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This article reviews the application of various notions from the theory of
dynamical systems to the analysis of numerical approximation of initial value
problems over long-time intervals. Standard error estimates comparing indi-
vidual trajectories are of no direct use in this context since the error constant
typically grows like the exponential of the time interval under consideration.

Instead of comparing trajectories, the effect of discretization on various sets
which are invariant under the evolution of the underlying differential equation
is studied. Such invariant sets are crucial in determining long-time dynam-
ics. The particular invariant sets which are studied are equilibrium points,
together with their unstable manifolds and local phase portraits, periodic so-
lutions, quasi-periodic solutions and strange attractors.

Particular attention is paid to the development of a unified theory and to
the development of an existence theory for invariant sets of the underlying
differential equation which may be used directly to construct an analogous
existence theory (and hence a simple approximation theory) for the numerical
method.
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1. Introduction

In this article we study the numerical approximation of the ordinary differ-
ential equation

ue = f(u), u(0)="U, (1.1)

for u(t) € C*(R*,[RP). We introduce a time discretization through the
points ¢, = nAt and study the approximation of (1.1) by one-step numerical
methods of the form

Uni1 = F(Up; At), Up=TU. (1.2)

Here U, € IR is considered as an approximation to u(t,). All Runge-Kutta
methods, for example, can be considered in this form, provided solvability
of the defining equations has been established.

The classical error bound for the approximation of (1.1) by (1.2) is of the
form

[Un = u(tn)ll < ce*" AL (1.3)

for 0 < t, < T. Such error bounds can be derived purely under the as-
sumptions which yield existence, uniqueness, smoothness and continuous
dependence of a solution to (1.1) and no further understanding of the be-
haviour of solutions is required. Typically k& > 0 reflecting the fact that
different solutions of (1.1) may diverge exponentially over certain parts of
phase space. Consequently the error bound (1.3) is of little direct use in
studying the long-time behaviour of approximations (1.2) for the equation
(1.1) since it yields no information for fixed At as T' — oo.

To understand the behaviour of the approximation (1.2) of (1.1) over
long-time intervals requires a deeper knowledge of the behaviour of solu-
tions of (1.1) and, in particular, an understanding of how these solutions
behave over long-time intervals. In particular, the study of a variety of
sets invariant under the evolution generated by the equation (1.1) is crucial.
Such knowledge, combined with the standard error estimate (1.3) or a trun-
cation error bound, can provide very powerful results about the long-time
behaviour of numerical methods. The purpose of this review is to describe
such results within the unified framework of dynamical systems.

Section 2 contains background and motivational material. In particular we
state what we aim to show in this article and describe the types of problems
that we have in mind. In so doing we also make it clear that a number
of important issues will not be covered and give appropriate references to
existing literature in these areas. We also describe, by means of simple
examples, the types of theorems whose statements and detailed proofs we
consider in the remainder of the article.

In Section 3 we formulate the basic notions from the theory of dynam-
ical systems that are relevant to this article; in particular the concept of
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semigroup S(t) for (1.1) is introduced. In addition, the basic assumptions
concerning relationships between the true semigroup S(¢) and approximate
semigroup S}, for (1.2) are spelled out and certain convergence results
proved for individual trajectories.

In the remaining three sections we study the existence and convergence
properties of a variety of objects under discretization. Since the focus of the
article is on convergence, and a rather general framework for this question
is considered, we do not distinguish between the practical value of different
methods. Rather we address the question ‘what meaning can be attached
to computations performed with arbitrary finite time convergent numerical
methods when used over very long-time intervals?’

In all three sections the basic format is the same: the introduction is
concerned with the development of an existence theory for the invariant sets
of (1.1) itself, whilst the remaining sections contain modifications of this
theory for the numerical approximation and the derivation of error bounds.
Wherever possible, the existence theory is developed in such a way as to be
directly applicable to both the equation (1.1) and its approximation (1.2).
For this reason the existence theory is formulated in terms of the time At
evolution of the equation (1.1).

Consequently it is true that, in many cases, much of the work involved in
proving results about numerical approximation is concerned with formulat-
ing existing theories from continuous dynamical systems in a form amenable
to the study of discrete maps arising in numerical analysis; this involves a
fair amount of rehashing of well known theories in dynamical systems but, is
a fruitful process since the approximation theory for the numerical method
then falls out in a relatively straightforward manner. Note that, in some
cases, we will develop several approaches to the same question. In particu-
lar we provide two alternative constructions and convergence proofs for the
stable and unstable manifolds, for uniformly asymptotically stable sets and
for attractors.

In Section 4 we examine the behaviour of approximations S}, in the neigh-
bourhood of an equilibrium point of S(¢). We are led to study the existence
and convergence of an approximate equilibrium point, the convergence of
stable and unstable manifolds of the equilibrium point and the convergence
of phase portraits near to the equilibrium point.

In Section 5 we study periodic solutions of S(¢) under approximation
by SA,. We show that, under a condition which ensures that the periodic
solution is isolated, the semigroup S}, has a closed invariant curve which
converges, in the sense of sets, to the periodic solution of S(¢). We also
discuss briefly the effect of discretization on quasi-periodic solutions (the
sum of two irrationally related periodic solutions).

In Section 6 we study uniformly asymptotically stable sets and attractors;
these objects may include, for example, strange attractors such as those
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observed in the Lorenz equations. Again we study existence and convergence
of approximations of these objects found in the numerical scheme.

2. Background and motivation

In order to motivate the material in the remainder of the article, we start by
relating the approach taken here to the classical theory of numerical analysis
of initial value problems. Broadly speaking, the two fundamental issues in
the classical study of the approximation of (1.1) by (1.2) are convergence
and stability; we consider these two issues in turn and discuss how they
might be generalized to the consideration of nonlinear dynamical systems
over long-time intervals.

2.1. Convergence

As mentioned in the introduction, standard error bounds relating (1.1) and
(1.2) are of the form (1.3). This bound reflects the exponential divergence
of trajectories that may be present in well posed problems of the form (1.1).
Since most problems do not exhibit exponential divergence throughout the
whole of phase space, the bound (1.3) can sometimes be improved upon in a
number of ways: (a) for equations (1.1) exhibiting exponential contraction
of trajectories throughout phase space, or asymptotically as ¢t — oo, & may
be negative yielding uniform convergence of trajectories for ¢ € [0,00); (b)
for equations with conserved quantities, such as Hamiltonian systems, the
error bound (1.3) can sometimes be weakened to

U — u(ty)]| < cTAL"

for 0 < t, < T, for some a > 0; (c) for equations whose solution and
approximation ultimately lie in a bounded set B the error estimate (1.3) is
clearly pessimistic as ¢ — oo and can trivially be replaced by

|Un — u(ty)|| < diam(B)

for ¢ sufficiently large, where diam(B) denotes the largest distsnce between
any two points in B.

Possibility (a) is of minor interest since it admits only convergence to a
stable equilibrium point as ¢ — oo and therefore rules out many applications
involving interesting dynamical behaviour; it is discussed briefly in Section 3.
Possibility (b) is of interest and some results in this direction are described
in Calvo and Sanz-Serna (1992; 1993a,b); however, the techniques of use
in that case are rather specialized to Hamiltonian and other conservative
systems, an area which is extensively reviewed in, for example, Sanz-Serna
(1992a). It is possibility (¢) with which we shall concern ourselves in this
article.
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Of course, there are important application areas where unbounded solu-
tions are of relevance. Furthermore, in many cases it is not just the asymp-
totic behaviour which is of interest but also the transient behaviour. How-
ever, there are many applications in which bounded asymptotic behaviour is
of paramount importance and here we concentrate on such situations; we do
not study the approximation of unbounded trajectories nor do we study the
approximation of transients in any detail. Thus we suppose that solutions
of both (1.1) and (1.2) ultimately lie in some bounded set B. Within B
the solution will typically approach an w-limit set as t — oo. This might
be, for example, an equilibrium point, a periodic solution, a quasi-periodic
solution or a strange attractor. Examples of the four possibilities are given
in Figure 1. The four objects observed as ¢ — oo are all examples of w-limit
sets; a precise definition is given in Section 3 but, roughly, they are objects
observed for large ¢ in (1.1).

A natural generalization of the standard convergence question to this sit-
uation is to ask are w-limit sets of (1.1) well approzimated by w-limit sets of
(1.2)7 It is predominantly this question, and others closely related to it, that
we address in this article. To introduce ideas concerned with convergence
of limit sets, and other related sets, we describe six examples.

Examples
(i) Equilibrium points. The explicit Euler scheme for the approximation
of (1.1) is

Unt+1 = Un + ALf(U,).
Its fixed points satisfy
U=U+Atf(U)s f(U)=0, VAt>O0.

Hence they coincide with the equilibrium points of (1.1). Thus convergence
of these limit sets (equilibrium solutions) as At — 0 is trivial. It is worth
noting, however, that general Runge-Kutta methods may produce spurious
fized points which are not close to the true equilibria as At — 0 - this
point was first observed in Iserles (1990); see Theorem 4.11 and the example
preceding it. In Section 4 we shall consider the questions of convergence of
fixed points to true equilibria, and the existence of spurious solutions, under
fairly weak hypotheses on the nature of the approximation - see Theorems
4.10 and 4.11.
(ii) Unstable manifolds. Consider the pair of equations

pe=p, q=—q+p° (2.1)

These equations have the equilibrium point p = ¢ = 0. Now consider the
curve ¢ = p?/3. If we define the variable z = ¢ — p?/3 then

=g top=—q+p* - Ip*= -2 (2.2)
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Hence, if z(0) = 0 then z(t) = 0 Vt € IR Thus the curve
g=3p’ (2:3)

is invariant for the equations — solutions starting on the curve remain on it.
Furthermore, using (2.1), we find that if (2.3) holds then

p(t) = Ae’, g =A%,

thus p(t),q(t) — 0 as t — —oo for solutions on the invariant curve; this
curve is referred to as the unstable manifold of the origin.
Now consider the Euler approximation

Pnt1 = (1 + At)pm qn+1 = (1 - At)Qn + Atp,%- (2~4)

It is natural to seek an invariant curve of the same form as for the differential
equation. Specifically, we seek an a € IR such that

_ .2 )
Gn = APy, & Qnt+1 = APy -

1 6 —_
0.8 4
0.6 T
2
0.4
0.2 0
0 -2
0 1 2 3 4 0 1 2 3 4
6 60 —
4 40
20
2
0
0 -20
-2 -40
0 1 2 3 4 0 5 10 15 20

Fig. 1. Plot of a component of u(t) (vertical axis) against ¢ illustrating four different
limit sets; from left to right, top to bottom: an equilibrium point, a periodic
solution, a quasi-periodic solution, a chaotic solution.
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From (2.4) we see that this implies that

(1 - At)ap}; + Atpl, = gniy = appyy = a(l + At)*p).
Hence, since this must be satisfied for all p,,, we obtain

(1 — At)a+ At = a(1 + 2At + At?)

which yields a = (3 + At)~!. Thus the curve
3 +1Atp i (25)
is invariant for the numerical method. Furthermore, on (2.5),
(14 At ,
"3+ At DO

so that p,, g, — 0 as n — —oo. This demonstrates that (2.5) is the unstable
manifold of the origin for the Euler approximation.

The important observation to make from this example is that both the
underlying equations and their approximation have an invariant manifold
and that, furthermore, by virtue of (2.3) and (2.5), these manifolds are close
as At — 0. Generalizations of this idea will be proved in Theorem 4.12 and
Corollary 4.13.

(iii) Phase portraits. Consider approximation of the equation

q:

Pn = (1 + At)npo, qn =

¢ = —x, z(0) =z,
by the explicit Euler scheme
Xnty1 =1 - A0 X,, Xo=xg.
It is straightforward to show that there exists C' > 0 so that the error satisfies
| X5 — z(tn)] < CAt[1 - (1 — At)"] < CAt Vn,At: 0 < nAt < oo,

for At sufficiently small. Thus, due to the exponential contraction of the
true solution, this error bound is uniform in T for 0 < ¢, <T.
The equations

It =—x, Yt=Y,

are illustrative of the behaviour of trajectories of (1.1) in the neighbourhood
of an equilibrium point. Because of the exponential divergence present in
the y-component of the solution, standard error bounds are not uniform
with respect to T on the time interval 0 < ¢t < T. However, if we consider
numerical trajectories with different initial conditions from the true trajec-
tories it us possible to find approximations of solutions which are uniform
with respect to the length of time interval T. The key point is that the
y-equation is contractive backwards in time. We choose the initial condition
in y so that the true and numerical solutions agree at ¢, = T and then
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exploit backwards contractivity in y. As an example, consider solving the
differential equations subject to the boundary conditions

z(0)=n, y(T)=¢ T =NAt.
Thus the true solution to the problem is
z(0) =ne™", y(t) = €.

The backward Euler scheme scheme

Xni1 =1 -AH)X,, Xo=7

Vo1 =1+ ANY,, Yyv=¢
gives the solution

Xo=n(1-At)" Y, =(1+At)" Ve
It can then be shown that there exists C' > 0 such that the errors satisfy
| Xy — z(tn)] S CAt1 - (1 — At)"]| < CAt Vn,At:0<nAt<T
and
|V, —y(t)| S CAt1 — (1 + A)" V] < CAt VYn,At:0<nAt<T

for At sufficiently small. Again C is independent of 7. Thus, by comparing
suitably chosen solutions, it is possible to find error bounds which do not
depend on the length of the time interval for problems exhibiting exponen-
tial divergence of trajectories. The basic idea described here was described
for a general class of linear problems in Enquist (1969). The idea can be
generalized to a wide class of nonlinear problems in the neighbourhood of
an equilibrium point; this we show in Section 4 — see Theorem 4.14 and
Corollary 4.15.
(iv) Periodic solutions. Consider the complex equation (i? = —1)

ze=(ai+1—|z})z

with periodic solution z(t) = e®!. As a set of points in C the periodic

solution is given by
P.={zcC:|z| =1} (2.6)
The explicit Euler approximation yields the map

Zni1 = Zn + At(ai+1—|Z,2)Z,.

The analogue of the periodic solution of the differential equation is to seek
a circle in the complex plane which is ¢nvariant under the maps — that is
a circle with the property that points starting on the circle remain on the
circle. (A precise definition of invariant will be given in Section 3.) Thus
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we seek fixed points of the map |Z,|? + |Zn41/|>. A little algebra shows that
there is a circle of fixed points with the form
|Zn| =R (@)

where

14 [1 - a?At?/?

Ri(a)? =1+ 7

(2.7)

Hence the mapping has the invariant circle
Par = {z€C:|z| = R_(a)}. (2.8)

Noting that R_(a) = 1+ O(At), we deduce from (2.6) and (2.8) that the set
Pa¢ converges to P as At — 0. Such a convergence result for periodic solu-
tions is true under much more general circumstances and this is investigated
further in Section 5 — see Theorem 5.7 and Corollary 5.8. Note, however,
that the numerical method also has a spurious limit set in the form of the
invariant circle |Z,| = Ry(a) = O(At™1/2). The example constructed here
was introduced in Brezzi et al. (1984).

We introduce a brief note of caution concerning the approximation of
periodic solutions by numerical methods. In order to generalize the example
considered to other periodic solutions and other numerical methods, it is
necessary to assume that the periodic solution is isolated in phase space
(no other periodic solutions arbitrarily close to it). To illustrate why this is
necessary, consider the equations

Te="Y, Yt=7T
with periodic solutions
z(t) = Acos(t), y(t) = Asin(t), AcR

Since A is arbitrary these solutions are not isolated. Furthermore, for the
explicit Euler scheme

Xn+1 = Xpn — AtY,, Yo =Y, + AtX,,
all solutions satisfy
(X7 + Y] = (1 + A8 XS + Y4
thus, unless the initial data are at the origin,
X24+Y?2 500, n— o0

Thus no closed invariant curves approximating a periodic solution can exist.
Issues of this nature are encountered frequently in the approximation of
Hamiltonian and other conservative systems; as mentioned earlier, this is a
somewhat separate subject area which we will not address in this article.
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(v) Quasi-periodic solutions. Consider the coupled complex equations

2= (i+1- w2,
we = (V2i+1—|z[H)w.

Note that the equations admit the solution z(t) = e, w(t) = eV2it This
is a quasi-periodic solution of the coupled system and, as a set, it may be
written

Q={zweC:|z| = |w =1}. (2.9)
The explicit Euler scheme for these equations is

Zni1 = Zn + At(i+1 = |Wa|?)Z,,

W1 = Wy + A(V2i + 1 — | Z,|))W,.

By analogy with the continuous solution, we seek an invariant set with the
form

| Znt1|l = |Zn), |[Wayil =|Wal, VYn>0.
A calculation shows that such an invariant set may be found with the form
|Za| = R-(V2),  |Wa| = R_(1),

where R_(«) is given by (2.7). Noting that R_(a) =1 + O(At) we deduce
that the numerical method has an invariant set

Qar = {z,w € C: |z] = R_(V2),Jw| = R-(1)},

which converges to the true invariant set Q given by (2.9) as At — 0. Note
that the example constructed here is simply a modification of that described
for periodic solutions in the previous example. Spurious invariant sets can be
constructed by choosing the root R, (-) in the construction of the invariant
set.

Once again, in order to generalize this example, it is crucial to require that
the quasi-periodic solution be isolated. The convergence of quasi-periodic
solutions is discussed in Section 5.

(vi) Strange attractors. Consider the Lorenz equations (Lorenz, 1963)

Ty = O'(y - .’L‘),
Y =T — Y — T2, (2.10)

2y = zy — bz.
Figure 2 shows solutions of the equations, with parametersset at ¢ = 10,7 =
28 and b = %, for four entirely different initial conditions. Note that, in all
cases, the solutions are attracted to a very complicated set in R and this

set is an example of a strange attractor. The same set is observed in all four
cases.
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This complicated set is observed for almost all initial conditions chosen
and forms the w-limit set for equations (2.10) for almost all initial data.
The issues involved in proving convergence of such strange attractors are
far more complicated than for equilibrium points and periodic solutions;
no simple illustrations can be constructed. Indeed one of the stumbling
blocks in the numerical analysis of such objects is that the existing theory
of perturbations to such strange attractors is itself far from fully developed.
The convergence of such attractors, and other related objects, is considered
in Section 6. See Theorems 6.12, 6.20, 6.21, 6.22, 6.26 and Corollaries 6.18
and 6.30.

2.2. Stability

In the previous section we discussed the notion of convergence and described
a particular generalization that is useful in the study of dynamical systems
- namely to look at the existence of limit sets (and other related objects)
and then study their convergence as At — 0. Such a convergence study will

0.5 0.5
04 04
0.3 0.3
0.2 0.2
0.1 0.1
(-)2 -1 0 1 2 92 -1 0 1 2
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
(-)2 -1 0 1 2 92 -1 o 1 2

Fig. 2. Plot of x (vertical axis) against y for four different solutions of the Lorenz
equations, with o = 10,7 = 28,b = %.
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form the majority of the remainder of the article. However, to set things in
context, we briefly discuss notions of stability appropriate to the study of
dynamical systems.

Classical linear stability theory is concerned with the analysis of approx-
imating the equation

u = Au, u(0)=U, Re(A)<0. (2.11)

(For the study of linear conservative or Hamiltonian problems it is important
to include the effect of approximating this problem for purely imaginary
values of A — the equation u; = iu is the archetypal example of a Hamiltonian
equation. However, such problems are not our concern here and so we
restrict attention to the case where Re () < 0.)

The approximation (1.2) to (2.11) is typically a rational function of AA¢;
for a given numerical method applied to (2.11), the region of absolute sta-
bility S C Cis defined to be the set with the property that

At e S & |Uy| — 0 as n — .

Thus, if AAt € S, the numerical solution replicates the behaviour of the
underlying equation (2.11). In many circumstances it is important that this
occurs without restriction on At. Hence the following definition is useful:
the numerical method is said to be A-stable if

{ze C:Re(z) <0} CS.

One abstraction of the above concepts of stability (which we can generalize
to other problems) is that they yield conditions under which an important
qualitative property of the equation is inherited by the discretization. (This
abstraction misses the important connection between such practical stability
conditions and error propagation in stiff problems, but is nonetheless a useful
notion.) With this abstraction in mind, let us consider nonlinear problems.

A fundamental difference between linear and nonlinear problems is that, in
the latter case, the stability notions become initial data dependent. Consider
the approximation (1.2) of a nonlinear problem of the form (1.1) with the
property that all solutions tend to the origin as ¢ — oco. In this case we
could define the region of absolute stability of a given method to be the set
S C€ R x IR with the property that

(At,Up) € S & |Uyl > 0as t — oo.

Defining the basin of attraction of the origin to be the set of initial data
which yield an asymptote at the origin as ¢ or n tends to infinity, we see
that this notion of stability is nothing more than seeking conditions on At
which preserve the basin of attraction. We have assumed that the basin of
attraction of the origin for the differential equation is the whole of IRP. Thus
it might be natural to seek numerical methods which replicate this property



NUMERICAL ANALYSIS OF DYNAMICAL SYSTEMS 479

for an interval of Af; that is to seek methods with the property that there
exists At. > 0 such that

{(At,U) e Rx R : At € (0,At.)} C S.

