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Abstract
In many applications, the primary objective of numerical simulation of time-
evolving systems is the prediction of coarse-grained, or macroscopic, quantities.
The purpose of this review is twofold: first, to describe a number of simple
model systems where the coarse-grained or macroscopic behaviour of a system
can be explicitly determined from the full, or microscopic, description; and
second, to overview some of the emerging algorithmic approaches that have
been introduced to extract effective, lower-dimensional, macroscopic dynamics.

The model problems we describe may be either stochastic or deterministic
in both their microscopic and macroscopic behaviour, leading to four
possibilities in the transition from microscopic to macroscopic descriptions.
Model problems are given which illustrate all four situations, and mathematical
tools for their study are introduced. These model problems are useful in the
evaluation of algorithms. We use specific instances of the model problems
to illustrate these algorithms. As the subject of algorithm development and
analysis is, in many cases, in its infancy, the primary purpose here is to attempt
to unify some of the emerging ideas so that individuals new to the field have a
structured access to the literature. Furthermore, by discussing the algorithms
in the context of the model problems, a platform for understanding existing
algorithms and developing new ones is built.
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1. Set-up

The general problem may be described as follows: let Z be a Hilbert space, and consider the
noise-driven differential equation for z ∈ Z:

dz

dt
= h(z) + γ (z)

dW

dt
, (1.1)

where W(t) is a noise process, chosen so that z(t) is Markovian. We will focus mainly on
the case where W(t) is a standard multivariate Brownian motion and (1.1) is an Itô stochastic
differential equation (SDE). In addition, we will also touch on the case where γ (z)dW(t)/dt

is replaced by a Poisson counting process dW(z, t)/dt , inducing jumps in z, whose magnitude
depend upon the current state. The problem (1.1) also reduces to an ordinary differential
equation (ODE) if γ ≡ 0; this situation will be of interest to us in some cases too.

This overview is focused on situations where the dynamics of interest for (1.1) takes place
in a subspace X ⊂ Z and our objective is to find a self-contained description of this dynamics,
without fully resolving the dynamics in Z\X . In particular we are interested in cases where Z
has large (perhaps infinite) dimension and the dimension of X is small (finite). Anticipating
this, we introduce the projection P : Z %→ X and the orthogonal complement of X in Z ,
Y = (I − P)Z .

Employing coordinates x in X and y in Y we obtain from (1.1) the coupled SDEs

dx

dt
= f (x, y) + α(x, y)

dU

dt
,

dy

dt
= g(x, y) + β(x, y)

dV

dt
,

(1.2)

where U , V are again noise processes.
We will study situations where the y variables can be eliminated, and an approximate,

effective equation for x can be derived. We will refer to the equations for z = (x, y) as
the full, or microscopic, description; and we will refer to the effective equations for x as the
coarse-grained, or macroscopic, description.

In many cases we will be looking for an Itô stochastic differential equation for X ∈ X :

dX

dt
= F(X) + A(X)

dU ′

dt
, (1.3)

where X(t) approximates x(t), in a sense that is to be determined for each class of problems,
and U ′ is a noise process. In other cases, the reduced dynamics require the introduction
of additional auxiliary variables, so that the approximate solution X(t) is a component of
a problem which evolves in a space of dimension higher than the dimension of X , but still
smaller than the dimension of Z . We consider cases where the original model (1.1) for z is
either an autonomous ODE or a noise-driven differential equation, such as an SDE, and where
the effective dynamics (1.3) for X is either an ODE or an SDE. The ideas we describe have
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discrete time analogues, and some of the algorithms we overview extract a low-dimensional
discrete time model, such as a Markov chain, rather than a continuous time model. We will
also examine situations where the effective dimension reduction can be carried out in the space
of probability densities propagated by the paths of (1.1); this requires taking into consideration
the master equation for probability densities.

A primary motivation for this paper is to overview the wealth of recent work concerning
algorithms which attempt to find the effective dynamics in X . This work is, at present, not very
unified and our aim is to highlight the similarities and differences among currently emerging
approaches. It is important to realize, however, that there is no single algorithmic approach
which will solve all problems, and this explains the range of algorithmic ideas overviewed
here. In the long term these methods need to be compared and hence evaluated by their ability
to solve particular classes of problems. It is too early to undertake such evaluations for many
of the methods overviewed here, and hence we do not attempt this.

Another primary motivation for this review is to collect together examples and
mathematical intuition about situations in which it is possible to find closed equations for
X that adequately approximate the dynamics of x ∈ X . Thus, much of the paper will be
devoted to the development of model problems, and the underlying theoretical context in
which they lie. Model problems are of central importance in order to make clear statements
about the situations in which we expect the given algorithms to be of use, and in order to
develop examples which can be used to test these algorithms. We do not state theorems nor
give proofs—we present the essential ideas and refer to the literature for precise statement and
rigorous analysis.

Section 2 contains an introduction to the master equation, first for countable state space
Markov chains. On uncountable state spaces, and for W(t) representing Brownian motion
in (1.1), the master equation is a partial differential equation (PDE)—the Fokker–Planck
equation—and its adjoint—the Chapman–Kolmogorov equation—propagates expectations;
we describe these PDEs. In section 3, we outline the Mori–Zwanzig projection operator
approach which describes the elimination of variables in a general setting. Sections 4–8
describe a variety of situations where an effective equation for the dynamics inX can be derived.
Each section contains a discussion of the theoretical development of the subject, statement of
a class (or classes) of model problems, together with one or more explicit examples. Section 9
describes a reduction principle somewhat different from those outlined above: it is concerned
with the derivation of a small and finite state Markov chain from dynamics such as (1.3).
It is hence an additional layer of variable elimination. Such situations arise frequently in
applications, and for this reason the section is included.

A starting point for the evaluation of the algorithms in this paper would be to carefully
compare their behaviour when applied to the model problems described here, and to more
challenging problems with similar character drawn from the sciences and engineering. The
discussion in this paper is neither comprehensive, nor do we claim to make any evaluation of
the relative merits of the algorithms described. Sections 10–13 are devoted to a description of
a variety of algorithms recently developed, or currently under development, which aim to find
effective dynamics in X , given the full evolution equation (1.1) in Z . In all cases we overview
the algorithms used, describe what is known about them analytically and through numerical
experience, and show how the model problems of sections 4–8 are relevant to the evaluation
of the algorithms used.

The following provides an overview of a number of important themes running throughout
this paper.
(i) Classification of model problems. It is useful to classify the model problems according to

whether or not the dynamics in Z and X are deterministic or stochastic. The situations
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outlined in sections 4–8 are of the form D–D, D–D, S–S, D–S and S–D, in sequence,
where D denotes deterministic, and S denotes stochastic, and the first (respectively second)
letter defines the type of dynamics in Z (respectively X ). The Markov chain extraction in
section 9 is of the form S–S.

(ii) Scale-separation. Sections 4–6 all rely on explicit time-scale separation to achieve the
memoryless effect; in a different way, the work of section 9 also relies on a scale-separation.
In contrast the examples in section 7 rely on the high dimensionality of Y relative to X ; the
mean time-scale in Y then separates from that in X , but there is no pure separation of scales.
Thus, whilst scale-separation is a useful concept which unifies many of the underlying
theoretical models in this subject area, the details of how one establishes rigorously a given
dimension reduction differ substantially depending on whether there is a clear separation
of scales, or instead a separation in a mean sense.

(iii) Reduction principles. In conceptualizing these algorithms it is important to appreciate
that any algorithm aimed at extracting dynamics in X , given the equations of motion (1.1)
in Z , has two essential components: (i) determining the projection P which defines X
through X = PZ; (ii) determining the effective dynamics in X . In some instances P

is known a priori from the form of model (1.1) and/or from physical considerations; in
others its determination may be the most taxing part of the algorithm. In all the model
problems developed in sections 4–8 the definition of X is explicit in the problem statement.
Section 9 is somewhat different as it identifies collective variables, within X , which can
be modelled by a finite state Markov chain. Section 13 describes algorithms designed
to identify X as well as the dynamics within it; in contrast, the algorithms described in
sections 10–12 all assume that X is known.

(iv) Memory. An important aim of any such algorithm is to choose P in such a way that
the dynamics in X is memoryless. In principle, y can always be eliminated from (1.2)
to obtain an equation for x alone but, in general, this equation will involve the past
history of x; this is the idea of the Mori–Zwanzig formalism. In order to understand and
improve algorithms it is therefore important to build up intuition about situations in which
memory in X disappears or, alternatively, in which it can be modelled by a few degrees of
freedom. Sections 4–8 are all devoted to situations where the effect of memory disappears
completely, except section 7 which includes the description of situations where a memory
effect remains, but can be modelled by adding a small number of extra degrees of freedom.

Although we describe this subject primarily through simple model problems in finite
dimensions, the majority of applications are to infinite-dimensional problems; furthermore,
the applied context provides an important component for the shaping of relevant questions
in the area of extracting macroscopic behaviour. The paper concludes in section 14 with
some brief comments about the literature in the computational PDE and various applied
communities.

2. The master equation

In this section we describe dynamical systems of the form (1.1) within a probabilistic setting, by
considering the evolution of probability measures induced by the dynamics of the paths of (1.1).
There are several reasons for including this section. First, it provides a way of understanding
the Fokker–Planck equation for SDEs, building on the pedagogically straightforward case of
the master equation for countable state space Markov chains; the Fokker–Planck equation,
and its adjoint the Chapman–Kolmogorov equation, play a central role in this paper. Second,
for the birth–death processes described in section 8, the master equation is used to derive
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a Liouville equation for the effective, non-stochastic, behaviour. Third, many of the basic
theoretical ideas in this paper can be described simply by analogy with particular structures
arising in the master equation for a finite or countable Markov chain.

There are two primary benefits which follow from considering a probabilistic description
rather than a pathwise one, even when (1.1) is deterministic (γ = 0):

(i) Variable elimination is often related to uncertainty in initial data, hence to ensembles of
solutions. The reduced initial data x(0) = Pz(0) are a priori compatible with a large
set of initial data z(0) for the full evolution equation. Every initial datum z(0) gives rise
to a different solution z(t) and to different projected dynamics x(t). In many cases it is
meaningless to consider how x(0) evolves into x(t) without specifying how the eliminated
variables, y(0), are initially distributed.

(ii) The evolution of the measure is governed by a linear PDE. In spite of the increased
complexity owing to the infinite-dimensionality of the system, the linearity enables the
use of numerous techniques adapted for linear systems, such as projection methods, and
perturbation expansions.

A useful example illustrating the first point comes from statistical mechanics. It is natural
to specify the temperature of (some components of) a molecular system, since it is a measurable
macroscopic quantity, without specifying the exact position and velocity of every particle; this
corresponds to specifying a probability measure on the positions and velocities, with the
variance being determined by the temperature. A useful example illustrating the second point
is passive tracer advection: the position of a particle advected in a velocity field and subject to
molecular diffusion, can then be modelled by a nonlinear SDE; collections of such particles
have a density satisfying a linear advection–diffusion equation. In the absence of noise this
simply reflects the fact that the method of characteristics for a linear hyperbolic problem gives
rise to nonlinear ODEs.

In section 2.1 we describe the derivation of the equation governing probability measures
for countable state space Markov chains; in section 2.2 we generalize this to the case of Itô
SDEs, which give rise to Markov processes on uncountable state spaces. Section 2.3 looks
ahead to sections 4–9, motivating what is done in those sections by using the master equation
and its variants.

2.1. Countable state space

Consider a continuous time Markov chain z(t), t ! 0, taking values in the state space
I ⊆ {0, 1, 2, . . .}. Let pij (t) be the transition probability from state i to j :

pij (t) = P{z(t) = j | z(0) = i},
i.e. the probability that the process is in state j at time t , given that it was in state i at time
zero. The Markov property implies that for all t,$t ! 0,

pij (t + $t) =
∑

k

pik(t)pkj ($t),

and so
pij (t + $t)− pij (t)

$t
=

∑

k

pik(t)%kj ($t),

where

%kj ($t) = 1
$t
×

{
pkj ($t) k *= j,

pjj ($t)− 1 k = j.
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Suppose that the limit %kj = lim$t→0 %kj ($t) exists. We then obtain, formally,
dpij

dt
=

∑

k

pik%kj . (2.1)

Because
∑

j pij ($t) = 1 it follows that
∑

j %ij ($t) = 0, and we expect that
∑

j

%ij = 0.

This implies that
∑

j

pij = 1

for the limit equation (2.1).
Introducing the matrices P , L with entries pij , %ij , respectively, i, j ∈ I, equation (2.1)

reads, in matrix notation,
dP

dt
= PL, P (0) = I. (2.2)

The matrix L is known as the generator of the process. Since P(t) = exp(Lt) solves this
problem we see that P and L commute so that P(t) also solves

dP

dt
= LP, P (0) = I. (2.3)

We refer to (2.2) and (2.3) as the forward and backward equations of the Markov chain.
Equation (2.2) is also called the master equation.

Let µ(t) = (µ0(t), µ1(t), . . .)
T be the ith row of P(t), i.e. a column vector whose entries

µj(t) = pij (t) are the probabilities that a system starting in state i will end up, at time t , in
each of the states j ∈ I. By virtue of (2.2),

dµ

dt
= LT µ, µ(0) = ei, (2.4)

where ei is the ith unit vector, zero in all entries except the ith one, in which it is one; this
initial condition indicates that the chain is in state i at time t = 0. Equation (2.4) is the discrete
version of the Fokker–Planck equation described below.

Let w : I %→ R be a real valued function defined on the state space; it can be represented
as a vector with entries wj , j ∈ I. Then let v(t) = (v0(t), v1(t), . . .)

T denote the vector with
ith entry

vi(t) = E{wz(t) | z(0) = i},
where E denotes expectation with respect to the Markov transition probabilities. The function
vi(t) denotes the expectation value at time t of a function of the state space (an ‘observable’),
given that the process started in the ith state. This function can be written explicitly in terms
of the transition probabilities:

vi(t) =
∑

j

pij (t)wj . (2.5)

If we set w = (w0, w1, . . .)
T then this can be written in vector form as v(t) = P(t)w.

Differentiating with respect to time and using the backward equation (2.3), v(t) satisfies the
following system of ODEs:

dv

dt
= Lv, v(0) = w. (2.6)

Equation (2.6) is the discrete version of the Chapman–Kolmogorov equation described in
section 2.2.
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2.2. Fokker–Planck and Chapman–Kolmogorov equations

The concepts introduced in section 2.1 are now extended to continuous time Markov processes
over uncountable state spaces, specifically, to diffusion processes defined by SDEs. Consider
the case where W(t) is a multi-dimensional Brownian motion and (1.1) is an Itô SDE.
We assume that Z has dimension d and let ∇ and ∇· denote gradient and divergence in
Rd . The gradient can act on both scalar valued functions φ, or vector valued functions v, as
follows:

(∇φ)i = ∂φ

∂zi

, (∇v)ij = ∂vi

∂zj

.

The divergence acts on vector valued functions v, or matrix valued functions A as follows:

∇ · v = ∂vi

∂zi

, (∇ · A)i = ∂Aij

∂zj

.

In the preceding we are adopting the Einstein summation convention, whereby repeated indexes
imply a summation. Below we will use ∇x (respectively ∇y) to denote gradient or divergence
with respect to x (respectively y) coordinates alone.

With the functions h(z),γ (z) given in the SDE (1.1) we define

((z) = γ (z)γ (z)T ,

and then the generator L by

Lφ = h · ∇φ + 1
2( : ∇(∇φ), (2.7)

where · denotes the standard inner product on Rd , and : denotes the inner product on Rd×d

which induces the Frobenius norm—A : B = trace(AT B). We will also be interested in the
operator L∗ defined by

L∗ρ = −∇ · (hρ) + 1
2∇ · [∇ · ((ρ)],

which is the adjoint of L with respect to the scalar product

〈φ, ρ〉 =
∫

Z
φ(z)ρ(z) dz,

i.e. 〈Lφ, ρ〉 =〈 φ, L∗ρ〉.
If we consider solutions of (1.1) with initial data distributed according to a measure with

density ρ0(z) then, at time t > 0, z(t) is distributed according to a measure with density ρ(z, t)

satisfying the Fokker–Planck equation

∂ρ

∂t
= L∗ρ (z, t) ∈ Rd × (0,∞),

ρ = ρ0 (z, t) ∈ Rd × {0}.
(2.8)

This is the analogue of the master equation (2.4) in the countable state space case. We are
implicitly assuming that the measure µt , defined by µt(A) = P{z(t) ∈ A}, has density ρ(z, t)

with respect to Lebesgue measure. Here P is the probability measure on paths of Brownian
motion (Wiener measure), and we denote by E the expectation with respect to this measure.
Whether or not the smooth density ρ exists depends on the (hypo-) ellipticity properties of
L. In the case where no noise is present, equation (2.8) is known as the Liouville equation,
describing how solutions of ODEs with random data evolve this randomness in time.

The adjoint counterpart of the Fokker–Planck equation is the Chapman–Kolmogorov equa-
tion. Let w(z) be a function on Z and consider the function v(z0, t) = E[w(z(t)) | z(0) = z0],
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where the expectation is with respect to all Brownian driving paths satisfying z(0) = z0. Then
v(z, t) solves the Chapman–Kolmogorov equation

∂v

∂t
= Lv (z, t) ∈ Rd × (0,∞),

v = w (z, t) ∈ Rd × {0}.
(2.9)

This is the analogue of (2.6) in the countable state space case. If γ ≡ 0 in (1.1), i.e. the
dynamics are deterministic, and ϕt is the flow on Z so that z(t) = ϕt (z(0)), then the Chapman–
Kolmogorov equation (2.9) reduces to a hyperbolic equation, whose characteristics are the
integral curves of the ODE (1.1), and its solution is v(z, t) = w(ϕt (z)).

We will adopt the semi-group notation, denoting the solution of (2.8) by ρ(z, t) =
eL∗tρ0(z), and the solution of (2.9) by v(z, t) = eLtw(z). The connection between the two
evolution operators is as follows:

∫

Z
ρ0(z) (eLtw)(z) dz =

∫

Z
(eL∗tρ0)(z)w(z) dz,

and, in particular, for ρ0(z) = δ(z− y):

eLtw(y) =
∫

Z
(eL∗tρ0)(z)w(z) dz. (2.10)

This is the analogue of (2.5) in the countable state space case. Both sides of (2.10) represent
the expectation value at time t of w(z(t)) with respect to the distribution of trajectories that
originate at the point y.

2.3. Structured forms for the generator

Several of the ideas developed in this paper can be described in a basic way by refering to
equations (2.4)/(2.8) or (2.6)/(2.9).

(i) The reductions used in sections 4–6 all correspond to situations where the generator in (2.6)
or (2.9) takes either the form

L = 1
ε
L1 + L2 or L = 1

ε2
L1 +

1
ε
L2 + L3 (2.11)

for some ε 0 1, with L1 being the generator of an ergodic process. Systematic expansions
in ε then simplify the problem. (The reductions in section 4 are described mainly in the
pathwise context, however, not using the Chapman–Kolmogorov equation).

