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Abstract. We introduce a stochastic PDE based approach to sampling paths of SDEs, con-
ditional on observations. The SPDEs are derived by generalising the Langevin MCMC method to
infinite dimensions. Various applications are described, including sampling paths subject to two
end-point conditions (bridges) and nonlinear filter/smoothers.
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1. Introduction
The Markov chain Monte Carlo (MCMC) method is an important tool for solving

computational problems in Bayesian statistics [4, 13, 15]. The main idea is to sample
from the target density by constructing a Markov chain that has the target density
as its stationary distribution. Assuming that the Markov chain is ergodic, statistical
quantities can be computed by simulating the Markov chain and computing statistics
aggregated over time.

An important basic concept in sampling is Langevin dynamics [15]. Suppose that
p∝ exp(−V ) is a target density on Rn. The stochastic differential equation (SDE)

dx

dt
=−∇V (x)+

√
2

dW

dt
(1.1)

has p as its invariant density — it satisfies the stationary Fokker-Planck equation

0=∇ ·(p∇V +∇p). (1.2)

So, assuming that (1.1) is ergodic, x(t) produces samples from the target density p as
t→∞. The empirical measure generated by (1.1) converges to the invariant measure
whose density p solves (1.2) and the ergodic theorem gives that

∫
f(ζ)p(ζ)dζ = lim

T→∞

1
T

∫ T

0
f
(
x(t)

)
dt. (1.3)

Thus averages over p can be computed by taking time averages over a trajectory
of (1.1).

The Langevin method is important for three primary reasons. Firstly, in its
own right as the basis for the construction of a variety of MCMC algorithms. For
example (1.1) can be discretised in time by the Euler-Maruyama method [12] (a
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Metropolis step can be added to remove bias if the time step is such that the bias
is significant). Secondly it is also important conceptually as it arises as the diffusion
limit of a number of other MCMC algorithms and hence unifies a variety of sampling
methods [17]. Thirdly, there are also a number of variants of the method, which
are important, such as: generalisations to second order dynamics in time (which is
actually the equation referred to by the name Langevin in the molecular modelling
context), whilst preserving the invariant density as p when marginalising dx

dt out and
retaining x; pre-conditioning by a positive-definite symmetric matrix A to obtain

dx

dt
=−A∇V (x)dt+

√
2A1/2 dW

dt
, (1.4)

which also preserves the invariant density as p.
For these three reasons it is natural to study Langevin methods when attempt-

ing to sample in infinite dimensions. In this paper we study a number of infinite
dimensional sampling problems, related to conditional sampling of paths of SDEs.
We construct Langevin methods for their resolution. This leads naturally to some
interesting stochastic PDEs (SPDEs).

1.1. Outline of the Paper. In section 2 we study the sampling of paths
of SDEs, subject to end-point conditions on both ends of a finite interval (bridges).
We state an SPDE which performs this sampling, and corresponds to an infinite
dimensional Langevin technique.

In section 3 we study nonlinear filtering/smoothing by the Langevin technique,
developing a methodology conceptually quite different from the particle filter methods
currently used for the filtering problem, which are based on the Zakai equation. Again
we state an SPDE which solves the sampling problem, and corresponds to an infinite
dimensional Langevin technique. For off-line data, filter/smoothing may be more
natural than pure filtering, and hence our method is of interest.

For both the sampling problems in sections 2 and 3, the path we wish to sample
is a random variable depending on both time and randomness in form of the driving
noise. The conditioning gives information about that noise and creates a highly
non-trivial sampling problem. In some cases (see the discussion below) the SPDEs
we write down can be proven to sample from the required distribution. However,
there are problems for which proving this appears non-trivial and open problems
remain. For this reason we present a robust, but currently non-rigorous, method
for the derivation of these SPDEs, via discretisation. (The discretisation used to
derive the SPDEs is not the discretisation technique that we use to solve the SPDEs
in section 5.) Section 4 contains the heuristics which underly the derivation of the
SPDEs in sections 2 and 3 by this discretisation approach. These heuristics rely on
discretising the infinite dimensional problem, applying the finite dimensional Langevin
algorithm (1.1), and passing to a continuum limit; numerical results are presented
which resolve certain ambiguities in this limiting procedure.

In section 5 we describe some numerical experiments which illustrate the sampling
methods we have introduced. All the experiments are performed by applying standard
finite difference techniques to discretise the SPDEs which have been constructed to
perform infinite dimensional sampling.

