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A parabolic partial differential equation approximating the evolution of tempera-
ture in highly exothermic porous-medium combustion at low driving velocities is
examined. The equation is of reaction-diffusion type with a reaction term which is
discontinuous as a function of the dependent variable.

Firstly the variation of the steady solution set with the scaled heat of the
reaction is described and the related time-dependent behaviour analysed. The
stability results follow from characterizing the ends of the solution branch and
fold points explicitly and deducing global stability results about the whole of the
continuous solution branch. The results are used to indicate the parameter
regimes and temporal scales on which the small driving velocity approximation
ceases to be valid.

Secondly the behaviour of the discontinuous partial differential equation is
compared with that of a continuous equation which it approximates. This
provides justification for the approximation of reaction terms possessing steep
gradients by discontinuous functions; the large activation energy limit in
porous-medium combustion involves such a process.

1. Introduction

IN NATURE there are a number of biological and chemical processes which, when
viewed on an appropriate time-scale, exhibit switch-like behaviour. Thus it is
natural to model such phenomena by introducing functions which are discon-
tinuous in the appropriate variable.

In particular we are motivated by the study of combustion of solid porous
media (see (Norbury & Stuart, 1987a)) where, in the limit of large activation
energy, the reaction rate is discontinuous as a function of the temperature in the
combustible solid. The discontinuity represents the switch between a state of
near-frozen chemistry, in which the temperatures are too low to allow combustion
to occur, and a state in which the combustion reaction has significant effect, but is
limited by the ability of the gaseous reactants to diffuse into the reaction sites in
the solid. Mathematically the switch arises because the two-stage chemical
reaction in this form of heterogeneous combustion is a rational function of the
Arrhenius reaction rate. This contrasts with the theory of homogeneous combus-
tion, where the reaction rate is proportional to the Arrhenius term.

In (Stuart, 1987) the model derived in (Norbury & Stuart, 1987a) is simplified in
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2 4 2 J. NORBURY AND A. M. STUART

the case of highly exothermic chemical reactions when n, the inlet velocity of the
gas flow through the porous medium, is small. It is shown that the initial
evolution of the solid temperature T ~ u + O(n^) is governed by an equation of
the form (PI), below, where / represents time and x is a spatial coordinate
parallel to the direction of the driving gas flow. A model such as (PI), however,
has applications to a variety of biological and chemical phenomena.

Thus

with u(±l,f) = 0 and initial conditions.

Here //(•) is the function which is denned to be zero when its argument is
negative, one-half when its argument is zero and unity otherwise. The continuous
problem which (PI) approximates is (P2), denned by

(P2)

with u(±l,f) = O and initial conditions.

For both (PI) and (P2) we take initial data with support on ( -1 ,1) satisfying
u(±l) = 0. The particular form of the continuous reaction rate chosen in (P2) is
motivated by the original form of the reaction rate in porous-medium combustion
(see (Norbury & Stuart, 1987a)) before the limit of large activation energy is
taken. Note that, for fixed A, equation (PI) approximates (P2) in the limit e-»0.

We assume that K(u) e C1 and satisfies K(u) > K > 0 so that the equations are
uniformly parabolic. We also assume that / («) e C2 and that f(u) > 0 for all u ^ 1
and A>0 so that the forcing term is positive. We seek solutions which are
Cl(0,T) in t and piecewise (?(—1,1) in x (in fact C2(—1,1) except where
u(x, t) = 1). In other words we assume that the discontinuity induced by the
forcing term is taken up entirely in the second ;t-derivative of u, rather than in
the first t-derivative of u or a combination of these. Implicit in problem (PI) is
the presence of moving boundaries at x=st(t) defined by u(.$,(/), f ) = 1 for
i = 0, . . . , n for some integer n (which may vary with t as internal boundaries
coalesce or are formed).

Our objective in this paper is twofold. First to understand the large-time
behaviour of problem (PI) in order that we may deduce the validity of the
approximation of the temperature T by T ~ u + 0(/i^) for small driving velocities
fi. Secondly to validate the approximation of the continuous problem (P2) by its
discontinuous counterpart (PI).