(ii) Although the reductions in section 7 are performed pathwise, they do have an interpretation
in terms of (2.9). The starting point is a Chapman–Kolmogorov equation for a deterministic
Hamiltonian problem (( = 0), with L split as the sum of two operators Lparticle and Lbath.

The independent variables on which the second of these operators acts are eliminated, by
averaging over their random initial data, and an effective Chapman–Kolmogorov equation
(with ( *= 0) is found for the variables on which the first of these operators acts.

(iii) The reduction used in section 9 corresponds to a situation where the generator in (2.6) or
(2.9) takes the form

L = L1 + εL2.

In this context L1 is not ergodic, so that time-rescaling does not yield the situation described
in (2.11). Nonetheless, the structure of the problem allows substantial simplifications,
using the scale-separation implied by the form of L.
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(iv) If we set wj = jk for k = {0, 1, . . .}, and denote the solution of (2.6) by v(k)(t) (the kth
moment), then

v
(k)
i (t) =

∑

l

µl(t)wl =
∑

l

µl(t)l
k,

where µ(t) is defined as above and satisfies (2.2). Notice that, if the evolution is
deterministic, then µ(t) will remain at all times a unit vector, em(t), for some fixed
integer m. Then

v
(k)
i (t) = [v(1)

i (t)]k,

so that the first moment characterizes the process completely. This idea is used in section 8
where we show, for certain birth–death processes, that the master equation (2.4) can be
approximated by a Liouville equation ((2.8) with ( ≡ 0).

(v) The preceding discussion suggests a more a general question: for a given Markov chain
on I starting from state i, do there exist a small number of linear functions of µ(t) (i.e.
expectation values of functions on I) which evolve, at least approximately, as a closed
system and hence approximately characterize the behaviour of (some) components of the
process? This question is at the heart of the method of optimal prediction, the moment
map and the transfer operator approach (see sections 12 and 13).

(vi) Some of the algorithms that we highlight (the moment map and the transfer operator
approach) work in discrete time. Then the analogue of (2.4) is the iteration

µn+1 = T µn, µ0 = ei .

(Indeed if µn = µ(nτ ) for some τ > 0 then T = expLT τ .) Again, if the state space I
is large or infinite, it is natural to ask whether the expectation values of a small number
of functions of the process can be used to approximate the whole process, or certain
(physically relevant) aspects of its behaviour.

2.4. Discussion and bibliography

A good background reference on Markov chains is Norris [1]. For a discussion of SDEs
from the Fokker–Planck viewpoint, see Risken [2] or Gardiner [3]. For a discussion of the
generator L, and the Chapman–Kolmogorov equation, see Oksendal [4]. For a discussion
concerning ellipticity, hypo-ellipticity and smoothness of solutions to these equations see
Rogers and Williams [5]. A comment about terminology: the Fokker–Planck equation is
often refered to as Kolmogorov’s forward equation in the mathematics literature, whereas the
Chapman–Kolmogorov equation is called Kolmogorov’s backward equation. The paper [6]
provides an overview of variable elimination in a wealth of problems with scale-separation.
The papers [7,8] describe a variety of reduction techniques related to problems whose generator
has the forms (2.11); they also touch on the heat bath material of section 7.

3. Mori–Zwanzig projection operators

The Mori–Zwanzig formalism is a technique that has been developed in irreversible statistical
mechanics to reduce, at least formally, the dimensionality of a system of ODEs. It forms a
useful conceptual underpinning of much of what is carried out in this paper, both theoretically
and algorithmically. Note, however, that it simply consists of a suggestive rewriting of
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equations (1.1). Some structure must be imposed on the problem in order to build from it
a useful dimension reduction. Sections 4–9 highlight structures which facilitate dimension
reduction.

3.1. Forms of the projection operators

For a system of the form (1.2), with α = β ≡ 0, the Mori–Zwanzig formalism yields an
equation for x(t) of the form

dx(t)

dt
= f̄ (x(t)) +

∫ t

0
K(x(t − s), s) ds + n(x(0), y(0), t). (3.1)

The first term on the right-hand side is only a function of the instantaneous value of x at
time t , and therefore represents a ‘Markovian’ term. The second term depends on values
of x at all times between 0 and t , and therefore represents a ‘memory’ effect. The function
K : X×[0,∞) %→ X is the memory kernel. The function n(x(0), y(0), t) satisfies an auxiliary
equation, known as the orthogonal dynamics equation, and depends on the full knowledge of
the initial conditions. If the initial data for y(0) is random then this becomes a random
force. The Mori–Zwanzig formalism is a nonlinear extension of the method of undetermined
coefficients for variable reduction in linear systems.

The reduction from (1.2) to an equation of the form (3.1) is not unique. It relies on the
definition of an operator P, the projection3, which maps functions of (x, y) into functions
of x only. The projection operator that is most appropriate in our context is the following.
The state of the system is viewed as random, distributed with a probability density ρ(x, y).
Any function w(x, y) then has an expected value, which we denote by Ew; the expected
value is the best approximation of a function by a constant in an L2 sense. If the value of the
coordinate x is known, then the best approximation to w(x, y) is the conditional expectation
of w given x, usually denoted by E[w | x]. The conditional expectation defines a mapping
w %→Pw = E[w | x] from functions of (x, y) to functions of x. Specifically,

(Pw)(x) =
∫

Y ρ(x, y)w(x, y) dy
∫

Y ρ(x, y) dy
.

With the initial value y(0) being viewed as random, the function n(x(0), y(0), t)

is a random function, or a stochastic process. The equation (3.1) is derived such that
n(x(0), y(0), t) has zero expected value for all times, which makes it an unbiased ‘noise’.
In the original context of statistical mechanics, where the governing dynamics are Hamiltonian,
the noise n(x(0), y(0), t) and the memory kernel K(x, t) satisfy what is known as the
fluctuation–dissipation relation4. Equation (3.1) is often called a generalized Langevin
equation. Analogous to the Fokker–Planck versus Chapman–Kolmogorov duality there exist
two versions of the Mori–Zwanzig formalism: one for the expectation value of functions and
one for probability densities.

3.2. Derivation

The derivation of (3.1) is quite involved, and we only present here a summary. If ϕt (x, y) is
the flow map induced by (1.2) with α = β = 0, and P is the projection (x, y) %→ x, then the

3 Not to be confused with the projection P defined in the introduction.
4 When the projection P maps functions of (x, y) onto the subspace of functions of x that depend on x linearly,
then the fluctuation–dissipation relation is of the form K(x, t) = κ(t)x, where the matrix κ(t) is proportional to the
auto-covariance of the noise. In the general case the fluctuation–dissipation relation takes a more complicated form
(see [9] for details).
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function x(t) is more accurately written as Pϕt (x, y), where (x, y) are the initial data. The
x-equation in (1.2) is

∂

∂t
Pϕt (x, y) = f (ϕt (x, y)), (3.2)

and this, of course, is not a closed equation for Pϕt (x, y).
The first step in the Mori–Zwanzig formalism is to replace f on the right-hand side by

its best approximation given only its first argument. Thus (3.2) is rewritten in the following
equivalent way:
∂

∂t
Pϕt (x, y) = (Pf )(Pϕt (x, y)) + [f (ϕt (x, y))− (Pf )(Pϕt (x, y))]. (3.3)

The function Pf is identified with f̄ in (3.1).
The next stage is to rearrange the terms in the square brackets in (3.3). Defining the

operator L = f (x, y) · ∇x + g(x, y) · ∇y (which is (2.7) in the case of no noise, ( = 0), the
noise function n(x, y, t) is defined as the solution of the orthogonal dynamics equation:

∂n

∂t
= (I −P)Ln,

n(x, y, 0) = f (x, y)− (Pf )(x).
(3.4)

The memory kernel is defined as
K(x, t) = PLn(x, y, t).

One can then check explicitly that the residual terms in (3.3) can be written as

f (ϕt (x, y))− (Pf )(Pϕt (x, y)) = n(x, y, t) +
∫ t

0
K(Pϕt−s(x, y), s) ds, (3.5)

hence (3.3) takes the form (3.1).
To understand the last identity, we note that the left-hand side can be written as

etL(I −P)Lw,

where w = w(z) = Pz, hence Lw(z) = f (z); semi-group notation has been used for the
solution operator of the flow map ϕt (z) which is defined so that

exp(tL)w(z) = w(ϕt (z)).

The noise can, likewise, be written in the form
n(z, t) = exp[t (I −P)L] (I −P)Lw,

so that the right-hand side of (3.5) reads

εt (I−P)L (I −P)Lw +
∫ t

0
e(t−s)LPLes(I−P)L (I −P)Lw ds.

The validity of (3.5) is a consequence of the operator identity,

etL = et (I−P)L +
∫ t

0
e(t−s)LPLes(I−P)L ds,

known in the physics literature as Dyson’s formula [10].
It is important to point out that (3.1) is not simpler than the original problem. The

complexity has been transfered, in part, to the solution of the orthogonal dynamics (3.4). The
value of (3.1) is first, in its being conceptual, and second, that it constitutes a good starting point
for asymptotic analysis and stochastic modelling. In particular, it suggests that deterministic
problems with random data may be modelled by stochastic problems with memory. In the
case where the memory can be well-approximated by the introduction of a small number of
extra variables so that the whole system is then Markovian in time, this leads to a simple
low-dimensional stochastic model for the dynamics in X . This basic notion underlies many of
the examples used in the following.
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3.3. Discussion and bibliography

The original derivation of the Mori–Zwanzig formalism can be found in Mori [11] and
Zwanzig [12]. Most of the statistical physics literature uses the Mori–Zwanzig formalism with
a projection on the span of linear functions of the essential degrees of freedom. In [9], Zwanzig
developed a nonlinear generalization, which is equivalent to the conditional expectation used
here. All the above references use the ‘Chapman–Kolmogorov’ version of this formalism; the
‘Fokker–Planck’ version can be found in [13]. The existence of solutions to the orthogonal
dynamics equation (3.4) turns out to be subtle; see Givon et al [14]. An alternative to the
Mori–Zwanzig approach is to derive convolutionless, non-Markovian evolution equations;
this approach, and an application in plasma physics, is outlined in [15] and a more recent
application is contained in [16]. Recent uses of the Mori–Zwanzig formalism in the context
of variable reduction can be found in Just et al [17, 18] and Chorin et al [19].

4. Scale-separation and invariant manifolds

In the classification of section 1, this section is devoted to problems of the type D–D—
deterministic systems with lower-dimensional deterministic systems embedded within them.
The key mathematical construct used is that of invariant manifolds, and scale-separation is the
mechanism by which these may be constructed. These ideas typically can be applied for all
initial conditions y(0) ∈ B ⊆ Y , and the effect of the initial condition in B becomes irrelevant
after an initial transient.

In the space of probability densities we are showing that, after an initial transient, the
Liouville equation (the hyperbolic PDE (2.8) with ( = 0) for ρ(x, y), has a solution that can
be approximated by a function of the form

ρ(x, y, t) = δ(y − η(x))ρ̄(x, t), (4.1)

where ρ̄(x, t) satisfies a Liouville equation of lower spatial dimension than that for ρ(x, y, t).

4.1. Spectral gaps

Consider equations (1.2) in the deterministic setting when α,β ≡ 0 and let f (x, y) and g(x, y)

be written in the following form:

f (x, y) = L1x + f̂ (x, y),

g(x, y) = L2y + ĝ(x, y).
(4.2)

Assume for simplicity that the operators L1, L2 are self-adjoint and that the maximum
eigenvalue of L2 is less than the minimum of L1. If the gap in the spectra of L1 and L2 is large
then for the purely linear problem, found by dropping f̂ and ĝ, the dynamics is dominated,
relatively speaking, by the dynamics in X . In the fully nonlinear problem, if the gap is assumed
to be large relative to the size of f̂ and ĝ (and the argument can be localized by the use of
cut-off functions), then the existence of an exponentially attractive invariant manifold

y = η(x)

may be proved. Thus, after an initial transient, the effective dynamics in X is governed by the
approximating equation

dX

dt
= L1X + f̂ (X, η(X)),

X(0) = x(0).
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Specifically, under suitable conditions on the spectra of L1 and L2, X(t) and x(t) remain close,
at least on bounded time intervals. In many cases, the validity of this approximation requires
that the initial value for the eliminated variables y(0) is taken from within some bounded set B.

4.2. Model problem

A useful model problem arises when X = Rn, Y = R and (1.2) has the form, for ε 0 1,

dx

dt
= f (x, y),

dy

dt
= −y

ε
+

g̃(x)

ε
.

(4.3)

In reference to the spectral properties of L1, L2 in (4.2), the unique eigenvalue of L2 is −1/ε,
which for small enough ε is less than the minimum eigenvalue of the linear component of
f (x, y) which is ε independent.

Assume that f , g̃ are smooth and bounded, with all derivatives bounded. Then, seeking
an approximate invariant manifold in the form

y = g̃(x) + O(ε) (4.4)

gives, up to errors of O(ε), the reduced dynamics

dX

dt
= f (X, g̃(X)), (4.5)

with X(0) = x(0). Note that for the derivation to be consistent the initial value y(0) should
be close to the invariant manifold, |y(0)− g̃(x(0))| = O(ε), otherwise, an initial layer forms
near time t = 0; after this initial layer the initial condition in Y is essentially forgotten.

Example 4.1. Consider the equations

dx1

dt
= −x2 − x3,

dx2

dt
= x1 +

1
5
x2,

dx3

dt
= 1

5
+ y − 5x3,

dy

dt
= −y

ε
+

x1x3

ε
,

(4.6)

so that X = R3 and Y = R. The expression (4.4) with ε = 0 indicates that, for small ε, the
equations have the invariant manifold

y = η(x), η(x) = x1x3 + O(ε). (4.7)

Thus, y ≈ x1x3, so that the solution for x = (x1, x2, x3) should be well approximated by
X = (X1, X2, X3) solving the Rössler system [20]

dX1

dt
= −X2 −X3,

dX2

dt
= X1 +

1
5
X2,

dX3

dt
= 1

5
+ X3(X1 − 5).

(4.8)
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Figure 1. Comparison between the attracting sets for (4.6) with ε = 0.01 (top) and (4.8) (bottom),
projected on the (x1, x2) and (X1, X2) planes, respectively.

Figure 1 shows the attractor for (x, y) at ε = 0.01, projected onto (x1, x2), compared with the
attractor for X projected onto (X1, X2). Notice the clear similarities between the two. Figure 2
compares the histograms for x1 and X1 over 105 time units; the two histograms are also, clearly,
closely related. "

4.3. Discussion and bibliography

Early studies of the reduction of ODEs with an attracting slow manifold into differential-
algebraic equations (DAE) includes the independent work of Levinson and of Tikhonov (see
O’Malley [21] and Tikhonov et al [22]). The use of a spectral gap that is sufficiently large
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Figure 2. Comparison between the empirical measures of x1 solving (4.6) with ε = 0.01 (——),
and X1 solving (4.8) (- - - -). The empirical measure was computed from a trajectory over a time
interval of 105 units.

relative to the size of the nonlinear terms is used in the construction of local stable, unstable
and centre manifolds (e.g. Carr [23], Wiggins [24]), slow manifolds (Kreiss [25]) and inertial
manifolds (Constantin et al [26]). A variety of methods of proof exist, predominantly the
Lyapunov–Perron approach (Hale [27], Temam [28]) and the Hadamard graph transform
(Wells [29]). Important work in this area is due to Fenichel [30, 31] who sets up a rather
general construction of normally hyperbolic invariant manifolds.

5. Scale-separation and averaging

There is a vast literature on systems, which in the classification of section 1 are of type D–D,
that can be unified under the title of ‘averaging methods’. Averaging methods have their early
roots in celestial mechanics, but apply to a broad range of applications.

Averaging methods are concerned with situations where, for fixed x, the trajectories of the
y-dynamics do not tend to a fixed point, as happened in the previous section. Instead, the fast
dynamics affect the slow dynamics through the empirical measure that its trajectories induce
on Y . The simplest such situation is where the fast dynamics converge to a periodic solution;
other possibilities are convergence to quasi-periodic solutions, or chaotic solutions.

In the space of probability densities we are showing that, after an initial transient, the
Liouville equation (the hyperbolic PDE (2.8) with ( = 0) for ρ(x, y), has solution that can
be approximated by a function of the form

ρ(x, y, t) = ρ∞(y; x)ρ̄(x, t), (5.1)

where ρ̄(x, t) satisfies a Liouville equation of lower spatial dimension than that for ρ(x, y, t).

This general picture subsumes the case of the previous section, where ρ∞ is a delta measure
on y = η(x).
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5.1. The averaging method

For concreteness, we limit our discussion to systems with scale-separation of the form

dx

dt
= f (x, y),

dy

dt
= 1

ε
g(x, y),

(5.2)

where ε 0 1.
The starting point is to analyse the behaviour of the fast dynamics, with x being a parameter.

In the previous section we considered systems in which the fast dynamics converge to an
x-dependent fixed point. This gives rise to a situation where the y variables are ‘slaved’ to the
x variables. Averaging generalizes this idea to situations where the dynamics in the y variable,
with x fixed, is more complex.

We start by discussing the case when the dynamics for y is ergodic. A general theorem
on averaging, due to Anosov, applies in this case. Let ϕt

x(y) be the solution operator of the
fast dynamics with x a fixed parameter. Then

d
dt
ϕt

x(y) = g(x,ϕt
x(y)), ϕ0

x(y) = y (5.3)

(the 1/ε rate factor has been omitted because time can be rescaled when the fast dynamics
is considered alone). The fast dynamics is said to be ergodic, for given fixed x, if for all
(sufficiently well-behaved) functions ψ : Y → R the limit of the time-average

lim
T→∞

1
T

∫ T

0
ψ(ϕt

x(y)) dt,

exists and is independent of y. In particular, ergodic dynamics define an ergodic measure, µx ,
on Y , which is invariant under the fast dynamics; note that the invariant measure depends, in
general, on x. The measure is defined by

µx(A) = lim
T→∞

1
T

∫ T

0
IA(ϕt

x(y0)) dt, A ⊆ Y,

and is independent of y0 by assumption; IA is the indicator function of the set A. Anosov’s
theorem states that, under ergodicity in Y for fixedx, the slow variablesx(t) converge uniformly
on any bounded time interval to the solution X(t) of the averaged equation,

dX

dt
= F(X),

F (ζ ) =
∫

Y
f (ζ, y) µζ (dy).

(5.4)

Similar ideas prevail if the invariant measure generated by the y-dynamics depends upon
the initial data in Y . The results are complex to state in general. The next subsection contains
an example where the initial data in Y enter the averaged equation.