1.2. Conclusions and Future Directions. To the best of our knowledge
the methodology introduced in this paper is new, in the generality considered here.
The SPDEs are derived by the method of discretisation of the sampling problem and
passage to the limit. This is a flexible tool applicable to many problems. We end this
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introduction by highlighting relationships between this work and existing literature,
and by describing the many future directions in which this work can be taken.

(i) Rigorous justification of sampling properties for bridge processes. For the case
of bridge sampling, discussed in section 2, the SPDE that we write down can
be proven to perform the desired sampling. This is done by considering the
bridge process as a Gibbs measure for stationary paths of an SDE defined on
the whole real line, and is described in [2]. In that paper bridge processes are
considered for SDEs whose drift is of gradient form. This idea is used to study
the connection between invariant measures of SPDEs and bridge processes in
[16] and its use in the context of sampling is studied further in [11]). Many
open questions remain, particularly bridge processes in SDEs where the drift
is not in gradient form.

(ii) Rigorous justification of sampling properties for nonlinear filtering/ smooth-
ing. For the Kalman case, found by taking linear drift vector fields in section
3, the SPDE which we write down can be proven to sample from the Kalman
filter/smoother. This is demonstrated in [11]. Many open problems remain,
in particular for nonlinear drift fields.

(iii) Passage to the limit in finite difference equations. In section 4 we derive
the SPDEs heuristically through passage to the limit in a system of (finite
difference like) SDEs. This is a useful tool for the general problem of infinite
dimensional sampling. Making this rigorous would be another useful route
by which to justify the SPDE-based sampling method introduced here.

(iv) Rates of convergence in the SPDEs. The ergodicity and rate of convergence
to stationarity in the SPDEs we have derived is central to understanding
their efficiency. A rigorous analysis, using the recently developed theory of
ergodicity for SPDEs of reaction-diffusion type, would be of interest. For
some problems the rate of convergence may be exponentially slow in the non-
dimensional parameters of the problem (e.g. for phase transition problems
such as (5.1), (5.2) which are notoriously difficult to sample). For such prob-
lems the basic SPDE methods proposed here will be inefficient (see also the
discussion of transition path sampling below).

(v) Generalisations of the basic Langevin idea. As described at the start of this
section, the Langevin method is the starting point for a variety of more so-
phisticated methods which are tailored to improve efficiency. For example,
one can make nontrivial choices for A in (1.4) in the infinite dimensional
context. This is initiated in [19], where we choose A to be a Green’s op-
erator. Further analysis of these issues, in the context of metropolising the
time-stepping algorithms used for the SPDEs, will be of central importance
in making the sampling methods presented here into efficient algorithms.

(vi) Applications. It is of interest to investigate use of the methods introduced
here to solve conditional path sampling problems arising in applications such
as signal processing, econometrics and finance.

(vii) Comparative evaluations. Having optimised the methods introduced here,
and their variants, it will be of interest to compare them with other recently
introduced methods for bridge sampling, such as [5, 18, 3], and methods for
nonlinear filtering, such as those outlined in [7]).

(viii) Transition path sampling. Finding transition pathways in chemically reacting
systems is an applied problem of considerable importance ([6, 1, 10, 9]), and
one which can be cast similarly to the bridge sampling problems of section 2.
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It is likely that the SPDE based method proposed here would be ineffectual
for such problems because of the large (relative to the size of the noise)
energy barriers in path space which would need to be traversed to perform
effective sampling; large deviation theory could be used to quantify such
observations. However, it is conceivable that the methodology proposed here
could, in combination with other methods, play a small part in tackling the
hard infinite dimensional sampling problem of transition path sampling.

2. Bridge Paths of SDEs
Suppose that we want to sample paths from the stochastic differential equation

dX

du
=f(X)+σ

dW

du
(2.1a)

subject to the end-point conditions

X(0)=x−, X(1)=x+. (2.1b)

These are bridge paths. Here W is a standard Brownian motion. Such problems
arise naturally in parameter estimation problems in financial time series analysis (for
example in [18]) and in econometrics (see for example [5]).