Under such conditions, all choices of At € (0,At.) will yield a numerical
solution with the correct asymptotic behaviour, independently of initial data.
An even stronger constraint on the numerical method would be to ask that
no upper bound on At is required either; that is to seek methods with the
property that

{((At,U) e Rx RP: At € (0,0)} C S.

Such notions of nonlinear stability are contained in the literature although
they are not framed in this way. In particular, there has been a great deal
of work devoted to problems of the form (1.1) where f(-) satisfies

(f(w) = f(v),u = v) < —allu —|? (2.12)

for some o > 0. Under (2.12), equation (1.1) has a unique steady solution
(without loss of generality at the origin) which all solutions approach expo-
nentially as ¢ — co. The study of numerical stability for such problems was
initiated in Dahlquist (1975; 1978) where linear multistep methods were con-
sidered and generalized to Runge-Kutta methods by Burrage and Butcher
(Butcher, 1975; Burrage and Butcher, 1979).

Whilst the nonlinear stability theory developed for (1.1) satisfying (2.12)
has been very important in unifying the linear and nonlinear theories of error
propagation, its range of applicability is somewhat limited since the condi-
tion (2.12) rules out nontrivial dynamical behaviour. Nonetheless, analogous
stability theories can be developed under other hypotheses on f(-). For in-
stance, the assumption that

Ja,b > 0: {f(u),u) < a— blju|? (2.13)

is of interest in this context. Under (2.13) all solutions of (1.1) eventually
enter the ball

{ueR:|u)|? < (a+e€)/b} for any e > 0.

Hence this asymptotic bound on the solution is independent of the initial
data. It is natural to examine numerical methods which replicate this prop-
erty and this is done in Humphries and Stuart (1994) for Runge-Kutta meth-
ods and in Hill (1994) for linear multistep methods. It is interesting that
the stability conditions required to make numerical methods replicate the
qualitative behaviour of the underlying equation (1.1) under (2.11), (2.12)
or (2.13) are very closely related. An overview of the area of nonlinear sta-
bility for (1.1) under a variety of different structural assumptions, including
those described here, may be found in Stuart and Humphries (1992a). Since
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that article is self-contained we will not pursue stability issues any further
in this article.

2.3. Summary

There are two important obervations to make concerning the discussion in
this section. First one possible generalization of the notion of convergence to
include dynamical systems is to consider the convergence of w-limit sets — the
objects observed for large time in (1.1). Second one possible generalization
of the notion of stability to dynamical systems is to ask for preservation
of certain qualitative properties of the underlying differential equation (1.1)
under numerical approximation; in particular it is desirable to have such
preservation occurring for a wide range of time step At and initial data U.

These two separate questions of convergence and stability are bridged
by the question of the convergence of basins of attraction of w-limit sets.
This is because numerical instability is often manifested in a blow-up of the
scheme so that the basins of attraction of limit sets are affected. Consider
the following example.

Example This example shows relationships between the convergence of
limit sets and basins of attraction, and numerical stability. All solutions
of the equation

u = —ud, w(0)=U (2.14)

tend to the origin 0 as t — oo. Thus {0} is the only w-limit set and its basin
of attraction is IR Now consider the Euler approximation

Unt1 = (1 = AtUDU,, Uy ="U.

Analysis of this map given in Stuart (1991) shows that the origin {0} is an
w-limit point (which trivially converges to the true limit set {0} as At — 0.)
The origin has basin of attraction (—+/(2/At),/(2/At)) and thus the basin
of attraction converges to the true basin of attraction R as At — 0. To
see the connection with numerical stability, consider initial data outside the
basin of attraction: if |U|* > \/(2/At) then it may be shown that |U,| — oo
as n — 00, a form of numerical instability. Thus the convergence of basins
of attraction is closely related to the determination of conditional numerical
stability questions.

The question of convergence of basins of attraction is little studied and
there are many open questions in the area; see Humphries (1994) for some
analysis in this direction.

As stated before, in this article we concentrate solely on the convergence
of w-limit sets and other related objects. This in itself is an enormous sub-
ject area but, as we hope to show, comprises a cohesive body of knowledge.
In particular we have striven to put the results already contained in the
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literature in a unified framework, paying particular attention to the devel-
opment of an existence theory for the objects of interest which can also be
used to study analogous questions for numerical approximations.

2.4. Bibliography

Interest in the subject of the interaction between numerical analysis and
dynamical systems has been growing steadily over the past decade. In par-
ticular two major international conferences have been held concerning the
subject — the first was in Bristol, UK, in 1990 (see Broomhead and Iserles,
(1992), Budd (1990) and Sanz-Serna (1992a)) and the second in Geelong,
Australia, in 1993 (see Kloeden and Palmer (1994)). Furthermore, a series of
lectures at the IVth SERC Numerical Analysis Summer School in Lancaster,
UK, was given in 1991 — see Beyn (1992).

3. Semigroups and their approximation
3.1. Notation

We shall not define a specific norm in this article except in a few special
circumstances. However, the norm should be taken as fixed throughout any
given argument used and, furthermore, all matrix norms are those subordi-
nate to the underlying vector norm. For simplicity it is sufficient to consider
the Euclidean norm unless otherwise stated.

It will be important to have an appropriate definition of the distance
between sets. Let A and B be sets in I and u a point in IR; we introduce
the following notation:

dist(u, A) = inf,ea [ju — v,
dist(B, A) = sup,¢p dist(u, 4),
N(A,e) = {uc R : dist(u, A) < €},
ON(A,e) = {u € R : dist(u, A) = €}.
Notice that, if dist(B, A) < € it follows that B C N(A4, €) so that

dist(B,A) =0=> B C A.

(3.1)

Hence ‘dist’ only defines a semidistance —~ the asymmetric Hausdorff semi-
distance as distinct from the Hausdorff distance between two sets A and B
which is defined by

dw(A, B) = max{dist(A4, B),dist(B, A)}. (3.2)
We also employ the following notation for open balls:

B(v,e) :={u e R: |ju—v|| <€},
OB(v,e) = {u € R : |ju — v|| = ¢}.

Thus B(v,€e) = N (v,¢) and dB(v,€) = ON (v, €).

(3.3)
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3.2. The differential equation

Let us assume for the moment that a unique solution of (1.1) exists for all
t > 0 and any U € RP. Consequently we may define a semigroup S(t) :
R — IR in such a way that the solution u(t) of (1.1) is given by

u(t) = S(t)U.
The one-parameter mapping S(t) satisfies the usual semigroup properties

(i) S(0) = I, the identity on IRP;
(ii) S(t+s)=S(t)S(s) Vt,se Rt

Under the assumption that f is differentiable on IRP it follows that the
semigroup S(t)U is continuous in both t € Rt and U € IRP. We make this
assumption throughout. We denote the Jacobian of S(¢)U with respect to
U € R, evaluated at a point V € R, by dS(V;¢).

Example To illustrate the semigroup S(t) we consider the equation (2.14).
Since solutions exist for all positive time, a semigroup may be defined. Solv-
ing the equation explicitly gives
U
S(HU = ——————. 3.4
®) (1+2tU2)1/2 (3:4)
Properties (i) and (ii) are easily verified. Differentiation with respect to U
shows that
1

(3.5)

Frequently we shall we require the action of S(t) on a set of points E C [RP.
We define

SH)E = | S(t)z. (3.6)
z€E

When analysing dynamical systems it is of great importance to study sets
with the property that trajectories starting in a given set remain within that
set. This motivates the following definition:

Definition 3.1 A set E is said to be invariant (respectively positively
invariant) if, for any ¢t > 0, S(t)E = E (respectively S(t)E C E).

Example Consider the equation
ue = u(l —u?), u(0)="U. (3.7)

This has solution
U

{U2 + (1 _ U2)e—2t]1/2'

u(t) =
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Let E = [-1,1]. We show that S(t)E = E. If U € [-1,1] then it follows
from (3.8) that S(¢)U € [—1,1] and hence that S(¢)E C E. Furthermore
reversing time in (3.8) shows that, if V = S(¢)U, then
U= 4 .
[V2+ (1 - V2)e2t]1/2
Thus, if V € [-1,1] then U € [~1,1] and hence E C S(¢)E. Thus we have
shown that S(¢t)E = E and so F is invariant.

Now consider the interval B = [—a,a],a > 1. From (3.7) we have
1d
Ed—t—|u[2 =u?—ut<0, |u/>1

Thus solutions starting on the boundary of B enter B and hence no solutions
can leave B. Thus S(¢t)B C B and B is positively invariant. O

The behaviour as t — oo of the dynamical system defined by S(t) is
captured by its w-limit sets. Roughly these are sets of accumulation points
at t = oo for subsequences in time extracted from a solution u(t), ¢ > 0.
Precisely we have:

Definition 3.2 The w-limit set of a point U is defined by
wU) = {zr e R|3{t;},t; = 00 : S(t;)U — z as t; — oo}.
An equivalent definition s
wU) = U Ss®U. (3.9)
s>01t>s
Stmilary we may define the w-limit set of a set E by
w(E) = {z € R3{t;}, (Ui}, t: = o0, U; € E: S(t;)U; — x as t; — 0o}
An equivalent definition is
w(E) = |J S®E. (3.10)
s>0t>s

Examples Typical examples of w-limit sets of individual points are equilib-
rium points, periodic solutions, quasi-periodic solutions and strange attrac-
tors. We illustrate these objects by example.

(i) Equilibrium point. Consider the equation

ur = —u, u(0)="U. (3.11)

Since u(t) = etU it follows that w(U) = {0} for all U € IR°. The point {0}
is simply the equilibrium point for the equation.
(ii) Pertodic solutions. Consider the equations

ze=z+y-x(z’+y?), (0) =z,

3.12
ye=-z+y—yl@®+y?), %0)=uy. (3.12)
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If we change variables to polar coordinates by introducing R and ¢ given by
x=Rcos¢p, y=Rsing
then we obtain the equations
Ri=R(1-R?, ¢ =-1. (3.13)
Thus ¢(t) = #(0) — t. Explicit use of the solution (3.8) shows that, for all
R(0) >0, R(t) — 1 as t — oo. Thus
z(t) — cos(¢(0) — 1), y(t) — sin(¢(0) —1).

The solution rotates clockwise in the plane and asymptotically approaches a
solution with radius 1; we have found a periodic solution of equations (3.12).
Thus, for every solution with R(0) > 0 the w-limit set is simply

P = {(:L',y)T €R2::z:2+y2 =1},

that is the set of all points on the periodic solution.

(iii) Quasi-periodic solutions. Consider equation (1.1) in Re, p > 2, with
solution u(t) = (u1(t),u2(t), ..., up(t))T. Assume that the first two solution
components satisfy

up(t) = e f +sin(t), wug(t) = e + cos(6t)

and that the remaining solution components approach 0 as ¢ — oo. Then, if
6 is irrational, as ¢ — oo the limiting solution is quasi-periodic. The w-limit
set is given by

Q={(uelR:-1<u; <1,-1<u <1lu; =0, j=3,...,p}.
(iv) Strange attractors. Consider the Lorenz equations given by (2.10).

Figure 2 shows solutions of the equations, with parametersset at ¢ = 10,7 =
28 and b = g, for four entirely different initial conditions. As described in

Section 2, the solutions eventually lie on a very complicated set in R® and
this set is an example of a strange attractor. It is the w-limit set for equations
(2.10) for almost all initial data. O

It is important to note that, in general,
w(E) # U w(z).
TeE

The following example illustrates this.

Example Consider the equation (3.7) with solution (3.8). From the explicit
solution it is clear that

wU)=1,U>0;, wU)=-1,U<0; w(0)=0.
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Thus for any interval F = [—a,a], a > 0 we have
U w(z) ={-1,0,1}.
z€E

It may also be shown that
w(E) =[-1,1];
this follows from showing that
S(t)E = [-S(t)a, S(t)a],
with S(t) determined by (3.8), and noting that S(¢t)a — 1 as t — oc.
The following property of w limit sets is very useful:

Theorem 3.3 The w-limit set of any bounded set E ¢ IR, w(F), is a
closed positively invariant set. Furthermore, if 37 > 0 : S(¢)E is bounded
for t > T, then w(F) is invariant. Finally, if w(U) is bounded for some
U € R then it is connected.

Proof. We first establish closure: consider a sequence of w-limit points
zr — x, with each zx € w(E). We wish to show that z € w(F). By
Definition 3.2, for each k there are sequences {v¥}, {t¥} such that

S(tFyF — 24 as i — oo.
Hence, without loss of generality, let
llzx — S| < k™! and ¥ >k fori> k.
Now define v} : = v! and #] := t!. By construction ¢! — co as i — co. Now
e = SEWI < e — il + I1SE)] — i
< o -zl +478

Taking ¢ — oo we find S(t})v} — z. Hence, by Definition 3.2, z € w(F).
We now show positive invariance. Assume that z € w(FE). If

S(ti)vi — T
then by continuity of S(¢)-,
S(t+ti)v; = S(t)S(t;)v; — S(t)x Vt > 0.
Thus S(t + t;)v; — S(t)z and, hence S(t)z € w(E) by Definition 3.2. Thus
we deduce positive invariance of w(E).
Now we establish negative invariance. We assume that S(¢)E is bounded
for t > T and assume that € w(E). We aim to show that, for any ¢t > 0, Jy:

S(t)y =z and y € w(E). Let S(¢;)v; — z, where, without loss of generality,
we may choose t; > 14T +t. Now consider the sequence S(t; — t)v;. Since
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S(t)E is bounded for t > T and t; —t > T + 1 for all ¢ > 1 it follows that
there exists a convergent subsequence

S(ti; — thvi; = y.

Now
r = lim S(t;)vi; = lim S(t)S(t;; — t)vsj
j—oo j—oo
= S(t) im S(t;; — t)vi; = S(t)y.
3—00

Hence the negative invariance is proved.

Finally we show that boundedness of w(U) implies connectedness. Assume
for contradiction that w(U) comprises two disjoint components P and Q
with N (P,e) N N(Q,¢) = 0, for some ¢ > 0. Then there exist sequences
t; — oo and 7; — oo such that S(¢;,)U — z € P and S(,)U — y € Q.
Without loss of generality we may assume that ¢; < 7; and that S(t;)U €
N(P,e),S(1;) € N(Q,e) Vi > 1. By continuity of S(-)U it follows that
there exists T; € (¢;, ;) such that S(T;)U € ON(P,¢). But the set IN(P,¢)
is closed and bounded, since P is bounded, and hence compact. Thus there
exists a convergent subsequence S(T;,)U — z € ON(P,¢). But this is a
contradiction since then, by definition, z € w(U) but z ¢ P U Q. This
completes the proof. O

The behaviour of a dynamical system is very well understood if all the
w-limit sets can be determined together with knowledge of which initial data
are associated with a given limit set; this motivates the following:

Definition 3.4 An w-limit set W has basin of attraction B if
{w(U) =W} & {U € B}.

Examples For equation (3.11) it is is clear that the basin of attraction of
the w-limit set @ = {0} is the whole of IR For equation (3.12) the basin of
attraction of the periodic solution P is R®\{0}. O

3.3. Approximating semigroups

The numerical method (1.2) generates a semigroup S3%, : R’ — R in such
a way that the solution U, of (1.2) is given by

Here the subscript At is used simply to emphasize the dependence of the
numerical method on At. This semigroup satisfies properties analogous to
those for S(t):

(i) S, =1, the identity on [R¥;
(i) Sx™=5%,5%, Vn,meZ".
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If f is differentiable then standard numerical methods yield a differentiable
semigroup Si,U. Throughout we denote the Jacobian of S1,U with respect
to U € IRP evaluated at a point V € IR by dS%,(V).

Example We consider equation (2.14) under approximation by the explicit
Euler scheme; this yields the mapping

Upy1 = U, — AtU3, (3.14)
so that
S\, U=U- AtU3 (3.15)

and SR, is an n-fold composition of S4,. Again Properties (i) and (ii) are
straightforward to check. Differentiation with respect to U gives

dSi, (V) =1-3AtV:. O (3.16)

Important remark It is straightforward to define concepts of invariance,
w-limit set and basin of attraction for the semigroup S%,. Indeed the only
change necessary to Definitions 3.1, 3.2 and 3.4 is to replace ¢; by a sequence
of integers n; — oo. Furthermore, Theorem 3.3 has a discrete analogue for
SA; with the caveat that the last part of the theorem, concerning connect-
edness, does not hold.

Example Consider the explicit Euler approximation of (3.11). This yields
the map

Unp1 = (1= AU, Uy="U,

so that SL,U = (1 — At)U. If At € (0,2) then w(U) = 0 for any U € R
replicating the behaviour of the differential equation. Thus {0} has basin
of attraction R if At € (0,2). However, if At = 2 then w(U) = {U,-U}
and the basin of attraction of w(U) is w(U) itself. Note that w(U) is not
connected in this case. O

The truncation error is now defined to be the error committed by the
approximation (1.2) over one time step of length At.

Definition 3.5 The truncation error for the map (1.2) as an approxima-
tion to the ordinary differential equation (1.1) at a point U € IRP is defined
by
T(U; At) := S(At)U — S}, U.

The Jacobian of T(U; At) with respect to U € IR evaluated at V e IR is
denoted by

dT(V; At) := dS(V; At) — dSA, (V).
Example We illustrate this definition by considering the approximation of
(2.14) by (3.14). First notice that from (3.15)

ISAU = SAVI < U = V| + At|U? — V3| < 1 + ALK (U, V)]|U - V],
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where K1(U,V) = [U?+UV +V?|. This shows the local Lipschitz continuity
of S}, By (3.4) and (3.15) we see that the truncation error satisfies

U
(1 + 2AtU2)Y/2

Taylor expansion of S(A#)U shows that there exists At. = At (U) > 0 and
Ky = K5(U) > 0 such that

IT(U; At)| < KoAt? VAt € (0, At,].

T(U; At) = — (U - AtU3).

This shows that the truncation error is bounded above by a quantity pro-
portional to At2. Furthermore

1
dT(U; At) = — (1 -3AtU?).
(U3 A9) (1 + 2AtU2)3/2 ( )
Again, a Taylor series expansion shows that there exists At. = At (U) >0
and K3 = K3(U) > 0 such that

[dT(U; At)| < K3At? VAt € (0, At,],

possibly by further reduction of At.. This shows that the Jacobian of the
truncation error is also bounded above by a constant of O(At?).

There are two remaining properties of S4, worth emphasizing by example.
Note from (3.16) that

[dSL, (V)| <14 3V2At

and
S, (U) - dSA(V)| < 3AU + VI[U = V]. O

The example illustrates a number of basic properties of the approximate
semigroup that we will need throughout this article. It is clear that four
important properties of the approximate semigroup are: (i) a Lipschitz con-
dition on S}, (or, relatedly, a bound on the Jacobian dS},) of size 1+ O(At);
(ii) a Lipschitz condition on dS}, of size O(At); (iii) an O(At?) closeness of
S1, to S(At) uniformly in any bounded set B(0, R); (iv) an O(At?) closeness
of dS4,(U) to dS(U; At) uniformly in any bounded set B(0, R).

We will assume that S}, satisfies generalizations of these four condi-
tions throughout the remainder of the article. However, our analysis will
be greatly streamlined if estimates for the size of the truncation error in
terms of At are uniform across the whole of IRP. Since our interest is primar-
ily in the local behaviour of S(¢t) and S}, near to bounded limit sets it is
sufficient to consider vector fields which are globally bounded. Specifically
we make the following assumption concerning the vector field f :

Assumption 3.6 The vector field f in (1.1) satisfies f € C°(IRP,R?) and
f and all of its derivatives are uniformly bounded for all u € [RP.
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In fact this assumption also yields both forwards and backwards in time
global existence and uniqueness for the equation (1.1) so that the semigroup
may be extended to a group, but we do not pursue this further. Assumption
3.6 will be made throughout the remainder of this section and throughout
Sections 4-6; it will not be stated explicitly in the theorems. The assumption
is made for simplicity and, since the results described are local in nature,
is not necessary — the vector field f(-) can always be modified outside a
compact set to yield Assumption 3.6.

From Assumption 3.6 it is possible to prove that many one-step approx-
imations S}, to the semigroup S(t) (including all Runge-Kutta methods)
generated by (1.1) satisfy the following uniform continuity and approxima-
tion properties:

Assumption 3.7 There exists constants K > 0, At. > 0 and an integer
r > 1 such that for all At € [0, At.) the semigroups S(t) and S}, satisfy

(i) [dSx(U)I < (1 + KAt) VU € R,

(i) [|dSA,(U) —dSA )| < KAL|lU - V| VU,V € R,
(i) || T(U; At)|| < KA+ vU e R,

(v) |dT(U; At)|| < KAt YU e R,

We will not make this assumption explicit in the statement of the theorems
but will assume it throughout the remainder of this section and throughout
Sections 4-6. Assumption 3.7 is satisfied by standard Runge-Kutta methods
applied to (1.1) under Assumption 3.6.