5.2. Stiff Hamiltonian systems

An application area where averaging techniques are of current interest is Hamiltonian
mechanics. This is hence a natural source of model problems. One encounters Hamiltonian
systems with strong potential forces, responsible for fast, small amplitude, oscillations around
a constraining sub-manifold. An important goal is to describe the evolution of the slowly
evolving degrees of freedom by averaging over the rapidly oscillating variables. The study of
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such problems was initiated by Rubin and Ungar [32]. More recently the ideas of Neistadt [33],
based on normal form theory, have been applied to such problems [34]; this approach is very
powerful, yielding very tight, exponential, error estimates between the original and limiting
variables. A recent approach to the problem, using the techniques of time-homogenization [35],
is the paper [36].

The general setting is a Hamiltonian of the form

H(z, p) = 1
2

∑

j

p2
j

2mj

+ V (z) +
1
ε2

U(z), (5.5)

where z = (z1, . . . , zn+m) and p = (p1, . . . , pn+m) are the coordinates and momenta, V (z) is a
‘soft’ potential, whereas ε−2U(z) is a ‘stiff’ potential. It is assumed that U(z) attains a global
minimum, 0, on a smooth n-dimensional manifold, M. The limiting behaviour of the system,
as ε → 0, depends crucially on the choice of initial conditions. The setting appropriate to
molecular systems is where the total energy E (which is conserved) is assumed independent
of ε. Then, as ε → 0, the states of the system are restricted to a narrow band in the vicinity of
M; the goal is to approximate the evolution of the system by a flow on M.

Example 5.1. The following simple example, taken from [36], shows how problems with
this form of Hamiltonian can be cast in the general set-up of equations (5.2). Consider a
two-particle system with Hamiltonian,

H(x, p, y, v) = 1
2
(p2 + v2) + V (x) +

ω(x)

2ε2
y2,

where (x, y) and (p, v) are the respective coordinates and momenta of the two particles, V (x)

is a non-negative potential and ω(x) is assumed to be uniformly bounded away from zero, to
ensure a strict separation of scales: ω(x) ! ω̄ > 0 for all x. The corresponding equations of
motion are

dx

dt
= p,

dp

dt
= −V ′(x)− ω′(x)

2ε2
y2,

dy

dt
= v,

dv

dt
= −ω(x)

ε2
, y.

The assumption that the energy E does not depend on ε implies that y2 # 2ε2E/ω̄ and hence
that the solution approaches the sub-manifold y = 0 as ε → 0. Note, however, that y appears
in the combination y/ε in the x equations. Thus it is natural to make the change of variables
η = y/ε. The equations then read

dx

dt
= p,

dp

dt
= −V ′(x)− ω′(x)

2
η2,

dη
dt

= 1
ε
v,

dv

dt
= −ω(x)

ε
η.

(5.6)
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In these variables we recover a system of the form (5.2) with ‘slow’ variables, x ← (x, p),
and ‘fast’ variables, y ← (η, v). The fast equations represent an harmonic oscillator whose
frequency, ω1/2(x), is modulated by the x variables.

The limiting solution of a fast modulated oscillator can be derived using a WKB expansion
[37], but it is also instructive to consider the following heuristic approach. Suppose that the
slow variables (x, p) are given. Then the energy available for the fast variables is

Hη(x, p) = E − 1
2p2 − V (x).

Harmonic oscillators satisfy an equipartition property, whereby, on average, the energy is
equally distributed between its kinetic and potential contributions (the virial theorem). Thus
the time-average of the kinetic energy of the fast oscillator is

〈
ω(x)

2
η2

〉
= 1

2

[
E − 1

2
p2 − V (x)

]
,

where (x, p) are viewed as fixed parameters and the total energy E is specified by the
initial data. The averaging principle states that the rapidly varying η2 in the equation for
p can be approximated by its time-average, giving rise to a closed system of equations for
(X, P ) ≈ (x, p),

dX

dt
= P,

dP

dt
= −V ′(X)− ω′(X)

2ω(X)

[
E − 1

2
P 2 − V (X)

]
,

(5.7)

with initial data E, X0 = x0 and P0 = p0. It may be verified that (X, P ) satisfying (5.7)
conserve the following invariant,

1
ω1/2(X)

[
E − 1

2
P 2 − V (X)

]
.

Thus, (5.7) reduces to the simpler form

dX

dt
= P,

dP

dt
= −V ′(X)− J [ω1/2(X)]′,

(5.8)

where the adiabatic invariant J is given by

J = 1
ω1/2(X0)

[
E − 1

2
P 2

0 − V (X0)

]
.

This means that the influence of the stiff potential on the slow variables is to replace the
potential V (x) by an effective potential,

Veff(x) = V (x) + Jω1/2(x).

Note that the limiting equation contains a memory of the initial conditions for the fast variables
through the constant, J . Thus the situation differs slightly from the Anosov theorem described
previously. The heuristic derivation we have given here is made rigorous in [36], using time-
homogenization techniques, and it is also generalized to higher dimension. Resonances become
increasingly important as the co-dimension, m, increases, limiting the applicability of the
averaging approach to such two-scale Hamiltonian systems (Takens [38]).
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Figure 3. Time evolution of x(t) solving (5.6) with ε = 0.1 (——) and X(t) − x(t), with X(t)
solving (5.8) (- - - -). We used V (x) = − cos x and ω(x) = 1 + 0.5 sin x.

Figure 3 shows a comparison of the solution of x solving (5.6) with ε = 0.1 and X solving
(5.8); we took V (x) = − cos x and ω(x) = 1 + 0.5 sin x. The time traces are of x and X− x.
The results illustrate the foregoing analysis since X − x is small. "

5.3. Discussion and bibliography

A detailed account of the averaging method, as well as numerous examples can be found in
Sanders and Verhulst [39] (see also [40]). An English language review of the Russian literature
can be found in Lochak and Meunier [41]. An overview of the topic of slow manifolds,
especially in the context of Hamiltonian problems, may be found in [42]. The averaging
method applied to equations (5.2) is analysed in an instructive manner in [43], where the
Liouville equation is used to construct a rigorous proof of the averaged limit.

Anosov’s theorem requires the fast dynamics to be ergodic. Often ergodicity fails due to the
presence of ‘resonant zones’—regions in X for which the fast dynamics is not ergodic. Arnold
and Neistadt [41] extended Anosov’s result to situations in which the ergodicity assumption
fails on a sufficiently small set of x ∈ X . Those results were further generalized and extended to
the stochastic framework by Kifer, who also studied the diffusive and large deviation character
of the discrepancy between the effective and exact solution [44–47].

The situations in which the fast dynamics tend to fixed points, periodic solutions or chaotic
solutions can be treated in a unified manner by the introduction of Young measures. Artstein
and co-workers considered a class of singularly perturbed system of type (5.2), with attention
given to the limiting behaviour of both slow and fast variables. In all the above cases the pair
(x, y) can be shown to converge to (X, µX), where X is the solution of

dX

dt
=

∫

Y
f (X, y) µX(dy),

and µX is the ergodic measure on Y; the convergence of y to µX is in the sense of Young
measures. (In the case of a fixed point the Young measure is concentrated at a point.) A general
theorem along these lines is proved in [48].

There are many generalizations of this idea. The case of non-autonomous fast dynamics,
as well as a case with infinite dimension are covered in [49]. Moreover, these results still make



Invited Article R75

sense even if there is no unique invariant measure µx , in which case the slow variables can be
proved to satisfy a (non-deterministic) differential inclusion [50].

In the context of SDEs, an interesting generalization of (5.2) is to consider systems of
the form

dx

dt
= f (x, y),

dy

dt
= 1

ε
g(x, y) +

1√
ε

dV

dt
.

(5.9)

If the y-dynamics, with x frozen at ζ , is ergodic, then the analogue of the Anosov result holds
with µζ the invariant measure of this y-dynamics. This gives rise to a set-up of type S–D. The
Fokker–Planck equation is, in this case, a degenerate parabolic equation—with diffusion only
in y—and we seek an approximation of the form (5.1) where ρ̄(x, t) solves a hyperbolic PDE
(Liouville equation) when ε is small. This idea is generalized in section 6.1, where the chosen
scaling leads not only to an averaged deterministic vector field in x, but also to additional
stochastic fluctuations.

6. Scale-separation and white noise approximation

In this section we consider how to use the PDEs for propagation of expectations and probability
densities to study stochastic dimension reduction when there is a clear scale-separation between
the x- and y-dynamics. The effective dynamics in X is stochastic; the original dynamics in Z
may be deterministic or stochastic. Thus we study problems of the form D–S or S–S in the
classification of section 1. The ideas will be developed here for problems with a skew-product
structure: the dynamics for y evolves independently of the dynamics for x. This simplifies
the analysis, but is not necessary; in the final subsection we review the literature in which full
back-coupling between the variables is present.

In the skew-product case, when the inverse scale-separation is small, we will look for an
approximate probability density of the form

ρ(x, y, t) ≈ ρ∞(y)ρ̄(x, t),

with ρ∞(·) a smooth probability density on Y , invariant under the y-dynamics. Note that
ρ(x, y, t) solves a (possibly degenerate) parabolic equation (Fokker–Planck equation (2.8)) in
the case where the Z-dynamics is stochastic, and a hyperbolic PDE (the Liouville equation (2.8)
with ( = 0) when it is deterministic. The function ρ̄(x, t) satisfies a Fokker–Planck equation.
The ansatz that we use here assumes that the distribution of y reaches equilibrium on a time-
scale much shorter than the time-scale over which x evolves. This is the probabilistic analogue
of the slaving and averaging techniques of the previous two sections.

When full back-coupling is present, the approximate solution will take the form

ρ(x, y, t) ≈ ρ∞(y; x)ρ̄(x, t), (6.1)

where ρ∞(x, y) is a density invariant under the y-dynamics, with x viewed as a fixed
parameter.

We start by studying the approach based on the Chapman–Kolmogorov picture and then
study the problem again using the Fokker–Planck approach. The two approaches are each
illustrated by a simple example, accompanied by numerical results. The final subsection
overviews the literature and describes a variety of extensions of the basic idea.
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6.1. Chapman–Kolmogorov picture

Consider the case of (1.2) where α ≡ 0 and f, g,β are of the form

f (x, y) = 1
ε
f0(x, y) + f1(x, y),

g(x, y) = 1
ε2

g0(y),

β(x, y) = 1
ε
β0(y).

(6.2)

This leads to model problems of the form

dx

dt
= 1

ε
f0(x, y) + f1(x, y),

dy

dt
= 1

ε2
g0(y) +

1
ε
β0(y)

dV

dt
.

(6.3)

Both the x and y equations contain fast dynamics, but the dynamics in y is an order of magnitude
faster than x (note that white noise scales differently from regular time derivatives and that,
in the Fokker–Planck picture, the contributions from both the drift term, g, and the diffusion
term, β, are of order 1/ε2). Then the variable y induces fluctuations in the equation for x,
(which we will see below are formally of order 1/ε). We are going to assume that f0(x, y)

averages to zero under the y-dynamics, but that f1(x, y) does not necessarily do so. In certain
situations it can then be shown that both terms in f contribute at the same order. The term f0

will give the effective stochastic contribution and, together with f1, the effective drift. One
way to see this is by using the Chapman–Kolmogorov equation and we now develop this idea.
The underlying theory in this area is developed by Kurtz [51]. We follow the presentation
given in [7], where the perturbative structure of the techniques is highlighted; the work of [7]
was exploited recently in [52].

Recall that v(x, y, t) satisfying the Chapman–Kolmogorov equation (2.9), namely

∂v

∂t
= Lv, v(x, y, 0) = w(x, y),

is the expected value at time t of w(·) over all solutions starting at the point (x, y); the
probability space is induced by the Brownian motion in the y variables. If w is only a function
of x, then v(x, y, t) (which remains a function of both x and y) describes the expected evolution
of a property pertinent to the essential dynamics on X .

Substituting (6.2) into the Chapman–Kolmogorov equation (2.9) with w = w(x) gives,

∂v

∂t
= 1

ε2
L1v +

1
ε
L2v + L3v, v(x, y, 0) = w(x), (6.4)

where

L1v = g0 · ∇yv + 1
2 (β0β

T
0 ) : ∇y(∇yv), (6.5)

L2v = f0 · ∇xv, (6.6)

L3v = f1 · ∇xv. (6.7)

We seek an expansion for the solution with the form

v = v0 + εv1 + ε2v2 + · · · .
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Substituting this expansion into (6.4) and equating powers of ε gives a hierarchy of equations,
the first three of which are

L1v0 = 0, (6.8)

L1v1 = −L2v0, (6.9)

L1v2 = ∂v0

∂t
− L2v1 − L3v0. (6.10)

The initial conditions are that v0 = w and vi = 0 for i ! 1.

Note that L1, given by (6.5), is the Chapman–Kolmogorov operator constrained to the
y-dynamics, and that constants (in y) are in the null-space of L1. Assume that there is a unique
density ρ∞(y) in the null-space of L∗1 (i.e. a unique density invariant under the y-dynamics),
and denote by 〈·〉 averaging with respect to this density. Assume further that the dynamics is
ergodic in the sense that any initial density ρ0(y), including a Dirac mass, tends, as t →∞,
to the unique invariant density ρ∞(y); the system ‘returns to equilibrium’. By (2.10)

lim
t→∞

eL1tφ(y0) = lim
t→∞

∫

Y
φ(y)

(
eL∗1 tρ0

)
(y) dz =

∫

Y
φ(y)ρ∞(y) dy = 〈φ〉, (6.11)

where ρ0(y) = δ(y−y0) and the limit is attained for any y0. Later we will also assume that the
operator L1 is negative definite on the inner product space weighted by the invariant density
and excluding constants; this kind of spectral gap is characteristic of many ergodic systems.

Note that constants in y are in the null-space of L1. We now argue that all functions φ
satisfying L1φ = 0 are independent of y. Indeed,

(L1φ)(y) = 0 ⇒ d
ds

(eL1sφ)(y) = eL1sL1φ(y) = 0,

so that φ(y) = eL1sφ(y) for all s. Letting s →∞ and using (6.11) we get

φ(y) = 〈φ〉,
and the latter is independent of y. Thus, the first equation (6.8) in the hierarchy implies that
v0 = v0(x, t).

Consider next the v1 equation (6.9). For it to be solvable, L2v0 has to be orthogonal to
the kernel of L∗1, which by assumption contains only ρ∞(y). Thus, orthogonality to the kernel
of L∗1 amounts to averaging to zero under the y-dynamics. The solvability condition is then
〈L2v0〉 = 0, or substituting (6.6):

〈f0〉 ·∇ xv0(x, t) = 0.

Thus, for the expansion to be consistent it suffices that 〈f0〉 ≡ 0; this means that the leading-
order x-dynamics averages to zero under the invariant measure of the y-dynamics. It follows
that the equation for v1 is solvable and we may formally write

v1 = −L−1
1 L2v0.

Similarly, considering (6.10) the solvability condition for v2 becomes
∂v0

∂t
= −〈L2L−1

1 L2v0〉 + 〈L3v0〉. (6.12)

In view of the fact that L2 and L3 are first-order differential operators in x, that L1 involves only
y, and 〈·〉 denotes y averaging, this is a Chapman–Kolmogorov equation for an Itô SDE in X :

dX

dt
= F(X) + A(X)

dU

dt
, (6.13)

U being standard Brownian motion. That is, (6.12) is of the form
∂v0

∂t
= F(x) · ∇xv0 +

1
2

[A(x)A(x)T ] : ∇x(∇xv0),
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To see how F(X) and A(X) are determined note that, by virtue of the linearity of L1 and
structure of L2,

L−1
1 L2v0 = L−1

1 f0 · ∇xv0 = r · ∇xv0,

where r = r(x, y) solves the cell problem

L1r(x, y) = f0(x, y).

Hence

L2L−1
1 L2v0 = f0 · ∇x(r · ∇xv0) = (f0r

T ) : ∇x(∇xv0) + ∇xv0 · (∇xr)f0, (6.14)

and (6.12) takes the explicit form

∂v0

∂t
= ∇xv0 · 〈f1 − (∇xr)f0〉 +

1
2
〈−2rf T

0 〉 : ∇x(∇xv0).

Thus A(x) satisfies

A(x)A(x)T = −2〈f0r
T 〉.

In order to be able to extract a non-singular matrix root A(x) from A(x)A(x)T it is necessary
to show that the right-hand side, −2〈f0r〉, is positive definite. Notice that, for all constant
vectors a,

aT f0r
T a = (a · r)(a · f0) = (a · r)L1(a · r).

If, as mentioned above when discussing ergodicity, L1 is negative definite in the inner product
space weighted by the invariant density and excluding constants, we see that

aT (A(x)A(x)T )a > 0 ∀a *= 0

and hence the diffusion coefficient is well-defined. Finally,

F(x) = 〈−(∇xr)f0〉 + 〈f1〉 = F0(x) + F1(x).

The explicit extraction of A(X), F (X) may not be possible in general since it requires the
inversion of L1 to find r from the cell problem. Thus we describe an alternative way to define
these vector fields, useful for practical estimation procedures. Let h = h(y) be orthogonal to
the kernel of L∗1, i.e. 〈h〉 = 0. If H = H(y) given by

H = −
∫ ∞

0
eL1t h dt

is well-defined, then it is an integral representation of L−1
1 h. This is because

L1H = −
∫ ∞

0
L1eL1t h dt = −

∫ ∞

0

∂

∂t
eL1t h dt = h− lim

t→∞
eL1t h = h.

Thus

−r = −L−1
1 f0 =

∫ ∞

0
eL1t f0 dt.

Substituting this expression into (6.14) gives

−〈L2L−1
1 L2v0〉 =

〈∫ ∞

0
f0eL1t f T

0 dt

〉
: ∇x(∇xv0) +

〈∫ ∞

0
f0∇x{eL1t f0}f0 dt

〉
· ∇xv0

= 1
2

[A(x)A(x)T ] : ∇x(∇xv0) + F0(x) · ∇xv0,
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where
1
2

[A(x)A(x)T ] =
〈∫ ∞

0
Ef0(x, y)f T

0 (x, y(t)) dt

〉
,

F0(x) =
〈∫ ∞

0
{∇xf0(x, y(t))}f0(x, y) dt

〉
.

(6.15)

Here y(t) denotes the solution to the y-equation in (6.3) with ε = 1 and initial condition y;
E denotes the expectation with respect to the Brownian trajectories, whereas 〈·〉 denotes, as
before, averaging over y = y(0).

Since, by assumption, the y-dynamics is ergodic, the expectation over the Brownian
trajectories and the initial data may be replaced by a single time-average. We now illustrate
this fact, informally, freely exchanging the order of integration without justification. For
example, the auto-correlation of y(t) reduces as follows:

〈EyyT (t)〉 = lim
T→∞

1
T

∫ T

0
Ey(s)yT (s + t) ds = E lim

T→∞

1
T

∫ T

0
y(s)yT (s + t) ds,

and the expectation E is now superfluous since the increments of B are stationary. By similar
arguments we obtain

1
2

[A(x)A(x)T ] =
∫ ∞

0

{
lim

T→∞

1
T

∫ T

0
f0(x, y(s))f T

0 (x, y(s + t))ds

}
dt,

F0(x) =
∫ ∞

0

{
lim

T→∞

1
T

∫ T

0
∇xf0(x, y(s + t))f0(x, y(s)) ds

}
dt.