In Section 2 we describe the bifurcation surface for the steady solutions U(x) of
problem (PI) as A varies, by considering the projection of U onto \\U\\X, the
maximum norm of U. The structure of the bifurcation diagram for the steady
solutions is discussed by Nistri (1979), who demonstrated that a generic form of
bifurcation from A ~ » occurs (see Fig. 1). In Section 3 we show that the temporal
growth rates of the linearized version of (PI) are real (Theorem 3.1). We use this
result to facilitate a linear stability analysis of the steady solutions for the
singularly perturbed version of problem (PI) when A » 1 and demonstrate that
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PARABOLIC FREE BOUNDARY PROBLEMS 243

the solutions are unstable. In Section 4 we examine the particular case of K(u)
constant and /(u) linear. We demonstrate the existence of either one, two or
three steady solutions, depending on A, and examine the linear stability of these
solutions by characterizing the fold point explicitly (Theorem 4.1). These results
are summarized in Fig. 1 for the case considered in Section 4. In Section 5 we
describe numerical results from the solution of problem (PI) to illustrate the
analytic results on the stability and domains of attraction of the steady states.
Finally, in Section 6 we compare the qualitative structure of the steady solution
set and the time-dependent behaviour of problems (PI) and (P2).

Previous work on time-dependent problems with discontinuous nonlinearities is
limited; see for example (Lacey, 1981; Terman 1983). Lacey considers a
semilinear parabolic equation with a piecewise constant forcing term and
examines the spatial dependence of the time-evolving system. Terman analyses a
problem related to (PI) arising from the study of nerve conduction in which the
piecewise linear forcing term is of indeterminate sign.

2. Steady solutions

The steady solutions of problem (PI) satisfy

O (2.1)

and
U(±l) = 0. (2.2)

Clearly U ™ 0 is a solution to this problem. Since K(U) s* K > 0 we know that in
any region where U(x) < 1, Ux(x) is of one sign. Hence any non-trivial solution
must satisfy U(x) > 1 somewhere and this can only happen over one interval. This
demonstrates that there is no bifurcation from the trivial solution U = 0.

If we define the two points s^ and s2 (si < s2) by (7(5,) = 1, i = 1,2 then it can be
shown that Si = — s2. Thus, without loss of generality we consider the solution of
(2.1) subject to the symmetry boundary conditions

Ux(0) = U(l) = 0, (2.3)

and define the unique point s by U(s) = 1.
An analytic expression for the bifurcation surface defining this steady problem

is most easily derived by noting that the function A((/(0)) is uniquely defined.
This approach was introduced by Laetsch (1970) for general two-point boundary-
value problems and is valuable in both analytic and numerical studies (see (Budd
& Norbury 1987; Nistri 1979; Smoller & Wasserman 1981)). Under the
transformation y = JC/A the equation (2.1) is independent of A. The bifurcation
surface may then be determined by solving the rescaled equation as an
initial-value problem. For each initial value U(0) (=\\U\\a, by the maximum
principle (Protter & Weinberger, 1976)) greater than one this determines a unique
point y = y(|| i/||,») at which U(y) = 0. Since A = y2 at such a point, this defines the
bifurcation surface.

This approach to the semilinear version (/C(u) = l) of (2.1) and (2.3) is
described by Nistri (1979). Under the transformation 5' = K and w(x) = S(u(x)),
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2 4 4 J. NORBURY AND A. M. STUART

equation (2.1) may be converted into a semilinear equation for w(x) so that the
results of Nistri are directly applicable. However, since we are ultimately
interested in the time-dependent problem (PI), we chose to work directly with
the quasilinear equation (2.1).