We now prove certain results concerning the closeness of the semigroups
SR, and S(t,) over fixed time intervals 0 < nAt = ¢, < T. These results
follow directly from Assumption 3.7. We need one preliminary observation.
Note that, if u(t) = S(¢)U then w(t) = dS(U;t)v satisfies the equation

we =df(u(t))w, w(0)=v
where df(-) denotes the Jacobian of f. By Assumption 3.6 we may assume,
without loss of generality, that ||df(u)| < K Vu € IR so that
1d

S g lel? = (w,w) = (w, df (ww) < Klwl?.

Hence
lw@®)ll < X'l = IdSTU, 1) < . (3.17)

We can now prove the following theorem concerning the closeness of both
the semigroups S(t) and Si, and their derivatives.

Theorem 3.8 Consider the semigroups S3,U and S(At)U. It follows that,
if t, = nAt,0 <t, <T and At € (0, At.], then

en = |SRU — S(t)U|| < [e5T — 1]A¢"
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and
E, = ||dS%,(U) - dS(U;t,)| < [3KT — 25T At".
Furthermore
ISEU = S(ta)V]| < (5T — )AL + 5T U~ V.
Proof. Clearly Assumption 3.7(i) yields
1Sh,V — SA W <1+ KAV -W| vW,WelR. (3.18)
Thus, by (i) and (iii) of Assumption 3.7, we have
emit = ISRV = S(tm))U| = |S5SKU — S(A1)S(tm)U|
< ISAeSEU = SaS(tm)UIl + IS(A)S(tm)U — Sk S(tm)U||
< (14 KAt)en, + KAt
Thus, by induction, we obtain
en < [(14+ KAD™ — 1A + (1 + KAt) eq. (3.19)

Since eg = 0 and (1 + KAt)™ < eX7 the desired result follows.
Now we consider E,. Note that from (3.17) we have

dS(U;t,) < eXT,  Vt, €0,T). (3.20)
The quantity E,, satisfies
Emt1 = [dSRFHU) = dSU; tmp)ll
= [ld{Sa,SRU)} — d{S(A)S(tm)U |
= [|dSa(SRU) dSE(U) = dS(S(tm)U; At) dS(Us tw)|
< |dSA((SFU) dSE(U) — dSA(SEU) dS(Us t)|
+|dSA(STU) AS(U; ) — AS(S(tm)U; At) dS(Ustm)|l.
Hence, by Assumption 3.7(i),
Eniy1 < (1+ KAYE,
+HdSA(SKU) AS(Us tn) — dSA(S(tm)U) dS(U; t)
+1dSL(S(tm)U)AS(U; tr) — dS(S(tm)U; At) dS(U; t)].
Assumption 3.7(ii),(iv) and (3.19), (3.20) thus give us
Eni1 < (14 KAYE,, + KeXT Ate, + KeKT A1,
Using the known bound on e,, we obtain
Emi1 < (14 KAYE,, + KeXTAt(eXT — 1)At" + KeKT AL+,
Hence
Emi1 < (1 + KAE,, + K2KT A7+1,
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By induction we obtain
E, <[(1+ KAt)" —1]e? T At + (1 + KAt)"E,.
Since Ey = 0 and (1 + KAt)" < eKT the desired result follows.
To prove the final result, note that
ISRV = S(t)VI < 1SRV = StV + ISAU — SRVl
Using the error bound for e, and (3.18) we obtain
IS&U = @)V | < [T = 1A + (1 + KA)"|U ~ V|
and, since 0 < nAt < T, the required result follows. O
Remarks
(i) Note that the derivation of the error e, is obtained by using two facts:
the Lipshitz continuity of the numerical method together with a uniform

truncation error bound. An alternative method of proof is to exploit the
Lipschitz continuity of the underlying differential equation. Assume that

IS@V - SOW|| < 5V - W] (3.21)

(The choice of a constant K in this bound can be made without loss of
generality.) The error equation can now be studied thus:

emit = SRV = Stme)U|| = S5 SRU = S(AH)S(tm)U]|
< IS(ADSRU = S(AH)S(t)U| + |S(AHSTU — Sa. SR
Using the Lipschitz continuity of S(¢) and Assumption 3.7(iii) we obtain
emi1 < effBe 4+ KA (3.22)
By induction we obtain
en < [eKt" - 1]% + eftney.
Noting that
e —1>x/2
and that eg = 0 we obtain
en < 2[efT —1IKAt", 0<t, <T

an analogous bound to that obtained in Theorem 3.8.

(ii) It is worth observing that the constant K appearing in the error
bounds derived here is far from optimal. This is since the straightforward
bound on the Lipschitz constant used to obtain (3.17) is often pessimistic
in estimating the divergence between solutions of the differential equation.
Smaller constants can be obtained by working with the so-called logarithmic
norm which, roughly speaking, captures the possible rate of divergence more
accurately. See Dekker and Verwer (1984).
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As briefly mentioned in Section 2 it is possible to obtain uniformly valid
error bounds in the case where u(t) approaches an exponentially stable equi-
librium point. Specifically we assume that (2.12) holds in a neighbourhood
of an equilibrium point @ from which it follows that

3a,R>0: ||St)v—-SHt)w| <e ®|v—-w| Yv,we B(a,R). (3.23)

The following result is a precursor for the remainder of the article: the
proof contains two essential components namely (i) the use of a standard
truncation error estimate or resulting finite-time error bound together with
(ii) exploitation of a structural property of the underlying solutions of (1.1).
In this case the structural property is the exponential stability of # manifest
in (3.23).

Theorem 3.9 Consider the semigroups Si,U and S(At)U under Assump-
tion 3.7. Assume further that S(¢)U — % as t — oo and that (3.23) holds.
It follows that, if t, = nAt,0 < t, < T and At € (0, At], then there exists
C > 0 such that

en = ||SAU — S(t)U|| < CAt" Vn,At: 0 < nAt < oco.

Proof. Assume that T = N At is a time chosen so that ||S(T)U —4|| < R/2.
By assumption it follows that, for 7 > 0 and whilst S(r + T)U € B(u, R),
1S(r+T)U - S(r+Tall = [S(T)S(r)U - S(T)S(r)all
IS(T)S(NU - S(ryl
< e7Y||S(T)U - a)| < R/2.

Hence S(t)U € B(@, R/2) for all t > T. From Theorem 3.8 we have that, for
At € (0, At],

A

en < [eKT 1A, 0<t,<T. (3.24)
Thus we can ensure that (possibly by further reduction of At.) that
ISA:U - SE)UI <R/2 0<tn <T

and hence that SﬁtU € B(u, R). Now assume, for the purposes of induction,
that for some m > N,

[1 — e—2(tm=T))
1 — e—aAt

em < KA 4 e=otm=T[eKT _q]A¢". (3.25)
We also assume that, again possibly by further reduction of At,,
2
(1-e 221 < ~ and (2K +eKT — 1At < LR (3.26)

Note that (3.26) and (3.25) yield e, < R/2 and hence STLU € B(4, R).
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Clearly (3.25) holds for m = N by (3.24). By an identical argument to
that yielding (3.22) but with K = —« in (3.21) we have

em+1 < e e + KA,

If (3.25) holds then

e—aAt

€m+1 < IT_QA?[]. - e_a(tM _T)]KAtr+1 + KAtT+1

+e—aAte—a(tM —T)[eKT _ ].]Atr
1 - e—a(tM+1—T)

= = KA+ 4 emoltarn=T) KT _ 11A47,

Thus (3.25) holds with m — m + 1 and the induction is complete. Hence
(3.25) and (3.26) give

en < 2K + 5T —1]At" Vn,At: T < nAt < co.

Combining this estimate and (3.24) we have the desired result by choosing
C=2K+efT 1.0
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The pivotal point in Section 3.2 is Assumption 3.7. It is worth noting
that in Section 4 we only require (i), (iii) and (iv) of Assumption 3.7, in
Section 5 we require all four points and in Section 6 we use only (i) and
(iii). Assumption 3.7 hold for all consistent Runge-Kutta methods: point
(iil) is a standard truncation error bound proved in, for example, Butcher
(1987) whilst point (iv) is proved in Stoffer (1994); points (i) and (ii) are
readily established and, indeed, use of point (i) is implicit in all conver-
gence proofs for Runge~Kutta methods. The situation for s-step multistep
methods considered as dynamical systems is somewhat more complicated
since the natural phase space for the problem is IRP*. However, it has been
shown in Kirchgraber (1986) that, under Assumption 3.6, for all strictly
stable multistep methods there exists a consistent one-step method which is
an attractive invariant manifold for the multistep method. In essence this
means that there is a linear combination of s — 1 successive steps of the
method whose behaviour is governed by a one-step method — after a large
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number of iterations. This work has been generalized in Stoffer (1993) and a
related question considered in Eirola and Nevanlinna (1988). These results
enable the use of Assumption 3.7 in the study of multistep methods as well
as one-step methods.

The first error bound in Theorem 3.8 is standard for Runge-Kutta meth-
ods and proofs may be found in (for example) Butcher (1987), Hairer et al.
(1987), Lambert (1991) and Stetter (1973). The second error bound, con-
cerning the C! closeness of the true and approximate semigroups, is not in
the literature to the best of our knowledge in this general form; however, for
the specific case of approximations of reaction-diffusion equations, such re-
sults are proved in Alouges and Debussche (1991) and Hale et al. (1988). The
uniform in time error bound of Theorem 3.9 may be found in Stetter (1973).
Generalizations of this idea may be found in Heywood and Rannacher (1986)
for finite-element approximations of the Navier-Stokes equation, in Larsson
(1989) for finite element approximations of nonsmooth solutions to reaction-
diffusion equations and in Sanz-Serna and Stuart (1992) for finite difference
approximations of smooth solutions to reaction-diffusion equations.

4. Neighbourhood of an equilibrium point
4.1. Background theory

In this section we study the affect of approximation on equilibrium points,
their stable and unstable manifolds and their local phase portraits. In all
cases we employ the contraction mapping theorem to develop an existence
theory and exploit this to prove convergence results. This means that the
basic existence theory for S(t) takes the longest to develop whilst the exis-
tence and approximation theory for S%, follows simply.

An equilibrium point for (1.1) is a point @ € IRP satisfying

fla) =o0. (4.1)
Consequently such a point % also satisfies the defining equation
a=Stu vteR (4.2)

Thus 4 is a fized point of the mapping S(t) for every t € IRP — see (4.5) below.
The equilibrium point is said to be hyperbolic if none of the eigenvalues of
the Jacobian of f at @, df(@), lies on the imaginary axis. A hyperbolic
equilibrium point is said to be stable if all eigenvalues of df(@) lie in the
left-half plane. It is unstable if at least one eigenvalue of df(@) lies in the
right-half plane.

It may be shown that d.S(u;t) = exp[df(@)t] and hence, that dS(z;t) has
no eigenvalues on the unit circle if @ is hyperbolic. Thus we can define

D(t) = [I —dS(u;t)] 7 . (4.3)
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Using the fact that 0 is not in the spectrum of df (@) and writing dS(@;t)
as an infinite series in df(%) it may be shown that 35 > 0,¢. > 0 such that

D@ < B/t Yt € (0,te). (4.4)

Note that stability may also be formulated in terms of the eigenvalues of
dS(u;t); this can be done by modifying the definitions that we are about to
make for fixed points of S},.

A fized point U of the semigroup S}, satisfies the equation

or, equivalently for (1.2),
U=FU,At).

The fixed point is hyperbolic if dS},(U) has no eigenvalues on the unit circle;
such a hyperbolic fixed point is said to be stable if all eigenvalues of dS it((—] )
lie inside the unit circle and unstable if at least one eigenvalue lies outside
the unit circle.

Throughout this article we will use the following notation for the set of
fixed points of S(t) and S}, together with their neighbourhoods:

E={vel: f) =0},
E(€) ={v e R:|f(v)] < ¢}, (4.6)

Ent={veR.v=_8}v}

We will need the following definitions; illustrative examples will be given
later on.

Definition 4.1 The unstable manifold of an equilibrium point @ of (1.1)
is the set

W¥a) :={U e R :u(t) > @ as t - —oc0}.
The local unstable manifold of @ is the set
W*e(a) .= {U € W*(u) : ||u(t) — @]] < eVt <0}
The stable manifold of an equilibrium point % of (1.1) is the set
Wia) = {UeR:u(t) — @ as t —» oo}
The local stable manifold of @ is the set
W (@) = {U € W*(@) : [[u(t) - u]| < e ¥t > 0}
The following facts concerning unstable manifolds are of interest:

Lemma 4.2 The unstable manifold W*(%) is invariant and, furthermore,

w*(@) = w<@)u |J S@)T

t>0
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where
' =W%*(a) N dB(a,ce). (4.7)

Proof. It follows from the definition that, if « € W*"(@) then, for every
7 > 0 there exists v™ € IR such that

S(t)v"=u v -4 as T — 00. (4.8)

The converse is also true: if (4.8) holds for every 7 > 0 then u € W*(q).
Thus S(7 + t)v” = S(¢)u and, since (4.8) holds, we deduce that S(t)u €
W*(#) so that S(t)W¥(u4) C W¥(u). Furthermore, since S(t)vt = u we have
that, for every t > 0, S(7 — t)v™ = v'. Thus, from (4.8), we deduce that
vt € W¥(u). Thus W¥(@) C S(t)W¥(%) and the first part of the proof is
complete.
We now establish (4.7). First we show that

W*(u) C W*(a) U U S()r.
£>0
Let u € W¥(a)\W*¢(@). If u ¢ B(q,¢) then, since (4.8) holds it follows
that v = u and, by continuity, there exists ¢ > 0 such that S(¢t)v = u and
vt € T. On the other hand, if u € B(@,e€) then 3t > 0,v* € R : S(t)vt = u
with v* € T since otherwise we have u € W¥ e(4).
Now we show that

w*(u) > W*(@)u | S@)T.
t>0
If
u € U ST

>0

then there exists w € I' such that S(¢)w = u. Furthermore, since w €
W™<(@) it follows that u € W™*(%) and the result is proved. O

Important remark It is straightforward to generalize Definition 4.1 to the
discrete semigroup S4,. We employ the notation

Wa(0), Wai(U) (4.9)
to denote the unstable and local unstable manifolds of a fixed point U re-
spectively. Similar notation is employed for the stable manifold. With this
notation it is also straightforward to generalize Theorem 4.2 to the discrete
semigroup.

We now discuss the behaviour of trajectories in the neighbourhood of
hyperbolic equilibrium points. If we introduce the variable

o(t) = ut) — @
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and change variables in (1.1) then we find that v(¢) satisfies the equation

vy = Av + g(v),v(0) =V :=U — 4,
A=df(u),g(v) =[f(v+1u)—df(a)].

Furthermore we introduce the nogation S : R — R to denote the semi-
group constructed so that v(t) = Svg. Hence

S(t)yv = S(t)(a + v) — a. (4.11)

(4.10)

Since f(#) = 0 it is clear that g(v) = O||v||* and hence it is reasonable to
expect that, for hyperbolic equilibria, the properties of the linear equation
wy = Aw describe the dynamics of solutions to (4.10) in the neighbourhood
of v = 0. Our aim is to put this intuition on a firm mathematical basis and
then to understand analogous behaviour for the numerical method. For the
purposes of comparison with the numerical method we now formulate the
solution of (4.10) as a mapping over time interval At. Since @ is hyperbolic
we can split the space

F=XxgvY

where X (respectively Y) is an [ (respectively m) dimensional subspace of
IR° spanned by the generalized eigenspace of A corresponding to eigenvalues
with positive (respectively negative) real parts so that p =1 + m.

We denote by P and Q the spectral projections P : RF — X and Q :
I® — Y. Using the variation of constants formula we write the solution of
(4.10) as

v(t) = eo(0) + / t eAt=9)g(y(s)) ds. (4.12)
0
Hence we may write
v(t) = L(t)v(0) + G(v(0),1) (4.13)
where
L(t) = &%, G(u,1t) = /0 L(t — 5)g(5(s)v) ds. (4.14)

Now we define t, = nAt, v, = v(t,) and write (4.13) as
Un41 = Ly + G(vp) (4.15)

where L := L(At) and G(-) := G(-, At). Using the spectral projections P
and Q we can decompose v,, as v, = p, + ¢, where p, = Pv, and ¢, = Qu,
to obtain

Pnt1 = Lpn + PG(pn + qn)a
gnt+1 = Lgn + QG (pn + ¢n)-

This splitting of the variable v will be particularly useful to us both in

(4.16)



498 A .M. STUART

studying stable and unstable manifolds and in the examination of phase
portraits. Finally note that because of the spectral properties of A on X
and Y it follows that there exist norms || - ||, and || - ||s on IR and an a > 0
such that, for all ¢t > 0

|L(~t)vllu < e~|v[le Vv € X,

|L(t)v]|s < e ®|v]|s Vv eY. (4.17)

Equivalently

I ol < e *Aulls Vo € X,

|Lv||s < e ®Bt|ly||; Vv €Y. (4.18)

For the remainder of this section, whenever estimating v or its numerical
counterpart, we employ the norm on Re given by

[lv]l = max{||Pvllu, || Qulls}- (4.19)

Here the subscripts ‘u’ and ‘s’ denote ‘unstable’ and ‘stable’ respectively.
This choice of norm simplifies the exposition considerably since the majority
of the estimation takes place either in X (respectively V') where || || = || - ||«
(respectively || - | = | - [l;.)

Using the formulation (4.16) we prove several results concerning the be-
haviour of solutions of equation (1.1) in the neighbourhood of a hyperbolic
equilibrium point % — we study stable and unstable manifolds and phase
portraits. In subsequent sections we examine the effect of discretization er-
ror on these objects. The following two examples serve to illustrate the type
of results which interest us here.

Example (Unstable manifolds) Consider the equations (2.1) with the
equilibrium point p = ¢ = 0. Linearizing about the equilibrium point gives
the system

pe=p, qG=—q (4.20)

Thus, in the notation (4.10), the matrix A has eigenvalues £1.

The system (4.20) has an unstable manifold given by ¢ = 0: on the
unstable manifold solutions tend to the origin as ¢ — —oo since ¢ = 0 and
p(t) = exp(t)p(0). Notice also that the unstable manifold is attractive in the
sense that solutions approach it as ¢ — oo.

Since (2.1) is, in a neighbourhood of the origin, a small perturbation of
the linear system (4.20) we expect that it should have an unstable manifold
(on which solutions tend to the origin as t — —o0) close to ¢ = 0. This is
indeed the case — recall that in Section 2 we showed that the curve ¢ = p?/3
is the unstable manifold for the nonlinear system.

The important point to take away from this example is that the linear
system has unstable manifold ¢ = ®;(p) := 0 whilst the true equation has
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unstable manifold ¢ = ®(p) := p?/3. It follows that

sup |@(p) — @u(p)| < €’

|p|<e
so that the true and linearized unstable manifolds are close in a neighbour-
hood of the equilibrium point. Indeed they are tangential at the equilibrium
point itself. Our aim is to generalize this to the system (4.10).

The second example broadens our study from the unstable manifold,
which comprises certain subclass of trajectories in the neighbourhood of
equilibria, to the complete local phase portrait, which comprises all trajec-
tories in the neighbourhood of equilibria.

Example (Phase portrait) We return to the system (2.1) and its linear-
ization (4.20). It is clear that, for any T > 0, equations (4.20) can be solved
subject to the boundary conditions
p(T)=¢ q0)=n (4.21)
and this yields a solution of the form
p(t) = e TE, q(t) =e'n.

By choosing different ¢ and 7 and different values of T' the complete phase
portrait for the equation can be constructed. Thus we might expect that a
local phase portrait for the nonlinear system can be constructed analogously.
We show this to be so.

Explicit solution of (2.1) subject to (4.21) yields

p(t) =e"TE, q(t)=e'n+ {7 —e ),

Notice that, if £ and 5 are small, then the perturbation from the linear
solution is uniformly small in (0,T). Specifically

sup |3(e 2Tg?)(e* — e7h)| < e,
0<t<T

Thus the perturbation is bounded independently of the time of flight T
between boundary conditions.

We now proceed to extend what we have observed in these two examples
to the more general case. In the following note that, from (4.14) and the
properties of projections, there exists a constant x > 1 and 3 > 0 such that

IL®)] < ke VE>0 and [P, ]|2Q] < &. (4.22)
Since the function g(v) defined in (4.10) is O(|[v||?) it follows that 3C > 0:

IRg(w)ll < (C/2k)e*, R=1IP,Q
IR(g(v) — g(w)ll <(C/26)ellv —wl, R=I7P,Q

for all v,w € B(0,¢). Since our interest in this section is focused on a small

(4.23)
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neighbourhood of the equilibrium point, smooth modification of the function
¢ outside such a neighbourhood will not affect the results. Thus we assume:

Assumption 4.3 The function g in equation (4.10) satisfies (4.23) for all
v, W € Re.

After proving results under Assumption 4.3 we will derive corollaries con-
cerning the original, unmodified flow generated by (4.10). Under Assump-
tion 4.3 we have

At
IG) < (1/26)Cé / < oB(Bt=5) 4
0

Ce e gl
[(ePAt —1)/28]Ce® < AtCe?