Langevin sampling on the path space provides a sampler for such constrained
problems. For (2.1) the infinite dimensional Langevin equation is the SPDE

∂x

∂t
=

1
σ2

(
∂2x

∂u2
−f(x)f ′(x)− σ2

2
f ′′(x)

)
+
√

2
∂w

∂t
∀(u,t)∈ [0,1]×(0,∞), (2.2a)

x(0,t)=x−, x(1,t)=x+ ∀t∈ (0,∞), (2.2b)
x(u,0)=x0(u) ∀u∈ [0,1]. (2.2c)

Here ∂w
∂t is a white noise in (u,t).

The derivation of the SPDE (2.2) to sample from (2.1) is given in section 4. The
SPDE as written is purely formal. To make sense of solutions we should apply the
variation of constants formula based on the heat operator

(
∂
∂t−

1
σ2

∂2

∂u2

)
, as described

in [8]. Although stated for scalar X the methodology generalises to vector valued X.
To avoid confusion we adopt the following convention: we use upper case X for

solutions of the SDEs from which we sample paths and denote the corresponding
time by u; we denote the (finite or infinite dimensional) Langevin process by x with
algorithmic time t.

If the end-point conditions (2.1b) are replaced by leaving the path free at u=0,1
then we obtain the boundary conditions

∂x

∂u
(0,t)=f

(
x(0,t)

)
,

∂x

∂u
(1,t)=f

(
x(1,t)

)
∀t∈ (0,∞) (2.3)

in place of (2.2b). Furthermore, the boundary conditions from (2.2b) and (2.3) can be
combined to specify X at u=0 and leave it free at u=1. This leads to the boundary
conditions

x(0,t)=x−,
∂x

∂u
(1,t)=f

(
x(1,t)

)
∀t∈ (0,∞). (2.4)

Note, however, that in the case of a free right end-point condition with X specified at
u=0, there are much simpler methods available for sampling [12]. Of course we do
not recommend use of the infinite dimensional Langevin method for such problems.
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3. Nonlinear Filtering and Smoothing
Consider the system of stochastic differential equations

signal:
dX

du
=f(X)+σ

dW

du
, X(0)∼N (a,δ2)

observation:
dY

du
=g(X)+γ

dV

du
, Y (0)=0, (3.1)

where W and V are standard Brownian motions. We think about this pair of equations
as describing a noisily observed signal. The first equation gives the stochastic evolution
of the signal. The second equation describes a noisy observation of this state.

Our aim is to sample paths of the signal X conditioned on a given observation
path Y ; more precisely, to find X(v) given (Y (u))u∈[0,1], for all v∈ [0,1]. The Langevin
strategy can be applied to this situation, too. The resulting SPDE is

∂x

∂t
=

1
σ2

(
∂2x

∂u2
−f(x)f ′(x)− σ2

2
f ′′(x)

)

+
g′(x)
γ2

(
dY

du
−g(x)

)
+
√

2
∂w

∂t
∀(u,t)∈ [0,1]×(0,∞),

(3.2a)

∂x

∂u
(0,t)=f

(
x(0,t)

)
+

σ2

δ2

(
x(0,t)−a

)
,

∂x

∂u
(1,t)=f

(
x(1,t)

)
∀t∈ (0,∞), (3.2b)

x(u,0)=x0(u) ∀u∈ [0,1]. (3.2c)

As in the previous section, ∂w
∂t is a white noise in (u,t).

Notice that if f,g are linear then we are in a setup which enables us to obtain the
Kalman filter/smoother, namely

X̂(v)=E
(
X(v)

∣∣ (Y (u))u∈[0,1]

)
∀v∈ [0,1].

To be precise, X̂ can be found as

X̂(v)= lim
T→∞

1
T

∫ t

0
x(v,t)dt.

Moreover, the empirical measure generated by (x(·,t))t≥0 enables us to compute other
statistics associated with the Kalman filter/smoother such as covariances. However
the primary interest in (3.2) stems from the case where f,g are nonlinear and we obtain
a simple method for finding the nonlinear filter/smoother. For off-line situations this
may be competitive with particle filters (see [7]).

The derivation of the SPDE (3.2) to sample from X given Y is given in the next
section. As in the previous section the SPDE (3.2) is purely formal and should be
given a rigorous interpretation through the variation of constants formula as in [8].
Again, generalisations to vector valued X and Y are possible.