Non-trivial steady solutions satisfy U(x) > 1 in (0, s) and U(x) < 1 in (s , 1).
Multiplying equation (2.1) by K(U)UZ, integrating in the two separate regions
0<x<s and s<x<l and using the condition that Ux(s) is continuous to
eliminate s, we obtain the following expression for the variation of A with t/(0):

V(2A) = — . + ( l J , ) . (2.4)

where (̂O)
h(U, t/(0)) = /(!)*:(§) d | ; (2.5)

i is determined by

EUmination of /(2A) between (2.4) and (2.6) shows that

Because h(X,X) = 0 equations (2.4), (2.6), and (2.7) suffer from a weakly
singular kernel, and are thus unsuitable for differentiation or for direct numerical
integration. However this singularity may be removed by integrating by parts and
using the fact that h^U, (7(0)) = -f{U)K{U).

After doing this, taking the limit i/(0)—*1 in equations (2.4) and (2.6) we

° b t a i n A-*» and s ^ O as£/(0)-»l. (2.8)

Thus the existence of a branch of solutions bifurcating from A = » is established.
This result is derived by Nistri (1979) and may also be proved by employing a
local bifurcation theory to a suitably transformed problem; see (Stuart, 1987).

3. Eigenvalues of the linearized evolutionary operator

In this section we prove that the eigenvalues of the linearized version of
equation (2.1) are real. We then employ this result to perform a linear-stability
analysis of the steady solutions of (PI) which bifurcate from infinity.

THEOREM 3.1 The eigenvalues of the formal linearized version of (2.1) subject to
boundary conditions (2.3) are real.

Proof. The linearized version of (2.1) has eigenvalues to and corresponding
eigenfunctions G(x) determined, for U{x) the solution of (2.1) and (2.3), by

o)G = (K(U)G)a + XH(U -l)f'(U)G, (3.
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PARABOLIC FREE BOUNDARY PROBLEMS 245

with

Gx(0) = G(l) = 0 (3.2)

and the jump condition

f + dx + A p 6(U - l)f(U)G dx = 0. (3.3)

Here we have interpreted the derivative of the Heaviside step function as a Dirac
delta function in the sense of generalized functions (see (Iighthill, 1970)).
Integrating (3.3) gives the jump condition

, (3.4)

which represents the effect of perturbing the free boundary.
Using the standard technique employed in the analysis of the stability of

inviscid fluid flows (Drazin & Reid, 1981) we multiply (3.1) by (K(U)G)* (where
* denotes complex conjugation), integrate by parts, and take the imaginary part.
This gives

K(l)2 Im [G'(s-)G*(s_)] - Im (<u) f" K(U) \G\2 dx = 0

and

-K(l)2 Im [G'(s+)G*(s+)] - Im (a>) f K(U) \G\2dx = 0.
J$+

Adding these and using the jump condition (3.4) gives us

K(\f Im [ ^ f f l \G\A - Im (a>) f' K(U) \G\2 dx = 0.

Since/((/) and K(U) are real-valued functions, this gives
ri

Im(aj) K(U)\G\2dx = Q.
Jo

As we are considering eigenvalues a>, G ¥* 0 and in addition K(U) > 0; thus the
result follows.

COROLLARY M> ^op / bifurcation can occur in problem (PI).

(This result may also be proved by constructing a Liapunov function.)

3.1 The Semilinear Equation A » 1

We construct a power-series expansion for the solution of the symmetric steady
problem defined by (2.1) and (2.3), for A » 1 and ||U\\m~ 1. We then show that
this solution is linearly unstable.
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2 4 6 J. NORBURY AND A. M. STUART

We anticipate from (2.8) that for A » 1 , s will be small. Thus we rescale the
independent variable x =sy, for 0 < x <s, to obtain from (2.1) and (2.3)

0, (3.5)

and

Uy(0) = 0 and t/(l) = 1. (3.6)

We seek expansions of the form

U = l + U1/k
a and s =

giving, for 0<x<s,

and

Solving equations (2.1) and (2.3) in s <x < 1 yields

Imposing continuity of Ux(s) at x = s we obtain

(3.10)

and so we deduce that 6 = 1 and sx = /J K(£) d?//(l).

THEOREM 3.2 The power-series expansion for U(x) as A-*» derived above is
convergent.

Proof. The proof employs local bifurcation theory and may be found in (Stuart,
1987).