IA

for At sufficiently small.
Using similar analysis, it is possible to show that 3At. > 0 such that

IRG(v)|| < AtCe?, R=I1,P,Q
IR(G(v) = G(w))l| < AtCellv —wl|, R=1I,P,Q

for all v,w € IR and all At € (0, At,].

(4.24)

Important remark To simplify notation we denote the norms in the v-
coordinates and the u-coordinates in the same way (|| - ||). However, the
norm in v is always defined through (4.19) whereas the norm in u is defined
differently (e.g. the Euclidean norm). This should not cause confusion but
it is important to note that, in the remainder of this section, B(0, §) denotes
a ball in the v-coordinate with norm (4.19) whilst B(i,§) denotes a ball in
the u-coordinates with a different norm.

We start by considering unstable manifolds. Our aim now is to prove the
existence of an invariant manifold for the mapping (4.16). Specifically we
seek a function ¢ : X — Y which satisfies the following:

n = (b(pn) & Gnl = Q(pn—H)- (4'25)
We shall look for @ lying in the space
I' = {2€CX,)Y): |®llc =sup|2(p)l| <¥¢,
peX
[2(p1) — @(P2)Il < llp1 — p2ll  Vp1,p2 € X}.

The subscript C in the norm on C(X,Y) is simply to denote the space of
functions in which @ lies.
In the following note that, if 16Ce < « and 8CeAt < 1, we have that, for



NUMERICAL ANALYSIS OF DYNAMICAL SYSTEMS 501

all v € [1, 2],

(1 - 1Ata)e +7AtCE? < ¢
~ L Ata + 27AtCe < (1 — 27AtCe);
1- %Ata) + 27AtCe < 1 — ;Ata
2vAtCe < %

(4.26)

Furthermore, note that if ® € I" then
IRIG(&1+®(&1)) — G(&2 + (&)l < 2AtCe||é1 &, R =1,P,Q, (4.27)

by (4.24). That the estimates (4.26) are robust for v € [1,2] will be used in
Section 4.3 where the same method of proof used to construct an invariant
manifold for (4.15) will be employed to construct an invariant manifold for
the approximate semigroup; hence C will be enlarged by a factor of 2 to
incorporate the effect of the truncation error.

Theorem 4.4 Assume that At. is chosen so that
e A <1 — LaAtVAL € (0, At],

that € is chosen so that 16Ce < a and that 8CeAt < 1. Then, under As-
sumption 4.3, there exists a function ® € I so that solutions of (4.16) satisfy
(4.25). Furthermore, the graph of ® is attractive in the sense that

g1 = @(Pas1)ll < (1 = FaAt)|ign — B(pa)l. (4.28)

Proof. We use the contraction mapping theorem. Given a function ¢ € T
consider the construction of a new function M® : X — Y defined by

p=L{+ PG+ 2(¢))
(M®)(p) = LO(§) + QG (£ + ()

We show that this new function M® is well defined, lies in " and that M
contracts on I'. Thus we construct a fixed point of M; comparison with
(4.16) shows that this fixed point is an invariant manifold for (4.16) so that
(4.25) is satisfied. Exponential attractivity will then be shown.

To show that M ® is well defined we must show that, for every p € X
3¢ € X such that (4.29) is satisfied. To do this consider the mapping

¢t = L7lp — LTIPG(eF + (¢F)).

(4.29)

A fixed point of this mapping satisfies (4.29) and will provide the requisite
€. If n* also satisfies

n**t = L7p — L7'PG(n* + &(n*))
then, provided that ® € I, (4.18), (4.26) and (4.27) give
I+ =+ < 2e7* A4 Cent||er — n¥|| < §li€F —n¥|l.
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Thus 3¢ € X :

£=L""p - L7'PG(£ + 3(¢)).
Since L is invertible we deduce that 3¢ € X so that the first equation in
(4.29) can be satisfied for any p € X; hence M® : X — Y is well defined if
el

Now we show that M : ' — I". From (4.29) we obtain, using (4.18), (4.24)
and (4.26)

1M (p)| e A 2(6)] + 1 QG(€ + @(€))ll

<
< (1- %aAt)e + AtCe® < e
as required. Since this is true for every p € X we have
[M®llc <

Also, by considering (4.29) with & — {&}2, and p — {p;}2, we obtain,
using (4.18) and (4.27),

[(M®)(p1) — (M®)(p2)|| < e 2 ®(&1) — ®(&2)|| + 2AtCe||&y — &
< e 4 2AtC¢||¢ - &

But, also from (4.29),
€1 =& = L7 (p1 —p2) — LT [PG(&1 + @(61)) - PG(&2 + ®(E2))]
so that by (4.18) and (4.27)
€1 — &l < llp1 ~ pall + 2AtC¢||&1 — &2l
Combining these two estimates we obtain, using (4.26)

_1 C
12)(p1) - (M@)(po)] < LZ2R0F 28I

concluding the proof that M : " — TI'.
We now show that M : ' — T contracts. Consider (4.29) with & —
{®:}72; and £ — {&}7;. Now

|M®, — M. = sup | M®1(p) — My(p)]|.
¥4

161 = &2l < 111 = &l

Using (4.18) and (4.24) we obtain from (4.16) that, for any p € X
1M @1 (p) — ME:(p)

e8| @1 (&1) — @a(&2)]| + AtCellér — & + D1(&1) — B2(&) |

(e + AtCe)||D1(&1) — 2(&1) + P2(&1) — Po(&2)]| + AtCellé1 — &
(€72 4+ AtCe)||@1(€1) — B2(&)]| + 72 + 2AtCe] |41 - &l

(et + AtCe)||®1 — Dalc + [e ™2 + 2AtCe]||&1 — &

IAN A A IA
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But we also know, by similar reasoning, that

161 — &2l < AtCe||®1(&1) — P2(&1)]] + 2AtCe||& — &2l
so that

AtCel|®1(€1) — P2(&1)] < AtCel|®y — Pollc
1 - 2CeAt - 1-2CeAt
Combining the two estimates and using (4.26) we obtain

IM®1(p) - ME2(p)l| < (e7*2 + AtCe)||@1 — B2llc
e At 4L IALCe
1 - 2AtCe
(e7At £ 2ALCE)||®) — Byl
(1 - Lard)]|®; - Bllc-
Since this is true for any p € X it follows that
”Mq>1 b M@g”c S (1 - %aAt)HQ)l - @2“0.

Thus the mapping is a contraction and the existence of an invariant manifold
satisfying (4.25) follows.
Finally we show that the manifold is attracting. Let
P = Lpn+PG(pn+ 2(pn)),
®(p) = LP(pn)+ QG(pr + 2(pn))-

Subtracting this from (4.16) yields, by (4.26),
lgn+1 — 2(@)|| + [|12(p) — 2(Pr1)ll

1
<
< (7R + AtCe)|Ign — (pa)ll + Il — Pl
< (e72 4+ 2AtC¢)|lgn — (pa)ll
<
<

61— &all <

AtCe||®1 — ®2llc

<
<

lgn+1 — (Pnt1)l]

(1 - oAt + 2AtCe)|lgn — (pa)|
(1 - iaAt)“‘In - (I)(pn)”
and the desired result follows. [

Using Theorem 4.4 we may prove:

Corollary 4.5 (Local unstable manifolds) Assume that € is chosen so
that 16Ce < a. Then, there exists a function ® € I' such that, if v(t) satisfies
(4.10) and v(t) € B(0,¢) for t € [tn,tnt1] then v, = v(t,) satisfies (4.25)
and (4.28). Furthermore, there exists ¢ > 0 such that the set of points

{ue RIP(u~a)=p,Qu~1)=&(p)), p€ X} N B(g,ce)
is the local unstable manifold of the equilibrium point @ of (1.1).

Proof. Note that if we are considering a solution v(t) € B(0,¢) then we can
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modify g outside B(0,¢) to make Assumption 4.3 valid, without affecting
the solution. Thus to establish the first part of the corollary it is sufficient
to show that, under Assumption 4.3, ® is indeed an invariant manifold for
the equation (4.10) as well as for the map (4.16). To do this it is sufficient
to show that the function ® constructed in Theorem 4.4 is independent of
the choice of At € (0, At.] used in the construction. To this end we denote
® by ®(At) and the mapping M : T' — I’ by M(At) defined by (4.29).

A little work shows that, since M is constructed using the semigroup S(t),

M(t) - M(s) = M(s)- M(t).

Now consider ¢, s € (0, At.] and assume that 8CeAt, < 1 and that e"*Ate <
1—aAt./2. Then, by Theorem 4.4, both ®(s) and ®(¢) lie in I'. Furthermore,
M(s)®(t) € I'. Now, by definition

M(t)®(t) = ®(t).
Thus
M(s) - M(t)®(t) = M(s)®(t) = M(t) - M(s)®(t) = M(s)D(¢).

Hence, since M(s)®(t) € I, and since M (s)®(t) is a fixed point of M(t) we
deduce that M (s)®(t) = ®(¢). But this shows that ®(¢) is a fixed point of
M (s) and, since it lies in ", we deduce that ®(t) = ®(s). Hence the manifold
®(At) is independent of At and the result follows.

Now we show that the set

M :={v e R|Pv=p, Qu==>3(p)p € X}N B(0,¢)

defines the local unstable manifold of the equilibrium point 0 of (4.10). We
must show that if v(0) € M then v(t) € M Vt < 0 and that v(t) — 0 as
t — —oo.

First note that, since v = 0 is an equilibrium point for (4.13), analysis of
the mapping (4.29) shows that the fixed point ® satisfies $(0) = 0. Now, on
the invariant manifold we have from (4.16), that

Pnt1 = Lpn+ PG(pn + (I)(pn))a
0 = 0+PG(0+<I>(0)).

Hence, by (4.18) and (4.27),

“0A1pni ] + |P[G(pa + B(pn)) — G(0 + B(0))]]

all e
(1 = 3aAt)||pats| + 2CAtellpa|.-

<
<

Thus

- %aAt

T o0Az Prstll
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1-— %aAt
< - &
- 01— %aAt
1
(1 = z2At)||pn1ll

1Pn+1ll

IN

by (4.26).

From this it is clear that, if vg € M so that ||pg]] < € then ||p,|| < eVn < 0.
Since ||gn|| = ||®(pn)|| < €it follows that v, € M Vn < 0. Since At € (0, At.]
is arbitrary this shows that v(t) € M Vt < 0 as required. Furthermore it
is clear that ||p,|| — 0 as n — —oco so that, since ¢, = ®(p,) for v, € M
and ®(0) = 0 it follows that ¢, — 0 as n — —co. Thus v, —» 0 asn — —oo
and hence that v(t) — 0 as t — —oo. Thus we have constructed the local
unstable manifold for (4.10). Converting back to the u variables from the v
variables and changing norms introduces the constant ¢ and completes the
proof. O

It should be noted that the methodology used here can be extended to
construct the stable manifold of (4.10).

Motivated by the example described above concerning local phase por-
traits, we now examine the phase portrait of the nonlinear equation (4.10)
near to the origin, again using the mapping formulation (4.16). In the par-
ticular example above, the result is established easily because the p and ¢
equations decouple. In the general case they do not decouple but, nonethe-
less, a result of this type still holds. Specifically we seek a solution of (4.16)
which satisfies the boundary conditions

pn=8€X, g=n€Y (4.30)
where ||£]], |Inl] < €/2. Noting that v, = p, + ¢, induction on (4.16) yields

pa = L Npy — £N1 L 1PG ),
gn = Lo+ X720 L™ 17 QG (vy).

Thus it is our purpose to solve (4.31) subject to (4.30) for arbitrary N > 0.
Such a solution corresponds to solving the equation (4.10) with boundary
conditions specified in X at t = NAt and in Y at ¢ = 0 rather than the
initial condition v(0) = V; since N is arbitrary, the time of flight between
these points is arbitrary. Finding all such solutions with € small corresponds
to constructing the local phase portrait near v = 0.

(4.31)

In the following we let V = {v,}_, denote an element of the product
space ¥ = {IR}" and define
Vlleo = jmax, fonl|

We consider the set
UV, ={Vel: |V <€}
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To study (4.31), (4.30) we use the contraction mapping theorem in ¥.. We
generate iterates V¥ = {vX}_, through the definition

MV = {Mp, + Mgz }n_
where Mp, € X and Mg, € Y are defined by

Mp, = LN - NN L I-1PG (vy),

) 1 4.32
Mg, = Ly + Tjog L1 QG (w). (432

Clearly a fixed point of M is a solution of (4.30), (4.31).
Now it is straightforward to show that, under the conditions on At im-
posed in Theorem 4.4 and as a result of the bounds (4.18),

N-1 N-1
YA < 3 e DA
j=n j=n

1— e—a(N—n)At
[ 1 — e—adt

IA

] IVlleo < [2/aAf]||VIoo Vv € X,

n—1 ) n—1 )
Sl < 3 et Ay

1— e—anAt
l:—lfe-_a—mjl [Vleo < [2/0At]||V|w Vv €Y. (4.33)

We may now prove:

Theorem 4.6 Assume that At. is chosen so that
e At <1 — %aAt VAt € (0, At.]

and that € is chosen so that 8Ce < a. Then, under Assumption 4.3, for any
N > 0and any £ € X, n € Y with [£]],]ln]] < e 3 a solution of (4.16)
subject to (4.30) satisfying
<e.
oax, l[vnll < e
Proof.  Since (4.16) implies (4.31) we examine (4.31), (4.30). In the follow-
ing we will use the fact that

2vCe/a < 3 (4.34)

for all v € [1,2]. Again the factor of ~ is incorporated to allow an analogous
proof for the numerical method where C is enlarged by a factor of 2 to
incorporate the truncation error.

To prove the result we show that M : ¥, — ¥, and is a contraction. From
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(4.32) we have, using (4.18), (4.24) and (4.33), that
N-1

IMpall < L™ Vel + D0 LM TIPG ()|
j=n
< ||§||+iAtce2
= alAt '

Hence, by the assumptions on € and (4.34) it follows that
|Mppll <e ¥n:0<n<N.
Likewise it may be shown that
[Mgnl| <€ Vn:0<n<N

and hence that MY € V..

To show that the mapping contracts, consider (4.32) with p, — x,, ¢n —
Yn, Un +— Wy, define w, = z, + yn and set Q = {wn}fyzo. Then, using (4.18),
(4.24) and (4.33) we obtain from (4.32)

|Mpn — Mz, < ~2—Atce||v Qe VR:0<n<N
alt

and

2
\Mgn — Mz,|| < mmcenv Qe Vn:0<n<N.

Thus it follows from (4.34) that

2C 1
IV - @ g € S5 VR — 0o < SIVE = 0
Hence M : ¥, — W, is a contraction and the result follows. O
We may now remove the Assumption 4.3 from Theorem 4.6. Our aim is
to solve the equation (4.10) subject to specified boundary conditions:

vy = Av + g(v), Pu(T) =¢, Qu(0) =r1. (4.35)
This is equivalent to solving
u = f(u), P(T)-a)=¢ Au(0)-u)=n. (4.36)

Recall the constant £ > 1 from (4.22).

Corollary 4.7 (Phase portraits) Assume that € is chosen so that 8Ce <
a. Then for any T > O and any £ € X, 5 € Y with [|£][, [|7]| < 3e there exists a
constant ¢ > 0 and a unique solution u(t) of (4.36) satisfying u(t) € B(a, ce)
for all t € [0,T].

Proof. We consider (4.35). The simple change of variable u(t) = @ + v(t)
will then yield the required result; the constant ¢ is introduced since the
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norms used to measure u € IR’ and v € [RP may differ. We first show that if
(4.35) has a solution in B(0,¢€) then it is unique. Let v*(t),7 = 1,2 denote
two solutions of (4.35) and decompose them as

V() =P () + ¢ (), P EX, ¢(t)eY,i=12

Projecting the solution appropriately and using the variation of constants
formula we obtain

p(t) = L(t = T)E + Jp PL(t — 5)g(v*(s)) ds,
g'(t) = L(t)n + [ QL(t — s)g(v'(s)) ds.

Thus, by subtracting and using (4.17), (4.23) we obtain

T
90 = P < [ e Zel ) = (o)l d

and
t
12(0) = Ol < [ &)=l (s) = (sl s
0 2K

Thus it follows that, since & > 1,

sup [} (1) = v(D)]l < £ sup_|}(s) ~ v*(s)]|.
0<t<T Q 0<s<T
Since 8Ce < a it follows that ||v}(t) — v?(t)|| = 0 for ¢ € [0, T)] as required.
To establish the existence of a solution in B(0,¢) we simply use Theorem
4.6. For any choice of N, At such that NAt = T this gives a solution of (4.35)
if Assumption 4.3 holds and, by uniqueness, this solution is independent of
the choice of At € (0,At.]. It remains to establish that the solution is in
B(0,¢) for all t € [0,T] so that Assumption 4.3 is not needed. Assume
to the contrary that 37 € [0,7] such that ||jv(7)|| = € + 5,7 > 0. Clearly,
for any At > 0 3m € Z" : 7 € [mAt,(m + 1)At] and, by Theorem 4.6,
lvmlls lvm+1]| < €. Now, by the boundeness of f it follows that 3L > 0 :
lv(t)]| < e+ LAt Vt € [mAt,(m+1)At]. Since At may be chosen arbitrarily
small the choice of At so that LAt < 7 yields a contradiction. 0

It is possible to modify the analysis of phase portraits to prove the ex-
istence of stable and unstable manifolds. For brevity we consider stable
manifolds. Essentially the stable manifold is constructed by solving (4.30)
and (4.31) in the limit N — oo whilst asking that ||p,| remain uniformly
bounded in n > 0; this yields the problem

pr = — LR, L I71PG(v;),

gn = L"qo + X320 L* 177 QG(vy), (4.37)
go=mn, 36>0:|pu]| <6Vn>0.

Recall that v, = pn + gn. The following theorem may be proved identically
to Theorem 4.6.
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Theorem 4.8 Assume that At,. is chosen so that e ™8t < 1— %aAt VAt €
(0, At.] and that € is chosen so that 8Ce < a. Then, under Assumption 4.3,
any 7 € Y with [|n|| < £ 3 a solution of (4.37) satisfying

< €.
Ogggollvnll <e

a

We are now in a position to show that the stable manifold has been
constructed.

Corollary 4.9 (Stable manifolds) Assume that € is chosen so that
8Ce<a and e<a.

Then there exists a function ® : X +— Y and ¢ > 0 such that the set of
points

{u e RP(u—1) = 2(q), Qu-1) =g, g€ B(0,¢/2)}
is the local unstable manifold W* (%) of the equilibrium point @ of (1.1).

Proof. 1t is possible to prove that the solution of (4.37) is independent
of At as in the proof of Corollary 4.7. To construct ® solve (4.37) for all
n:||Inll < €/2 and set ®(n) = po. It is straightforward to show that

12(n") = (n*)I| < 2lln" ~ | (4.38)

by considering the Lipschitz properties of solutions to (4.37) with respect to
the data 7.

Now note that the graph of ® is positively invariant: given any solution
pL, g} of (4.37) with pj = ®(n;) we can construct another solution p2,¢2
of (4.37) by setting p2 = pl,.., 92 = ¢L,,, and imposing the boundary
condition that ¢¢ = n* = ¢}. Hence ®(n?) = p3; this construction can be
done for any m > 0 and, since p? = p.,, we deduce that pl, = ®(gl,) so that
the graph of ® is positively invariant.

Thus any solution of (4.37) satisfies

n-—1

gn =L q+ > L"771QG(2(g;) + g;)-
=0

Hence, by (4.33) and (4.38), we have

n—1
lanll < e™"2lgol + Y 2CeAte™*m=i=DAY g1
3=0

Application of the Gronwall lemma gives

llgnll < [[qonez(f—-a)nAt
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so that, since € < @, ||gn]] — 0 as n — 0. Hence ||p,|| = ||®(gn)|| — 0 as
n — oo and the proof is complete. O

This concludes our analysis of equation (1.1) in the neighbourhood of a
hyperbolic equilibrium point. We now proceed to study the effect of numer-
ical approximation.

4.2. Equilibrium points and stability

A natural first question to ask about the approximation (1.2) under As-
sumption 3.7 is whether or not the equilibrium points of (1.1) are inherited
by (1.2) and, furthermore, to study the stability of the approximate fixed
points. Recall D(t) given by (4.3) and satisfying (4.4).

Theorem 4.10 (Equilibrium points under approximation) Let @ be
a hyperbolic equilibrium point of (1.1). Then there exists At, > 0 such that
the numerical approximation (1.2) has a fixed point U € B(@;2K3At") for
all At € (0,At.]. Furthermore U is stable (respectively unstable) if % is
stable (respectively unstable).

Proof. For simplicity we consider initially the case where r > 1 in As-
sumption 3.7, returning to r = 1 at the end of the proof. The proof is a
modification of the proof of the implicit function theorem. Consider the

mapping

wktl — wk _ piw* — 55,W¥ (4.39)
where D = D(At) is given by (4.3). To prove existence of a fixed point of
(4.39) we show that the iteration maps B(u;2K8At") into itself and is a
contraction on that set. Clearly a fixed point of this mapping is necessarily
a fixed point of S, and hence of (1.2).