4. Derivation and Numerical Justification
The purpose of this section is to derive the SPDEs written down in the previous

two sections. As mentioned in the introduction, there are a number of special cases
of the SPDEs introduced here which can be justified cleanly and directly on a case
by case basis. However, discretisation and passage to the limit, whilst somewhat
unwieldy, appears to be a useful and flexible tool which applies to a wide range of
problems in a unified fashion. Hence we describe it.
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It is important to appreciate that what we describe in this section is a method for
deriving the SPDEs stated in the previous two sections, and is not our recommended
method for solving these SPDEs. We say a few words about how the SPDEs are solved
numerically in the next section. The reader interested only in seeing statements of the
SPDEs used for conditional path sampling, and then numerical examples illustrating
their use, can easily ignore this section without losing any understanding.

Our approach to derive the SPDEs is to discretise the sampling problem, apply
the finite dimensional sampling method (1.1), and pass to a continuum limit. Euler’s
method applied to (2.1a) gives

Xn =Xn−1 +f(Xn−1)∆u+σ∆Wn ∀n=1,.. .,N, (4.1)

where ∆u=1/N and the ∆Wn are i.i.d. N (0,∆u) distributed random variables. Using
this i.i.d. property, the density of the distribution of X =(X1,... ,XN ) on RN is readily
shown to be

ϕ(x)=C exp
(
−∆uV(x)

)
(4.2)

with the potential

V(x)=
N∑

n=1

1
2σ2

(xn−xn−1

∆u
−f(xn−1)

)2
. (4.3)

Applying the Langevin method (1.4) with A= I/∆u gives

dx

dt
=−∇V(x)+

√
2

∆u

dW

dt
. (4.4)

We use the notational conventions described at the end of section 2.

4.1. Bridge Paths of SDEs. Suppose that the left and right boundary
points are fixed in (4.1). Then X0 =x− and XN =x+ are known and for X1,... ,XN−1

we use the conditional density which is obtained by fixing xN =x+ and choosing an
appropriate normalisation constant in (4.2). The dynamics from (4.4) are determined
by

∂V
∂xn

=− 1
σ2

(xn+1−2xn +xn−1

∆u2
−f(xn)f ′(xn)

−f(xn)−f(xn−1)
∆u

+f ′(xn)
xn+1−xn

∆u

)

for 1≤n≤N−1.
We consider the limit N→∞. In taking this limit we assume that xn =x(n∆u)

samples a smooth function x(·), except at the end of the argument when we let x(·)
have non-zero quadratic variation. For the first term on the right hand side we get

xn+1−2xn +xn−1

∆u2
≈ ∂2x

∂u2
.

The second term needs no interpretation. For the final two terms we use Taylor
expansion of f around xn−1 to give

−f(xn)−f(xn−1)
∆u

+f ′(xn)
xn+1−xn

∆u

=
f ′(xn)−f ′(xn−1)

∆u
(xn−xn−1)+f ′(xn)

xn+1−2xn +xn−1

∆u

−1
2
(
f ′′(xn−1)+o(1)

) (xn−xn−1)2

∆u
.
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We neglect all but the last term, into which we substitute the quadratic variation for
xn =X(n∆u) with X(·) solving (2.1), the equation from which we wish to sample
paths. The quadratic variation is unaffected by the choice of boundary conditions,
and so we get E(xn−xn−1)2≈σ2∆u. Thus we take

−f(xn)−f(xn−1)
∆u

+f ′(xn)
xn+1−xn

∆u
≈−σ2

2
f ′′(x).

Noting that dW
dt in (4.4) is standard Brownian motion in RN−1, we see that the

term
√

2
∆u

dW
dt is formally an approximation to space-time white noise. By collecting

the terms in (4.4) and passing to the limit we arrive at the SPDE (2.2).

4.2. Free End-Points. If the right end-point is free and we have the boundary
conditions (2.4), then a Langevin equation must be derived for xN . The gradient of
the potential at that point is

∂V
∂xN

=− 1
σ2∆u

(
f(xN−1)−

xN −xN−1

∆u

)
,

which leads to the Langevin SDE

dxN

dt
=− 1

σ2∆u

(
f(xN−1)−

xN −xN−1

∆u

)
+

√
2

∆u

dWN

dt
.

Multiplying this equation by ∆u and letting ∆u→0 formally leads to the boundary
condition (2.4). A similar argument gives the boundary condition (2.3) if the left
end-point u=0 is allowed to vary.