We now perform a linear stability analysis for the steady solutions correspond-
ing to C/(0) ~ 1, A » 1 in the case of linear diffusion (K(U) = 1). The results may
also be proved for non-constant K but we do not detail this case in order to clarify
the exposition. Seeking perturbations to the steady solutions of the form e°"G(x)
yields the eigenvalue problem

(3.11)

with

G,(0) = G(l) = 0 (3.12)
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PARABOLIC FREE BOUNDARY PROBLEMS 247

and the jump condition
A/(1)G(3)

- ( 3 1 3 )

(This is taken from equations (3.1), (3.2) and (3.4) with K = l.) Again, since
s « 1 for A » 1 we rescale the equation for 0 < x < s by setting y=x/s. We obtain

Gyy+s2(Xf'(U)-(o)G=0, (3.14)
subject to Gy(0) = 0.

We seek expansions such that s2a> ~ a>0 + wJX +... and G~G0 + 0(A-1).
Then Go satisfies

Goyy - (o0GQ = 0 and Go^O) = 0.

This gives, in 0 < x < s,

G0(x) = A cosh {co\yx/s)

and

In j < x < 1 G satisfies G^ - coG = 0 and G(l) = 0 and hence

G0~G = B sinh (0)^(1 - x)/*).

Imposing continuity of G0(s) at x = 5 implies that

A cosh ft>J, = B sinh ((0 ,̂(1 - 5)/s),

and using this in the jump condition (3.13) gives the following expression for a)0:

. (3.15)

However, from equations (3.9) and (3.10) we know that Ux(s) sj(l) and,
as s ~ sJX «1, (3.15) reduces to

(ol(l + tanh oji) = 1. (3.16)

The only solution of this equation is co0~0-4086 and hence we have demon-
strated the existence of a positive eigenvalue at ~ 0-4086A2/si. This result shows
that the branch of solutions bifurcating from infinity is linearly unstable as a
solution of problem (PI).

Note. In the case where K(u) is constant and /(u) = 1 + au a similar analysis
demonstrates that in the neighbourhood of ||l/| |=°° (where A = ;r2/4a; see
Section 4) the branch of solutions is stable.

4. Local stability of the fold point for K(u) a 1 and f(u) linear

In the following section we consider problem (PI) in the case where K(u) = 1
and /(u) = 1 + au. (By virtue of the transformation described in Section 2 the
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248 J. NORBURY AND A. M. STUART

results on the steady problem also apply to functions K(u) and /(u) related by
f~\l + aw) = S~\w), where S'(w) = K(w)). In this case the non-trivial solution
of the steady problem may be found explicitly, and is given by

U(x) =

cos forO<x<s,
a I cos (Aa)is

/l-x\
\—s) {0TS<X<

The continuity condition on Ux(s), which determines s, is

tan

Using equations (2.4) to (2.6), the equation for the bifurcation curve is

= [(1 + al/(0))2 - (1 + a)2]-* + ^ " \
+ aU(0)) •

with 5 determined by

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

The curve (4.4) is plotted in Fig. 1. Note the presence of a fold point at A = Ac,
(7(0) = Uc. The number of solutions of the steady problem may be summarized as
follows:

(i) one solution (U = 0) for 0 =£ k < kc,
(ii) two solutions for X = kc,
(iii) three solutions for Ac < A < n2/4a,
(iv) two solutions for A > JI2/4O.

Region I Region II

FIG. 1. The bifurcation curve (4.4); A, =
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PARABOLIC FREE BOUNDARY PROBLEMS 249

By differentiating expression (4.4) with respect to £/(0) we can determine Uc.
Substituting this back into (4.4) and (4.5) gives Ac and sc. These values at the fold
point are

()(7) =<nV£-;-"[
1 4 - - M ^ (4.7)

a a
and

THEOREM 4.1 The point (Uc, Ac) is a point of neutral stability, according to linear
theory. In its neighbourhood the upper branch of solutions (see Fig. 1) corresponds
to locally stable solutions and the lower branch to locally unstable solutions.

