
The final result gives a moment bound on the continuous-time interpolants of the numerical solution,

mimicking that for the SDE itself.

THEOREM 5.4 There exists a λ > 0 and a c > 0 so that

E exp
(

λ sup
t∈[0,T ]

‖X (t)‖2
)

! exp(λ|X |2 + cT ),

E exp
(

λ sup
t∈[0,T ]

‖X(t)‖2
)

! exp(λ|X |2 + cT ).

6. Proof of stability results

We start with a number of estimates which will be needed to prove the main results. It is useful to define

ξn+1 = 2
√
∆n〈x&n, g(xn)ηn+1〉, ξ̃n+1 = ∆n[|g(xn)ηn+1|2 − σ 2(xn)],

Mn =
n−1∑

j=0
ξ j+1, M̃n =

n−1∑

j=0
ξ̃ j+1.

Observe that 〈x&n, g(xn)ηn+1〉 is a Gaussian random variable conditioned on the values of xn and x&n .
Hence, the last two expressions are Martingales satisfying the assumptions of Lemma A.1 from the
appendix. Also note that the quadratic variations satisfy

〈M〉n !
n−1∑

j=0
4∆ j |x&j |2σ 2 and 〈M̃〉n !

n−1∑

j=0
a∆2jσ

4. (6.1)

We start with a straightforward lemma.
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LEMMA 6.1 The sequences {x&n} and {xn} satisfy

|x&n |2 ! |xn|2 + 2∆n[α̃ − β̃|x&n |2],

|xn+1|2 ! βn|xn|2 +∆n[2α̃ + σ 2]+ ξn+1 + ξ̃n+1.

Hence,

〈M〉n ! 4σ 2
n−1∑

j=0
|x j |2∆ j + 8σ 2α̃

n−1∑

j=0
∆2j .

Proof. Taking the inner product of the equation

x&n = xn +∆n f (xn),

with x&n and using the fact that the error control implies

| f (x&n) − f (xn)| ! τ,

a straightforward calculation from Stuart & Humphries (1995), using (1.2), gives the first result. To get
the second, simply square the expression (2.1) for xn+1 and use the first, noting that βn ! 1. For the
third, use the first in the bound (6.1) for 〈M〉n . #
LEMMA 6.2 We have

|xn+1|2 ! |X |2 + C0tn+1 + Mn+1 −
1
2
β̃

σ 2
〈M〉n+1 + M̃n+1 − 2〈M̃〉n+1,

where C0 = [2α̃ + 4σ 4∆max]. Furthermore,

P
(

sup
0"n

{|xn|2 − C0tn} " |X |2 + A

)

! 2 exp(−BA),

where B is a positive constant depending only on σ and β̃.

Proof. Squaring the expression for xn+1 in (2.1), bounding |x&n |2 by the first inequality in Lemma 6.1
and summing gives

|xn+1|2 ! |X |2 + C0tn+1 + Sn+1 + S̃n+1,

where

Sn+1 = Mn+1 − 2β̃
n∑

k=0
|x&k |2∆k, S̃n+1 = M̃n+1 − 4σ 4∆maxtn+1

 at University of W
arwick on February 15, 2011

im
ajna.oxfordjournals.org

Downloaded from
 

http://imajna.oxfordjournals.org/


492 H. LAMBA ET AL.

and Mn , M̃n are as before. Using (6.1), one obtains

〈M̃〉n+1 ! 2σ 4∆maxtn+1

and

〈M〉n+1 ! 4σ 2
n∑

k=0
∆k |x&k |2 .

Combining all these produces

Sn+1 ! Mn+1 −
1
2
β̃

σ 2
〈M〉n+1 and S̃n+1 ! M̃n+1 − 2〈M̃〉n+1 .

The probabilistic estimate follows from the exponential martingale estimates from the appendix. #
COROLLARY 6.3 There exists a universal λ > 0 and C1 > 0, so that for any stopping time N with
0 ! tN ! t∗ almost surely, for some fixed number t∗, one has

E exp
(

λ sup
0"n"N

|xn|2
)

! C1 exp(λ|X |2 + λC0t∗).