(6.16)

Similarly,

〈L3v0〉 = F1(x) · ∇xv0,

where,

F1(x) = 〈f1(x, y)〉 = lim
T→∞

1
T

∫ T

0
f1(x, y(t)) dt. (6.17)

Example 6.1. The Ornstein–Uhlenbeck (OU) process is a linear SDE driven by additive white
noise, and with a linear drift term inducing returns to the centre of the phase space. In one
dimension it reads

dy

dt
= −y +

dV

dt
, (6.18)

where V is standard Brownian motion on R. This is the simplest ergodic SDE on R. It has
a Gaussian invariant measure N (0, 1

2 ). (For later developments it is important to note that
generalizations to different constants in the coefficients, and to higher dimensions, are also
referred to as OU processes.) We consider a simple skew-product example where the fast
variable y is a speeded up OU process, leading to the following equations in X = Y = R:

dx

dt
= −λx +

1
ε
yx,

dy

dt
= − 1

ε2
y +

1
ε

dV

dt
.

(6.19)

Here V is standard Brownian motion on R. We have

L1v = −y
∂v

∂y
+

1
2
∂2v

∂y2
,

L2v = xy
∂v

∂x
,

L3v = −λx ∂v
∂x

.
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From the definition of L1 it is easily verified that the only density invariant under L∗1 is
π−1/2 exp(−y2), so that the averaging 〈·〉 is with respect to Gaussian measure N (0, 1

2 ). Now,
L1v1 = −L2v0 reads

−y
∂v1

∂y
+

1
2
∂2v1

∂y2
= −xy

∂v0

∂x
,

which has the solution

v1(x, y, t) = −L−1
1 L2v0 = xy

∂v0

∂x
.

Finally,

−〈L2L−1
1 L2v0〉 =

〈
xy

∂

∂x

(
xy

∂v0

∂x

)〉
= x

2
∂

∂x

(
x
∂v0

∂x

)

and

〈L3v0〉 =− λx
∂v0

∂x
,

so that (6.12) yields the following equation for v0 = v0(x, t):

∂v0

∂t
=

(x

2
− λx

) ∂v0

∂x
+

x2

2
∂2v0

∂x2
.

Comparing with (2.9) we see that this equation arises as the Chapman–Kolmogorov equation
of the (effective) Itô SDE

dX

dt
=

(
1
2
− λ

)
X + X

dU

dt
. (6.20)

Recall the Itô formula whereby a function Y = g(t, U) satisfies the SDE:

dY

dt
=

(
∂g

∂t
+

1
2
∂2g

∂U 2

)
+
∂g

∂U

dU

dt
.

Using this, it is immediately verified (see, for example, [4]) that equation (6.20) has the
exact solution

X(t) = X(0) exp[−λt + U(t)].

In order to test the theory we compare the behaviour of x against known theoretical properties
of X solving the limiting SDE (6.20). From the exact solution X(t) and the properties of
Brownian motion (see Mao [53], p 105) it follows that:

λ > 0 ⇔ lim
t→∞

X(t) = 0 a.s.

λ = 0 ⇔ lim sup
t→∞

|X(t)| =∞ and lim inf
t→∞

|X(t)| = 0 a.s.

λ < 0 ⇔ lim
t→∞

|X(t)| =∞ a.s.

In figure 4 we show three trajectories of log x(t) for λ = −1, 0 and 1 respectively. The
value of ε is 0.1 . In figure 5 we repeat this experiment with smaller ε = 0.01 . Notice the
agreement with theoretical predictions from the SDE, although for λ = 0 the wild oscillations
appear to stop at a finite time, rather than persisting indefinitely, and then x(t) dies out, decaying
to 0 (log x(t) tends to −∞). "
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Figure 4. Time evolution of log x(t) for ε = 0.1 and (a) λ = −1, (b) λ = 0 and (c) λ = 1.

6.2. The Fokker–Planck picture

We study the model problem (6.3) in the limit where β0 is a constant, eventually set to zero.
If β0 ≡ 0 then the papers [7, 43, 54] show that the basic ideas outlined in section 6.1 still
apply formally, provided the dynamics in z is mixing in a sufficiently strong sense5. The
formulae (6.16), (6.17) are used to define the drift and diffusion terms, rather than (6.15),
because there is no longer any expectation over Brownian paths. The formulae show that a
decay of correlations is required in order for the outer integration in t to be well-defined.

We find it convenient to illustrate this situation by carrying out the programme of the
previous subsection in the Fokker–Planck picture rather than its adjoint, the Chapman–
Kolmogorov one. For rigorous proofs the Chapman–Kolmogorov approach is usually preferred
because it allows the treatment of deterministic data in a straightforward way; note that
deterministic data leads to a Dirac mass as initial data for the Fokker–Planck equation,
something which is hard to handle analytically. On the other hand physicists tend to think
in terms of the probability density function, and so the Fokker–Planck picture is natural in that
context. At a formal level of perturbation expansions there is little to choose between the two
approaches. Our approach will be to take β0 *= 0, derive the limiting Fokker–Planck equation
in x, and then set β0 = 0.

5 Examples of deterministic dynamics with provably strong mixing properties are few, but include geodesic flow on
manifolds with negative curvature [55]. Empirically, however, there are many interesting systems which appear to
obey this condition, including the Lorenz equations, for example, and the ‘Burgers’ bath’ of Majda and Timofeyev [56].
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Figure 5. Time evolution of log x(t) for ε = 0.01 and (a) λ = −1, (b) λ = 0 and (c) λ = 1.

With f , g and β still of the form (6.2), the Fokker–Planck equation (2.8) becomes
∂ρ

∂t
= 1

ε2
L∗1ρ +

1
ε
L∗2ρ + L∗3ρ,

where

L∗1φ = −∇y · (g0φ) + 1
2∇y · [∇y · (β0β

T
0 φ)],

L∗2φ = −∇x · (f0φ),

L∗3φ = −∇x · (f1φ).

We seek an expansion for ρ in the form

ρ = ρ0 + ερ1 + ε2ρ2 + · · · ,
substitute it into the Fokker–Planck equation, and equate powers of ε to obtain

L∗1ρ0 = 0,

L∗1ρ1 = −L∗2ρ0,

L∗1ρ2 = ∂ρ0

∂t
− L∗2ρ1 − L∗3ρ0.

We assume that the y-dynamics is ergodic so that eL1tφ→ 〈φ〉 as t →∞, with 〈·〉denoting
expectation with respect to an invariant measure, possibly restricted to some sub-manifold, inY .
Thus, L∗1ρ∞(y) = 0 for some density ρ∞(y). The solution for ρ0(x, y, t) is then of the form

ρ0(x, y, t) = ρ∞(y)ρ̄(x, t).
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Thus, to leading-order, the distribution of solutions is a product measure—the x and y

components of the solution are independent. The density of the slow variables, ρ̄(x, t), is
the quantity of interest.

To solve the equation L∗1ρ = r we require that r be orthogonal to the null-space of
L1, i.e. that it integrates to zero against constants (in y). If 〈f0〉 = 0, so that the leading-
order x-dynamics averages to zero under the invariant measure for y, the equation for ρ1 is
solvable, and

ρ1 = −(L∗1)
−1L∗2ρ∞(y)ρ̄(x, t).

A similar solvability condition applied to the equation for ρ2 leads to the following equation
for ρ̄(x, t):

∂ρ̄

∂t
= −

∫

Y
L∗2(L

∗
1)
−1L∗2ρ∞ρ̄ dy +

∫

Y
L∗3ρ∞ρ̄ dy. (6.21)

In view of the fact that L∗2 is a first-order differential operator in x, and the averaging is
over y, this is the Fokker–Planck equation for an SDE in X :

dX

dt
= F(X) + A(X)

dU

dt
,

U being standard Brownian motion. The arguments showing this are similar to those in the
previous subsection.

Example 6.2. Consider the equations
dx

dt
= x − x3 +

4
90ε

y2,

dy1

dt
= 10

ε2
(y2 − y1),

dy2

dt
= 1

ε2
(28y1 − y2 − y1y3),

dy3

dt
= 1

ε2

(
y1y2 −

8
3
y3

)
.

(6.22)

Note that the vector y = (y1, y2, y3)
T solves the Lorenz equations, at parameter values where

the solution is chaotic [24]. Thus the equation for x is a scalar ODE driven by a chaotic
signal with characteristic time ε2. We will show how, for small ε, the x-dynamics may be
approximated by the SDE

dX

dt
= X −X3 + σ

dW

dt
, (6.23)

whereσ is a constant. Although the asymptotics of the previous subsection cannot be rigorously
justified in this case without the addition of a white noise term to the equations for y, we,
nonetheless, proceed to find an SDE in the small ε limit, showing by means of numerical
experiment that the fit between x and X is a good one. We interpret (6.21) by taking ρ∞(y) to
be the density generated by the empirical measure of the Lorenz equations.

Here f1 = f1(x) = x − x3 and f0 = f0(y) = 4y2/90. Since L1 is independent of x we
deduce that

(L∗1)
−1L∗2ρ∞ρ̄ = −(L∗1)

−1 ∂

∂x
(f0ρ∞ρ̄) = r

∂ρ̄

∂x
,

where r = r(y) solves the equation

L∗1r(y) = −f0(y)ρ∞(y).
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(It is for this step that the regularization of the y-dynamics, by addition of white noise, is
required; otherwise L∗1 may not have a unique inverse on the appropriate subspace, and r(y)

will not be well-defined.) Proceeding with this expression we find that

−
∫

Y
L∗2(L

∗
1)
−1L∗2ρ∞ρ̄ dy =

∫

Y

∂

∂x

(
f0r

∂ρ̄

∂x

)
dy = σ 2

2
∂2ρ̄

∂x2
,

where

σ 2 = 8
90

∫

Y
y2r(y) dy.

Also
∫

Y
L∗3ρ∞ρ̄ dy = − ∂

∂x
[(x − x3)ρ̄].

Thus, the limiting equation for probability densities is

∂ρ̄

∂t
+

∂

∂x
[(x − x3)ρ̄] = σ 2

2
∂2ρ̄

∂x2
,

which is the Fokker–Planck equation for the SDE (6.23).
However, we do not know r(y) explicitly (indeed it is only well-defined if we add noise

to the Lorenz equations) and thus do not know σ explicitly. To circumvent this difficulty, we
estimate σ from a sample path of x(t), calculated with a small (compared to ε2) time-step $t .

We study the time-series γn defined by

γn = h−1/2{xn+1 − xn − h[xn − xn+1x
2
n]},

for xn = x(nh) and h small (typically chosen as some multiple of $t so that interpolation of
numerically generated data is not necessary). If x were governed by the SDE (6.23) then γn

should be an approximately i.i.d. sequence distributed as N (0, σ 2) and this fact can be used
to estimate σ 6.

Figure 6 shows the estimate of σ 2 calculated from this data, using ε = $t = 10−3. The
left figure shows the dependence of the estimate on the time interval for h = 0.05; notice that
the estimate converges very fast in time. The right figure shows how this estimate varies with
the sampling interval h. For h ∈ [0.05, 0.4] we obtain σ 2 = 0.126 ± 0.003.

To verify that the fit with the SDE at the predicted value of σ is a good one, we compare
the empirical density of the data in figure 7, generated from x(t) over a time interval of length
104, with the exact invariant measure for the SDE (6.23), at the estimated value of σ . The
agreement is very good. "

6.3. Discussion and bibliography

The basic perturbation expansion outlined in the Chapman–Kolmogorov case can be rigorously
justified and weak convergence of x to X proved as ε → 0; see Kurtz [51]. The perturbation
expansion which underlies the approach is clearly exposed in [7]. Applications to climate
models, where the atmosphere evolves quickly relative to the slow oceanic variations, are
surveyed in Majda et al [52]; we have followed the presentation in [7, 52] quite closely here.
Further applications to the atmospheric sciences may be found in [58, 59].

6 This method of parameter estimation for the stochastic model is quite general but does not exploit the scale-
separation to optimize the computational work. Other methods could be used which do exploit scale-separation, such
as the method introduced in [57], which is based on (6.16) and described in section 10.
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Figure 6. Top: estimated value of σ as function of the size of the time interval for ε2 = 0.001 and
h = 0.05. Bottom: estimated value of σ as function of the sampling interval h.

The use of representation (6.15) is discussed in [7]. The representations (6.16) and (6.17)
for the effective drift and diffusion can be used in the design of coarse time-stepping algorithms
(see Vanden-Eijnden [57] and section 10.3).

Studying the derivation of effective stochastic models when the variables being eliminated
do not necessarily come from an Itô SDE, as we did in the Fokker–Planck picture, is a subject
investigated in some generality in [54]. The idea outlined here is carried out in discrete time
by Beck [60] who also uses a skew-product structure to enable the analysis; the ideas can then
be rigorously justified in some cases. In the paper [61] the idea that fast chaotic motion can
introduce noise in slow variables is pursued for an interesting physically motivated problem
where the fast chaotic behaviour arises from the Burgers’ bath of [56]. Furthermore, by means
of numerical experiments, a connection is made between driving the system by the chaotic,
but deterministic, Burgers’ bath and a fully stochastic model where the bath is represented by
an OU process (a generalization of (6.18)).
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Figure 7. Empirical measure of x(t) solving (6.22) for ε2 = 0.001 (——) compared with the
empirical measure of X(t) solving (6.23) (· · · · · ·).

Related work can be found in [62] and similar ideas in continuous time are addressed
in [17, 18] for differential equations; however, rather than developing a systematic expansion
in powers of ε, they find the exact solution of the Fokker–Planck equation, projected into the
space X , by use of the Mori–Zwanzig formalism (see section 3) [19], and then make power
series expansions in ε of the resulting problem.

There are many variants on the basic themes introduced in the previous two sections. Here,
we briefly discuss two of them. The first is fast deterministic dynamics. The set-up is as in
section 6.1, but we do not assume that the vector field f0(x, y) averages to zero under 〈·〉 and,
as a consequence, there is additional fast dynamics not present in section 6.1. Consequently
we introduce a new time variable

s = ε−1t

and seek a two-time-scale expansion of the Chapman–Kolmogorov equation, setting

∂

∂t
→ ∂

∂t
+

1
ε

∂

∂s
.

Having performed this expansion and converting back from the Chapman–Kolmogorov picture,
combining to give one time variable yields

dX

dt
= 1

ε
F0(X) + F1(X) + A(X)

dU

dt
,

U being standard Brownian motion.
In the Fokker–Planck picture we are seeking an approximation of the form

ρ(x, y, t) ≈ ρ∞(y)ρ̄(x, t, s).

This situation and more general, related ones are covered in a series of papers by Papanicolaou
and co-workers—see [7,43,54,63], building on the original work of Khasminkii [64,65]. See
also [17, 18, 52, 60].
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The second generalization is to include back-coupling. We again consider a set-up similar
to section 6, but now allow back-coupling of the x-variable into the equation for y. We consider
(1.2) with α = 0

f (x, y) = 1
ε
f0(x, y), g(x, y) = 1

ε2
g0(x, y), β(x, y) = 1

ε
β0(x, y).

The equation for y is thus, in place of (6.3),

dy

dt
= 1

ε2
g0(x, y) +

1
ε
β0(x, y)

dV

dt
.

Since x evolves more slowly than y it is natural to study the equation

dY

dt
= g0(ζ, y) + β0(ζ, y)

dV

dt
, (6.24)

where ζ is viewed as a parameter. If this equation is ergodic, for each fixed ζ , with invariant
measure µζ , then it is natural to try and generalize the studies of the previous sections, replacing
〈·〉 by averaging with respect to µx , since the slower time-scale of x relative to y means that it
will be effectively frozen in the y-dynamics. In the Fokker–Planck picture we are seeking a
solution of the form (6.1), where ρ∞(y; ζ ) is the invariant density for (6.24). Such ideas can
be developed systematically; see [17, 18, 43, 52, 54, 63–65] for details. An approximation of
the form (6.1) also underlies the averaging techniques of section 5.

7. White and coloured noise approximations of large systems

In the previous section we showed how effective low-dimensional SDEs can arise from either
higher-dimensional SDEs or from ODEs, when a separation of time-scales occurs. We worked
with the Chapman–Kolmogorov or Fokker–Planck equations, rather than the paths of (1.1)
itself. In this section we describe an alternative situation where effective low-dimensional
SDEs can arise. This is achieved by coupling a small problem weakly to a heat bath, a
large Hamiltonian system. We are studying problems of the form D–S in the classification of
section 1.

Here we will study the system from a pathwise perspective, rather than using the Chapman–
Kolmogorov or Fokker–Planck picture. However, it is of interest to give an interpretation for
probability densities. The systems we study are large ODEs with random data. We study
situations where the Liouville equation (the hyperbolic PDE (2.8) with ( = 0) for ρ(x, y, t)

can be approximated by

ρ(x, y, t) ≈ ρ(y; x)ρ̄(x, t)

and ρ̄(x, t) satisfies a Fokker–Planck (parabolic) PDE (2.8). The analysis in this section works
in a variety of situations, but in all cases the dimension of the space Y is tending to infinity.

The basic building block for the analysis is the trigonometric approximation of Gaussian
processes, which we describe in the next subsection. In the two subsequent sections we study
a skew-product system and then the more physically interesting case of a Hamiltonian system
for a particle interacting with a heat bath.

7.1. Trigonometric approximation of Gaussian processes

Mean zero Gaussian processes Z(t) have the property that given any sequence of times
t1, t2, . . . , tk , the vector

(Z(t1), Z(t2), . . . , Z(tk))



R88 Invited Article

is a mean zero Gaussian random vector in Rk . It is stationary if the statistics are unchanged
when the {ti}ki=1 are all translated by a single time s. Subject to some continuity properties on
paths (see, e.g. Karlin and Taylor [66]) a mean zero stationary Gaussian process is completely
characterized by its auto-covariance function

R(τ ) := EZ(t + τ )Z(t).

The basic building block in this section is the trigonometric series for Gaussian processes
(see Kahane [67]). We consider the approximation of Gaussian processes by a finite series of
the form

ZN(t) = 1
Nb

N∑

j=1

F(ωj )[ξj cos(ωj t) + ηj sin(ωj t)], (7.1)

where the ξj and ηj are mutually independent i.i.d. sequences with ξ1, η1 ∼ N (0, 1). The
sequence of frequencies ωj may or may not be random. The parameter b will be chosen
differently depending on the choice of frequencies {ωj }; see below for details. The process (7.1)
is Gaussian, once the frequencies are specified. Letting E denote expectation with respect to
ξj and ηj , with the ωj fixed, we see that

RN(τ ) := E ZN(t + τ )ZN(t)

is given by

RN(τ ) = 1
N2b

N∑

j=1

F 2(ωj ) cos(ωjτ ). (7.2)

Notice that the oscillators ξj cos(ωj t) and ηj sin(ωj t) arise as solutions to an ODE with random
initial data. The basic idea underlying the constructions of SDEs from ODEs in this section
is to exploit this fact and to choose the function F(ω) and the sequence of frequencies ωj

so that RN(τ ) approximates R(τ ) for large N , thus building an approximation ZN(t) of the
stationary Gaussian process Z(t) from solutions of ODEs. This idea is made more precise in
the following subsections.