Proof. Seeking perturbations to the steady problem U(x) of the form eMG(x)
leads us to the following eigenvalue problem for co:

0, (4.9)

with

G,(0) = G(l) = 0 (4.10)

and jump condition

[G'UJ = k(l + a)G(s)/Ux(s). (4.11)

(This eigenvalue problem derives from equations (3.1), (3.2), and (3.4) with
K(u) = 1 and f(u) = 1 + au.) Solving the two ordinary differential equations and
applying the jump condition gives an expression £(o>) = 0 to determine co,
where, for 0 < co < ak,

E(co) = (Aa - to)* tan (Aa - (o^s - co* coth co^l - s) + A(l + a)(l - s)

and, for ak s£ <o,

E(w) = -((0- Aa)* tanh (m - ka)^s - to* coth <o*(l - s) + A(l + a)(l - s).

By Theorem 3.1 we know that all solutions of this equation lie on the real axis.
Also, E((o) is a continuous function of to for (o>0, E'((o)<0 for all co>0
whenever A < JI2/4<J and lim,,^. E(a>) = -<». Thus the linear-stability properties
of the steady solutions with A<n2/4a are determined entirely by £(0). If
E(0) > 0 there exists a positive eigenvalue co = 0, indicating instability. If
£(0) = 0 we have an eigenvalue m = 0 and thus we have neutral stability.
If £(0) < 0 then there are no non-negative eigenvalues and hence we expect
stability. Consequently we examine £(0).

Now

Uinj E((o) = (Aa) tan (Aa> - _ + A(l + a)(l - s).

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


2 5 0 J. NORBURY AND A. M. STUART

Using the matching condition (4.3) this expression may be rewritten as

We now examine E(0) in the neighbourhood of the fold point. Perturbing (4.7)
to give

a a

we find from equations (4.4) and (4.5) that

and

O(e2). (4.13)

Substituting these expressions into £(0) shows that in the neighbourhood of the
fold point we have

Since the upper branch corresponds to e > 0, the fold point to e = 0 and the lower
branch to e < 0, the result follows.

The work of Section 3 indicates that the end points of the global steady solution
branch shown in Fig. 1 have the corresponding stabilities in the neighbourhood of
the fold point. Since there are no secondary bifurcations on the solution branch
we deduce that the entire upper branch is locally stable and that the entire lower
branch is locally unstable. Furthermore, we expect that the global time-
dependent behaviour of (PI) will be as indicated by the arrows in Fig. 1.

In Norbury and Stuart (1987b) the maximum principle is employed to prove
rigorously that all ordered data (that is data lying strictly above or below a steady
solution) evolve according to the arrows shown in Fig. 1. An energy method is
also employed to prove that for A < Ac, u-> 0 as t-> °°, for all initial data.

We may employ the results summarized in Fig. 1 to discuss the validity of the
approximation of temperature by the equation (PI) for small driving velocities p..
This approximation can become invalid after a sufficient length of time as the
effect of solid reactant consumption becomes significant. Specifically, when the
product of time t and reaction rate f(u) becomes of O(n~*), in addition to the
temperature remaining bounded above unity on a finite interval, the effect of
solid reactant consumption must be included in (PI).

The results in this section indicate that for A < Ac equation (PI) remains a valid
approximation to the temperature for small driving velocities for all time, since
u-»0 as t-*°° for all initial data. For AcssA the results show that again the
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PARABOLIC FREE BOUNDARY PROBLEMS 251

approximation is valid for all time provided that the initial temperature profile
lies strictly below the lower (unstable) solution branch shown in Fig. 1, since then
M—*0 as t—>°°. Thus combustion is not sustained, nor are appreciable quantities
of reactant consumed, for these ranges of parameter and initial data.

For Ac «A < n2/4a with initial data lying above the lower solution branch, u
remains bounded above unity on an interval of finite length for all time; also
u(x, t) evolves to a solution on the upper branch in Fig. 1 as *-•<». In this case
the effect of reactant consumption becomes important and the approximation
breaks down for times of O(n~^). Finally, if Assjr2/^ and the initial data lies
above the lower solution branch then u grows without bound. In (Norbury and
Stuart, 1987b) it is shown that the rate of growth is exponential in time and thus
the small driving velocity approximation breaks down on a time-scale of 0(ln n).