Proof. The result follows from Lemma 6.2 and the observation that

P
(

sup
0"n"N

|xn|2 " |X |2 + C0t∗ + A

)

! P
(

sup
0"n

{|xn|2 − C0tn} " |X |2 + A

)

.

#

LEMMA 6.4 The Markov chain {xN j } j∈Z+ satisfies the Foster–Lyapunov drift condition

E
{∣∣xN j+1

∣∣2 ∣∣FN j

}
! exp(−2γ−β̃δ−)

∣∣xN j

∣∣2 + exp(2β̃δ+)[2α̃ + σ 2]δ+.

That is

E{|y j+1|2|G j } ! exp(−2γ−β̃δ−)|y j |2 + exp(2β̃δ+)[2α̃ + σ 2]δ+.

Proof. Note that (1+ x)−1 ! e−γ−x for all x ∈ [0, 2∆maxβ̃]. From Lemma 6.1, we have

|xn+1|2 ! βn|xn|2 + κn + ξn+1 + ξ̃n+1,

where κn := ∆n[2α̃ + σ 2]. Defining

γ j =




j−1∏

l=0
β−1l



 ,
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we obtain

E
(
γN j+1

∣∣xN j+1
∣∣2 |FN j

)
! γN j

∣∣xN j

∣∣2 + E




N j+1−1∑

l=N j

γl+1κl
∣∣FN j



 .

Now
N j+1−1∑

l=N j

∆ j ! δ +∆max = δ+ and
N j+1−1∑

l=N j

∆ j " δ = δ−. (6.2)

Straightforward calculations show that

γN j+1 " exp(2β̃γ−δ)γN j

and

γl+1 ! exp(2β̃δ+)γN j .

Hence,

E
{∣∣xN j+1

∣∣2 ∣∣FN j

}
! exp(−2γ−β̃δ−)

∣∣xN j

∣∣2 + exp(2β̃δ+)E






N j+1−1∑

l=N j

κl
∣∣FN j






and for the required result, we need to bound the last term. By (6.2), we have

E




N j+1−1∑

l=N j

∆l
∣∣FN j



 ! δ +∆max = δ+

and we obtain

E




N j+1−1∑

l=N j

κl
∣∣FN j



 ! [2α̃ + σ 2]δ+.

This gives the desired bound. #
We now proceed to prove the ergodicity and moment bound. We prove geometric ergodicity of the

Markov chain {y j , l j } by using the approach highlighted in Meyn & Tweedie (1992). In particular,
we use a slight modification of Theorem 2.5 in Mattingly et al. (2002). Inspection of the proof in the
appendix of that paper shows that, provided an invariant probability measure exists, and this follows
from Lemma 6.4, the set C in the minorization condition need not be compact: it simply needs to be a
set to which return times have exponentially decaying tails.

Let

P(y, l, A) = P((y1, l1) ∈ A|(y0, l0) = (y, l)),

where

A ∈ B(Rm) ⊗ B(Z+), (y, l) ∈ Rm × Z+.

We write A = (Ay, Al) with Ay ∈ B(Rm) and Al ∈ B(Z+).
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The minorization condition that we use, generalizing that in Lemma 2.5 of Mattingly et al. (2002),
is now proved.1

LEMMA 6.5 Let C be compact. For δ > 5∆max, there is ζ > 0, y ∈ Rm and ε > 0 such that

P(y, l, A) " ζν(A) ∀ A ∈ B(Rm) × B(Z+), (y, l) ∈ C × Z+,

where

ν(A) = Leb{B(y, ε) ∩ Ay} · 1{k&(y) ∈ Al}.