7.2. Skew-product systems

Here, we consider model problems with the form

dx

dt
= f (x) +

N∑

j=1

kjqj , (7.3)

mj

d2

dt2
qj + qj = 0, j = 1, 2, . . . , N, (7.4)

where mj = ω−2
j and the kj are constants to be determined.

To put this in the general framework of section 1 we set y = (q, dq/dt), and z =
(x, y) = (x, q, dq/dt), where q = (q1, q2, . . . , qN)T . The problem is in skew-product form:
the y-dynamics evolves independently of the x-dynamics. Full coupling is considered in the
next subsection.

We note that the q-equations derive from the Hamiltonian

H(p, q) = 1
2

N∑

j=1

p2
j

mj

+
1
2

N∑

j=1

q2
j .
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Here pj = mj (dq/dt). The functions qj (t) may be viewed as the trajectories of N independent
harmonic oscillators with mass mj , spring constant 1 and natural frequencies ωj = m

−1/2
j .

Together, the N oscillators constitute a ‘heat bath’. If we choose initial data for this heat bath
from the Gibbs distribution at inverse temperature β, that is, we pick from density proportional
to e−βH(p,q) then

q(0) ∼ β−1/2ξj , q̇(0) ∼ β−1/2ωj ηj ,

where the random variables ξj and ηj are, as above, mutually independent sequences of i.i.d.
N (0, 1) random variables.

To establish a connection with the previous subsection we choose the coupling constants
kj so that

kj = F(ωj )

Nb
.

Then,
N∑

j=1

kjqj = β−1/2 ZN(t),

where ZN(t) is given by (7.1). Thus the ‘essential dynamics’, x(t), satisfy the randomly-
driven ODE:

dx

dt
= f (x) + β−1/2 ZN(t). (7.5)

Example 7.1. We start with an example where ZN(t) approximates a coloured noise process.
Choose a ∈ (0, 1), 2b = 1− a and ωj = Naζj , where ζ := {ζj }∞j=1 is an i.i.d. sequence with
ζ1 uniformly distributed in [0, 1], ζ1 ∼ U[0, 1]. Defining $ω = Na/N , which is the mean
frequency spacing, (7.2) takes the form

RN(t) =
N∑

j=1

F 2(ωj ) cos(ωj t)$ω,

which, as N →∞, is a Monte Carlo approximation to the Fourier-cosine transform of F 2(ω):

R(t) =
∫ ∞

0
F 2(ω) cos(ωt) dω.

If F 2(ω) is bounded and decays at least as fast as 1/ω1+δ , for some δ > 0, then for almost
every ζ , RN(t) converges to R(t) point-wise and in L1[0, T ], T > 0 arbitrary. The random
forcing, (7.1), which takes the form

ZN(t) =
N∑

j=1

F(ωj )[ξj cos(ωj t) + ηj sin(ωj t)]($ω)1/2,

then converges weakly (with respect to the probability space for {ξj }, {ηj }) in C([0, T ], R) to
a zero mean Gaussian process with auto-covariance R(t) as N → ∞ (see [68] for details;
see [69] for a general reference on weak convergence).

In particular, if

F 2(ω) = 2α/π

α2 + ω2
,

where α > 0 is a constant, then

R(τ ) = exp(−α|τ |),
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and Z(t) is an OU process, like (6.18), defined by an Itô SDE. Finally, it can be shown
that (7.5) defines a continuous mapping, ZN %→ x, between C([0, T ], R) functions. Since
weak convergence is preserved under continuous mappings (see [69]) it follows that x(t) is
approximated, for N large, by X(t) solving the SDE

dX

dt
=f (X) + β−1/2Z(t),

dZ

dt
= − αZ + (2α)1/2 dB

dt
,

(7.6)

where B(t) is standard Brownian motion and Z(t) is an OU process. This approximation holds
for any T > 0. "
Example 7.2. In this second example, ZN(t) approximates white noise, which may be viewed
as a delta-correlated Gaussian (generalized) process. We set b = 0 and the ωj are chosen
deterministically:

ωj = 2(j − 1), j = 1, 2, . . . , N;
the F(ωj ) are given by

F(ωj ) =






(
1
π

)1/2

j = 1,

(
2
π

)1/2

j = 2, . . . , N.

This choice makes RN(t) a truncation of the formal Fourier series for a delta function. To
exploit this fact rigorously it is necessary to work with the integral of ZN(t) which we will call
YN(t), normalizing by YN(0) = 0. The function YN(t) converges almost surely, as N →∞,
to a function in C([−π/2,π/2], R) which may be identified with a realization of Brownian
motion [70]. Thus, for large N , x is approximated by the SDE:

dX

dt
= f (X) + β−1/2 dU

dt
.

Here U is standard Brownian motion. The mapping YN → x is continuous and hence x

converges strongly to X as N → ∞ and error estimates can be found [71]. However, the
convergence is only on a finite time interval t ∈ [0, T ], T < π/2, because of the periodicity
inherent in the construction. "

7.3. Hamiltonian systems

We now generalize the ideas developed in the last subsection to situations with back-coupling
between the x and y variables so that the simplifying skew-product nature is lost. This leads
to a class of model problems of clear physical significance.

We consider a mechanical system, which consists of a ‘distinguished’ particle which
moves in a one-dimensional potential field, and experiences, in addition, interactions with
a large collection of ‘heat bath’ particles. The goal is to derive a reduced equation for the
distinguished particle, under the assumption that the initial data for the heat bath are random.
Models of this type were first introduced in the 1960s by Kac and co-workers [72, 73] and by
Zwanzig [9, 12]. The results reported here can be found, in full detail, in [68, 74].

The model problems we consider are defined by the following Hamiltonian,

H(PN, QN, p, q) = 1
2
P 2

N + V (QN) +
1
2

N∑

j=1

p2
j

mj

+
1
2

N∑

j=1

kj (qj −QN)2, (7.7)
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where QN, PN are the coordinate and momentum of the distinguished particle, and q, p are,
as before, vectors whose entries are the coordinates and momenta of the heat bath particles.
The function V (Q) is the potential field experienced by the distinguished particle; the j th
heat bath particle has mass mj and interacts with the distinguished particle by means of a
linear spring with stiffness constant kj ; the j th heat bath particle has a characteristic frequency
ωj = (kj /mj )

1/2. The subscript N in QN, PN denotes the size of the heat bath as we will be
considering systems of increasing size.

Hamilton’s equations are

Q̈N + V ′(QN) =
N∑

j=1

kj (qj −QN),

q̈j + ω2
j (qj −QN) = 0

with initial conditions QN(0) = Q0, PN(0) = P0, qj (0) = q0
j and pj (0) = p0

j . The initial
data Q0 and P0 are given, whereas the q0

j and p0
j are randomly drawn from a Gibbs distribution

with inverse temperature β, i.e. from a distribution with density proportional to exp(−βH),
conditional on knowledge of Q0, P0. It may be verified that this amounts to choosing

q0
j = Q0 +

(
1
βkj

)1/2

ξj ,

p0
j =

(
mj

β

)1/2

ηj ,

where the sequences ξj , ηj are independent i.i.d. sequences as specified in the previous
subsection.

The equations for qj can be solved in terms of the past history of QN , and the qj can then
be substituted back into the equation for QN . This yields the following integro-differential
equation for QN :

Q̈N + V ′(QN) +
∫ t

0
RN(t − s)Q̇N(s) ds = β−1/2ZN(t), (7.8)

where

RN(t) =
N∑

j=1

kj cos(ωj t)

and

ZN(t) =
N∑

j=1

k
1/2
j [ξj cos(ωj t) + ηj sin(ωj t)].

Notice that, for given frequencies {ωj }, and taking expectations with respect to {ξj } and {ηj },

EZN(t + τ )ZN(t) = RN(τ ).

This is known as the fluctuation–dissipation relation—discussed in the general context of the
Mori–Zwanzig reduction in section 3.

Equation (7.8) is an instance of a generalized Langevin equation, with memory kernel
RN and random forcing β−1/2ZN . By choosing the parameters kj ,ωj to the different, limiting
behaviours can be obtained as N →∞.
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Example 7.3. We set ωj = Naζj , with i.i.d. ζj and ζ1 ∼ U(0, 1], 0 < a < 1, $ω = Na/N

and

kj = F 2(ωj )$ω = 2α2γ /π

α2 + ω2

Na

N
. (7.9)

If γ = α−1 then the functions RN , ZN coincide with those in example 7.1. Thus RN converges
to R(t) = e−α|t |, and ZN weakly converges on any bounded interval to the OU process Z(t)

in (7.6). It can further be shown, using a continuity argument, that QN weakly converges to
the stochastic process Q(t) solving the stochastic IDE:

Q̈ + V ′(Q) +
∫ t

0
R(t − s)Q̇(s) ds = β−1/2Z(t). (7.10)

Moreover, Q solving (7.10) is equivalent to Q solving the SDE
dQ

dt
= P,

dP

dt
= S − V ′(Q),

dS

dt
= (−αS − P) +

(
2α
β

)1/2 dB

dt

(7.11)

where B(t) is standard Brownian motion. Thus, a Hamiltonian system with 2(N + 1) variables
has been reduced to an SDE for the distinguished particle with one auxiliary variable, S(t),
which embodies, for large N , the memory effects. Convergence of QN to Q can be proved in
C2([0, T ], R) for any T > 0 [68].

In figure 8, we show empirical distribution of QN(t), N = 5000, for sample paths over
a time interval of T = 50 000 (open circles). The two graphs correspond to the cases of
single-well, and double-well potential V (Q). In each case, the solid line is the Boltzmann
distribution, proportional to exp(−βV (Q)), which is the empirical measure for the ergodic
SDE (7.11) [75]. "

Example 7.4. By a slight modification of the arguments in [74], a limit to a memoryless
Langevin equation of the form

dQ

dt
= P,

dP

dt
= −V ′(Q)− γP +

(
2γ
β

)1/2 dB

dt

(7.12)

can be obtained. One way of doing this is to note that, if we do not take γ = α−1, then the
limiting SDE becomes

dQ

dt
= P,

dP

dt
= S − V ′(Q),

dS

dt
= (−αS − αγP) +

(
2α2γ

β

)1/2 dB

dt
.

(7.13)

Taking the limit α→∞ then gives the desired memoryless Langevin equation.
Another way to obtain the same limit is by use of Fourier series, taking ωj = (2j − 1),

and choosing the kj = F 2(ωj ) appropriately so that RN approximates a delta function, as in
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Figure 8. ◦: empirical distribution of QN(t) for a sample path of the Hamiltonian system in
example 7.3, with parameters n = 5000, α = 1, β = 2 and a sampling time of T = 50 000.
The solid line corresponds to the Boltzmann distribution. The graph on the top is for a
single-well potential, V (Q) = Q2/2; the graph on the bottom is for a double-well potential,
V (Q) = Q4/4−Q2/2.

example 7.2. As mentioned in that context, the use of the Fourier series means that long time
behaviour cannot be studied without seeing the periodicity of RN and ZN ; convergence to
(7.12) only occurs on t ∈ [0, T ] with T < π/2. One way to circumvent this is to re-randomize
the data in {p, q} periodically in time which is done in [76]. "

7.4. Discussion and bibliography

Ford et al [73] were the first to study mechanical models of masses and springs as models
of a particle interacting with a heat bath; see also Ford and Kac [72] and Zwanzig [9, 12].
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There exists a substantial amount of literature on the subject in both classical and quantum
contexts (see [72,77–79]). The more recent work on heat bath models focuses on those aspects
related to dimension reduction and coarse-grained time-stepping. In [74] the spectrum of the
heat bath was chosen such that the frequencies are rationally related and the trajectories of
the distinguished particle converge in a strong sense to Brownian motion. A drawback of
this approach is its restriction to a fixed time interval since the approximate trajectories are
periodic. Example 7.3 was studied in [68]. The main results concern the weak convergence of
QN(t) on bounded time intervals of arbitary size, overcoming the periodicity by use of random
frequencies. Some convergence results, and in particular, some ergodic properties, were also
proved for infinite time intervals. A generalization of these results for the case of heat bath
interactions by means of nonlinear springs may be found in [80]. This paper contains, in
addition, a systematic evaluation of the effective models by means of time-series analyses for
the distinguished particle trajectories QN(t), with N large. Aspects related to coarse-grained
integration are studied in [74] and in [81]. A heat bath model that induces fractional Brownian
motion is studied in [82].

8. Birth–death processes

Here we present a class of model problems of the form S–D, in the classification of section 1.
Chemical reactions are often modelled through birth–death processes, counting molecular
concentrations of different chemical species, with transition rates being proportional to
algebraic expressions related to species concentrations [3]. In this section we start with a
very simple model problem for a single variable species. We show how, in a certain limit, a
closed ODE for the first moment describes the dynamics completely; formal expansions and
numerical experiments are used to study this example. We follow this with a more involved
model problem. In the space of probability measures we are showing that a master equation
for a Markov chain in a very large or countable state space can be approximated by a Liouville
equation (hyperbolic PDE (2.8) with ( = 0) for a single moment; this is done by making the
state space continuous and infinite (uncountable). One way to see that we are performing a
form of dimension reduction is the following. We find a single closed equation for the first
moment, namely the ODE whose characteristics satisfy the adjoint of the Liouville equation;
this completely charcterizes the process. In the general case, a coupled infinite hierarchy for
all the moments is required.

8.1. One variable species

Here we consider model problems for a single chemical species X, governed by the chemical
reaction X $k2

k1
A, assuming the species A to be held at a fixed concentration a. Let pij (t)

denote the probability that at time t there are j particles of species X, given that there were i

at time zero. The master equation (2.2) is then

dpij

dt
= k1apij−1 + k2(j + 1)pij+1 − (k1a + k2j)pij , pij (0) = δij (8.1)

for j = 1, 2, . . ., and

dpi0

dt
= k2pi1 − k1api0, pi0(0) = δi0 (8.2)

for j = 0; see [3].
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Recall that for SDEs we have a direct connection between the Chapman–Kolmogorov
equation (master equation) and a pathwise description through SDEs. In this section the
pathwise description is simply stated by defining an algorithm. Sample paths z(t), t ! 0,
whose master equation (8.1) can be generated as follows. Assume that we are given z(tl), the
number of particles at time tl ! 0. Let T , S be independent exponential random variables with
rates k1a, k2z(tl), respectively. Define

tl+1 − tl = min(T , S).

We then set

z(tl+1) =
{
z(tl) + 1 if T = min(T , S),

z(tl)− 1 if S = min(T , S).
(8.3)

This gives a process whose master equation is (8.1). Suitably modified, when z(tl) = 0, it gives
(8.2). This is an implementation of a birth–death process, a basic continuous-time countable
state space Markov chain. Such a process can be written in the form of (1.1) with γ (z) dW/dt

replaced by a Poisson counting process dW(z, t)/dt.

In such systems, a full, ‘detailed’ description of the system includes the evolution of the
infinite-dimensional vector of probabilities pij (t), i fixed. Below, we show how in the limit of
large numbers, a reduced description may be derived for the first moment of the distribution,

X(t) = 1
a

∞∑

j=0

jpij (t).

Example 8.1. Consider (8.1) with k1 = 2, k2 = 1 and a = N . Figure 9 shows three sample
paths of this example, calculated with initial data z(0) = N . The different paths correspond to
N = 100, 500 and 1000. In each case we plot y(t) = N−1z(t), together with a smooth curve
which is the function 2− exp(−t), for reasons we now make apparent.

With k1 = 2, k2 = 1 and a = N and ρj = pNj equation (8.1) gives

dρj

dt
= 2Nρj−1 + (j + 1)ρj+1 − (2N + j)ρj , ρj (0) = δNj .

This may be rewritten as, for $x = N−1,

dρj

dt
= (j + 1)$xρj+1 − j$xρj

$x
+ 2

ρj−1 − ρj

$x
, ρj (0) = δNj . (8.4)

Viewing ρj (t) as a finite difference approximation of a continuous density ρ(x, t), so that
ρj (t) ≈ ρ(j$x, t), we see that (8.4) formally approximates the PDE

∂ρ

∂t
= ∂

∂x
(xρ)− 2

∂ρ

∂x
(8.5)

(such approximation is known as a Kramers–Moyal expansion [3]). But (8.5) is simply the
Fokker–Planck equation for the ODE

dX

dt
= 2−X, X(0) = 1. (8.6)

Equation (8.6) may be viewed as a closed equation approximating the first moment of the
process. Since the limit dynamics is deterministic, because no diffusion is present in (8.5), all
other moments are determined by the first one.
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Figure 9. ——: sample paths of z(t)/N for the birth–death process (8.3) with z(0) = N , k1 = 2,
k2 = 1 and a = N for (a) N = 100, (b) N = 500 and (c) N = 1000. - - - -: the curve 2−exp(−t).

This formal argument indicates that, as N →∞, the fluctuations in sample paths of (8.1)
should diminish, following the deterministic dynamics given by (8.6), that is

X(t) = 2− exp(−t).

This is exactly what figure 9 shows. "

8.2. Multiple variables species

A generalization of the previous model problems to multiple species and reactions is as follows
(see Gillespie [83, 84]). As in the previous example it is simplest to write down a pathwise
description through an algorithm. Let x(t) = (x1, . . . , xm) ∈ Zm denote the number of
molecules of species xj at time t for j = 1, 2, . . . , m. Let hi(x), i = 1, 2, . . . , n denote
a set of n reaction rates (which depend on the state x), and let ν%j ∈ Z, % = 1, 2, . . . , n,
j = 1, 2, . . . , m, denote the change in the number of molecules of species j after reaction %.
Assuming that the reactions occur at exponentially distributed times, independent of one
another, gives rise to a birth–death process which can be computed as follows:

(i) Initialize xj (0), j = 1, 2, . . . , m; set k = 0 and tk = 0.
(ii) Compute the reaction rates ri = hi(x(tk)), i = 1, 2, . . . , n and set r =

∑n
i=1 ri .



Invited Article R97

(iii) Select a reaction: partition [0, 1] into n disjoint intervals Ii of length ri/r and select a
uniform random variable p1 in [0, 1]. If p1 falls in Ii then select reaction i.

(iv) Pick a second independent random variable p2 uniformly in [0,1] and set

τ = − ln(p2)

r
, tk+1 = tk + τ.

(v) Set xj (t) = xj (tk), t ∈ [tk, tk+1) and xj (tk+1) = xj (tk) + νij , j = 1, . . . , m.

(vi) Return to (ii) with k → k + 1.

As in the previous section, such a process can be written in the form of (1.1) with
γ (z) dW/dt replaced by a Poisson counting process dW(z, t)/dt .