In this section we have considered only the specific case of K(u) = 1 and
/(u) = 1 + au. However, by employing the global results in (Norbury and Stuart,
1987b) more general classes of nonlinearity may be treated in a similar fashion.

5. Numerical results

A description and evaluation of various numerical methods for parabolic
problems of the form (PI) is given in (Stuart, 1985). In this section we describe
numerical results obtained by implementing the most effective of these methods
on problem (PI), with K(u) = 1 and f(u) = 1 + au. The method employs a
coordinate transformation (see (Landau, 1950)) to fix the position of the moving
boundary s(t); the continuity of the spatial derivative is imposed to determine
s(t). It is worth noting that the same transformation of coordinates is of analytic
value in deriving comparison principles. See (Norbury & Stuart, 1987b).

The results are shown in Figs 2, 3, and 4. Figure 2 shows how data lying

3.5 r

3.0

0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 2. The solution of equation (PI); f(u) = l + au, K(u) = 1
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252 J. NORBURY AND A. M. STUART

FIG. 3. The solution of equation (PI); /(u) = 1 + au, K(u) = 1

between the unstable and non-trivial stable branches in Fig. 1 evolve towards the
upper stable branch as t increases. In Fig. 3 we see the evolution of data lying
above the stable branch towards the stable branch. Finally, in Fig. 4, we show the
evolution of data lying above the unstable branch in the parameter regime
A > Ji2/4a. In this case there is no upper limiting steady state and we see how the
solution grows without bound.

FIG. 4. The solution of equation (PI); /(u) = 1 + au, K(u) = 1
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PARABOUC FREE BOUNDARY PROBLEMS 253

6. The validity of the discontinuous approximation

We now consider the semilinear parabolic equation

u, = 4u + Ag(u;e) in Q x (0, T), ]

with u = 0 on dQ x (0, T) and some initial conditions.J

Here 8ii is the (smooth) boundary of Q, A3=0 and the function g(u;e) is
defined by

where f(u) 3= 0 and f(u) e C2(0, °°). We examine the case of e « 1 . It is clear that

\img(u) = H(u-\)f(u). (6.3)

Hence a natural approximation to equation (6.1) for small e is

u, = Au + XH(u-l)f(u) infix (0,7),]

with u = 0 on 6Q x (0, T). J * ' '

This approximation is not uniformly valid in A — more specifically it breaks down
for values of A of order exp(l/e). Thus we might expect that the qualitative
behaviour of equation (6.4) and equation (6.1) (subject to the same initial and
boundary conditions) will be the same for moderate values of A. However, for
large values of A we expect the behaviour to be different.

Consider the time-independent solutions of (6.1) and (6.4). Note that equation
(6.4) possesses the trivial solution U = 0 whereas, in general, equation (6.1) does
not. Furthermore, when considered as a steady solution of the evolution equation
(6.4), the trivial solution is stable. Thus we expect that, for moderate values of A,
there will be a corresponding small-norm solution to equation (6.1) which is
stable.

THEOREM 6.1 There exists a positive steady solution of equation (6.1) whenever
there exists a positive solution V of the equation

kf(V) = 0 in Q and V = 0 on 6Q. (6.5)

Furthermore, this solution is a stable solution when viewed as a steady state of
equation (6.1).

Proof. The proof is by the method of upper and lower solutions (described in
(Smoller, 1982: Theorem 10.3)). Since any solution constructed by this method is
a stable solution of the corresponding parabolic equation, we need only
demonstrate the existence of a positive solution.

We take zero as our lower solution, since

40 + Ag(0; e) = A/(0)/[l + exp (l/e)] > 0.

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


2 5 4 J. NORBURY AND A. M. STUART

As our upper solution we take V, since

AV + Xg(V; e) =s AV + A/(V) = 0

and V = 0 on 6Q. As the upper solution is assumed to be positive and the lower
solution is zero the proof is complete.