Proof. Let M = N1(2∆max) and N = N1(δ). Recall the definition (5.1) of ȳ. Since tM ! 3∆max almost
surely, setting r2 = R2 + B2, Corollary 6.3 implies that we can choose positive B and R sufficiently
large so that

P
{

sup
0"n"M

|xn|2 ! r2
}

" 1
2

and y ∈ B(0, r) and C ⊆ B(0, R). Label this event, with probability in excess of 12 , by E1. If E1
occurs, then there exists l ∈ {0, . . . , M} such that kl ! k∗(B(0, r)). This follows by contradiction, since
otherwise ∆ j = 2 j+1∆−1 for j ∈ {0, . . . , M} and

tM =
M−1∑

j=0
∆ j ! ∆max

M−1∑

j=0
2 j−M ! ∆max

∞∑

k=1
2−k = ∆max.

However, tM " 2∆max, a contradiction. Once k j ! k∗(B(0, r)), it follows that kn ! k∗(B(0, r)) for
n ∈ {l, . . . , M} as a consequence of the step-size selection mechanism.

Assume that E1 has occurred. By choice of ε sufficiently small, B(y, ε) ⊆ B(0, r). We now choose
the η j for j ∈ {M, . . . , N − 1} to ensure the event E2, namely, that

x j ∈ B(y, ε), M + 1 ! j ! N .

It is possible to ensure that the event has probability p1 > 0, uniformly for X ∈ C and k0 ∈ Z+. The
fact that xM ∈ B(0, r) gives uniformity in X ∈ C. We prove an upper bound on the number of steps
after M to get probability independent of k−1 ∈ Z+. To do this, note that kn ! k∗(B(0, r)) now for
n ∈ {j, . . . , N }, again as a consequence of the step-size mechanism. In fact kN = k∗(B(y, ε)) = k∗(y).
This follows because an argument analogous to that above proves that there is l ∈ {M + 1, . . . , N }
for which kn ! k∗(B(y, ε)) = k∗(y) for n ∈ {l, . . . , N }. Now k∗(B(y, ε)) = k∗(y), by continuity of
f and possibly by further reduction of ε. Since k j < k∗(y) = G(y, 1) is not possible, it follows that
kN = k∗(y).

If E1 and E2 both occur, then, for some γ > 0, the probability that y1 = xN1(δ) ∈ Ay is bounded
below by γLeb{Ay ∩ B(y, ε)}, for some γ > 0, because

xN = x&N−1 +
√
∆N−1g(x&N−1)ηN ,

1Note that although C is compact in the following, C × Z+ is not.
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xN−1 is in a compact set and g is invertible. The fact that η j are i.i.d Gaussian gives the required lower
bound in terms of Lebesgue measure. The final result follows with ζ = γ p1/2. #

With this minorization condition in hand, we turn to the proof of ergodicity.

Proof of Theorem 5.3. The existence of an invariant measure π follows from the Foster–Lyapunov
drift condition of Lemma 6.4, which gives tightness of the Krylov–Bogoljubov measures. Lemma 6.4
shows that the chain {y j , l j } repeatedly returns to the set C × Z+ and that the return times have expo-
nentially decaying tails. This generalizes Assumption 2.2 in Mattingly et al. (2002). Lemma 6.5 gives a
minorization condition enabling a coupling. Together these two results give Theorem 5.3, by applying a
straightforward modification of the arguments in Appendix A of Mattingly et al. (2002). #
Proof of Theorem 5.4. We define the stopping time N by

N = inf
n!0

{n : tn " T }

noting that

T ! tN ! T +∆max.

Note that (2.5) implies that

sup
0"t"tN

|X(t)|2 ! C

[

1+ sup
0"k"N

|xk |2 + sup
(t−s)∈[0,∆max],s∈[0,T ]

|W (t) −W (s)|2
]

.

Here, we have used the fact that by Lemma 6.1,

|x&k |2 ! |xk |2 + 2∆maxα̃.