4.3. A Note of Caution Concerning Derivation of the SPDE. When
taking the limit N→∞ for the drift in the Langevin equation (4.4) we used Taylor
approximation around the point xn−1 to obtain the f ′′ term in (2.2a). Surprisingly
we get a different result if we use Taylor expansion around xn instead of xn−1. In this
case we get

−f(xn)−f(xn−1)
∆u

+f ′(xn)
xn+1−xn

∆u
≈+

σ2

2
f ′′(x),

which leads to the opposite sign for the f ′′ term in (2.2a)! The next section presents
arguments which justify the derivation from section 4.1.

4.4. Resolving the Ambiguity. For the bridge path problem (2.1) the
choice of sign in the f ′′ term in the SPDE can be justified rigorously by appealing to
the Girsanov Formula, and writing the density with respect to Brownian bridge (see
[2], [11] and [16]). However we pursue a self-contained numerical justification of the
choice of sign.

Consider the SPDE (2.2) with (2.2a) replaced by

∂x

∂t
=

1
σ2

(
∂2x

∂u2
−f(x)f ′(x)−ξ

σ2

2
f ′′(x)

)
+
√

2
∂w

∂t
∀(u,t)∈ [0,1]×(0,∞), (4.5)

where ξ∈R is the parameter we are interested in and (2.2b) is replaced by (2.4). With
the correct choice for ξ, this should sample from the SDE (2.1a) with initial condition
x(0)=x− and no condition at u=1. Thus for the correct value of ξ, a path of (2.1a)
with X(0)=x− should be stationary data for (4.5).
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Fig. 4.1. Demonstration that ξ should take the value +1 in (2.3). The graph is of the empirical
mean of Zn/∆u, from (4.6) for N =(50")−1, "=1,. .. ,8. The same noise is used to generate each
curve.

To make the f ′′ term visible we have to choose a nonlinear drift f . For our
experiment we consider the drift function f(x)=x(1−x2), the diffusion constant σ =
1, the initial point x−=−1, and we implement the SPDE (4.5) with ξ =−1,0,+1 in
turn.

The result is displayed in figure 4.1. For the picture we simulated (4.5), (2.4) using
a Crank-Nicolson discretisation of the heat operator, with explicit Euler treatment of
the remaining terms. The discretisation parameters were ∆u=1/N and ∆t=10∆u2

for different values of N . For the initial condition we choose a path generated by the
implicit Euler method

Xn+1 =Xn +
f(Xn)+f(Xn+1)

2
∆u+∆Wn, X0 =−1.

This initial distribution should be close to the stationary distribution for the
SPDE (4.5), (2.4). Then we simulate the SPDE until time t=0.1 and consider the
values

Zn =x(t,un+1)−x(t,un)−
f
(
x(t,un)

)
+f

(
x(t,un+1)

)

2
∆u (4.6)

for n=0,...,N−1 where un =n∆u. If we are still in equilibrium these values should
be i.i.d. N (0,∆u) random variables.

Figure 4.1 shows the empirical expectation of Zn/∆u, obtained by taking the
mean of 106 realisations. One can see that the grid parameter N has almost no
influence on the mean and that only the drift from the SPDE (2.2a), i.e. the case
ξ =1, leads to the correct mean.
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4.5. Extension to the Smoothing Problem. Now consider the sys-
tem (3.1). The discretisation with step size ∆u=1/N is

Xn =Xn−1 +f(Xn−1)∆u+σ∆Wn X0∼N (a,δ2)
Yn =Yn−1 +g(Xn−1)∆u+γ∆Bn Y0 =0

for n=1,.. .,N . The potential V from equation (4.2) should be replaced by V0(x)+
V(x)+U(x,y), where V is defined by (4.3),

V0(x)=
1

∆u

(x0−a)2

2δ2

represents the initial condition for X, and

U(x,y)=
N∑

n=1

1
2γ2

(yn−yn−1

∆u
−g(xn−1)

)2
.

The Langevin equation (4.4) is now replaced by

dX

dt
=−(∇xV0 +∇xV+∇xU)(X)+

√
2

∆u

dW

dt
, (4.7)

where ∂V0/∂xn =0 and

− ∂U
∂xn

=
1
γ2

(
yn+1−yn

∆u
−g(xn)

)
g′(xn)

for n=1,... ,N−1. As N→∞ this gives the extra term appearing in equation (3.2a).
The derivation for the boundary condition at u=1 is the same as in section 4.2,

because ∂V0/∂xN =∂U/∂xN =0. For u=0 we find

−∂(V0 +V+U)
∂x0

=− 1
∆u

x0−a

δ2
+

1
σ2

(x1−x0

∆u
−f(x0)

)( 1
∆u

+f ′(x0)
)

+
1
γ2

(y1−y0

∆u
−g(x0)

)
g′(x0)

and multiplying this by ∆u and letting ∆u→0 in (4.7) formally leads to the boundary
condition from (3.2b).