Now we return to the specific piecewise linear problem that we considered in
Section 4. Thus Q = ( -1 ,1 ) and /(u) = 1 + au. In this case equation (6.5) is a
linear ordinary differential equation and the solution is

s{(A*)**}1/cos{(Ag)lx} \
a \ cos{(Aa)H / '

Hence V is a positive solution provided that A < jr2/4a. We now have the
following theorem.

THEOREM 6.2 In the case fl = ( - l , l ) e l R 1 and f(u) = l + au, there exists a
positive stable steady solution of equations (6.1), (6.2) for all e, whenever

Proof. The proof is a direct application of Theorem 6.1.

6.1 Bifurcation Diagram

Using Theorem 6.2 we compare the solutions of problems (PI) and (P2). We
construct the bifurcation diagram for the steady solution of equation (6.1), in the
case Q = ( -1 ,1 ) and /(«) = 1 + au.

As described in Section 2 it is advantageous to rescale the independent variable.
Again we set y = Jk x and obtain

Uyy + 8(U\ «) = 0 in (- /A, /A) with t/(±/A) = 0. (6.6)

If we seek symmetric solutions we have

£/,(0) = 0 (6.7)

and so for each value of 1/(0) = || U\\a we may determine the appropriate value of
A by integrating (6.6) numerically, subject to (6.7), until we reach y:U(y) = 0.
(Since t/> y<0 we are assured that this point exists.) We then have k=y2. By
plotting the locus of A against ||C/||» the bifurcation diagram may be constructed.
Since A is uniquely determined by ||t/||» we automatically capture all the folds
present in the bifurcation surface and avoid the numerical difficulties inherent in
solving boundary-value problems with multiple solutions.

The results are shown in Fig. 5. Notice the three branches of solutions. This
structure is characteristic of the solution to many elliptic equations arising in
combustion theory (Aris, 1975). Since the lowest branch is unique for A
sufficiently small we deduce from Theorem 6.2 that it is stable, as a solution of
the associated parabolic equation (6.1), for A<ji2/4a. Furthermore, since
equation (6.1) is in gradient form, we know that no Hopf bifurcation is possible
(Berger, 1977) and thus that the whole lower branch is stable. However, at the
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FIG. 5. The bifurcation diagram for equation (6.1); f(u) =» 1 + au, e = 0.1

two fold points, we expect a change in stability and thus we deduce that the
middle branch is unstable and the upper branch stable.

If we now compare these results with those for the piecewise linear approxima-
tion of equation (6.6) summarized in Fig. 6, we see that the essential structure of
the two bifurcation diagrams is the same for moderate values of A, although the
stable trivial state in Fig. 6 has been replaced by a stable solution of very small
norm in Fig. 5. However, as conjectured earlier, the approximation breaks down
for large values of A.

4.0

3.5

3.0

2 25

T2.0

- 1.5

1.0

0.5

0.0
1 2 3 4 5

ln(1+/l)

FIG. 6. The bifurcation diagram for equation
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7. Conclusion

We have studied problem (PI) in detail. We have investigated the local stability
properties of the steady solutions (Sections 3 and 4) and related these results to
the global time-dependent behaviour of (PI). We have also described numerical
calculations which complement the analytic study.

These results have enabled us to examine the validity of equation (PI) as an
approximation for the evolution of temperature in highly exothermic chemical
reactions with small driving velocities. In particular we can predict the parameter
regimes in which, and the temporal scales on which, the effect of reactant
consumption becomes important. This information is detailed at the end of
Section 4.

We have also compared problems (PI) and (P2) and demonstrated that the
approximation of (P2) by (PI) as £->0 (which corresponds to the large activation
energy limit) is valid for moderate values of A («0(exp(l/£))). In addition, the
analysis of (PI) conducted in the limit A—»<» is of value since it may be employed
to infer stability results for the whole (unstable) solution branch which exists for
Xc < A < oo; see Fig. 1. These results are of importance because the approximating
problem (PI) is frequently easier to analyse than (P2) and, in certain cir-
cumstances may be more suitable for numerical study. In addition, the limiting
process linking problems (PI) and (P2) may be applied to the eight partial
differential equations governing full porous-medium combustion—see (Norbury
and Stuart, 1987a).
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