From this relationship between the supremum of moments of X(t) and X (t), and from the properties of
increments of Brownian motion, it follows that to prove Theorem 5.4, it suffices to bound

E exp
(

λ sup
0"k"N

|xk |2
)

for some λ > 0. However, this follows from the fact that tN ! T +∆max and Corollary 6.3. #

7. Numerical experiments: pathwise convergence

We now provide some numerical experiments to complement the analysis of the previous sections.
We begin, in this section, by demonstrating the importance of Assumption 3.2 in ensuring pathwise
convergence. In Section 8, we discuss an abstraction of the method presented and studied in detail
in this paper. Section 9 then shows how this abstraction leads to a variant of the method discussed
here, tailored to the study of damped-driven Hamiltonian systems. We provide numerical experiments
showing the efficiency of the methods at capturing the system’s invariant measure.

In the convergence analysis, we made Assumption 3.2, the second part of which was to assume that
the hitting time of small neighbourhoods of the set Ψ (0) is large with high probability. We now illustrate
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FIG. 1. Effect of the ‘bad set’ Ψ (ε) in different dimensions. On the right, the numerically obtained density and true analytic
density (dashed line). On the left, the average log of the step-size taken versus the spatial position of x1.
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FIG. 2. Gradient problem—Time step histogram.

that this is not simply a technical assumption. We study the test problem

dy = y − y3 + dW, (7.1)

where W is a real-valued scalar Brownian motion. The set Ψ (0) comprises the points where f (y) :=
y − y3 satisfies f (y) = 0 and f ′(y) = 0, i.e. the points ±1, 0, ± 1√

3
. Since the problem is 1D, the

hitting time to neighbourhoods of these points is not small.
For contrast, we apply the algorithm to the systems in 2D and 3D found by making identical copies

of (7.1) in the extra dimensions with each dimension driven by an independent noise. Thus, the set Ψ (0)
comprises the tensor product of the set ±1, 0, ± 1√

3
in the appropriate number of dimensions. Small

neighbourhoods of this set do have large hitting time, with high probability. To illustrate the effect of
this difference between hitting times, we show, in Fig. 1, the average time step taken at a given location
in space for (the first component of) y. Note that in 1D, the algorithm allows quite large average steps in
the neighbourhood of the points±1, 0, ± 1√

3
. This does not happen in dimensions two and three because

the probability that the other components of y is also near to the set±1, 0, ± 1√
3
at the same time is very

small. The effect of this large choice of time steps in 1D is apparent in the empirical densities for (the
first component of) y which are also shown in Fig. 1; these are generated by binning 200 paths of the
SDE (7.1) over 200 time units. It is important to realize that, although the algorithm in 1D makes a very
poor approximation of the empirical density, this occurs only because of a relatively small number of
poorly chosen time steps. Figure 2 shows a histogram of the time steps (kn values) taken in 1D, 2D and
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3D. The plots are nearly identical, except that in 1D the algorithm allows the method to take a small
number of larger steps with kn = 4.

8. Generalizations of the method

The method given in (2.1) can be seen as a simple instance of a general class of methods based on
comparing, with some error metric, one time step given by two methods of the form

xn+1 = xn + F(xn,∆n+1)∆n+1 + G(xn,∆n+1)
√
∆n+1ηn,

xn+1 = xn + F(xn,∆n+1)∆n+1 + G(xn,∆n+1)
√
∆n+1ηn ,

(8.1)

where F, F,G,G are deterministic functions. The method in (2.1) was based on comparing the pair of
explicit methods given by

xn+1 = x&n +
√
∆n+1g(xn)ηn,

xn+1 = x̂n +
√
∆n+1g(x&n)ηn,

where

x&n = xn +∆n+1 f (xn),

x̂n = xn + 1
2
∆n+1[ f (xn) + f (x&n)].

In (2.1), closeness was measured by the difference, divided by the step-size, between the conditional
expectations of one time step of the two different methods; this gives

2
∆n+1

|Exn+1 − Exn+1| = 2|F(xn,∆n+1) − F̄(xn,∆n+1)| = | f (xn) − f (x&n)|. (8.2)

From this point of view, it is clear that the method discussed thus far is one of the large family of
methods. Depending on the setting, one might want to compare methods other than the simple Euler
methods used thus far. Also one can consider different error measures. In Section 9, we study a damped-
driven Hamiltonian problem and use ideas from symplectic integration to design an appropriate method.
In the discussion at the end of the article, we return to the question of different error measures.