To show that the mapping is into, note that by Definition 3.5, (4.39) may
be written as

Wk = wk _ DIwk — S(AH)WF + T(W*; At)]. (4.40)

Also, from (4.2) it follows that
u =14 — D[u — S(At)a).
Let W* € B(a;2KBAt") and set e¥ = W* — 4. Then (4.40) yields, upon
appplication of the mean value theorem,
le¥¥1)l = lle® = DI( — dS(z, t)e* + Q1 + T(W*; A)|
where
@il < Culle®|?,
for some C; > 0. Thus, using (4.4) and Assumption 3.7(iii),
"M < DI + I DIIT(W*; At
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BCLAK?BEALYT
- At
< 2BKAt
for At sufficiently small. Hence the mapping takes B(#@, 2K SAt") into itself
for At sufficiently small.
To show that the mapping is a contraction, let V* satisfy (4.40) with
W* — V* and and define d* = W* — V*. A similar manipulation to that
used in showing that the mapping is ‘into’ yields

Ild**1|| < [ld* — D[(I — dS(a,t))d* + Q2 + T(W*; At) — T(V¥; At)]|

+ BEAY

where
1Q2ll < Calld*|1%,
for some constant Cy > 0. Hence, by (4.4) and Assumption 3.7(iv),
a5 < IDIIQ2ll + IDINIT(W*; At) - T(VE; At

BC;
At
Since V¥, Wk € B(u;2KBA+") it follows that ||d*|| < 4KBAt" and hence
that

< |d¥||? + BK A" ||d¥.

la*+H] < gl

for At sufficiently small. The existence of a fixed point U of S}, follows for
At sufficiently small.

To deal with the case r = 1 it is sufficient to show that C;,Cy — 0 as
At — 0: this holds since S(At) and S}, yield the identity for At = 0.

The stability of U follows from the spectral properties of dSlAtU . By As-
sumption 3.7(iv) the eigenvalues of dS},U converge to those of dS(U; At)
as At — 0; furthermore, the eigenvalues of dS(U; At) converge to those of
dS(u; At) as At — 0 by standard finite-dimensional spectral theory since
U — 4. Since dS(%; At) has no eigenvalues on the unit circle it follows that,
for At sufficiently small, dSA,U has the same number of eigenvalues inside
and outside the unit circle as d.S(@; At) and the result follows. O

Consideration of standard Runge-Kutta methods shows that all equilib-
rium points of (1.1) become fixed points of the Runge-Kutta method for
any At > 0. However, not all fixed points of the Runge-Kutta method are
equilibrium points of (1.1) as the following example shows:

Example Consider the scalar equation (1.1) with
fu) = —Mu/(1+ )
and the Runge-Kutta method
n=U,+Atf(U,), Unt1=U,+ Atf(n).
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Notice that the differential equation has a single equilibrium solution # = 0.
If At > 1/ then the Runge-Kutta method has the fixed points

U = +(\At — 1)1/2

in addition to the true fixed point U =0. O
However, it is possible to show that such spurious fixed points cannot
exist for At sufficiently small; recall (4.6):

Theorem 4.11 (Spurious solutions as At — 0) For any ¢ > 0 3At. >
0 such that £a; € £(e) VAL € (0, At

Proof. Let v € RP\E(e) so that ||f(v)]] > e. We prove that there exists
At. > 0 such that v ¢ Ea; for At € (0, At.]. Note that, from (1.1),

Sty = v + /0 * £(S(s)v) ds. (4.41)

Thus, by Assumption 3.6 3L > 0 such that ||S(¢)v — v|| < tL and hence, for
any 6 >0, 3At, > 0:

ISty —v|| <6 Vte(0,At].
Thus, by (4.41) and continuity of f,
At At Ate
IS@tyo—vll 2 || [ f@dsli=I [ (S (so)-f@)lds] = T vAte ©0,A¢
possibly by further reduction of At¢.. Now, by Assumption 3.7(iii),
IShw ol = [IS(At) — v+ Sk — S(At)l|
> |IS(At)v —v|| - KAt
> FAte— KAt > Ate,

possibly by further reduction of At.. Hence v ¢ £a: and the result follows.
0

The strength of this result relies heavily on Assumption 3.6. Without As-
sumption 3.6 Theorem 4.11 can be used to show that, given any ball B(0, R)
there exists At. = At.(R) > 0 such that no spurious steady solutions can
be found in B(0, R) for all At € (0, At|.

4.8. Unstable manifolds

In this section we show that the unstable manifolds for (1.1) constructed in

Corollary 4.5 persist under numerical approximation and that, furthermore,

the numerical unstable manifold is close to the true unstable manifold.
Recall that U, =~ u(t,) and define

Vo =U, — 4.
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Thus V, is our numerical approximation to v(t,) = u(¢,) — @. Recall also
(4.11) and define

Shw = Sh(a+v) - .
Thus
Siw=8@t)v— S(t)(@+v) + Sk,(a+v).
Hence
Skov— Sty = —T(a + v; At).
Using the Definition 3.5 of truncation error and (4.15) we deduce that
Vat1 = LV + G(V,) — T(a + Vi; At).
Defining
G(v) = G(v) — T(u + v; At) (4.42)
we obtain
Vas1 = LV, + G(V,,). (4.43)
If we let P, = PV, and Q, = QV,, then (4.43) can be written as
Poy1 = LPy + PG(Vn),
Qn+1 = LQn + QG(Vn)-

Our aim is to prove that, as for (4.15), the mapping (4.43) has an attrac-
tive invariant manifold ®a; : X — Y satisfying

Qn = @at(Pn) © Qi1 = Pat(Pry1) (4.45)

and, in addition, to show that ® and ®a; are close.
Using Assumption 3.7(iii) and (iv) it follows from (4.42) that

IG(v) — G)|| < KA,

(4.44)

IG(v) — G(w)|| < IG(v) - G(w)]| + KAt ||v — w (4.46)
and hence from (4.24) that under Assumption 4.3,
. < ) _
IRG(v)|| < 2AtCe*, R=1,P,Q wan)

IR(G(v) — G(w))|| < 2AtCellv —w||, R=1I,P,Q
for all v,w € IR and all At € (0, At.]. We now exploit this to prove:
Theorem 4.12 Assume that At. is chosen so that
e” A <1 LaAt VAL € (0, At

and that e is chosen so that 16Ce¢ < a and that 8CeAt < 1. Then, under
Assumption 4.3, there exists a function ®a; € T" so that solutions of (4.44)
satisfy (4.45). Furthermore, the graph of ®x; is attractive in the sense that

1Qn+1 = Bae(Prst)ll < (1 = 2aA)[1Qn — Sae(Po)ll- (4.48)
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Finally the graph ®a. is close to ¢ given in Theorem 4.4 in the sense that
|® — ®atllce < 8KAL /a.

Proof. The existence of ®a; is proved precisely as for @ in Theorem 4.4,
except that C — 2C since conditions (4.24) have been replaced by (4.47),
by considering the fixed point mapping

P = L&+ PG(E + Dar(6)),
(Mat®at)(P) = LOac(§) + QG (€ + 2ac(8))-

Note that the conditions (4.26) employed in the proof of Theorem 4.4 are
sufficiently robust to admit essentially the same proof with C enlarged by a
factor of 2; indeed this is why they were constructed that way. Hence the
existence and attractivity of ®a; € T follows. It remains to estimate the
closeness of ®a; to ®. To do this we use an argument which is essentially
the uniform contraction principle.

Now, since & and ®a; both lie in T, are fixed points of M and Ma,; and
M has contraction constant (1 — %aAt) on I' it follows that

1@ — ®acll = [IMP— Mar2Pnadl
[IM® — M®a|l + |M®a: — Mar®asl,
(1 - 1aAt)|® — Bae|l + [|MPa: — Mar®acl.

(4.49)

IA A

Hence

4
d-@ < —||IM®p; — MaA; P .
I atll aAt” At at®aill

Thus it remains to estimate M — Ma;.
Clearly

[(Mac®ae)(P) = (M2a)(P)| < [[(Mar®ad)(P) = (M2ad)(p)
+HI(M@a:)(p) — (MEae)(P)].

Since M®a; € I' we deduce that
[(Mae®at)(P) — (MPad)(P)|| < [(Mat®a)(P) = (MPad)(@)Il + [lp - Pl

Now consider (4.29) with @ — ®A; and (4.49); subtracting and using (4.46)
we obtain

[(Mat®a:)(P) — (M) (P)|| < 2KALF
Thus, in summary we have that
1@ - ®adl < SKAL Ja
and the proof is complete. O

We can use this result to prove convergence of the local unstable manifold
of the map (1.2) to the local unstable manifold of the equation (1.1). Recall



NUMERICAL ANALYSIS OF DYNAMICAL SYSTEMS 515

that by Theorem 4.10 the map (1.2) has a fixed point U close to the equi-
librium solution % of (1.1). Recall Definition 4.1 and the analogous notation
(4.9) for the unstable manifolds of the map (1.2). We may now prove:

Corollary 4.13 (Local unstable manifolds under approximation)
Let W*(u) denote the local unstable manifold of an equilibrium point @ of
(1.1), and Wr(U), the local unstable manifold of the fixed point U of (1.2)
given by Theorem 4.10. Then there exists C, At., e, > 0 such that for any

€ € (0,¢.] and u € W**(u) there exists € >0 and U € Wg’fl(U) such that
lu—Ul| < CAt" VYAt € (0, At).
That is
dist(W™(a), Wit (0)) < CAF VAt € (0, At,].

Proof. The existence of a local invariant manifold for (1.2) follows from
Theorem 4.12. That it is in fact the unstable manifold of U may be proved
analogously to the proof of Corollary 4.5; it is necessary to use the fact that
®A:(PU) = QU, that is that the fixed point lies on the invariant manifold.
The closeness of the two local unstable manifolds follows from the closeness
of the graphs ® and ®a; given in Theorem 4.12. The fact that € may
differ from € occurs when changing from a global to a local result since
nearby points on the global graphs constructed under Assumption 4.3 may
lie in balls of slightly different radii when localizing the result and removing
Assumption 4.3. The change in norms yields the constant C > 0. O

4.4. Phase portraits and stable manifolds

Our aim in this section is to show the existence of a solution to (4.44) subject
to the boundary conditions

Py=¢ Qo=n (4.50)

for any N > 0 and sufficiently small £, 5. Furthermore, we then show that
this solution is O(At") close to the analogous solution of (4.16) subject to
(4.30). Since N is arbitrary this result yields convergence of the approximate
trajectories to true trajectories over arbitrarily long-time intervals in the
neighbourhood of equilibrium points and could not be obtained by standard
error analysis. As we shall see, the key to the uniform in time convergence
result is that the initial condition for the two trajectories is not the same.

Let Va; denote the sequence {Vn}JnVZO where V,, = P, + Q,, as in Section
4.3. To solve (4.44), (4.50) we consider finding fixed points Va; of the
mapping Ma; : ¥ — U defined by setting MaVas = {MAtPn+MAth}Q’=0
where

Mpi Py = LM Ne = I LM=71PG(V),

MaiQn = L™n + X725 L" 17 QG(V5).

(4.51)
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This map should be compared with its continuous counterpart (4.32). To
prove existence of a solution to (4.50), (4.51) we follow the method of proof
employed for the differential equation. To prove closeness of the solution
Va: to V we use the uniform contraction principle in a similar manner to
the proof of Theorem 4.12.

Theorem 4.14 Assume that At. is chosen so that
e A <1 - LaAtVAL € (0, At ]

and that € is chosen so that 8Ce < a. Then, under Assumption 4.3, for any
N > 0 and any € € X, n € Y with ||¢],]Inll < %e 3 a solution of (4.44)
subject to (4.50) satisfying

max ||V, || <e.
0<n<N

Furthermore the following error estimate holds between the solution v, of
(4.16) and (4.30) and V,:

- < "a.
OISI:lELSxN [V — Vall < 4KAL [

Proof. To show the existence of Va; € U, we show that Ma; : ¥ — U, is
a contraction. This may be achieved by the following the proof of Theorem
4.6; note that (4.47) holds and so it is sufficient to enlarge C by a factor of
2. Since the estimate (4.34) was constructed to be robust under enlargement
of C by a factor of 2 the existence of Va; € ¥, follows, giving the bound on
IVall-
To show convergence of V to Va; note that
[V =Vall = (MY~ MaVadll

< IMY = MVl + |MVas — MagVadll

< IV = Vadl + |MVar — MaVadll.
Hence

[V = Vaell < 2|MVar — MaVaell-

Now, by consideration of (4.32) with V ~ Va. (that is v, — V) and
(4.51) we deduce that ||MVas — MatVael| can be bounded above by

N-1 n—1
max{ ST LI PG(V;) - PGV, D LMTIIQG(V;) — QG(VM}-

ij=n 7=0
Using (4.33) and (4.46) we thus find that

2
MVp: — M < KAt
|| M VAt atVatll < AT

and hence that
|V = Var|| < 4KAt Ja. O
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a

Using Theorem 4.14 we are able to state an interesting result concerning
error bounds for approximate solutions of (1.1) near to an equilibrium point.
Consider the boundary value problems (4.36) and the discrete analogue

Un+1 = ]:(Una At)a P(UN - l_L) = 67 Q(UO - ﬂ) = (452)
We can now prove:

Corollary 4.15 (Phase portrait under approximation) There exist
C, At.,e. > 0 such that, if € € (0,¢.] then for any T > 0 and any € € X,
n € Y with [|€]},[In]] < 3¢ 3 a solution of (4.36) and, if NAt = T, a solution
of (4.52) satisfying

max ||Un — u(ta)] < CAE™ VAL € (0, At,).
0<n<N

Proof. This is simply a restatement of Theorem 4.14 in the original vari-
ables u(t) and U,. The change of variables introduces a change in the error
constant through the change of norms. O

The important point here is that the error bound is independent of T
Thus it improves upon the standard estimate (1.3) which contains a constant
growing exponentially with 7. Note that this is achieved by comparing two
solutions of (1.1) and (1.2) which do not share the same initial condition;
specifically, only the projection of the initial condition into the subspace Y
is identical at ¢t = 0.

We now consider the existence and convergence of stable manifolds un-
der approximation. The local stable manifold for the map (1.2) can be
constructed by solving

Py = -2, L"IIpG(V)),
Qn =L"Qo + 272 L9 QG(V)), (4.53)
Qo=mn, F6>0:||P,||<8Vn>0.

where V,, = P, + Q,, and P,,Q,, and é() are defined by (4.44), (4.42). The
stable manifold is formed from solutions of (4.53) as the graph © : Y — X
given by ©(n) = P,.

Since the proof of Theorem 4.8 is robust to enlargement of C by a factor
of 2 it follows that

Theorem 4.16 Assume that At. is chosen so that
e ™A <1 — LaAtVAL € (0, At]

and that € is chosen so that 8Ce < a. Then, under Assumption 4.3, for any
n €Y with ||n|| < e 3 a solution of (4.53) satisfying

<e
pmax [Vl <e
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We are now in a position to show that the stable manifold is well approx-
imated numerically.

Corollary 4.17 (Local stable manifolds under approximation) Let
W*<(@) denote the local unstable manifold of an equilibrium point @ of (1.1),
and Wi;(U), the unstable manifold of the fixed point U of (1.2) given by
Theorem 4.10. Then there exists C, At.,e. > 0 such that for any € € (0, €]

and u € W*¢(@) there exists ¢ > 0 and U € WZ\‘:’(U) such that
lu— Ul < CAt" VAt € (0, At.].

That is
dist(W*(@), Wit (U)) < CAt™ VAt € (0, At,).

Proof. The existence of a local invariant manifold for (1.2) follows from
Theorem 4.16 by setting ®a:(n) = By for every 7 : ||n]| < €/2. That it is
in fact the stable manifold of U may be proved analogously to the proof of
Corollary 4.9; it is necessary to use the fact that ®;(QU) = PU, that is
that the fixed point lies on the invariant manifold. The closeness of the two
local stable manifolds follows from the closeness of the solution v, and V,
of (4.37) and (4.53) given in Theorems 4.8 and 4.16. The change in norms
yields the constant C > 0. O

4.5. Bibliography

For background material concerning equilibria, fixed points, hyperbolicity
and stability see Hale and Kocak (1991) and Wiggins (1990). For discussion
of unstable manifolds see Babin and Vishik (1992), Hale (1988), Hale and
Kocak (1991) and Wiggins (1990). The construction of unstable manifolds
described in Section 4.1 is based on an approach known as the Hadamard
graph transform; this transform technique can also be used to construct sta-
ble and centre manifods. The construction of the phase portrait in Section
4.1 is closely related to the Hartman-Grobman theorem which states that
there is a 1:1 correspondence between solutions of (1.2) and its lineariza-
tion in the neighbourhood of a hyperbolic equilibrium point. See Hartman
(1982). The construction of the stable manifold in Section 4.1 is based on
the Lyapunov-Perron technique, here modified from differential equations
to mappings. For a discussion of this technique see, for example, Carr (1982)
and Medved (1991). Again, this technique can be modifed to construct un-
stable and centre manifolds.

Since most numerical methods for ordinary differential equations repli-
cate exactly all the equilibria of the underlying equation as fixed points of
the numerical method, Theorem 4.10 may seem a little pointless. However,
the method of proof employed there can be used to study approximation
of partial differential equations where exact preservation of equilibria un-
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der spatial approximation does not occur; see Crouziex and Rappaz (1990).
Analysis of the existence of spurious solutions introduced by discretization
using techniques from dynamical systems can be traced back to the article
by Newell (1977) and the subsequent related work undertaken in Mitchell
and Griffiths (1986) and Stuart (1989a,b); all these articles concerned spu-
rious solutions oscillating on a grid scale in time. The article by Brezzi et
al. (1984) considered the existence of spurious invariant curves introduced
by time discretization. However, it was not until the work of Iserles (1990)
that the more interesting question of the possible existence of spurious equi-
librium solutions was investigated. He showed that Runge-Kutta methods
could admit spurious equilibria whilst linear multistep methods could not.
Subsequent analysis of this phenomena can be found in Hairer et al. (1990),
Yee et al. (1991) and Griffiths et al. (1992). It is fair to say that the area
of spurious solutions introduced by time discretization is now very well un-
derstood — the article by Iserles et al. (1991) puts the subject in a unified
framework whilst in Humphries (1993) it is proved that spurious solutions
must either converge to true solutions or become unbounded as At — 0;
such a result can also be deduced from Theorem 4.11. There is probably lit-
tle of interest remaining to do in the area of spurious solutions introduced by
fixed time-step time discretization. Note also that it is reasonable to expect
that, under many circumstances, codes which vary the time-step to control
the local error will also prevent spurious solutions. Such a result was conjec-
tured in Sanz-Serna (1992b) and is proved for certain error control schemes
applied to (1.1) under a variety of a structural assumptions in Stuart and
Humphries (1992b). The effect of spurious solutions introduced by spatial
discretization is an area in which there are still many open questions. For
representative work in this area see Beyn and Doedel (1981), Budd (1991),
Murdoch and Budd (1990), Elliott and Stuart (1993) and Stephens and
Shubin (1987).

The first proof of convergence of local stable and unstable manifolds, to-
gether with phase portraits, was contained in the article by Beyn (1987b).
This article employed a very clean presentation, involving use of a Lipschitz
inverse mapping theorem. The approach presented there can be extended to
multistep methods. We have chosen to present a more transparent, if length-
ier, proof of the convergence of local unstable manifolds; it is based on a sim-
ilar proof for centre-unstable manifolds contained in Beyn and Lorenz (1987)
involving the Hadamard graph transform. It should be noted that Corollary
4.13 can easily be extended to show that the distance dy(-,-) between the lo-
cal unstable manifolds is small, rather than just the semi-distance described.
A thorough study of the behaviour of discretizations near equilibria may be
found in Garay (1993) which unifies and extends much of the work described
here.

The proof we employ to construct the phase portrait follows the approach
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taken in Larrson and Sanz-Serna (1993) very closely (see also Sanz-Serna and
Larsson (1993)) where finite-element approximations of reaction-diffusion
equations are studied; their approach is closely related to the construction
of stable and unstable manifold by the Lyapunov-Perron method in Henry
(1981). Hence the Lyapunov-Perron method underlies our result concerning
the convergence of stable manifolds. The approach of Beyn (1987b) has
been generalized to study the numerical approximation of certain partial
differential equations in Alouges and Debussche (1991).

Whilst on the subject of unstable manifolds, it is relevant to mention the
literature concerning the effect of numerical approximation on inertial man-
ifolds. These attractive invariant manifolds for partial differential equations
on a Hilbert space H may be represented as graphs relating a certain projec-
tion of the space H to its complement. See Foais et al. (1988), Mallet-Paret
and Sell (1988) and Constantin et al. (1989) for the background theory.
The original construction of the inertial manifold in Foais et al. (1988) uses
the Lyapunov-Perron approach and contains a convergence result concern-
ing the effect of Galerkin approximation on the inertial manifold; a related
method of analysis was employed in Demengel and Ghidaglia (1989) to study
the effect of a particular time discretization on the problem. In Jones and
Stuart (1993) the inertial manifold is constructed by use of a technique simi-
lar to that employed to prove Theorem 4.4 (the Hadamard graph transform)
and a convergence proof, sufficiently general to include a variety of numerical
approximations and similar to the proof of Corollary 4.13, is given.