We assume that each hi(x) is a homogeneous polynomial of the form

hi(x) = N κi

(x1

N

)ei,1
(x2

N

)ei,2

· · ·
(xm

N

)ei,m

≡ N h̃i

( x

N

)
.

Then, if Xi = xi/N and X = (X1, . . . , Xm) arguments similar to those in the previous section
show that the master equation can be approximated by the Fokker–Planck equation

∂ρ

∂t
+

m∑

i=1

∂

∂Xi

[Hi(X)ρ] = 0,

where

Hi(X) =
n∑

j=1

νji h̃j (X).

This indicates that the stochastic process for X will, for large N , be close to the deterministic
system of ODEs

dXi

dt
= Hi(X), i = 1, . . . , m.

Example 8.2. We illustrate this phenomenon with an example. Let % = m = 3 and
x(0) = (1, 1, N), h̃1(x) = x2

1 , h̃2(x) = x1x2, h̃3(x) = x3. If

ν11 = −1, ν12 = 1,

ν22 = −1, ν23 = 1,

ν33 = −1, ν31 = 1

with all other νij = 0 then the limiting ODE system is

dX1

dt
= −X2

1 + X3,

dX2

dt
= −X1X2 + X2

1,

dX3

dt
= −X3 + X1X2.

(8.7)
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Figure 10. ——: sample paths of x(t)/N , where x(t) is generated by the birth–death process with
h̃(x), ν%j and x(0) as described in the text, for (a) N = 100, (b) N = 500 and (c) N = 1000.
- - - -: trajectories of X3(t) for X(t) solving (8.7) with initial data (1/N, 1/N, 1).

Figure 10 shows three sample paths of x(t)/N for x(t) given by the above birth–death
process, for three values of N . As N increases, the paths of the stochastic process exhibit
diminishing fluctuations about paths which solve the ODEs (8.7). "

8.3. Discussion and bibliography

The fact that birth–death processes of the type studied here can be approximated by ODEs for
large N , has been exploited by the physics and chemistry communities for some time [3].
Theorems making the formal asymptotic expansions given here rigorous may be found
in [85, 86]; an overview of these theorems, from an applied perspective, may be found in
the paper [87]. In general one can ask whether a closed system of equations exists for the
evolution of a small number of moments. This section provides simple examples where the
closed equations are for the first moment only.

When the birth–death process has spatial dependence through a lattice, then under
appropriate scaling of the lattice variable with N it is possible to obtain PDEs, or stochastic
PDEs when fluctuations remain in the limit; see [88,89], and the references therein, for example.
The derivation of reaction–diffusion equations, and stochastic reaction–diffusion equations,
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from birth–death processes combined with random walks, is an area of active interest in the
physics community; see the lecture notes [90]. Related questions concerning derivation of the
Boltzmann equation from a variety of stochastic hard sphere models are overviewed in [91,92].

9. Metastable systems

There is a final class of model problems which we introduce in this paper. The set-up differs
substantially from that outlined in section 8. Specifically, this section is concerned with the
extraction of small and finite state Markov chains from SDEs, or from large finite state Markov
chains.

9.1. Finite state setting

In rough terms the ideas here apply to problems with backward equation (2.6) with the form

L =
(

L+ εQ±

εQ∓ L−

)
. (9.1)

The ideas may also be expressed in this way for the Chapman–Kolmogorov equation (2.9), but
the technicalities are more complex for the uncountable state space setting. Hence, for SDEs,
we describe the ideas pathwise.

For the moment we confine ourselves to the case of countable or finite state Markov
chains, with backward equation (2.6), with generator of the form L given by (9.1). If L+ and
L− both lead to ergodic Markov chains on the two subsets of variables χ+,χ− on which they
act, then, for ε = 0, L does not lead to an ergodic process: it has a two-dimensional null-space
which can be parametrized by two eigenvectors supported wholly on χ+ and χ−, respectively.
However, if the coupling matrices Q± and Q∓ are chosen so that L is ergodic for ε > 0 then,
on O(1) time-scales, the process will perform ergodic mixing in each of χ+ or χ− and then,
on a time-scale of O(1/ε), the communication between χ+ and χ− will be seen, leading to
ergodic behaviour on the whole of χ = χ+ ⊕ χ−. By averaging separately over χ+ and χ−,
with respect to the invariant measures of L+ and L−, it is possible to derive a two-state Markov
chain, valid on time-scales of O(1/ε), describing the dynamics between χ+ and χ−. This idea
is developed in [93], and is closely related to earlier work in [94].

The idea generalizes to the derivation of m-state Markov chains when L has a block
structure similar to (9.1), with m O(1) diagonal blocks and O(ε) off-diagonal blocks. Such
problems possess what are known as metastable states: the two invariant measures of the
ε = 0 dynamics are nearly invariant for the small ε but non-zero dynamics; they characterize
the metastable states.

Note that the setting we are analysing corresponds to a situation where

L = L1 + εL2

and is hence, after time-rescaling, similar to situations discussed in sections 4–7. However,
here the leading-order operator in L, L1, is not ergodic, whereas in those previous sections our
assumption about the fast dynamics is that it is ergodic.

9.2. The SDE setting

For SDEs (1.3), a natural class of model problems exhibiting this kind of behaviour are gradient
systems with additive noise:

dX

dt
= −∇V (X) + σ

dW

dt
(9.2)
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with X ∈ Rd and V a double-well potential. If σ is small then large deviation theory may
be used to derive a two-state Markov chain describing transitions between the wells of V .
The idea is that, if σ = 0, then Lebesgue a.e. initial data will converge, under the dynamics,
to one of the two wells of V . This partitions the phase space into two sets, χ+ and χ−, centred
on the two wells. If σ 0 1 then this deterministic dynamics will govern the behaviour of the
SDE. On a longer time-scale, exponentially large in small σ , the process will exhibit occasional
transitions between the two sets χ+ and χ− (the wells), and a Markov chain may describe this
transition process.

Similar ideas also apply to the second-order dynamics

d2X

dt2
= −∇V (X)− dX

dt
+ σ

dW

dt
(9.3)

with X ∈ Rd and V again a double-well potential.

Example 9.1. A typical example of model problem (9.2) is given by (6.23). This corresponds
to (9.2) with d = 1, V (x) = 1

4 (1 − x2)2. In figure 11 we plot three sample paths of (6.23)
over a time interval of T = 1000 and different values of the noise coefficient σ . For σ = 1,
there is no scale-separation and indeed, the paths does not exhibit metastable behaviour. For
σ = 0.5 the time it takes to switch between wells is short compared with the time spent in
each well, and clear metastable behaviour is observed. For σ = 0.2 the transition rate is
low in comparison with the observation time, thus, no transition is observed; throughout the
simulation the system remains in a single metastable state. "

9.3. Discussion and bibliography

For finite state Markov chains the ideas described above are developed in [93]; they are closely
related to earlier work in [94]. For both the SDEs described above, see the material on large
deviations in [95].

10. Algorithms for stiff problems

In this section, and in all subsequent sections, we discuss algorithms. For problems with two
time-scales, O(1) and O(ε), it is important for reasons of efficiency to have time-stepping
methods which only expend the minimum effort necessary in resolving the fast scales. For
example it may be of interest to use time-step$t ≈ O(ε), or even$t ; ε. This is the problem
of stiffness, which has been at the heart of the numerical analysis of ODEs since the work of
Dahlquist in the 1950s. In this section we describe a variety of such situations that arise when
the extraction of macroscopic dynamics is the desired outcome of the simulations, and relate the
existing literature to the model problems and examples highlighted in the preceding sections.
The discussion will show that this is a subject area where rigorous analysis underpins many
of the algorithmic ideas. Much, but not all, of the analysis is restricted to situations where the
separation into fast and slow variables is explicit.

10.1. Invariant manifolds

For problems with exponentially attracting invariant manifolds, on which the system may
be approximated by a DAE, it is of importance to understand which numerical methods
will reproduce the dynamics on the invariant manifold in a robust fashion, without using
unnecessarily small time-steps. A relevant model problem used to evaluate this issue is
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Figure 11. Sample paths of (6.23) over a time interval of T = 1000 for values of the noise
coefficient: (a) σ = 1, (b) σ = 0.5 and (c) σ = 0.2.

equation (4.3) and example 4.1. In this context, the work of Nipp and Stoffer [96, 97] is of
interest. They employ an invariant manifold theorem for maps, formulated in the unpublished
report [98], and more recently detailed in the book [99]. For further discussion of the reduction
of ODEs to DAEs, and the appropriate choice of numerical methods, see the texts [100, 101].

Roughly speaking, A-stable or A(α)-stable methods, such as backward Euler, behave well
for such problems; methods such as forward Euler behave poorly. The following illustration
shows how implicitness achieves this good behaviour.

Illustration 10.1. We use example 4.1. Equations (4.6) can be written in the abstract form

dx

dt
= Lx + ye,

dy

dt
= −y

ε
+

x1x3

ε
,

(10.1)

where x = (x1, x2, x3)
T and e = (0, 0, 1)T . Recall that this problem has an attractive invariant

manifold y = x1x3 + O(ε) for ε 0 1. Now consider the numerical method

xn+1 = xn + $tLxn + $tyne,

yn+1 = yn − ryn+1 + rxn+1
1 xn+1

3 ,
(10.2)

where r = $t/ε is the numerical time-step in units of the fast time-scale.
This linearly implicit method treats the stiff part of the problem by a backward Euler-

like approximation, and the remainder by the forward Euler method. Figure 12(a) shows
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Figure 12. (a) Trajectory of the numerical approximation (10.3) for $t = 10−2 and ε = 10−4,
projected onto the (x1, x2) plane. (b) Projected trajectory for the Rössler limit (4.8).

the numerically computed attractor for this approximation, with $t = 10−2 and ε = 10−4.
Figure 12(b) shows the attractor for the Rössler limit (4.8). Comparison of the two figures
shows that the method appears to compute the ε = 0 limiting behaviour accurately, even
though we are computing the fast variable in a highly under-resolved regime r = $t/ε = 100.
The explanation for this is as follows. If we fix any r > 0 and consider $t 0 1 then the
numerical method has an attractive invariant manifold

y = η$t (x), η$t (x) = x1x3 + O($t).

This should be compared with the invariant manifold for the equations themselves, given by
(4.7). The fact that both manifolds agree to leading-order in$t or ε explains the good behaviour
of the numerical method. Substituting the form of the (numerical) invariant manifold into the
discrete equation for x gives

xn+1 = xn + $tLxn + $tη$t (xn)e,

≈ xn + $tLxn + $txn
1 xn

3 e.

The last expression is simply the forward Euler update for the Rössler limit (4.8), and it is
known that this method has an attractor close (in the sense of upper semi-continuity [102]) to
the attractor of the equation itself. Thus, we accurately capture the ε = 0 limiting dynamics.
Note further, that the approximation improves as r increases (greater under-resolution) in the
sense that the rate of attraction to the invariant manifold increases. If, instead, the forward
Euler method is applied directly to (10.1) then we obtain

xn+1 = xn + $tLxn + $tyne,

yn+1 = yn − ryn + rxn
1 xn

3 .
(10.3)

This method has an invariant manifold of the desired form, only for r = $t/ε < 2. In summary
this illustration shows two important facts: (i) that typical methods for model problems like
(4.3) capture the correct ε = 0 limiting dynamics for $t = O(ε) and smaller; (ii) that special
methods, typically implicit, can capture the ε = 0 limiting dynamics for arbitrary r = $t/ε,

in particular for r large. "
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Gear and Kevrekidis [103] recently proposed a class of numerical methods for stiff
problems with invariant manifolds. The slow variables are evolved in time with time-steps
that are coarse compared to the fast variables. At each (coarse) time-step the y-equation is
evolved for a short time, with x fixed, until it reaches the invariant manifold. The resulting
value of y is then used to evaluate the time derivative of x for the coarse time integrator. Gear
and Kevrekidis called this method ‘projective integration’. E [104] generalized this method to
stiff oscillatory systems as well (see below), and derived rigorous estimates of the difference
between the projective integration algorithm and the asymptotic ε → 0 limit, for both stiff
dissipative and stiff oscillatory problems. E et al [105] generalized this analysis to stochastic
systems with separate treatment of intermediate- and long-time behaviour.

Illustration 10.2. Consider the following scale-separated system:

dx

dt
= y,

dy

dt
= 1

ε
(−x + y − y3).

(10.4)

For |x| < 1/
√

3 the y-equation is bistable, with two attracting branches that we label
y = η±(x). If |x(0)| < 1/

√
3 and y(0) is, say, in the basin of attraction of the upper

branch, then, for ε small, the trajectory remains close to the manifold (x, η+(x) + O(ε)) with
x(t) increasing in time. When x crosses the critical point 1/

√
3, y rapidly drops to the lower

branch, and x starts to decrease along the manifold (x, η−(x)+O(ε)), until it reaches the value
−1/

√
3, where y rapidly climbs to the upper branch, giving rise to periodic behaviour.

The projective integration algorithm, in its simplest version, consists of the following
steps.

(i) Given (xn, yn), keep xn fixed and integrate the y-equation with a forward Euler scheme

yn,m+1 = yn,m +
δt

ε
(−xn + yn,m − (yn,m)3), m = 0, 1, . . . , M − 1,

where yn,0 = yn. The ‘microscopic’ time-step δt has to be small compared with ε,
whereas the integration time Mδt has to be long enough so that yn,m reaches the vicinity
of the invariant manifold. Then set yn+1 = yn,M .

(ii) Evolve x in time with

xn+1 = xn + $t yn+1,

where $t is the ‘macroscopic’ time-step, which is independent of ε.

This basic scheme can be generalized for higher-order solvers.
In figure 13 we compare x(t) solving (10.4) with ε = 10−4 (solid line) with the output of

the projective integration scheme with parameters $t = 5×10−3, δt = ε/10, and Mδt = 10ε
(dotted line). The agreement is good, and can be much improved by using higher-order
solvers. Furthermore, notice that Mδt = 10−3 0 $t. Thus the fast dynamics does not need
to be integrated accurately over a complete macroscopic time-step to achieve accuracy. "

The numerical calculation of slow dynamics, by dimension reduction in fast–slow systems
and with application to problems in chemical kinetics, is described in [106] and in [107] with
more recent developments in [108].
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Figure 13. ——: x(t) solving (10.4) with ε = 10−4. Dotted line: output of the projective
integration scheme with parameters $t = 5× 10−3, δt = ε/10 and Mδt = 10ε.

The idea of scale-separation and the resulting invariant manifolds, outlined in section 4,
has been used as the basis for numerical algorithms applied to Galerkin truncations for PDEs.
Here, x represents the low wave number modes, and y the remainder and the algorithms
attempt to approximate numerically a function η: Y → X which is approximately invariant
under the dynamics; this is the nonlinear Galerkin method for approximate inertial manifolds.
A useful reference where this is studied in an applied context is [109], and a discussion of the
rate of convergence of such algorithms may be found in [110]. A more recent perspective on
these methods, and a cheap implementation through post-processing of the standard Galerkin
method, is discussed in [111].

10.2. Averaging

Stiff oscillatory problems have received less attention in the literature than dissipative ones,
but the literature is growing [112]. A major impetus is computational molecular dynamics.
An important class of model problems is given by the Hamiltonian (5.5) and example 5.1.
In particular, chapter XIII of the book [99] provides a good overview of this topic, and
the references therein provide a comprehensive bibliography, including the known rigorous
analysis. The paper [113] initiated a rigorous analysis of many of the issues raised by
practitioners in this field.

For dissipative perturbations of Hamiltonian problems there is also interesting work on
the design and analysis of numerical schemes which construct the correct slow dynamics
(an attractive invariant torus for example) without resolving the fastest scales. See [114] and
chapter XII of the book [99] for a description of the known rigorous analysis.

Illustration 10.3. We use example 5.1. Considering this as a model problem for molecular
dynamics, it is natural to study the effect of approximation by explicit symplectic
methods which are widely used in this application area. Applying the symplectic Euler
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Figure 14. Time evolution of x(t) solving (5.6) and computed using (10.5) with $t = 0.01,
ε = 0.01 and r = 1 (——) and X(t) − x(t), with X(t) solving (5.8) (- - - -). We used
V (x) = − cos x and ω(x) = 1 + 0.5 sin x.

method [115, 116] to equations (5.6) gives

xn+1 = xn + $tpn,

ηn+1 = ηn + rvn,

pn+1 = pn −$tV ′(xn+1)− $t

2
ω′(xn+1)(ηn+1)2,

vn+1 = vn − rω(xn+1)ηn+1,

(10.5)

where, as above, r = $t/ε.

Figure 14 shows a numerical simulation with $t = 0.01 and r = 1 (under-resolved),
using the same initial data as in figure 3. The time traces are of x, given by (10.5), and x −X,
with X solving (5.8). It is clear that choosing the value r = 1 leads to an inaccurate numerical
simulation of x as it is O(1) different from X solving (5.8). In contrast, the simulation in
figure 3 uses r = 0.1 and correctly captures the limiting dynamics given by X.

It is natural to ask why the situation here is so different from the stiff dissipative illustration
10.1. In that context the linearly implicit method calculates the ε = 0 limit correctly for
r = 100, and even the explicit methods such as forward Euler do the same for r = O(1).
In contrast, for this oscillatory example we require r 0 1 to get the correct limit. The reason
for the difference lies in the nature of the ergodic averages which must be represented. For the
dissipative problems we need only approximate a delta measure, whereas for the oscillatory
problems we are trying to capture a measure which has full support on the energy surface of the
(η, v) dynamics, with (x, p) frozen. For example 5.1 the invariant measure for η is determined
by η solving the following harmonic oscillator problem:

d2η

dt2
+
ω(x)

ε2
η = 0. (10.6)

For fixed r the invariant measure for {ηn} generated by the method (10.5) is determined by, for
xn = x frozen,

ηn+1 + [r2ω(x)− 2]ηn + ηn−1 = 0. (10.7)
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This corresponds to a Leap-Frog discretization of (10.6) with time-step $t = rε. For certain
values of r2ω(x) this equation has totally different invariant measure than does (10.6). For
example, if r2ω(x) = 1, then the numerically generated invariant measure is supported on three
points; in contrast the true invariant measure is absolutely continuous with respect to Lebesgue
measure on an interval. As x = xn varies so does r2ω(x) and the empirical measure generated
by the numerical method will, for certain x, differ substantially from the true measure. These
resonances are responsible for the O(1) error manifest in figure 14 where r = 1. Avoiding
these resonances is only possible by correctly resolving the fast dynamics, as in figure 3, for
which r = 0.1. "
Illustration 10.4. The basic idea of projective integration can be extended to Hamiltonian
problems such as example 5.1. The averaging algorithm of E [104] has to be adapted to the
current situation in which it is of crucial importance to preserve the total energy of the system:

(i) Given (xn, pn, ηn, yn), evolve (η, v) by solving (10.5), with x = xn and p = pn fixed,
using a ‘microscopic’ time-step δt over an integration interval Mδt . Denote the discrete
solutions by ηn,m, vn,m, m = 0, 1, . . . , M − 1, initializing with ηn,0 = ηn, vn,0 = vn.