9. Numerical experiments: long-time simulations

In this section, we demonstrate that the ideas established for the rather specific adaptive scheme studied,
and for the particular hypotheses on the drift and diffusion, extend to a wider class of SDEs and adaptive
methods.

As a test problem, we consider the Langevin equation

dq = p dt,

dp = −[δ(q)p +Φ ′(q)]dt + g(q)dW,
(9.1)

where 2δ(q) = g2(q),

Φ(q) = 1
4
(1− q2)2 and g(q) = 4(5q2 + 1)

5(q2 + 1)
.
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The preceding theory does not apply to this system, since it is not uniformly elliptic; furthermore, it fails
to satisfy (1.2). However, it does satisfy a Foster–Lyapunov drift condition and since it is hypoelliptic the
equation itself can be proven geometrically ergodic (Mattingly et al., 2002). In Mattingly et al. (2002),
it was shown that the implicit Euler scheme was ergodic when applied to (9.1), and a similar analysis
would apply to a variety of implicit methods. Since the adaptive schemes we study in this section enforce
closeness to such implicit methods, we believe that analysis similar to that in the Section 8 will extend
to this Langevin equation and to the adaptive numerical methods studied here.

We will compare two different methods based on different choices of the stepping method. The first
is the Euler-based scheme given in (2.1). The second is the following scheme:

qn+1 = q&n,

pn+1 = p&n + g(q&n)
√
∆nηn+1,

qn+1 = qn +
(
pn + p&n
2

)
∆n,

pn+1 = pn −Φ ′
(
qn + q&n
2

)
∆n − δ

(
qn + q&n
2

)(
pn + p&n
2

)
∆n

+ g
(
qn + q&n
2

) √
∆nηn+1,

(9.2)

where

q&n = qn + pn∆n,

p&n = pn −Φ ′(q&n)∆n − δ(q&n)pn∆n .

Once again we will use the comparisons between the two updates (with and without bars) to control the
error. As before, we control on the difference in the expected step. The point of the particular form used
here is that, in the absence of noise and damping, the adaptation constrains the scheme to take steps
which are close to those of the symplectic midpoint scheme, known to be advantageous for Hamiltonian
problems; if the noise and damping are small, we expect the Hamiltonian structure to be important.

In both the Euler and the Symplectic case, the stepping methods take the form

qn+1 = qn + f (1)
n ∆n,

pn+1 = pn + f (2)
n ∆n + gn

√
∆nηn+1,

qn+1 = qn + f (1)
n ∆n,

pn+1 = pn + f (2)
n ∆n + gn

√
∆nηn+1,

(9.3)

where fn , f n , gn and gn are adapted to Fn−1. In this notation, the metric becomes

[( f (1)
n − f (1)

n )2 + ( f (2)
n − f (2)

n )2]
1
2 < τ.

In the remainder of this section, we present numerical experiments with the two methods just out-
lined. We study the qualitative approximation of the invariant measure, quantify this approximation and
measure its efficiency and study the behaviour of time steps generated.
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FIG. 3. Distribution of q, p with different τ for Euler method. The value of tolerance τ is on the left of each figure.

Figure 3 plots the numerically obtained time average of the position p and momentum q for various
values of the tolerance τ . The dotted lines are the true invariant measure of the underling SDE which
can be computed analytically in this particular case. Note that the method appears stable for all values
of τ , in contrast to the forward Euler method which blows up when applied to this equation. Though
apparently stable, the results are far from the true distribution for large τ . Figure 3 gives the analogous
plots for the adaptive symplectic method given in (9.3). Note that these methods seem to do a much
better job of reproducing the invariant measure faithfully at large τ .