5. Periodic solutions and invariant tori
5.1. Background theory

In this section we study the effect of discretization on periodic solutions of
(1.1); we shall not describe the theory for quasi-periodic solutions but give
some references to the literature in the final section. The methods employed
are very similar to those we describe for the study of periodic solutions.

For simplicity we assume that the periodic solution is stable and hyper-
bolic — we shall be precise about the meaning of this later on - see (5.6).
Let us assume that (1.1) has the periodic solution #%(t) with period T :

{a(t) e CHR R)|a(t + T) = a(t) vt € R}. (5.1)

In order to facilitate study of the periodic solution, we introduce new co-
ordinates 7 € IRF"! and 6 € IR where, roughly, r measures the coordinates
normal to the tangent space of the periodic solution and 6 measures an
angular coordinate in the tangent space of the periodic solution. Letting
v = (rT,0)T ¢ IR it may be shown that there exists a C® diffeomorphism
x : I — R under which the transformation u = x(v) renders (1.1) in a
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very useful form. Specifically it may be shown that we obtain

= A(G)r + g(""e)v T(O) =¢,

6; = 1+ h(r,0), 6(0)=¢. (5.2)

Here A,g and h are C? in a neighbourhood of the periodic solution and
satisfy the following conditions for all 8 € R

g(Oa 9) = 07 gr(Oa 0) = Oa h(Oa 9) = Oa (53)
A+ T)=A6), g(r,0+T)=g(r6), h(r,8+T)=h(rb). (54)

Thus the periodic solution is simply »r = 0 and ¢ = ¢ in this coordinate
system and A, g and h are defined for all § € Rand all » € B(0,¢), for some
¢ sufficiently small.

For simplicity consider the case p = 2 so that 7(¢) € R If we define

t
B(s,t; $) := exp[/s A(¢ + 7)d7], 53

B := B(0,T; ¢),
then, using the fact that the periodic solution is hyperbolic and stable, it

follows that there exists a norm on IRP™! in which the following property
holds for B:

B <a<1 VoeR (5.6)

In dimension p > 2 a bound similar to (5.6) holds where B(s, t; ¢) is replaced
by the solution operator for the non-autonomous equation

re=A(d+t)r, r(s)=1.

Whenever we require use of B(s, t; ¢) in this chapter we will consider the case
p = 2 and refer to the representation (5.5) for B(s,t; ¢); however, by using
the more general definition of B(s,t;¢) instead of (5.5) arbitrary p > 2
may be considered similarly. We will employ the norm on Re-? given in
(5.6) throughout the remainder of our discussion of periodic solutions. The
following example illustrates the transformation of variables just described.

Example Consider equations (3.12). We modify the change to polar coor-
dinates used to study these equations and introduce the variables

r=R-1, 6=-¢.
Thus
z=(147r)cosf, y=—(1+r)siné. (5.7)
Then, from (3.13), we obtain
re=—2r—(3rt+r%), 6, =1 (5.8)
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Hence A(6) = —2, g(r,0) = —(3r2 + %) and h(r,8) = 0. Note that (5.3)
and (5.4) are trivially satisfied. Furthermore

B(s,t;¢) = e 2t79) B ="

since the period T = 27. This shows that (5.6) is satisfied. O

As we have observed, the existence of a periodic solution r = 0,6 = ¢
in (5.2) is trivial under (5.3), (5.4). However, since our aim is to develop
an existence theory which is sufficiently robust to incorporate the effect of
numerical approximation at a later point, we must relax (5.3). The crucial
consequence of (5.3) (which is also shared by equations generated by apply-
ing u = x(v) to equations (1.1) found from smooth perturbations of a vector
field yielding (5.2)) is that 3C; > 0:

1B(0,t;0)|| < CLVt € [0,T], lg(r,0)ll,llga(r, O)Il < Cre?,

a(r, O, the (r O)1I, llg- Il < Cre,  [Rr(r, O)]| < Ch (5.9)

for all € B(0,¢), t € IR where the subscripts 7 and 6 denote appropriate
derivatives. Thus, by considering (5.9) instead of (5.3) we are considering the
effect of small perturbations of the vector field f(-) on the periodic solution
a(t).

The mappings generated by (5.2) under (5.9) are sufficiently general to
enable us to incorporate the effect of numerical approximations within the
same framework.

Since our interest in now focused on a small neighbourhood of the peri-
odic solution, smooth modification of the functions g and h outside such a
neighbourhood will not affect the results. Thus we assume:

Assumption 5.1 The functions
A@) e CX(RLRY, g(r)e AR 1xR R
and
h(r,0) € CX(R~! x R R).
Furthermore, (5.9) and (5.4) are satisfied for all » € RP™! and 6 ¢ R

Under Assumption 5.1 it is straightforward to prove that (5.2) has a
unique solution for all ¢ > 0. The following example illustrates that pe-
riodic solutions persist under perturbations to the vector field f(-) in (1.1)
such that Assumption 5.1 holds.

Example If, instead of considering equations (5.8) we modify g and h to
obtain

T = —2r + €2{cos((1 + €)8) + 25sin 4},

8, =1+e, (5.10)
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then we obtain a solution in the form

r(t) = e¢sin((1 + €)t), 6(t) = (1 + €)t. (5.11)
Recalling the transformation (5.7) it is clear that the solution (5.11) yields
a periodic solution in z,y coordinates. O

After proving results under Assumption 5.1 we will derive a corollary con-
cerning the original, unmodified flow generated by (1.1). We shall employ
the theory of attractive invariant manifolds to construct a periodic solution
for (5.2) under Assumption 5.1 and to study the effect of numerical ap-
proximation. The basic idea of the proof is that if g,h = 0 then (5.2) has
solution

r(t) = B(0,t; )¢, 6(t)=o¢+T.

Hence |jr(mT)|| < o™ by (5.6). It is this contractivity that we wish to ex-
ploit in the case where g and h are small, but not identically zero. Hence we
integrate (5.2), using the integrating factor {B(0,¢;#)} ! and the variation
of constants formula to obtain

r(t) = (0t¢§+/Bst¢Z(s)ds

(5.12)
o(t) = ¢S+t+/ h(r(s), 8(s)) ds,

where

Z(s) = [A(8(s)) — A(® + s)]7(s) + g(r(s),8(s)).
In order to exploit the contractivity induced by (5.6) it will be convenient
to consider the solution of (5.12) at time ¢ = T. Denoting the solutions of

(5.2) by r(s) and 6(s) and noting that these vectors are functions of ¢ and
¢ we obtain from (5.12)

r(T) = B¢+ G(¢, 9),
O(T) = 6+ T + H(E, ), (5.13)
where G : P! xR R and H: RR! x R— R are defined in the
following way

G(€, ¢;7) /Bsr¢ 5)ds

@¢,y—A h(r(s),6(s)) ds, (5.14)

G ¢) =G 4 T),
H(¢,¢) == H(¢ ¢;T).
We now give an example to illustrate the preceding definitions.

Example Consider the equations

re=—-2r+¢€, 6=1+e
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Then it follows that
G(f’ ¢) = 62(]- - e_QT)/z’ H(&? ¢) = €T.

The following space of functions will be useful in the succeeding analysis:
I ={VeCRR™): T]p = supsepo.r) 1T(0)]] < Ke,
1T(61) — T(0)|| < €l61 — 82, ¥ (01 +T) = ¥(61) V61,6, € R}.

The subscript P on the norm simply denotes the space of periodic functions
in C(R R"_l) with period 7. After Lemma 5.2 we will require a particular
value for K and use

(5.15)

K =4C1T/(1 - ). (5.16)
Our aim is to find an invariant manifold for (5.13), namely ® € I such that
€& =®(p) & r(T) = 2(6(T)). (5.17)

Comparison with (5.13) shows that to do this is equivalent to finding a fixed
point of the mapping 7 defined by

(T®)(6) = B2(¢) + G(2(4), ),
0=¢+T+H(®(¢),9)

Our proof of existence of such a fixed point is closely related to our proof
of the existence of an unstable manifold of a fixed point, given in Section 4.
We first establish certain ‘smallness’ properties of G, H and their Lipschitz
constants; we then show that 7 maps I' into itself and finally that 7 is a
contraction on I'. The details are more complicated than for the unstable
manifold and hence we break up the proof into a sequence of lemmas. The
proof of Lemma 5.2, in particular, is very technical and may be omitted
without disrupting the flow.

(5.18)

Lemma 5.2 Assume that Assumption 5.1 holds. Let ® € T, ¢+ = 1,2.
Then, for all ¢* € IR i = 1,2 it follows that there exists Cp = Cy(T) and
€* > 0 such that, for all € € (0, ¢*],

(i) [H(®'(¢1),8")| < 1T

(i) 1G(® (¢1), 6})]] < 20T

(if}) |H(@*(¢)), 61) — H(@L(¢), 0?)]| < Crelo — 2}
(iv) 1G(@1(8)), 61) — G(@}(82), )|) < Coe?|g! — 3}
(v) [H(®'(¢),9) — H(P*(4),9)| < Cy|@" — @2 p;
(vi) IG(2'(¢), 9) — G(2*(), ¢)|| < Cae[| @' — O p.

Proof. Throughout the proof we use C(T) to denote a global constant
independent of e.

(i), (ii) Consider equations (5.12) with £ = ®(¢) and let Assumption 5.1
hold. It follows that

|6(t) — ¢ — tl < Cite < C1Te, Vt € [O,T] (5.19)
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and hence the result (i) follows. From (5.12), using Assumption 5.1, (5.15),
5.19 and the assumption that r(0) = ®(¢) we have that

()] < LK +/ [CT)e|r(s)]| + C1e?]ds Ve e [0,T].  (5.20)
Application of the Gronwall lemma, yields
Pl < CL(K + T)e2eCDet vt e [0,T). (5.21)
Thus (5.12) gives, using (5.20), (5.21) and Assumption 5.1,
T
Ir(T) — BO(e)|| < / [C(T)& + Cre?] ds < 20, T,
0

for e sufficiently small. This yields (ii).
We also derive a related estimate used in the proof of Corollary 5.6. By
an argument similar to that giving (5.20) we may show that

Ir(6) = €1 1B, 6:9) = 11K + [ 1C@elr(o)l + Cael s

Using (5.5) and (5.21) it follows that, for ¢t sufficiently small, there exists
C3 > 0 such that

lIr(t) = €Il < CatKe® = ||r(t)]] < (1+ C3t)Ke. (5.22)
(iii), (iv) Consider the equations

r}i = A@#)r + g(r’:,Oi), ri(O) = <I>(¢i) (5.23)

6; = 1+ h(r*,0%), 6*(0) = ¢* :

for i = 1,2. Define 6 = ¢! — @2, p =71 — 12,y = 6! — 62 and
lolleo = sup {lo(B)]l.
0<t<T
Note that, since ® € ', we have that
7(0) =6, [lp(0)I] < €lé]. (5.24)

Now, by the mean value theorem,

v = h(r',r2,0")p + ho(r?, B)y (5.25)
where

h(rt,r2,6) /h (zr' + (1 — 2)r%,6) dz

and 8 = B(t) := (1 — ¢)0' + (62 for some ¢ = ((t) € [0,1].
Thus, by (5.24),

H=s+ (1 (s), 72(s), 01(s))(s) + ho(r2(s), Bls))r(s)} ds.  (5.26)
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Hence, by Assumption 5.1, we obtain

(0 =8 < CTlplo + [ Crelollds Veelo 1] (527)
and application of the Gronwall lemma yields

Iy < CTHI6] + llplleol,  VE € [0,T]. (5.28)
Also, we have that
= A(0")p + [A(6") — A(O")]r* +3(r",7%,6")p + go(r”, @),
where
g(rt,72,0) / gr(zrl + (1 = 2)r?,0%) ds

and a = a(t) := (1 — )0 + (62 for some ¢ = ((t) € [0,1].
Hence integration yields

p(t) = B(0,t61)p(0) + / "Bl 1 )[4 (5)) ~ A9 +5)lo(s)

+[A(6'(s)) — A(B*(s)r*(s) + 3(r',7?,61(5))p(s)
+go(T2(8),04(8))7(8 }dS-
From 5.19, (5.21), (5.24), (5.28) and Assumption 5.1 we deduce that

le@®I < 016|5|+/ C(D)elllo(s)ll + elv(s)l] ds

(5.29)

< Cield] + C(T)eleld] + [l plloo]- (5.30)
Hence we deduce that, for e sufficiently small,
llplle < C(T)el6] VYt € [0,T]. (5.31)
Thus (5.28) gives
()] < C(T)(1 + )9 (5.32)

and (5.27) yields, for € sufficiently small,
[Y(T) — 8] < eCo(T))é]
as required for (iii). Now let B* := B(0,T; $) and note that
IB' ~ B2|| < clé].
Returning to (5.29) we obtain, by (5.31), (5.32)

T
lo(T) — B*p(0)]| < /O C(T)elllp(s)Il + elv(s)]] ds < €2C(T)|8].
Hence

Ip(T) = (B'7'(0) = Br*(O)ll < |Ip(T) — B*p(0)f| + l|(B> — B )r*(0)]
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e2C(T)|6| + CK 2|6

<
< ECy(T))6|

as required for (iv).
Again we derive a related estimate used in the proof of Corollary 5.6.
From (5.29) an argument similar to that yielding (5.30) gives

t
() = p(0)I| < [1B(0, ;") — I||[|(0)] +/0 C(Dellla(s)ll + €lv(s)l] ds.
Thus (5.24), (5.30), (5.31) and (5.32) yield the existence of C4 > 0:
eIl < (1 + Cat)el4], (5.33)

for t and ¢ sufficiently small. Hence, by (5.31) and (5.32), we have from
(5.26)

< b+ Citloloo + [ Crehr(s)lds
< O]+ Catels,
Thus
l6] < 1—'1——(%
Hence (5.33) gives us
(o)) < (1 + Cot)e() (5:34

for ¢ sufficiently small. (Note that we have chosen the same constant Cj as
appears in (5.22) without loss of generality.)
(v), (vi) Consider the equations

ri = AG)r +g(r%,6°), 1°(0) = &¥(9) (5.35)
6 =1+ h(r*,6"),0°(0) = ¢ )
for ¢+ = 1, 2. Define p,~ and ||p||o as in the proof of (iii) and (iv). Note that
lo(0)]l < |@' — %[, ~(0) =0.

As in cases (iii) and (iv), (5.25) holds and, since v(0) = 0, it follows from
(5.28) that

(@) < C(M)lplleo  VE €[0,T]. (5.36)
Then (5.29), together with Assumption 5.1, gives

o)

IN

Crlle! - 7+ [ CD)llp(o)l + el ds

IA

t
||t - 2| + /0 C(T)eliplloo ds:
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hence, for ¢ sufficiently small,
lolleo < C2(T)I|@" — @]Vt € [0,T).
Application to (5.36) gives (v) as required; application to (5.29) gives

T
I6(T) = Bo(O)]l < [ COelllols)ll + elr(s)l}ds < Co(T)[@* - &
as required for (vi). O

Armed with the bounds on G and H proved in Lemma 5.2 we can proceed
to show that the map 7 given in (5.18) is well defined. Note that we have
already assumed ¢ sufficiently small in the proof of Lemma 5.2. Unlike the
case of unstable manifolds considered in Section 3 we will not detail the
bounds on € required in the sequel — we simply observe that our arguments
hold for € sufficiently small. Without loss of generality we will use the same
constant €* to denote the upper bound on e sufficient for all our arguments
to work.

Lemma 5.3 Let Assumption 5.1 hold. If & € T" then there exists ¢* > 0,
such that if € € (0,€*],7® given by (5.18) is well defined.

Proof. We show that, for every 8 € IR there is a unique ¢ € R so that
(5.18) is well defined. That is we solve the equation

0=¢+T+ H(2(9),9)
for ¢, given # € Rand ® € I'. To do this we use the contraction mapping

theorem. Consider the iterates
Pl =6 — T — H(®(¢"), 6),
W =0 - T — H(3(y*), ¢*).
Clearly ¢* € R yields ¢**! € IR and furthermore, by Lemma 5.2(iii),
|gh+1 — Y| < Coelo® — W < %|¢k — k|
for € sufficiently small; thus the mapping is a contraction on R and the

existence of ¢ given 8 follows. O

We may now show that 7 maps I' to itself. We assume throughout the
remainder of this section that K is given by (5.16).

Lemma 5.4 Let Assumption 5.1 hold. Then there exists ¢* such that, if
€ € (0,€*] then the mapping 7 : T — .

Proof. From (5.18), (5.6) and Lemma 5.2(ii) we obtain, for ¢ sufficiently
small and ® € T,

1(T®)(8)| < aKe? 4 2C,Te.
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Noting that K is given by (5.16) and that 2C; < 4C) we deduce that

4CYC1T€
-+ <
-« —

I(T@)(O)] <

(This argument has been constructed to be robust under an increase of C;
by a factor of 2.)
By Lemma 5.2(iv) it follows that
I(T@)(6") = (T2)O*)l < ol|@(8") — B($*)]| + Cal¢" — 47|
< o+ eChleldt — ¢?|.
By Lemma 5.2(iii) and (5.18) it follows that
0% = 6% 2 |g" — 8| = Caelg" — ¢”].
Thus, for € sufficiently small,
2
o 10067
6"~ ¢ < 1—Cse’
Combining we find that

[a + ng]e

I(T®)(8") — (T2)(6*)Il < 6" - 67).

We deduce that, for € : 2¢Cy <1 — a,
I(T@)(6") — (T®)(6))| < €' — 67|

as required.
It remains to establish that (7®)(0) is periodic. If we set ¢ — ¢ + T in
(5.18) we obtain

(T2)(¥) = Be(6+T) + G((¢+ 1), 6+ T),
v=¢+2T +H(®(¢p+T),¢+T).

Since A,g,h and ® are T-periodic in 6 it follows that ¥ = 68 + T and
(T®)(¢) = (T¥)(8) and thus periodicity of (7 ®)(8) follows. O

Finally we may prove:

Theorem 5.5 Let Assumption 5.1 hold. Then there exists ¢* > 0 such
that, for all € € (0,€*], equations (5.13) have an invariant manifold ® € T
satisfying (5.17).

Proof. To show the existence of the invariant manifold for (5.13) it is suf-
ficient, by Lemma 5.4, to show that 7 : ' — T is a contraction. Consider
the equations

(T®')(8) = BR'(¢') + G('(¢'), ¢"),

0= +T+ H@ (), ) (5:37)
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for 1 = 1, 2. It follows that
I(T@Y)(8) - (T2*)(9)
<||B®'(¢") - B*(¢*)[|+]IG(2'(¢"), ") — G(2*(¢?), 7). (5.38
Hence
I(T@')(8) — (T*)(9)]| < |BE(¢') — BS*(¢")|| + (1 BS*(¢') — BS?(¢7)]|

HIG(@'(61),4") — G(2*(¢), 6"l + IG(2%(¢), ¢") — G(2*(¢%), &7)-
Using Assumption 5.1 and Lemma 5.2, it follows that
I(T")(8) — (T2*)(9)] < (a + Coe)| @ — 87| p + (@ + Cae)e|g — ¢7|.
Also, by similar manipulations, it follows that
6" = ¢%] < Caf|®* — B¥|p + Caelg! - ¢°].
Combining these two estimates we obtain

(a + Cye)

(T2 = (TE)O) < (a+ Ce)l| ¥ = Plp+ 7= 5

602”@1 —‘I>2”p

Again, choosing e sufficiently small, we obtain
(T @")(8) - (T8)(O)]| < { +a)l|®’ - &2 p.

Since this holds for all @ it follows that the mapping 7 is contractive on I
with constant (1 + a)/2 < 1 and existence of an invariant manifold follows.
(]

Given €* and ® from Theorem 5.5, it is a corollary that equations (1.1)
have a periodic solution:

Corollary 5.6 (Periodic solutions) Assume that there exists a C* dif-
feomorphism x : IR +— IR which renders (1.1) in the form (5.2) under
u = x(v); assume further that there exists ¢ € (0,€*/2] such that A, g and
h satisfy (5.4) and (5.9) for all 7 € B(0,¢), all # € Rand all t € R Then
(1.1) has a periodic solution @(t¢) comprising the sets of points

{v e Ru=x(), v=(86)7,07:0cR & eI}

Proof. By virtue of the coordinate tranformation, it is sufficient to show
that the invariant manifold ® constructed in Thoerem 5.5 yields a periodic
solution of (5.2). To do this we introduce some notation. Let S(t) denote
the semigroup for v(t) = (r(t)7,8(¢))T given by the solution of (5.2). Thus
v(t) = S(t)(E", ¢)T. Let

M ={T,0)F e R .7 = 3(9)).
Now consider the set

M(t) := S(t)M.
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Thus M(t) is obtained by taking every point in M and evolving it forward ¢
time units under equation (5.2), that is under S(¢). It is our aim to show that
M(t) = M for all t sufficiently small; then we deduce that the closed curve
given by the invariant manifold ® of Theorem 5.5, which is invariant under
the time T evolution of the differential equation (5.2), is actually invariant
under the evolution of (5.2) for any time ¢ sufficiently small. This shows
that M is a periodic solution, since it is a closed curve.
Note that, from (5.12) and (5.14), every point (+7,8)T € M(t) satisfies

r = B(0,t;¢)®(¢) + G(2(9), $; 1),
0=0¢+t+H(®), ;1)

for some ¢ € R Analogously to the proof of Lemma 5.3, we may show that
there is a graphical relationship between r and 8 so that r = ¥(6) for some
¥ € C(RRP!). Furthermore, use of (5.22) and (5.34) show that there
exists C3 > 0 such that

Irll = 12 (B)II < (1 + Cst)Ke?