5. Numerical Examples
In this section we present three numerical examples, illustrating the methods from

sections 2 and 3. All the figures in this section are produced after 103 time units;
some cursory diagnostics indicate that we have then reached statistical stationarity in
all three examples. The numerical method employed is a semi-implicit discretisation
based on a Crank-Nicolson approximation of the heat operator, together with explicit
treatment of the remaining terms. For the filtering problem the time-derivative of the
observation y is approximated in a one-sided fashion. The discretisation parameters
used in all the experiments reported here are ∆u=10−2 and ∆t=∆u2.

5.1. Bridge Paths.
Consider the SDE

dX

du
=f(X)+

dW

du
(5.1)
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Fig. 5.1. The bridge double-well process from section 5.1. The first diagram shows the empirical
expectation and standard deviation for solutions of (5.1), obtained by evaluating the ergodic average
from (1.3) at T =1000. The second diagram shows a sample from the SDE, namely x( · ,1000) where
x is a solution of the corresponding SPDE (2.2).

where the drift f is the (negative) gradient of a double well potential with two stable
equilibrium points at −1 and +1:

f(x)=−
( (x−1)2(x+1)2

1+x2

)′
=x

( 8
(1+x2)2

−2
)
. (5.2)

Because the phase transition behaviour of the system (5.1) is not visible on O(1)
time scales, we consider the time interval [0,100]. The technique from section 2 is
readily extended to arbitrary bounded time intervals and so we can sample from
solutions of (5.1) on the interval [0,100] and subject to the boundary conditions

X(0)=−1, X(100)=+1.

Figure 5.1 shows the result of a simulation of (2.2).

5.2. Gaussian Smoothing.
To illustrate the smoothing method from section 3 we consider the following linear

smoothing problem.

signal:
dX

du
=−X +

dW

du
, X(0)=0

observation:
dY

du
= X +

1
10

dV

du
, Y (0)=0, (5.3)

where W and V are one-dimensional Brownian motions. This corresponds to the case
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Fig. 5.2. The linear filtering problem from section 5.2. The first diagram shows the signal X.
The corresponding observation Y is not displayed. The middle diagram shows the conditional expec-
tation and standard deviation of X given Y , obtained by evaluating the ergodic average from (1.3) at
T =1000. The third diagram gives a sample from the conditional distribution of X given Y , namely
x( · ,1000) where x solves the SPDE (3.2).

δ2 =0 in section 3. Because these SDEs are linear, SPDE (3.2) simplifies to

∂x

∂t
=

(∂2x

∂u2
−x

)
+100

(dY

du
−x

)
+
√

2
∂w

∂t
∀(u,t)∈ [0,1]×(0,∞), (5.4a)

x(0,t)=0,
∂x

∂u
(1,t)=−x(1,t) ∀t∈ (0,∞), (5.4b)

x(u,0)=x0(u) ∀u∈ [0,1]. (5.4c)

The stationary distribution of this SPDE is the distribution of X given Y . By
taking ergodic limits as in (1.3) we can, for a given observation Y , numerically estimate
the expectation and variance of X given Y . The result of a simulation is shown in
figure 5.2.
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Fig. 5.3. Nonlinear Kalman filtering for the double-well process from section 5.3. The first
diagram shows the signal X. The corresponding observation Y is not displayed. The middle diagram
shows the conditional expectation and standard deviation of X given Y , obtained by evaluating the
ergodic average from (1.3) at T =1000. The third diagram gives a sample from the conditional
distribution of X given Y , namely x( · ,1000) where x solves the SPDE (5.4).

5.3. Nonlinear Smoothing. While the linear case from the preceding section
could easily be treated by standard techniques as in [14], the following nonlinear
example requires more sophisticated methods, such as the particle filtering techniques
described in [7]. Here we illustrate our method.

We consider the nonlinear system

signal:
dX

du
=f(X)+

dW

du
, X(0)=−1

observation:
dY

du
= X +

dV

du
, Y (0)=0, (5.5)

where f is the double-well drift from equation (5.2). Figure 5.3 shows a simulation of
the nonlinear Kalman sampler for this case, using the SPDE (3.1).
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