It is also important to study accuracy per unit of computational effort. Figure 5 gives plots of the
error in the total variation norm (the L1 distance between the numerically computed time averages
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FIG. 4. Distribution of q, p with different τ for the symplectic method. The value of tolerance τ is on the left of each figure.

and the exact analytic answer) versus the τ used and versus the steps per unit of time; the latter
provides a measure of unit cost. The top plots are for the momentum q and the bottom for the
position p. The plots on the right also include two fixed-step methods, one using the simple forward
Euler scheme and the second using the first of the symplectic schemes. The fixed-step Euler scheme
blows up for steps larger than those given. We make the following observations on the basis of this
experiment:

• The fixed-step symplectic method is the most efficient at small time steps.

• The adaptive symplectic method is considerably more efficient than the adaptive and fixed-step Euler
methods.

• The adaptive symplectic method is the most robust method, providing reasonable approximations to
the invariant density for a wide range of τ.
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FIG. 5. Total variation error versus τ for position (top left) and the momentum (bottom left). Total variation error versus τ for
steps per unit time (top right) and the momentum (bottom right).

Note that the adaptive methods have not been optimized and with careful attention might well beat
the fixed-step methods, both as measured by accuracy per unit cost, as well as by robustness. Further
study of this issue is required.

10. Conclusions

This paper proposes a simple adaptive strategy for SDEs which is designed to enforce geometric ergo-
dicity, when it is present in the equation to be approximated; without adaptation, methods such as
explicit Euler may destroy ergodicity. As well as proving ergodicity, we also prove some exponen-
tial moment bounds on the numerical solution, again mimicking those for the SDE itself. Further-
more, we prove finite-time convergence of the numerical method; this is nontrivial because we do not
assume (and it is not true in general) that the time-step sequence tends to zero with user-input
tolerance. It would be of interest to transfer this finite-time convergence to a result concerning conver-
gence of the invariant measures, something which is known for fixed time-step schemes (Talay, 1990,
1999, 2002).

As discussed in Section 8, the scheme we study in detail here is prototypical of more advanced
schemes comparing two more sophisticated methods and controlling both on drift and on diffusion.
Here, we have mainly used simple forward Euler methods and controlled only on the drift: our error
measure is based on the conditional means. The split-step approach we take allows for additional terms
to be added to the error measure, to ensure that the diffusion step is also controlled. The general idea
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is to enforce the closeness of one step by two different methods. One has freedom in the choice of the
methods and the measure of closeness. We now briefly mention to other error measures which make this
idea specific.

For simplicity, let us assume work in 1D though the ideas generalize directly to higher dimensions.
The simple error control given in (8.2) controls only the difference in the expectation of one step of the
two methods. However, one can also use measure which ensures the closeness of the entire distribution
of one time step of the two methods. Given xn = x̄n and ∆n+1, one step of a method of the form (8.1)
is Gaussian. Hence, it is reasonable to require that the standard deviations are close to each other. The
error criterion would then be

1
∆n+1

|Exn+1 − Exn+1| + 1√
∆n+1

|SD(xn+1) − SD(x̄n+1)|

= |F(xn,∆n+1) − F̄(xn,∆n+1)| + ||G(xn,∆n+1)| −| Ḡ(xn,∆n+1)|| < τ.

In some ways, comparing the mean and standard deviations is rather arbitrary. A more rational choice
might be to ensure the closeness of the total variation distance of the densities after one time step of
the two methods. A simple way to do this is to compare the relative entropy of the two distributions.
Since the distributions are Gaussian, this can be done explicitly. One finds that the criterion based on
controlling relative entropy per unit step is

(F(xn,∆n+1) − F̄(xn,∆n+1))2

G(xn,∆n+1)2
+

(
Ḡ(xn,∆n+1)2

G(xn,∆n+1)2
− 1

)

− log Ḡ(xn,∆n+1)2

G(xn,∆n+1)2
< 2τ .