(5.39)

and
[[(61) — ¥(02)]| < (1 + Cst)e|dr — bs].
Hence, if ¢ is chosen sufficiently small that (1 + Cs3t) < 2 and € sufficiently
small that € € (0,€*/2], then we deduce that ¥ € T.
Finally, observe that
S(TYM(t) = S(T)S(t)M = S(t)S(T) M.

But, M is invariant under S(T) by construction and hence we have

S(TYM(t) = S(t)M = M(t).

Hence M(t) is invaraint under S(T'). Since all points in M(¢) may be repre-
sented by means of a graph ¥ lying in I" the uniqueness implied by Theorem
5.5 gives ¥ = &. Hence M(t) = M and the proof is complete. O

5.2. Periodic solutions

We now modify the analysis of Section 1 to prove the existence and conver-
gence of a closed invariant curve for the numerical method (1.2) which lies
close to the periodic solution @(t) of (1.1). Let mAt =T and

Un = STU, w(T)=ST)U

denote the solutions of (1.2), (1.1) respectively subject to the same initial
condition U. We know, from Theorem 3.8, that there exists Cs = C5(T) such
that

1S40V — S(TDU|| < C5AL7, VU € IR,

1dSR(U) - dS(U; T)I| < Csatr, VU € R (5.40)
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We define v(t) and V, by u(t) = x(v(t)) and U, = x(V;,) where x is the C3
diffeomorphism given in Corollary 5.6. We also set

V=T, )T e, V,=RLoTcR

We may define semigroups appropriate for the variables v(¢) and V,, from
those in the original variables by
G N |

SR = xTH(SRex(v))-

Then, since x is a C® diffeomorphism it follows from (5.40) and (5.41) that
there exists Cg = Cg(T') such that

157,V - S(T)V|| < Ceart”, vV e R ¢ e B(0,¢)

1dST(V) — dS(V; T)| < Csat, W e g e B(o,e). 4D

(Here the derivatives of the semigroups ST, and 5(t) are defined analogously
to those for S¥, and S(t).)

We now exploit the existence theory derived for the periodic solutions of
(5.2) to study the numerical method. From (5.13) and (5.42) we obtain

R=Bt+G(¢),

O =6+ T+HEB), (5.43)
where
IG(&, ¢) — G(§,8)|| < CsAt,
IH(E,¢) — H(E, ¢)|| < CoAt, (5.44)
[dG(¢, 6) — dG(€, )] < CsATT, '

|dH (¢, ¢) — dH(E, )| < Cort".

Here dG, dé, dH and dH denote the Jacobians of G and G with respect to
V.

For simplicity we assume that (5.44) holds for all v € IRP; since all the
analysis takes place within the ball £ € B(0,¢) the results hold for any nu-
merical approximation satisfying (5.42). Using (5.44), together with Lemma
5.2, it follows that for At sufficiently small, G and H satisfy estimates anal-
ogous to those appearing in Lemma 5.2 for G and H but with C; — 2C; and
Cy +— 2C,. Hence, following the proofs of Lemmas 5.3, 5.4 and Theorem 5.5
with C; — 2Cy and Cy — 2C;, we can prove the existence of an invariant
manifold @A, € T for (5.43). Specifically we seek a ®; with the property
that

{ = ®At(¢) o R= @At(@) (5.45)

Comparison with (5.39) shows that to do this is equivalent to finding a fixed
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point of the mapping Ta¢ defined by

(Ta:®)(©) = BE(¢) + G((4), 9), (5.46)
© = ¢+ T + H(®(¢), ¢). '

Using this formulation we can prove the following theorem:

Theorem 5.7 Let Assumption 5.1 hold. Then there exists At, > 0 and
€** > 0 such that, for all At € (0,At.] and € € (0, €**| equations (5.43) have
an invariant manifold ®a, € T, satisfying (5.45). Furthermore, ®x; is close
to the graph ® constructed in Theorem 5.5 in the sense that there exists
Cr = C7(T) such that

|® — @aell < CrAL".
Proof. The existence of such a manifold follows precisely as in the proof
of Theorem 5.5, except that Cy is enlarged by a factor of 2. Hence further
reduction of € is necessary in the proof.
To prove closeness of the manifolds we again use, essentially, the uniform

contraction principle; note that both & and ®a, lie in I'. Thus, using the
contractivity of 7a; we obtain

12(8) — @ae(9)]] |72(8) — Tatr®a:(9)|]
(T®(0) — TPac(O) + |7 2ae(0) — TaePae(9)]]
s(1+ a)||@ — Pacllp + [T Pac(6) — Tac®as(6)]).

Now, from (5.18), (5.46) and (5.44) and the Lipschitz properties of 7o ® € T,
we deduce that

<
<

E = ||T®a¢(0) — Tar®a:(0)|l
satisfies
E <||[T2a¢(0) — Tat®ac(O)|| + [Tac®ai(8) — Tac®Pa:(O)]-
Hence, since Ta;®a; € T, we have from (5.18), (5.43) and (5.44) that
E < Cs(1+e)At".
Thus, putting these estimates together we obtain

2Cs(1 +¢€)

I8 - @adlp < <2

At
This completes the proof. O

As a corollary of Theorem 5.7 we consider the approximation of periodic
solutions in (1.1) by closed invariant curves in (1.2). Recall the notions (3.1),
(3.2) of distance.

Corollary 5.8 (Periodic solutions under approximation) Assume
that (1.1) has a hyperbolic, stable periodic solution #(¢) comprising the
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set of points P. Then (1.2) has closed invariant curve comprising the set of
points Pas and, furthermore, there exists a constant C' > 0 :

du(Pat, P) < CAL".

Proof. If (1.1) has a hyperbolic, stable periodic solution then a transfor-
mation x exists rendering (1.1) in the form to which Corollary 5.6 applies.
Application of Theorem 5.7 yields the required closeness result. O

5.3. Bibliography

The standard local construction of periodic solutions uses the Hopf bifur-
cation which facilitates the construction of a periodic solution branching
from an equilibrium solution; see Guckenheimer and Holmes (1983) and
Drazin (1992). For background material describing global questions con-
cerning the existence of periodic solutions in (1.1) see, for example, Hale
(1969), Hartman (1982) and Guckenheimer and Holmes (1983). In partic-
ular, Hale (1969) presents the full details of the coordinate transformation
u = x(v) which is central to the analysis described here.

The first article to study the effect of numerical approximation on peri-
odic solutions in a general context was Braun and Hershenov (1977). They
studied stable hyperbolic periodic solutions and employed the time T map
to perform the analysis (where T is the period). The next article to address
such questions was Brezzi et al. (1984) where the existence of Hopf bifurca-
tion points, and the resulting closed invariant curves close to the Hopf point,
was studied for numerical methods (1.2) operating in a parameter regime
close to that in which a Hopf bifurcation occurs in (1.1). The work of Braun
and Hershenov (1977) was generalized in Doan (1985) to encompass mul-
tistep methods and the general case of hyperbolic periodic solutions which
are not necessarily stable. Neither of the articles (Braun and Hershenov,
1977) nor (Doan, 1985) obtained precise orders of convergence for the ap-
proximate invariant curve. A little later Beyn (1987a) generalized the work
of Braun and Hershenov (1977) to encompass arbitrary hyperbolic periodic
solutions, obtaining precise orders of convergence; his approach is similar to
that in Braun and Hershenov (1977) but, rather than employing the time
T map he uses the time At map of the differential equation. The whole
subject area was put in a very clear setting in Eirola (1988; 1989) where
results similar to those of Beyn derived but in the stronger C* topology,
the value of k depending on the smoothness of the vector field f(-) in (1.1).
In turn the work of Eirola can be viewed in a very general setting concern-
ing the stability of invariant circles of mappings in IRP; see Pugh and Shub
(1988). The proof given in this article is closely related to the proofs in
Braun and Hershenov (1977) and Beyn (1987a); it is far from optimal in
the sense that only stable periodic solutions are considered and the result is
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in the C° topology. However, this presentation has been chosen because it
is self-contained, relatively simple and is similar to the method of analysis
used to construct unstable manifolds in Section 4. A recent article (Alouges
and Debussche, 1993) is concerned with extensions of the work referenced
here to partial differential equations. In this context the work of Titi (1991)
is also of interest.

We have not described here an analogous theory for the behaviour of
invariant tori under numerical approximation. Such a theory has recently
been developed in Lorenz (1994) using the approach of Fenichel (1971) to
determine an appropriate coordinate system analogous to the coordinate
system described in Hale (1969) used to study periodic solutions.

6. Uniform asymptotic stability and attractors
6.1. Background theory

In this section we consider the effect of numerical approximation on general
objects which are attracting, in certain senses to be made precise, for solu-
tions of (1.1). In most cases we do not make specific statements about the
nature of the dynamics within the attracting object so that our framework
will be sufficiently general to include, for example, the strange attractors
observed in the Lorenz equations (2.10). Thus our assumptions will be the
existence of an arbitrary compact set possessing some form of attractivity.
Up to this point we have considered the numerical approximation of equilib-
rium points, invariant sets in the neighbourhood of equilibrium points and
periodic solutions. In all cases our methodology has been the same: we have
employed the contraction mapping theorem to develop an existence theory
for the object in question and then used the uniform contraction principle to
incorporate the effect of numerical approximation. In this section a different
approach will be necessary since there is no known existence theory based
on the contraction mapping theorem which we can exploit.

We start by defining the type of objects of interest to us, together with
certain of their properties which we require. In this section, all of our def-
initions and theorems concern the continuous semigroup S(t). At the end
of the section we detail which definitions and theorems can be generalized
from S(t) to SR%,.

Definition 6.1 A set A attracts a set B under S(t) if, for any € > 0, there
exists t* = t*(¢, B, A) such that S(t)B C N (4,¢) Vt > t*. A compact invari-
ant set A is said to be a an attractor if A attracts an open neighbourhood
of itself. A global attractor is an attractor which attracts every bounded set

in RP.

Example Define the set A := (z,y) € [-1,1] x {0} and note that A is
clearly compact; by arguments similar to those used to establish the example
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following Definition 3.1, we deduce that .A is invariant under the differential
equations

o=z -2, z(0) =

vt = Ay, ¥y(0) = yo.

Denote the semigroup for the z-equation by S,(t) and for the y-equation
by Sy(t). By (3.8), the solution of these equations has the property that
Sz(t)[—a,a] — [-1,1] as t — oo, for any a > 0; furthermore, S;(t)0 = 0.
Clearly S, (t)yo = eMyo.

It follows that, for any A > 0, 4 attracts any set (z,y) € [—a,a] x {0},a >
0. Furthermore, if A < 0 then 4 is an attractor — since then [—a, a] X [—¢, €]
is attracted to A for any a, e > 0. Indeed, since a, e > 0 are arbitrary, it is a
global attractor. O

Attractors are often constructed by applying the following theorem.

Theorem 6.2 Assume that B C IR is a bounded open set such that
S(t)B C B Vt > 0. Then w(B) is an attractor which attracts B.

Proof. Since S(t)B C B it follows that
wB)=NUs®BcNUB=5 (6.1)

s2>0t>s s>0t>s

Thus w(B) is bounded. Furthermore, w(B) is closed and invariant by The-
orem 3.3 and it follows that w(B) is a compact invariant set.

We now show that A := w(B) attracts B. Assume that it does not.
Then, for all sufficiently small ¢ > 0, there does not exist t* such that
S(t)B C N(A,e) ¥Vt > t*. Thus there exists zx € B and t; — oo such that
S(tr)zr ¢ N(A,¢€). But S(tx)xx is a bounded sequence contained in B and
hence has a convergent subsequence S(tx, )z, — y € B. By Definition 3.2
y € A and this is a contradiction.

Note that w(B) C B by (6.1). We show that, in fact, w(B) C B. Assume
for the purposes of contradiction that 3y € w(B) N8B (where 6B = B\B).
Since w(B) is invariant it follows that, for any ¢t > 0 3z € w(B) : S(t)z = y.
But, since w(B) C B we have € B and hence, by assumption, y = S(t)z €
B. This is a contradiction and thus no such y exists. Thus w(B) C B.

Now, since w(B) C B is closed it follows that, for e sufficiently small,
N(w(B),€e) C B. Since w(B) attracts B it follows that w(B) attracts an
open neighbourhood of itself and the proof is complete. O

Example Consider the equation u; = v — u®. Let B = (—a,a),a > 1.
Then w(B) = [—1,1] as shown in the second example following Definition
3.2; furthermore, w(B) is an attractor: on |u| = a we have d|u|?/dt < 0 and
hence S(¢)B C BVt > 0. Theorem 6.2 gives the desried result. O
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A second attracting object of interest to us is now defined:

Definition 6.3 A compact set A is uniformly stable if for each ¢ > 0 36 =
6(€) > 0 such that dist(U, A) < § = dist(S(¢)U,A) < € Vt > 0; a compact set
A is asymptotically stable if there exists &y > 0 and for each ¢, a T = T'(¢)
such that dist(U,A) < ¢ implies that dist(S(H)U,A) < e Vt > T. A
compact set A is uniformly asymptotically stable if it is uniformly stable and
asymptotically stable.

Theorem 6.4 The following properties hold for uniformly asymptotically
stable sets:

(i) uniformly stable sets are positively invariant;

(ii) an attractor is uniformly asymptotically stable;

(iii) if A is uniformly asymptotically stable then A = w(A) C A is an
attractor.

Proof. We first prove (i). For contradiction assume that A is uniformly
stable and not positively invariant. Then 37 > 0,¢ > 0 and U € A such
that dist(S(7)U, A) > e. But, since the set is uniformly stable it follows that
36 = 6(e) such that dist(U, A) < § = dist(S(7)U, A) < e. Since dist(U,A) =
0 this gives the required contradiction.

Now consider (ii). It is automatic that an attractor is asymptotically
stable since it attracts a neighbourhood of itself. Thus it suffices to show
uniform stability. Assume for contradiction that A4 is an attractor, attracting
a neighbourhood W, but it is not uniformly stable. Thus, for any ¢ > 0 there
exists a sequence of times {t;}52, and a sequence {r;}?2; with z; € W
for each j and z; — z € A, such that S(t)z; € N(4,¢),t € [0,t;) and
S(tj)z; ¢ N(A,e). Now let H = {z,{z;}%2,} and note that, since z; € W
(a bounded set) and since z; — x, we have that H C W is compact. Since
A attracts W it follows that A attracts H and hence that w(H) C A. We
deduce that, for any T' > 0, the sequence S(t; —T)z; — z € w(H) C A. But
S(T)S(t; — T)xz; = S(t;)x; — S(T)z. By the invariance of w-limit sets (see
Theorem 3.3) it follows that S(7)z € A. However, S(T)z ¢ N(A,¢) since
S(t;)x; ¢ N(A, €) and this gives the required contradiction.

Finally we prove (iii). Since A is postively invariant it follows that A4 =
w(A) € A and hence A is bounded; A is closed by Theorem 3.8 and hence
compact. Let H = N(A, §y) where & is given by the definition of asymptotic
stability. To show that A attracts H it is sufficient to show that w(H) C A.
Clearly w(H) C A since A is asymptotically stable. Let y € w(H). Since
w(H) is invariant (by Theorem 3.8) it follows that, for each ¢, > 0 there
exists ¢y € w(H) C A such that S(tx)zx = y. Thus the sequence S(tx)zr — ¥
as k — oo. But, since z € A it follows that y € w(A) = A and the result
follows. O
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Thus the important fact distinguishing attractors and uniformly asymp-
totically stable sets is that the former are necessarily invariant whilst the
latter need only be positively invariant. The following example illustrates
this.

Examples Consider the equation uy = —u, u(0) = U. Any interval
[-a,a],a > 0 is a uniformly asymptotically stable set. However, only the
point 0 is an attractor since [—a,a] is not invariant for a > 0.

It is well known that the existence of stable equilibrium points can be
deduced from construction of appropriate Lyapunov functions. Converse
results are also available and the following result, deducing the existence of
a Lyapunov function from the uniform asymptotic stability of a compact
set, will be extremely useful.

Theorem 6.5 Given a compact uniformly asymptotically stable set A
there exists Ry > 0 and a Lyapunov function V : N(A : Ry) — Rt sat-
isfying the following three properties:

i) there exists L > 0: [V(z) — V(y)| < Lijz —y|| Vx,y € N(A, Rp);
i1) there exist continuous, strictly increasing functions «, 8: [0, Ry) —
with a(0) = 8(0) = 0 and a(r) < B(r) for r > 0 such that

afdist(z,A)) < V(z) < B(dist(z,A));
(iii) there exists a constant C' > 0 such that
V(SHU)<e CtV(U), 0<t<T
provided S(¢)U € N(A,Rp), 0 <t < T.

Proof. This theorem is proved in Theorem 22.5 of Yoshizawa (1966) with
a slightly different conclusion in part (iii); that our point (iii) holds may be
deduced from Theorem 4.1 of Yoshizawa (1966). O

Corollary 6.6 Let S(R;) = «a(Rgp) and assume that dist(U,A) < R;.
Then

S(t)U € N(A,Rg) and V(S(t)U) <e CtV(U) Vte[0,00). (6.2)
Proof. For the purpose of contraction assume that there exists T > 0:

dist(S(T)U,A) < Ry, t€[0,T) and dist(S(T))U,A) = Ry.
By Theorem 6.5(iii) it follows that V(S(t)U) < e=C*V(U),t € [0,T]. From
Theorem 6.5(ii) we have that
a(Ryp) a(dist(S(T)U, A))

< V(S(MU) <e TV (U)
< e CTa(dist(U, A))
< e_CTB(Rl) = e_CTa(RO).
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This is a contradiction, hence no such T exists and S(t)U € N (A, Ry) Vt > 0.
Theorem 6.5(iii) then completes the proof. O

We now discuss structural assumptions on the vector field f(-) in (1.1)
which yield the existence of attractors and uniformly asymptotically stable
sets.

First we consider the assumption

Je, R > 0: (f(u),u) < —e Vu:|ul| =R. (6.3)

(Such an assumption holds, for example, for (1.1) under (2.13) for any R >
(a + €)/b although (2.13) cannot hold for globally bounded vector fields.)
We may now prove:

Theorem 6.7 Consider (1.1) under (6.3) and let B = {u € R : ||u||® <
R}. Then the semigroup S(¢) has an attractor given by A = w(B).

Proof. By Theorem 6.2 it is sufficient to show that S(t)B C B Vt > 0.
From (6.3) we have,
1d
2dt
and hence, for B = B\B,

Sl = () < e [ull € 9B

This shows that trajectories on @B point into B and establishes the required
property of B; the result follows. O

lul® = (f(u),u), YuelR (6.4)

A second class of systems of interest to us are gradient systems. Recall
the definition £ = {v € R : f(v) = 0} from Section 1.

Definition 6.8 The dynamical system S(t) generated by (1.1) is said to
define a gradient system if 3F ¢ C(IRP R), called a Lyapunov function,
satisfying

(i) F(u) >0 for all u € [R¥;
(ii) F(u) — oo as |ju|| — oo;
(iii) for a solution of (1.1) F(S(¢)U) is nonincreasing in t;
(iv) if F(S@t)U)=F({U) fort>0then U € £.
A particular case where gradient systems arise is when f is a gradient
vector field, so that

f(u) = =VF(u). (6.5)
With this assumption, taking the inner-product in (1.1) with w; yields

S (P} = ~lu®i (6.6)
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Hence Properties (iii) and (iv) of Definition 6.8 hold; thus, if F' satisfies (i)
and (ii) then (1.1), (6.5) defines a gradient system. The following theorem
shows that the dynamics of a gradient system must be relatively simple.

Theorem 6.9 If(1.1)is a gradient system then w(U) C £. If, furthermore,
the zeros of f are isolated and w(U) is bounded then w(U) = z for some
xz €€£.

Proof. Now let z,y be two points in w(U). Thus, without loss of generality,
there exist sequences t; and 7; with 7,1 < t; < 7; such that

StV — =z, SH)U —y.
By Definition 6.8(iii) we have
F(S(m)U) < F(S(t:)U) < F(S(ri-1)U).

Hence, by continuity, we deduce that F(z) = F(y). Now, since w(U) is
positively invariant by Theorem 3.3 we have that for any z € w(U) and
t>0,y=S(t)x € wU). But F(zr) = F(y) and, by Definition 6.8(iv), we
deduce that x € £ yielding the first result.