(ii) Evolve the slow variables with a forward Euler method:

xn+1 = xn + $t F1(x
n, pn),

pn+1 = pn + $t F2(x
n, pn),

where$t is the ‘macroscopic’ time-step. The functions F1, F2 are evaluated by averaging
the right-hand sides of (10.5) over the solutions of the microsolver.

F1(x
n, pn) = xn,

F2(x
n, pn) = −V ′(xn)− ω′(xn)

2
1
M

M−1∑

m=0

(ηn,m)2.

(iii) (ηn+1, vn+1) are randomly drawn from the energy shell with (xn+1, vn+1) given.

In figure 15 we compare (x(t), p(t)) solving (10.5) for ε = 10−3 and total energy E = 1
(solid line) with the output of the projective integration scheme with parameters$t = 5×10−2,
δt = ε/3 and Mδt = 3ε (dotted line). As in the dissipative case, the agreement can be much
improved by using higher-order solvers for both ‘microscopic’ and ‘macroscopic’ components.
As with the previous illustration of projective integration the micro-solver does not need to be
used for a complete macro-step: Mδt 0 $t . Thus the work required is substantially less than
for resolved integration of the fastest scales. "

It is worth noting here that for many deterministic Hamiltonian problems arising in
practice, ergodicity is frequently difficult to prove, and often probably not true. A recent
paper by Tupper [117] addresses this issue by considering a weakening of the definition
of ergodicity (due to Khinchin) and shows that it is robust to perturbation, in particular to
perturbations introduced numerically.

10.3. Stiff stochastic systems

Stiff stochastic systems have recently started to receive some attention in the literature.
Representative model problems include (5.9), (6.3) and example 6.1. The papers [57, 105]
describe how to implement the analytic program described in section 6.1 as a numerical
algorithm. New dependent variables are used to achieve variance reduction in the averaging
procedure. The techniques of section 6.1 facilitate the rigorous analysis and justification of
this numerical method.
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Figure 15. ——: (x(t), p(t)) solving (10.5) for ε = 10−3 and total energy E = 1. · · · · · ·: output
of the projective integration scheme with parameters $t = 5× 10−2, δt = ε/3 and Mδt = 3ε.

Illustration 10.5. We use example 6.2. The calculation of the diffusion coefficient given in that
example is very expensive requiring resolved simulation of (6.22) with time-step $t = O(ε)

or smaller. In contrast, the method of Vanden Eijnden calculates the diffusion coefficient
by means of a single simulation of the Lorenz equations, with an ε independent time-step.
His method is based on the representations (6.16), (6.17) for the effective drift and diffusion.
In example 6.2 we have x ∈ R, y = (y1, y2, y3)

T ∈ R3, and

f0(x, y) = 4
90y2, f1(x, y) = x − x3.

Thus, the effective diffusion coefficient, σ , is given by

1
2
σ 2 = lim

T→∞

(
4

90

)2 ∫ ∞

0

{
1
T

∫ T

0

∫ ∞

0
y2(s)y2(s + t) ds

}
dt.

Vanden Eijnden’s method, applied to this problem consists of estimating the effective diffusion
coefficient by a sampling over a discrete, properly resolved trajectory yn = y(n$t) of (6.22),
truncating the average at a finite time T = M$t :

σ 2 ≈ 2
(

4
90

)2
$t

M

M−1∑

m=0

M−1−m∑

m′=0

(y2)
m(y2)

m+m′
.

In the present case, the statistical errors associated with this method are large, because the
numerically computed auto-covariance of y2(t) does not decay fast enough. By properly
truncating the numerical auto-covariance we get σ 2 = 0.13 ± 0.01, which is in agreement
with the estimate obtained in example 6.2 by a different, but less efficient method. "

10.4. The heterogeneous multiscale method

The paper [118] outlines a general framework for the numerical solution of problems with
multiple scales—what the authors term the heterogeneous multiscale method. The basic idea
is that, for problems exhibiting some form of ergodicity in the fast scale (which may be spatial
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as well as temporal—PDEs are included) integration need only be performed on intervals
sufficient to calculate the averaged effect of the fast scales on the slow scales; the length of
such intervals is determined by decorrelation. This idea was used in illustrations 10.3, 10.4
and 10.5. Employing this idea can lead to substantial computational savings.

The approach allows for a unified treatment of the integration of both stiff dissipative
and stiff oscillatory ODEs. Rigorous analysis is possible in some cases where the separation
into fast and slow variables is a priori explicit. See [104] where two model problems, one
dissipative and closely related to model problem (4.3), and the other oscillatory and closely
related to the model problem (5.5), are studied. The key idea is that ergodicity of the fast
variables, with the slow variable frozen, can be used to justify the use of an empirical measure
under which the slow vector field is averaged; this empirical measure will be close to a Dirac
mass for the stiff dissipative case, and will typically have the full Lebesgue measure on an
appropriate energy surface for oscillatory problems. Similar ideas also apply to SDEs where,
typically, the empirical measure will have support on the whole Y-space; this is the basis of
the algorithm described in [57] and in the previous subsection.

10.5. Heat baths

For many Hamiltonian problems arising in applications there is no clear separation of scales,
but rather a broad spectrum. It is still of interest to integrate (1.1) by a time-stepping method
which does not resolve all the time scales in Y . In general this approach will fail because
of numerical instabilities, or resonances between the time-step frequency and fast unresolved
scales (see [119,120] for example). However, there are situations where unresolved simulations
correctly reproduce macroscopic behaviour, and one example is for models similar to the
Hamiltonian heat bath model given by (7.7) and examples 7.3, 7.4. These models are of
interest because, whilst they contain a wide range of scales, they do not have explicit scale-
separation. Thus they include a feature present in many realistic Hamiltonian models and which
is not present in the model problem (5.5) and example 5.1. An open area for investigation is
to develop useful model problems combining the characteristics of both (5.5) and (7.7). Such
models would exhibit the features inherent in many molecular dynamics simulations.

Illustration 10.6. Figure 16 shows simulations of the Hamiltonian problem (7.7) with
parameters similar to those detailed in example 7.4; the limiting SDE is of the form (7.12). It is
possible to prove strong convergence to the SDE as N → ∞ (see [74]). Figure 16(a) shows
a path of the limiting SDE, together with simulation of (7.7) by the backward Euler method
with ωmax$t = 10; here ωmax is the largest natural frequency of the bath variables {qj }Nj=1
with QN fixed. The backward Euler method in this under-resolved regime does not capture the
irregularity of the SDE limit, but it calculates an excellent smoothed approximation. Figure 16
quantifies the errors in the backward Euler method, when compared with the SDE limit, under
ωmax$t = 10, as N →∞ (ωmax is proportional to N ); the results clearly show convergence.
See [74] for details. "

The paper [74] shows how the backward Euler method correctly predicts macroscopic
behaviour of the distinguished particle, without resolving fast scales; various other time-
stepping methods are also studied from this perspective. The paper [71] uses the model problem
of example 7.2 to give rigorous analysis explaining some of the numerical experiments in [74].
The paper [121] shows a connection between these heat bath models and optimal prediction
(described below). Generalizations of these ideas to other memory kernels are considered
in [81]. A different, but related, study of the ability of a variety of different integrators, used in
the under-resolved regime, to predict macroscopic behaviour, is due to Tupper [122]; he looks



Invited Article R109

0 0.5 1
–3

–2

–1

0

t

exact         
backward euler

0 0.5 1
0

0.08

0.16

t

N=2000 

N=4000 

N=8000 

N=16000

(a) (b)

Figure 16. Numerical simulation of the Hamiltonian (7.7) by the backward Euler method, and
comparison with the exact SDE limit: (a) shows sample paths; (b) shows the error between the
backward Euler simulation and the SDE limit, for N$t fixed.

at interacting particle systems with Gaussian behaviour for a tagged particle, and compares
numerical methods by their ability to compute the auto-correlation accurately.

11. System identification

Another approach to finding stochastic closures of deterministic dynamics is to use parameter
estimation to fit SDE models to partially observed dynamics. Important applications include
the atmospheric sciences [123] and molecular dynamics [124]. Typically these involve models
which are, in some sense, close to problems which have been understood analytically. The
subject of system identification is an enormous one, and here we have only referenced
the literature that link directly with model problems outlined in this paper. For a general
introduction on the subject see [125].

11.1. Atmospheric sciences

The work [61], motivated by problems in the atmospheric sciences, fits stochastic models
to partially observed deterministic dynamical systems which, under heuristics concerning the
OU-like behaviour (recall (6.18)) of the (deterministic but chaotic) Burgers’ heat bath example
of [56], are close to the scale-separated SDEs of section 6. The approach in [61] is to relate
three models: (i) a large deterministic system coupling slow variables to a larger Burgers’ bath,
of the type introduced in [56]; (ii) a smaller stochastic system of the form of model problem
(6.3) resulting when the Burgers’ bath is replaced by an OU process; and (iii) a reduced
stochastic model of the form (6.13). The results are compared by fitting data from simulations
of (i) directly to models of the form (iii); or, instead, fitting the data to models of the form
(ii), and then using the analysis of section 6.1 to derive a reduced stochastic model of the type
(iii). Both methods produce comparable results, justifying the direct fit of low-dimensional
stochastic models to high-dimensional chaotic deterministic ones. There is a connection here
with the heat bath models problems of (7.7) in that, in both situations, large deterministic
systems produce effective stochasticity in a small number of special variables.
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11.2. Molecular dynamics

In the paper [80], motivated by the modelling of biomolecular conformational dynamics, SDEs
are fit to heat bath models which generalize those in section 7. Specifically a non-Hookean
coupling between the heat bath and the particle is introduced (it is the linearity of the Hookean
coupling which facilitates the explicit construction of an SDE from an ODE). The Hamiltonian
(7.7) is modified to replace the quadratic dependence in the last term by a quartic one, for
example. More generally, Hamiltonians of the form

H(PN, QN, p, q) = 1
2
P 2

N + V (QN) +
N∑

j=1

p2
j

2mj

+
N∑

j=1

kj9(qj −QN) (11.1)

are studied, the case 9(x) = x2/2 being the analytically tractable case governed by the
Hamiltonian (7.7). A formal linear response analysis, which is shown to apply at high enough
temperatures, still suggests fitting data to models of the form (7.11) for the more general
couplings in (11.1) and parameter estimation for the case 9(x) = x4/4 is studied extensively.
In [126] the parameter estimation techniques are also shown to work in the case 9(x) = x2/2,

where the approximation of ODEs by SDEs is rigorously justified as in examples 7.3 and 7.4.
The paper [126] also introduces more sophisticated time-series methods for the estimation of
parameters.

Illustration 11.1. We consider the Hamiltonian system (11.1) with quartic inter-particle
potential9(x) = x4/4 as in [80]. The spring coefficients are chosen as follows: kj = g(νj )$ν,
j = 1, 2, . . . , N , where g(x) = 0.4/(0.16 + x2), νj = j$ν and $ν = N−3/4. The masses of
the heat bath particles are given by mj = k

1/2
j /ν2

j . Given initial values for (QN, PN) the heat
bath variables (q, p) are randomly drawn from a Gibbs distribution with temperature 1. As
shown in [80], the trajectories QN(t) are well approximated, in a weak sense, by the solution
Q(t) of the stochastic system:

dQ

dt
= P,

dP

dt
= −V ′(Q) + R,

dR

dt
= −(αR + βP) + (2αβ)1/2 dB

dt
,

(11.2)

where B(t) is standard Brownian motion, and α = 0.623 and β = 1/3.108 are parameters
fitted by the analysis of long time sequences of QN(t).

In figure 17 we compare the empirical distribution and auto-covariance of sample paths
QN(t) solving the Hamiltonian system with the corresponding distribution and auto-covariance
of the fitted stochastic process (11.2). "

12. Evolving moments

The idea of deriving closed equations for a small number of moments is, of course, central
to kinetic theory. The celebrated BBGKY hierarchy derives the equations of fluid mechanics
from the Boltzmann equations by use of this approach [127]. The idea of propagating moments
from microscopic simulations has already appeared in the literature; see [128]. Recently, there
has been a concerted effort in the computational mathematics community to build algorithms to
carry out this procedure. Rigorous analysis justifying these approaches is limited, but practical



Invited Article R111

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Q

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Double-well potential, n=2500

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

time

E
m

pi
ric

al
 a

ut
o-

co
va

ria
nc

e

Double-well potential, n=2500

Figure 17. Top: empirical distribution of four sample paths solutions QN(t) of the Hamiltonian
system with Hamiltonian (11.1) with a quartic inter-particle potential9(x) = x4/4, V (Q) = Q4/4
and N = 2500 heat bath particles (- - - -). The solid line is the equilibrium distribution of the
approximating SDE (11.2). Bottom: the empirical auto-covariance for sample path of QN(t)
(- - - -) and the auto-covariance of the approximating SDE (——).

experience is building steadily. Here we outline two approaches used in the literature, and
relate them.

12.1. Optimal prediction

In this work [19,129–131] the underlying assumption is that the equation (1.1) carries a natural
measure ν which is invariant under the flow induced by (1.1). For simplicity assume that γ ≡ 0
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so that the problem is deterministic; thus α,β ≡ 0, as well. From (1.2) we obtain

dx

dt
= f (x, y),

dy

dt
= g(x, y).

(12.1)

The objective is to find an equation for the conditional expectation,

X(t) = E[x(t) | x(0) = x0], (12.2)

where E is with respect to measure ν on z(0) = (x(0), y(0)). Thus X(t) is the first moment
of x(t).

One basic approximation is to simply average f (x, y) with respect to ν, conditional on x

being held at its mean value, yielding

dX

dt
= F(X), X(0) = x0, (12.3)

where

F(ζ ) =
∫

f (ζ, y)νζ (dy) (12.4)

and where νζ is the appropriate conditional measure.
This method cannot work well in general, and errors between the solution of (12.3) and

the desired solution of (12.2) can grow like t [132]. Model problem (7.7) and example 7.3
shows why this is so. For large N the variable X(t) = (QN(t), Q̇N(t)) satisfies an SDE
and, in general, the moments of an SDE do not satisfy a closed ODE—they satisfy a PDE,
namely the Chapman–Kolmogorov equation (2.9). Furthermore, the limit SDE has memory—
it is Markovian only for (Q, Q̇, S) and the presence of the variable S is not accounted for in
the method of optimal prediction. The discussion of Mori–Zwanzig projection operators
in section 3 shows that both memory and noise are indeed typically present, and need to be
accounted for in any elimination procedure. Suggestions for how to account for memory effects
within the optimal prediction framework are presented and tested in [19]. The approach of
Chorin and co-workers in [133] to overcome the absence of noise is to put fluctuations back
into the model (12.3) to understand how typical paths x(t) might behave, as well as to include
a compensating damping term, accounting for memory. This is done on an ad hoc basis by
fitting a diffusion coefficient γ in the model

dX

dt
= F(X)− γX +

√
2γT

dU

dt
,

where U is standard Brownian motion. In this approach the idea is to abandon the goal of
finding closed equations for moments and, instead, to try and generate typical paths in X
but without resolving the y variables. Another approach to overcoming the limitations of
the method is to propagate further, higher-order, moments; this idea is discussed in the next
subsection.

We should mention that, for certain model problems, the method of optimal prediction
works well. One such set of problems are given by example 7.4 with V being quadratic. The
limit dynamics is then a linear SDE (7.12) for which the expectation of X(t) = (Q(t), Q̇(t))

does satisfy a closed memoryless ODE; this fact was observed empirically in [121]. Another
set are problems where a separation of scales exists, and the optimal prediction approximation
coincides with the method of averaging. For example, the effective equation (5.7) in
example 5.1 can be derived from the full dynamics (5.6) by optimal prediction, in certain
situations. Specifically, if ν is chosen to be the micro-canonical measure restricted to an
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energy shell, then the ‘unresolved’ term η2 is replaced by its ensemble average over the micro-
canonical ensemble with fixed energy, E, conditioned by the given values of the ‘resolved’
variables, (x, p).

Illustration 12.1. The following example is taken from [19]. Consider the system of equations
dq1

dt
= p1,

dp1

dt
= −q1(1 + q2

2 ),

dq2

dt
= p2,

dp2

dt
= −q2(1 + q2

1 ),

(12.5)

which is a Hamiltonian system with the Hamiltonian

H(p1, q1, p2, q2) = 1
2 (p2

1 + p2
2 + q2

1 + q2
2 + q2

1q2
2 ).

The initial conditions are assumed to be randomly drawn from a canonical distribution
with unit temperature, i.e. from a distribution with density proportional to e−H . At time
t = 0 only (q1(0), q2(0)) are given, and the goal is to calculate their average over all sets
of initial conditions that are compatible with the initial data, E[q1(t) | q1(0), p1(0)] and
E[p1(t) | q1(0), p1(0)]. The optimal prediction equations for this system can be derived
explicitly: Q1(t) ≈ E[q1(t) | q1(0), p1(0)] and P1(t) ≈ E[p1(t) | q1(0), p1(0)] are
governed by

dQ1

dt
= P1,

dP1

dt
= −Q1

(
1 +

1
1 + Q2

1

)
.

In figure 18, we compare E[q1(t) | q1(0), p1(0)] and the optimal prediction approximation
Q1(t). The former was generated by averaging over a large ensemble of solutions with initial
conditions drawn from the canonical distribution, conditioned by the partial initial data at
hand q1(0) = 1, p1(0) = 0. The graph shows that optimal prediction is accurate, in this
case, for short times only. Note the decay of the true average, due to the ‘dephasing’ of the
solutions in the ensemble, in contrast with the periodic behaviour of the optimal prediction
solution. This periodic behaviour reflects the fact that, for Hamiltonian systems and canonical
measure ν, the optimal prediction equations are themselves Hamiltonian [19]. Various methods
of incorporating memory effects into the optimal prediction framework, to overcome this
difficulty, were considered in [19]. "

12.2. The moment map

In its most basic form, the aim of this approach is, as for optimal prediction, to produce
algorithms for X defined by (12.2), given (12.1). The methods generalize to random driving,
as for optimal prediction. In this basic form, the moment map is

Xn+1 = ((Xn), (12.6)

where

((X) =
∫

ρ(x, y, t; X)x dx dy (12.7)
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Figure 18. Comparison between E[q1(t) | q1(0), p1(0)] (——) and Q1(t) (- - - -) for initial data
q1(0) = 1, p1(0) = 0.

and where ρ satisfies the Liouville equation
∂ρ

∂t
+ ∇x · (fρ) + ∇y · (gρ) = 0 (12.8)

with initial data given by an invariant measure ν, conditional on X. Notice that the map
contains a parameter t which needs to be selected.