It is interesting to note that this measure correctly captures the fact that one should measure the error in
the drift on the scale of the variance. In other words, if the variance is large, one does not need to be as
accurate in calculating the drift as it will be washed out by the noise anyway. Since the above measure
is expensive to calculate, one can use the fact that ḠG −1 is small to obtain the asymptotically equivalent
criterion

(F(xn,∆n+1) − F̄(xn,∆n+1))2

G(xn,∆n+1)2
+ 1
2

(
Ḡ(xn,∆n+1)2

G(xn,∆n+1)2
− 1

)2
< 2τ.
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Appendix A. Two exponential martingale estimates in discrete time

Let {Fn , n " 0} be a filtration. Let ηk be a sequence of random variables with ηk adapted to Fk and
such that ηk+1 conditioned on Fk is normal with mean zero and variance σ 2k = E[η2k+1|Fk] < ∞. We
define the following processes:

Mn =
n∑

k=1
ηk, M̃n =

n∑

k=1
η2k − σ 2k−1,

〈M〉n =
n−1∑

k=0
σ 2k , 〈M̃〉n =

n−1∑

k=0
2σ 4k .

As the notation suggests, 〈M〉n and 〈M̃〉n are the quadratic variation processes in that M2
n − 〈M〉n and

M̃2
n − 〈M̃〉n are local martingales with respect to Fn .

LEMMA A.1 Let α > 0 and β > 0, then the following estimate holds:

P
(
sup
k

(
Mk −

α

2
〈M〉k

)
" β

)
! e−αβ .

If in addition σ 2k ! σ 2∗ ∈ R for all k ∈ N almost surely, then

P
(
sup
k

(
M̃k −

α

2
〈M̃〉k

)
" β

)
! e−

β

λ2 ,

where λ2 = 2σ 2∗ + 1/α.

Proof of Lemma A.1. We begin with the first estimate. Define Nn = exp(αMn − α2

2 〈M〉n) and observe
that Nn = E{Nn+1|Fn}. This in turn implies that E|Nn| = ENn = N0 = 1 < ∞. Combining these
facts, we see that Nn is a martingale. Hence, the Doob–Kolmogorov martingale inequality (Rogers &
Williams, 2000) implies

P
(
sup
n
Nn > c

)
! EN0

c
= 1
c
.

Since P(supn(Mn − α
2 〈M〉n) " β) = P(supn Nn > eαβ), the proof is complete.
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The second estimate is obtained in the same way after some preliminary calculations. We de-
fine φ(x) = 1

2 ln(1 − 2x) and ψ(x, b) = −x − bx2. Observe that cψ(x, b) = ψ(cx, b/c) and
φ(x) " ψ(x, b), if x ∈ [0, 12 ( b−1b )] and b > 1. Now

P
(
sup
n

(
M̃n −

α

2
〈M̃〉n

)
" β

)
= P

(

sup
n

n∑

k=1

η2k
λ2

+ 1
λ2
ψ(σ 2k−1,α) " β

λ2

)

.

Setting λ2 = 2σ 2∗ + 1
α , we have that

1
λ2
ψ(σ 2k ,α) = ψ(

σ 2k
λ2

, λ2α) ! φ(
σ 2k
λ2

) for all k " 0 since σ 2k ! σ 2∗
and λ2α > 1. Defining

Ñn = exp

( n∑

k=1

η2k
λ2

+ φ

(
σ 2k−1
λ2

))

,

we have

P
(
sup
n

(
M̃n −

α

2
〈M̃〉n

)
" β

)
! P

(
sup
n
Ñn " e

β

λ2

)
.

Now recall that if ξ is a unit Gaussian random variable, then E exp(cξ2) = 1/
√
1− 2c for c ∈ (− 1

2 ,
1
2 ).

By construction, ηkλ , conditioned on Fk−1, is a Gaussian random variable with variance less than 1
2 .

Hence,

E
(

exp

(
η2k
λ2

) ∣∣∣∣Fk−1

)

= exp

(

−φ
(
σ 2k−1
λ2

))

.

Using this, one sees that E{Ñn+1|Fn} = Ñn and E|Ñn| = 1 < ∞, hence Ñn is a martingale. By
the same argument as before using the Doob–Kolmogorov martingale inequality, we obtain the quoted
result. #
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