The motivation for the approach is that, if the time t map induced by the flow of the
vector field F given by (12.4) can be approximated numerically, a variety of algorithms from
computational bifurcation theory can be used to compute families of steady solutions, their
stability, periodic solutions and so forth. However, in this basic form the method suffers from
the limitations of optimal prediction outlined in the previous subsection. But it is possible,
under certain circumstances, that stochastic equations for z may have a choice of coarse-grained
variables x, for which X is effectively deterministic. The model problems of section 8 give
examples of this set-up, and the algorithm has been used in this context. Also for more complex
systems such as lattice Boltzmann models for fluids, the idea of using moments to represent
the system is physically natural, and algorithmically successful. Note that for these problems
in fluid mechanics, several moments are propagated and coupled together.

In situations where the approximation (12.3), (12.4) or (12.6), (12.7) fails, the approach
in [134] proposes a rational closure scheme, in contrast to the somewhat ad hoc closure
proposed in [133]. The idea in [134] is to propagate a number of moments of x(t) rather than
just the mean. Let

X(j) = E[x(t)⊗ x(t)⊗ · · ·⊗ x(t) | x(0) = x0], j = 1, · · · , k,

where the tensor product is over j terms. We then let ρ(x, y, t; X(1), . . . , X(k)) denote the
probability density function for (1.2), started from measure ν, conditional on knowing the first
k moments of x(0). The natural generalization of (12.6), (12.7) is the map

X
(j)
n+1 = ((j)(X(1)

n , . . . , X(k)
n ),

where

((j)(X(1), . . . , X(k)) =
∫

ρ(x, y, t; X(1), . . . , X(k))x ⊗ x ⊗ · · ·⊗ x dx dy.
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(Again the tensor product involves j contributions.) By increasing k this gives a rational way
of improving the approximation underlying equations (12.3), (12.4) because, under certain
regularity assumptions, the moments of x do form a basis for the master equation. There is,
however, no general analysis to determine the appropriate number of moments to propagate in
order to get good approximations to the Liouville equation with a small number of moments.
In principle, it is possible to add moments until the numerical results are unaffected by further
addition. But in practice it is prohibitively expensive to propagate more than a few moments.
The use of this method in more complex problems, where closure in the dynamics of a small
number of moments may not occur, is far from understood, but some numerical evidence is
encouraging. For example, the experiments in [135] show that the method works well in
example 7.3 where the fixed points of the moment map may be identified with the metastable
states which arise when transitions between the wells of V are rare. A simpler example,
also studied in [135], is example 9.1. This problem does have a scale-separation, as detailed
in section 9, but not of the explicit form exploited in the algorithms of section 10. Rather
the scale-separation leads to a partition of the phase space, based on the potential wells, with a
slow Markov chain between elements of the partition. The moment map, which nonlinearizes
the linear flow of the Fokker–Planck equation (2.8), has fixed points in each potential well. For
example, if the mean and variance matrix are propagated in the moment map, then fixed points
are introduced corresponding to Gaussian approximations of the invariant measure, restricted
to a particular well of the potential. There is related work on the stabilization of metastable
states in [136].

The approach outlined here may yield considerable savings when embedded in bifurcation
or continuation software. One approach to coarse time-stepping is introduced in [137], with
applications to problems of the type described in section 8 covered, for example, in [134,138].
Application of related algorithmic ideas to the dynamics of a biomolecule may be found
in [139]. The approach is studied in the context of the heat bath examples of section 7.3,
in [135].

Another possible saving arises if the computational approximation to F(X) found by
integrating the full system over step t , is used to propagate the system through time T > t ,
using

Xn+1 = Xn + T F(Xn).

This idea is closely related to the projective integration method; see illustrations 10.1 and
10.4. A complete understanding of the stability and consistency issues associated with this
method has not yet been developed; for some initial investigations in this direction see [103].
As mentioned earlier, there are similarities with the heterogeneous multiscale method, and
it is likely that rigorous justification of the approach would require analysis similar to that
developed in [118]. The papers [137, 140, 141] show applications of ideas similar to those
outlined here, but for infinite-dimensional problems.

Illustration 12.2. To illustrate the method we consider the SDE
dx

dt
= −x(x2 − µ) + ν +

dU

dt
, (12.9)

where U is standard Brownian motion and where µ and ν are real parameters; the case ν

small is of particular interest. The potential has two local minima for |ν| < 2(µ/3)3/2 and
one global minimum otherwise. When the diffusion coefficient is small relative to the escape
times from the wells, it is natural to try and find a reduction of the stochastic dynamics which
captures the behaviour within wells, and between wells. We employ the simplest version of
the moment map, which propagates only the mean. Thus the infinite-dimensional linear flow
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Figure 19. Fixed points of the moment map applied to (12.9) (◦) and zeros of the drift (——) as
µ varies.

of the Fokker–Planck equation for the SDE is approximated by a one-dimensional nonlinear
map. Figure 19, taken from [135], shows the bifurcation diagram for fixed points of this map,
as µ varies (with ν = 0.3). The fixed points of the map are, in this case, very close to the
zeros of the drift. (Similar features arise if a two-dimensional map, for the mean and variance,
is used.) It is apparent that the moment map captures the coarse features of the SDE in that
the metastable states of the system, which are centred on the wells of V (shown with solid
lines), become stable fixed points of the moment map. Thus the moment map is effective in
the identification of metastable states.

Illustration 13.1 shows how the transfer operator approach may be used as an alternative
method for identifying metastable states, and that it also extracts a Markov chain describing
the dynamics between these states. The question of how to use the moment map to extract
effective dynamics between metastable states, for example in finding transition pathways, is
still under investigation. "

12.3. Optimal prediction and the moment map are related

Here we show how the two methods of this section are related to one another. Let ρ(x, y, t; X)

denote the probability density function for (12.1), started from measure ν, conditional on
x(0) = X. In its simplest form the moment map is given by (12.6) and (12.7). We assume
smoothness of ρ in t so that

ρ(x, y, t; X) ≈ ρ(x, y, 0; X) + t
∂ρ

∂t
(x, y, 0; X).

Now ρ satisfies the Liouville equation (12.8) and so, for ρ = ρ(x, y, 0; X),

((X) ≈
∫

ρx dx dy − t

∫
[∇x · (fρ) + ∇y · (gρ)]x dx dy

= X + t

∫
fρ dx dy.

Here we have used the fact that ρ(x, y, 0; X) acts as a delta function δ(x−X) when integrated
against functions of x alone, and the divergence theorem in x and y on the second and third
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terms respectively. We also assume that the density ρ decays to zero at infinity. Thus,
((X)−X

t
≈ F(X)

with F(X) given by (12.4). Thus (12.6) is seen to be of the form

Xn+1 ≈ Xn + tF (Xn),

an approximation of (12.3), (12.4) which recovers the solution of these equations in the
limit t → 0.

13. Identifying variables

All the algorithms described in sections 10–12 proceed on the assumption that X is known a
priori. In many situations this is a reasonable assumption, since a mathematical structure such
as scale-separation, or physical reasoning, both help identify X . However, many important
applications arise where scale-separation may not occur, or may be hidden; furthermore not all
physical problems clearly dictate a choice for X . Thus it is of importance to develop algorithms
which both identify X and find the dynamics within it. This is a much harder problem than
simply identifying dynamics within X , with X known a priori; the literature reflects this
fact with only limited successes in the area of the identification of X . However, it is to be
anticipated that substantial investigation of this topic will ensue, driven by problems of great
practical significance, such as the identification of transition pathways in complex chemical
systems. Here we describe some of the existing literature.

13.1. Transfer operator approach

This is a method which attempts to find a small and finite state Markov chain within X . In its
most basic form, this method is aimed at problems such as those outlined in section 9. The aim
is to identify a small finite set of variables, and a Markov chain describing the dynamics between
elements of the set. The identification of variables on which the Markov chain lives proceeds
through the study of spatial dependence of the eigenfunctions of the transition kernel P of a
large Markov chain. For continuous time Markov chains with generator L, P = exp(Lt). For
SDEs such as (1.1), P = exp(Lt), with L given by (2.7). It is worth mentioning that the spatial
structure of the eigenfunctions of P = exp(Lt) is also very revealing for the scale-separated
model problems of section 6 and for the heat bath problems of section 7 (see [76]). Hence, at
least in principle, the transfer operator approach also applies to the reduction of (1.1) to (1.3)
in some generality.

In practice it is prohibitively expensive to use the idea as a numerical method, without
significant algorithmic sophistication, exploiting, for example, multiscale structures in the
problem. The method has its origins in work that has been designed to compute attractors
for dissipative dynamical systems [142, 143]. There was then an attempt to lift this work to
applications in Hamiltonian mechanics, in particular, to molecular dynamics in [144]. The
use of this method in applications to molecular dynamics was fully realized when applied
to a constant temperature formulation of molecular dynamics, achieved through randomized
momenta, described in [145]. To simplify exposition of the method, we describe an idealization
studied in [76]. In practice the algorithm is used in a more complex fashion and details may
be found in [93].

Imagine that we are given a sampled time-series zn = z(n$) ∈ Z for some $ > 0,
z(t) solving (1.1). By projecting into X (assumed known—we are going to identify reduced
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Figure 20. The potential V (x) in illustration 13.1.

variables in X ) we find the sequence xn ∈ X , n ∈ Z. From this it is possible to find an empirical
Markov chain on some finite partition of X , say X δ . The maximum likelihood estimator of this
Markov chain simply counts the number of transitions xn makes from state i ∈ X δ to j ∈ X δ

as a proportion of all transitions from i. This gives a Markov transition matrix P . The idea of
the transfer operator approach is to try and extract from this matrix P , a simpler Markov chain
on a state space of low dimension. This idea works well, and can be rigorously justified, when
the matrix P has a single eigenvalue on the unit circle, necessarily at 1, with a small cluster
of eigenvalues, say m− 1, next to the unit circle, and the rest of the eigenvalues separated by
an order one amount (measured in terms of the nearness of the m− 1 dominant eigenvalues)
from the unit circle; such systems are termed metastable. It is then possible to find a Markov
chain on an m-dimensional state space which accurately approximates the coarse dynamics of
the problem—see section 9.1.

A good model problem for the transfer operator approach is a countable state Markov
chain with generator L given by (9.1). Then P = exp(Lt), t = O(1), will have exactly
the desired property for m = 2. A useful example for SDEs is example 9.1. The stochastic
dynamics are approximated by a two-state Markov chain, describing transitions between the
neighbourhoods of ±1. In [76] various models similar to examples 7.1, 7.2 are used to evaluate
the transfer operator approach.

Illustration 13.1. We study an illustrative example from [76]. Consider equation (1.3) with
A(X) =

√
2/β, F (X) = −V ′(X) and V (X) as given in figure 20; thus V has three minima

and the invariant density of the SDE is as shown in figure 21 for β = 2.0. Thus m = 3 and
this is reflected in the structure of the spectrum for P = exp(Lt) with t = 1; the eigenvalues
are found (numerically) to be

λ1 λ2 λ3 λ4 λ5 λ6 . . .

1.000 0.950 0.915 0.387 0.227 0.125 . . .

The eigenvectors associated with the three eigenvalues near 1 help identify a coarsening
of the state space and facilitate the construction of a three-state Markov chain on this
coarsening.
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Note that an alternative method for identifying metastable states is by use of the moment
map; see illustration 12.2. "

13.2. SVD-based techniques

This is a method which attempts to identify X , as well as to find approximate dynamics in X .

Consider the deterministic version of (1.1), with γ ≡ 0. The basic idea is to observe a single
path of (1.1), use a singular value decomposition (SVD or proper orthogonal decomposition—
POD) to extract dominant modes, and then project the equation (1.1) onto them. We assume
that Z has finite dimension d , and try to identify a space X of dimension k < d.

Let

Z = [z(t1), z(t2), . . . , z(tN )] ∈ Rd×N

be a matrix formed from a large number of samples of a single path of (1.1). The (reduced)
SVD factorizes Z as

Z = U:V ∗,

where U,: ∈ Rd×d and V ∈ RN×d . By retaining only k columns of U (Uk) and k rows of :
(:k) we make the approximation

Z ≈ Uk:kV
∗
k ,

where U ∗
k projects from Z into a low-dimensional subspace of dimension k which we identify

with X . Thus Uk ∈ Rd×k,:k ∈ Rk×k and Vk ∈ RN×k. Here : is a diagonal matrix and we
assume that the singular values are ordered in decreasing fashion, from left to right. Then :k

contains the k leading singular values of :. Hence, the dynamics in (1.1) is approximated by

ξ̇(t) = U ∗
k (Ukξ(t)). (13.1)

To understand how the method works, note that

ZZT = U::U ∗

so that the columns of U comprise the eigenvectors of ZZT . The diagonal entries of :
(which is a diagonal matrix) are the square roots of the eigenvalues. The entries of ZZT

comprise correlation information between different components of z, averaged over time.
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Figure 22. Sample path of x from (6.22) with ε = 0.25 showing effective stochastic behaviour.

The dominant eigenvalues, and associated eigenvectors, isolate a coordinate basis which
highlights the directions which maximize this correlation. However, the seed of the failure
of the algorithm can be seen from this description: the data is found by time-averaging and
correlation information in time is completely lost. More sophisticated data analysis, exploiting
spectral representation theorems for stationary Gaussian processes, would employ correlation
information in time and perform approximation in the Kahunen–Loeve basis.

Illustration 13.2. We consider example 6.2. Recall that, if the variable x is taken to
characterize X then we can fit the SDE (6.23) to time-series data from (6.22); an efficient
method for doing this is outlined in illustration 10.5. We apply the SVD-based method to see
what happens if it tries to identify a one-dimensional subspace X .

Note immediately that the method cannot capture the stochastic dynamics of (6.23) because
if k = 1 then (13.1) is a one-dimensional ODE with trajectories which, provided bounded,
converge to the set of equilibria. The SVD method has a further drawback: it does not even
identify the coordinate x as significant. Figure 22 shows x solving (6.22) with ε = 0.25 on
the time interval t ∈ [0, 250]. The stochastic behaviour of the limit equation (6.23) is evident
in the component x. However the SVD method applied to the complete time-series (here
d = 4, N = 1 + 105 and k = 1) identifies X as span{26y1 + 27y2 + 10 000y3 + 38x} which is
clearly a variable dominated by y3 and hardly affected by x at all. (The numbers obtained are
very sensitive to the precise data used, but the conclusion that y3 dominates is robust.) "

The previous illustration touched on an issue of some importance, namely that dimension
reduction by the SVD method may constrain the dynamics in a manner which makes complex
behaviour in the original system impossible in the reduced one. This idea is nicely illustrated for
the Lorenz equations in [146]. For applications of this SVD-based approach in fluid mechanics
see [147] and [148]; for applications in molecular dynamics see [149]. The usefulness of
this method is limited by the fact that the low-dimensional basis, onto which the solution is
projected, is calculated from information which is global in time. Nonetheless, information
from PODs is still used in a variety of situations to identify an appropriate choice for the
subspace X in situations where it is not identifiable a priori.
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13.3. Model reduction

This is a method which attempts to identify X , as well as to find approximate dynamics in X .

Here the usual application domain is control theory, and most work to date concerns linear
systems. With this in mind we set

h(z) = Az, γ (z) = B,
dW

dt
(t) = u(t)

in equation (1.1) and obtain
dz

dt
= Az + Bu.

We assume that the object of interest is a linear function of z:

η = Cz.

The objective of model reduction is to find Â, B̂, Ĉ so that the reduced dynamics
dX

dt
= ÂX + B̂u,

η′ = ĈX

provides a good approximation η′ to η, for a range of controllers u. In the (x, y) picture
of equations (1.2), this corresponds to finding coordinates in which the y variable can be
effectively eliminated without introducing memory. On the assumption that A is negative-
definite, by use of the Laplace transform, the question reduces to finding Â, B̂, Ĉ so that η′L(s)

is a good approximation to ηL(s), where

ηL(s) = C(sI − A)−1B,

η′L(s) = Ĉ(sI − Â)−1B̂.

This problem in approximation theory can be tackled in a number of different ways, depending
on the range of s over which good approximation is required. Two basic approaches are Krylov
subspace (moment matching) and SVD-based (see [150–152]).

It would be of interest to extend these ideas to systems, such as those in section 7.3,
where stochastic effects arise when eliminating variables. This would occur, for example, if
A is skew, contrasting with most of the existing work on model reduction where A is negative
definite.

14. Miscellaneous

In this paper we confine ourselves primarily to ODEs. However related issues arise, of course,
for infinite-dimensional problems, including PDEs, and are both of pressing importance from
the viewpoint of making optimal use of computational resources, and from the point of view
of applications. It would be very hard to do justice to the breadth of literature in this context,
and we limit ourselves to a few papers which themselves lead to the wider literature. The very
general approach outlined in [118] includes PDEs, with applications across a range of problems.
For PDEs with multiple-scales there is interesting recent work, using finite elements built on
micro-structure, which addresses spatial issues analogous to the temporal issues considered in
this paper; see for example [153, 154]. See [155] for a recent review on multiscale methods
in general, especially in the context of PDEs. An interesting link between variable reduction
and the renormalization group is pointed out in [156].

Application areas which draw on the ideas outlined in this review are numerous: molecular
dynamics, materials science and fluid mechanics, to name a few.
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Molecular models based on Newtonian dynamics typically involve a variety of force
fields which induce a wide range of time-scales. The bond stretch and bond angle potentials
induce fast vibrations, whereas their interaction with slower forces, such as electrostatic
Coulomb interaction, and van der Waals repulsion lead, for example, to complex biomolecular
conformations, such as protein folding, on very long time-scales. Thus, the elimination of
fast scales, and the prediction of macroscopic information about molecular conformations,
and transitions between them, is a major goal; the topics of this review impinge on molecular
dynamics in many different ways. The use of heat baths through random frequencies has been
attempted in molecular dynamics simulations—see [157–159]. The idea of fitting SDEs to
partially observed dynamics in the context of biomolecular dynamics was undertaken in [124].
A natural idea is to try and eliminate the fast scales by use of averaging techniques, like
those in section 5, to produce constrained mechanical systems (see [32, 36, 160]). However,
for molecules in thermal contact with a heat bath, there is a range of physics literature
suggesting other effective smoothed potentials, consistent with the macrocanonical ensemble;
see [161–163]. A prevalent approach in this field is to use different time-steps for the fast and
slow contributions to the force; see [113] and chapter XIII of [99].

In materials science an active and open area of research concerns the interfacing of
molecular and continuum models. A concrete example where this is of interest is the study
of crack propagation where detailed molecular information is required near the crack tip, but
where a continuum description suffices in the far field. Since continuum models are essentially
macroscopic, and molecular models microscopic, the issue of extraction of macroscopic
dynamics is the key issue. The topic is a large one and there is not sufficient space to provide
a full bibliography. An important early reference is [164] and recent papers with a more
mathematical slant include [165, 166].

The atmospheric sciences provide a wealth of applications in fluid mechanics where the
extraction of macroscopic information is key [52, 58, 59, 123]. Another important application
area is non-Newtonian fluid mechanics where, increasingly, stochastic models are used to
describe the microscopic information required to represent macroscopic quantities such as the
stress tensor [167–170].
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