By Theorem 3.3 we know that, if w(U) is bounded it is connected. Since

w(U) € £ and & comprises isolated points it follows that w(U) is a single
point x € £. O

Theorem 6.10 Consider a gradient dynamical system S(¢) generated by
(1.1), 6.5. Assume that F(u) has the property that

¥ >0:vef=Fv) <&
Then the set B(R), where
B(R):= {ue R : F(u) < R},

is uniformly asymptotically stable for any R > ¢ and, furthermore, A =
w(B(R)) is a global attractor for any R > &.

Proof. Let R > £. First observe that B(R) is a closed bounded set because
of Definition 6.8(ii); hence it is compact. Note that, for any € > 0, we may
choose 7 > 0 such that

F(z) < r = dist(z, B(R)) < e. (6.7)
We may also choose § > 0 such that
dist(z, B(R)) < 6 = F(z) <. (6.8)

Now, by (6.8), if dist(U, B(R)) < 6 then F(U) < r. By Definition 6.8(iii) we
have F(S(t)U) < F(U) < r. Hence, by (6.7) we have dist(S(t)U, B(R)) < ¢
as required to establish uniform stability (see Definition 6.3). Furthermore,
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choose &g such that
dist(z, B(R)) < 6o = F(z) < R+ L
Then let

n(l) = |f ()] > 0; (6.9)

inf
{z:R<F(x)<R+!}
the strict positivity follows since there are no equilibria with F(x) > R and
the set

(e R:R<F(x)<R+1}

is compact. If dist(U, B(R)) < 8 then F(S(t)U) < R+! ¥Vt > 0 by Definition
6.8(iii). Assume, for contradiction, that F(S(¢t)U) > R Vt > 0. Then, from
(6.6), we obtain

F(S(t)U) — (R+1) < —tn(1)? (6.10)

yielding a contradiction for ¢ > I/n(1)2. Hence there exists T € (0,1/n(1)?]
such that F(S(t)U) < R for all t > T. Thus dist(S(t)U,B(R)) =0Vt > T
and asymptotic stability (see Definition 6.3) is proved, establishing uniform
asymptotic stability.

Finally, (6.6) and (6.9) show that

F(S(OU) = R= S{F(S@V)} < ~n(0)

so that trajectories on the boundary of B(R) point into the set and, hence,
by Theorem 6.2, w(B(R)) is an attractor. Since [ is arbitrary and B(R)
is attracted to .A, we deduce from (6.9) and (6.10) that the bounded set
B(R+1) is attracted to B(R) in finite time T < 1/n(1)%. Since ! is arbitrary
this gives the required global attraction. O

Recall Definition 4.1 of the unstable manifold given in Section 3. The
following theorem elucidates the structure of the attractor for gradient sys-
tems.

Theorem 6.11 If A4 is a compact global attractor then it comprises all
solutions of (1.1) which exist and are uniformly bounded for all t € R
Under the same assumptions as Theorem 6.10, S(¢) has a global attractor
A given by

A={U e R :dist(u(t),£) -0 as t— —oo}.
Furthermore, if £ comprises only hyperbolic equilibrium points then
A= U W(v).
veE

Proof. The proof of the first part of this result may be found in Hale et al.
(1984) and the remainder in Hale (1988). O
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Example Consider the equation u; = u — u3. This is a gradient system
with Lyapunov function F(u) = (1 — u?)?/4. The equilibria are the points
{0,+1,—1} and all are hyperbolic since f'(0) = 1, f/(£1) = —2. Further-
more, the points +1 are stable whilst the point 0 is unstable; by (3.8) it
follows that the unstable manifold of 0 is (—1,1). Thus, by Theorem 6.11,
the global attractor is the set A = [—~1,1]. This result is an agreement with
the construction of A in the second example following Definition 3.2. O
We will show in Section 6.3 that if S(¢) has an attractor .4 then S}, has
an attractor Aa; satisfying

dist(Aa¢, A) — 0 as At — 0.

This shows that, in the limit as At — 0, every point on the numerical
attractor is close to a point on the true attractor and is known as upper
semicontinuity. We will also show that, in general, the converse is not true
— we will only be able to prove lower-semicontinuity, namely that

dist(A, Aa¢) > 0 as At — 0,

under very special assumptions on the nature of the flow on the attractor;
these essentially amount to the system being in gradient form, or something
closely related to it — see Sections 6.4 and 6.5. The following example illus-
trates the essential difficulty in trying to derive lower-semicontinuity results:

Example Consider equation (1.1) in dimension p = 1. It follows that, for
F(u) : Ri— R defined so that F'(u) = —f(u), we have that (6.6) holds and
the system is in gradient form provided F satisfies (i) and (ii) of Definition
6.8. In this case, all solutions will have their w-limit sets contained in the
set of equilibrium points.

Now consider (1.1) with f(u) — fc(u) given by

—(u+1)3 4+ u< -1,
fe(w) = { e(u?/2 = 3u/2), —-1<u<l, } (6.11)
—(u—13—¢ u>1,

This vector field is C1(IR R) and satisfies (i) and (ii) of Definition 6.8 for
each € > 0. Hence, by Theorem 6.10 the system has a global attractor A,
say, for each ¢ > 0.

The potential F,(u) satisfying F/(u) = — f(u) and F.(0) = 0 is shown in
Figure 3 for € > 0 and € = 0 respectively.

Examination of these figures, together with application of Theorem 6.11,
shows that, for every € > 0, the attractor of (1.1), (6.11) is given by

A ={0}, €>0,
a single point; a similar analysis for ¢ = 0 shows that

-/40 = [_17 1]7
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an entire interval. Thus the perturbed attractors with ¢ > 0 are contained
in the unperturbed attractor at ¢ = 0 but not the other way around. This
shows that the attractor Ag is upper semicontinuous with respect to ¢ > 0
but it is not lower semicontinuous. Although the perturbation induced by
€ in this example is not directly analogous to a numerical approximation,
it nonetheless indicates an important point — without strong assumptions
it may be difficult to prove lower semicontinuity of attractors with respect
to perturbations of any kind, including those induced by numerical approx-
imation.

The difficulty observed in the example is a consequence of the fact that
certain portions of the attractor may attract very slowly — specifically slower
than exponentially — and hence disappear under perturbation. In order to
get around this difficulty it is natural to consider a slightly enlarged object
which does have a form of exponential attraction. This is one motivation for
the consideration of the weaker concept of a uniformly asymptotically stable
set for which it is possible to prove both upper and lower semicontinuity.

40 40
20 20
0 0
-20 -20}
-40 -
-40 20 0 20 40 %0 20 0 20 40
40 40
20 { 20
0 0
-20 -20
-40 -
-40 20 0 20 40 0 20 0 20 40

Fig. 3. The potential F(u) (vertical axis) against u for ¢ = 0.01 (top) and € = 0.0
(bottom).
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Important remark All our definitions and theorems concern the continu-
ous semigroup S(t). However, the Definitions 6.1,6.3 and 6.8 and Theorems
6.2, 6.4 and 6.11 can all be extended to a discrete semigroup SR}, simply by
replacing ¢ by n in the definitions and using the continuity of S},. Theo-
rem 6.9 can also be extended but the extension is slightly less trivial — see
Humphries and Stuart (1994).

6.2. Continuity of uniformly asymptotically stable attracting sets

We now consider (1.1) under the assumption that there exists a compact set
A which is uniformly asymptotically stable.

Theorem 6.12 (Uniformly asymptotically stable sets under ap-
proximation) Assume that the semigroup S(t) for (1.1) has a compact,
uniformly asymptotically stable set A. Then there exists At, > 0 such
that, for all At € (0, At.], the approximating semigroup S%, for (1.2) has a
compact, uniformly asymptotically stable set Aa; O A which satisfies

dy(Aas,A) >0 as At — 0.

Furthermore there exists a set B O Aa¢ and T = T(At) with the property
that

ShiB C Aar Vn:nAt > T.

The proof will be performed through a sequence of lemmas. Recall the
definition of R; from the proof of Corollary 6.6.

Lemma 6.13 There exists rg € (0, R;) and Aty > 0 such that
U € N(A,10) = Sp,U € N(A, Ry) YAt € (0, Aty)].
Furthermore it then follows that
V(SAU) < e CAYV(U) + KLAt L.
Proof. Define rg and Aty by
B(ro) = a(Ro/2) and KAty™ = Ry/2. (6.12)
Note that rg < Ry < Ry, so that, by Corollary 6.6,
UeN(A, )= SH)U e N(A,Ry) Vt>0
Theorem 6.5(iii) shows that we have
V(S(AHU) < e 2V (U) < V(U). (6.13)

But
ofdist(S(At)U, A)) < V(S(A)U) (6.14)
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and
V(U) < Adist(T, A)) < Blro) = a(Ro/2). (6.15)
Equations (6.13)-(6.15) imply that
a(dist(S(AHU, A)) < a(Ro/2) = dist(S(A)U,A) < Ry/2 . (6.16)
Now,

dist(S5,U,A) = inf |S5,U - ]|

IA

inf [S(OU o + |SOU - SRUI (617)

IN

dist(S(At)U, A) + ||S(A)U — SA,U|.
Thus (6.16), (6.18), (6.12) and Assumption 3.7(iii) gives
dist(SX,U,A) < 1Ry + KAt < RoVAL € (0, Atg).
Now, by Theorem 6.5(i) and Assumption 3.7(iii) we have
[V(SL.U) - V(S(AHU)| < L||SL,U — S(AH)U|| < KLAt™+L,
Hence, by Theorem 6.5(iii),
V(SL,U) V(S(At)U) + KLAt 1
e CAYV(U) + KLAEH,

by (6.13). O

The previous lemma gives a bound on U which ensures that V(S},U) is
defined. Using this fact we now construct a positively invariant set B for
SL,.

Lemma 6.14 The set B = {z € N(A,Rp) : V(z) < a(rg)} is open and
A C B C N(A,rg). Furthermore, there exists At; such that B is positively
invariant under S}, for all At € (0, Aty).

Proof. The set B is open since V is continuous and V(z) < a(ry) for all
z € B. The set B contains A since V(z) =0if z € A. Let U € B; then

a(dist(U,A)) < V(U) < afre) (6.18)

by the properties of a(-) and B. Thus dist(U,A) < rg which implies that
U € N(A,rg) as required. Hence B C N(A,79). Now we define Atj, the
largest number in (0, Atg] such that

KLAtP+!

1—- e—CAt < %a(r*) VAt € (OaAtl]a (619)

where

r* =

B~ (alr0))- (6.20)

o=
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Note that
r* < %a‘l(a(ro)) = %To < 7g.
Thus
a(r*) < a(ry). (6.21)
Now, if U € B C N(A,rp) then by Lemma 6.13, (6.18) and (6.19) we have
V(S U) e CAY(U) + KLAPH!
e B (rg) + ra(r*)(1 - e~ CAY)
ia(ro) + %e_cma(ro) < a(rg).
)

In addition, S§,U € N(A, Ry) by Lemma 6.13 and so we have S, ,B C B as
required. O

IN A A

We now counstruct the approximate uniformly asymptotically stable set
Aae-

Lemma 6.15 Define

2K LAt !
n(At) = (1= e-CATy’ At € (0, Aty]

and define
Aat = {z € N(A, Ro) : V(z) < n(At)}.

Then Aa: is compact, positively invariant, contains A in its interior and
satisfies d,;(Aat, A) — 0 as At — 0.

Proof. Aa: is bounded since A is bounded and V is continuous; Aa; is
closed by construction. Hence it is a compact set. Clearly, by (6.19) and
(6.21) it follows that

Aat C B C N (A ), At € (0,Aty], (6.22)
since a(r*) < a(rg). Thus by Lemma 6.13, if U € Aax; we have
V(S U) < e CAV(U)+ KLAtH!
< e CAt(AL) + gn(At)(1 - e~ A < n(At).

Since S),U € N(A, Ry) by (6.22) and Lemma 6.13, we have Sy, U € Aa; as
required.

It is clear that A is contained in the interior of Aa; since V is con-
tinuous and n(At) > 0. Thus dist(A,Aa:) = 0. Also dist(Aas, A) =
SUPzep L, dist(z,A). But, for every x € Aa; we have that dist(z,A) <
a~1(n(At)). Since n(At) — 0 as At — 0 it follows that dist(Aas, A) — 0 as
At — 0.0

We now show that iterates starting in B are absorbed into Aa; in a finite
number of steps under S3,, giving asymptotic stability.
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Lemma 6.16 There exists Aty € (0, At;] such that, for any U € B\Aa;
and any At € (0, Aty],

V(Sx,U) < e CAY4y ().
Furthermore, if
4
T(At) = = In{a(ro)/n(At)},

then there exists a 8y > 0 such that, A(Aa¢,6) C B and, furthermore, if
U € N(Aag, 8p) then SR,U € Aps Vn : nAt > T(At).

Proof. Let U € B\Aa;. It follows that
n(At) < V(U) < a(ro). (6.23)
Then, by Lemma 6.13 and (6.23) it follows that, for At € (0, At]
V(SLU) < e CAW(U)+ KLAt !

= e CAV(U) + gn(At)(1 - e

< 1+ e AV ().
Now define Aty = min{At;,v} where e"€7 41 = 2¢~¢7/4. Then

V(SAU) < e “A4v(U)

as required. Iterating this bound shows that, if we assume that Sgt € B\Aa;
for j =0,...,n — 1 then

V(SR,U) < e~ Oty (1), (6.24)
From (6.23) it follows that
V(SR,U) < e Cmit/4n(rg)
If nAt > T(At) then
e~ CmAYY < p(At)/a(ro)
so that
V(Sa:U) < n(At).

Hence SR,U € Aa¢, a contradiction. It follows that Sk, enters Aa; for some
n > 0:nAt < T(At).

Finally, to exhibit asymptotic stability we need to find an appropriate
8 such that M(Aa¢, ) C B. Let § = %ﬂ‘l(a(ro)) > 0. Then, if U €
N (Aat, 8p) we wish to show that U € B. Now, for any z € [RP,

dist(U, A) = inf [|U —y|| < ||U — inf ||z — y]|.
ist(U, A) = inf U =yl < U — 2]l + inf ||z — o]
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Choose z: ||U — z|| = infyen,, U — y||. Then, by Lemmas 6.15 and (6.19),
(6.20) we obtain

dist(U,A) < dist(U, Aag) + dist(Aag, A)
< o +a n(Ab))
r+1
= 187 (a(ro)) + ™! (%)
< 387 Ya(re)) + o (3a(r,))
< 187 Ha(rg)) + re = B (a(ro)).

Hence dist(U, A) < 87 (a(ro)) which implies that V(U) < B(dist(U, A)) <
a(rg). Hence U € B and the result follows. O

Finally we show that the stability is uniform.

Lemma 6.17 Let At € (0,Atz]. Then, for each ¢ > 0 there exists § =
6(e, At) > 0 such that

UeN(Aat,6) = SRU € N(Aar,€) Vn>0.
Proof. By Assumption 3.7(i)
ISaU = SaVII < (L + KAY|U - V.
Let
6 = min{éo, %e(l + KAt)_T(At)/At} .

Let U € N(Aat,8). If U € Aa; then positive invariance implies the result
automatically, by Lemma 6.15. Hence suppose U ¢ Aa:. Choose V € Aa;
such that dist(U, Aa¢) = ||[U — V||; then ||SR,U — S}, V|| < (1+ KAt)*||U -
V||. Also, since V € Aa; we have that SR,V € Aa;. Thus

dist(SR U Ase) < int (ISR~ yl < ISRU ~ SA VI
< 1+ KAY™U -V

= (14 KA#)"dist(U, Aat)

= (1+ KAH)"S. (6.25)

The bound (6.25) and the fact that § < §y shows that
dist(SA,U, Aae) < 3¢ Vn:nAt < T(Ab).
Also, since
SaU € Aar Vn:nAt > T(At)
we have
dist(Sx,U,Aat) =0 < %e VYn > 0.
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Proof of Theorem 6.12. Lemma 6.15 establishes existence of a positive in-
variant set Aa; and its convergence properties. Lemmas 6.16 and 6.17 show
uniform asymptotic stability and Lemma 6.16 gives the required absorbtion
property. O

In the following section we will give a different construction of a set Aa;
which has the same properties as the set Aa¢ constructed in Theorem 6.12.
We conclude this section with a corollary of Theorem 6.12 which relates
to the existence of attractors. Note that, whilst uniformly asymptotically
stable sets have been proven both upper and lower semicontinuous, the
following result establishes only upper semiconinuity of attractors.

Corollary 6.18 (Attractors under approximation) Assume that the
semigroup S(¢) for (1.1) has an attractor .A. Then there exists At, > 0 such
that, for all At € (0,At.], the approximating semigroup SR, for (1.2) has
a compact, uniformly asymptotically stable set Aa; O A and an attractor
Aat = w(Aae) satisfying

dist(Aat, A) = 0 as At — 0.

Proof. Note that A is uniformly asymptotically stable by Theorem 6.4(ii).
Hence, by Theorem 6.12 with A = A, we deduce that (1.2) has a uniformly
asymptotically stable set Aa; O A. Furthermore, by Theorem 6.4(iii) it
follows that Aa; = w(Aa¢) (the limit set being defined through SR,) is an
attractor for S},. Note that Aa; C Aa; and that, by Theorem 6.12,

dist(Aa¢, A) — 0 as At — 0.

Hence
dist(Aa¢, A) 0 as At — 0

and the proof is complete. O

6.3. Upper semicontinuity of attractors

In this section we consider the numerical approximation of (1.1) satisfying
(6.3). Under this assumption it follows from Theorem 6.7 that (1.1) has a
local attractor A = w(B) and it is thus natural to study the effect of the
numerical approximation of (1.1) on .A. It would be possible to use (6.3) to
deduce the exsitence of a uniformly asymptotically stable set for (1.1) and
then apply the methods of the previous section to deduce all the results in
this section. However, we present here an entirely different approach to the
problem. Our first result proves that an approximate attractors exists.

Theorem 6.19 (Existence of an approximate attractor) Consider
the approximation of (1.1) under (6.3) by (1.2) and let B = {u € R :
lull < R}. Then there exists At. > 0 such that the semigroup SR}, has an
attractor given by Aa¢ = w(B) for all At € (0, At.].
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Proof. Recall that 8B = B\B. By continuity of f and (6.3) it is possible
to choose § > 0 sufficiently small so that

(f(u),u) < ~Le Vu:R-6<|lul <R (6.26)

Recall also that, by Assumption 3.6, there exists L > 0 such that || f(u)|| < L
for all u € IR. Now choose At, > 0 so that

LAt < 16, KAtT < R, RKAt" < ke, KA < L6 VAL € (0,At,].
(6.27)
In the remainder of this proof we assume that At € (0, At.]. We deduce that

t+s
lu(t + 5) —u(t)|| < / [ fu(r)l|dT < LAt < 36 Vs € (0,At]. (6.28)
t
Thus, if R — §/2 < |U|| € R we have, from the positive invariance of B
under S(t) and (6.28), that
R-§<||[S@®U|| <R, te(0,At].
It then follows from (6.4) and (6.26) that, for all At € (0, At.],

At
ISAOUIR ~ VI =2 [~ (F(S(rU), S(r)U) dr < —eAt.

Hence by Assumption 3.7(iii), (6.26) and (6.27) we have
ISAUI? ~UI* < |sanU)? - U
+21ISAU| + 1S(AOU ~ SA U]
IS(AU ~ SAU||

< —eAt+ [2|S(AOU|| + 3[1S(AHU — SA, U]
x[|S(AU — SAU||

< —eAt+ 2R+ 3KATH KA

< —eAt+5RKALT!

< —%eAt.

Thus we have proved that
R-36<|UISR = |SaUl° - |U|P < —jeAt. (6.29)
Now, if [U|| < R — 16 we have, by (6.28), (6.27) and Assumption 3.7(iii),
ISAU || IS(ARU| + [S(At) — SR Ul
IUN + 1IS(AH)U - U|l + [|S(At) - SAU||
R— 16+ 36+ KAt
R- 16

VANVANEN VAN VAN

Hence
Ul<R-1L = |SAUl<R-1Ls (6.30)
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It is clear that (6.29) and (6.30) imply that
SL,BCB (6.31)

and hence, by the generalization of Theorem 6.2 from S(t) to SX,, we deduce
that Aa; = w(B) is an attractor for S},. O

As the example in Section 6.1 illustrates we cannot expect to obtain lower
semicontinuity of A without imposing further conditions on the dynamical
system in question. However, it is possible to derive upper semicontinuity
results without further assumptions.

Theorem 6.20 (Upper semicontinuity of attractors) Consider the
approximation of (1.1) under (6.3) by (1.2). Then the attractors of the
semigroups S(t) and SR%,, A and Ax; respectively, satisfy

dist(Aat, A) — 0 as At — 0.

Proof. Note that, if Aas C —/\—/(A, €), then dist(Aa¢, A) < € thus, if we
show that for any € > 0 there exists A = A(e) such that

Anr € N(Ae) VAt € (0,A], (6.32)

then the result follows. Thus we aim to prove (6.32).

First we estimate the attraction of B to a neighbourhood of A under S%,
by using the attractivity of B to A4 under S(t) and the truncation error
bound. We have that

dist(Sx, U, A) = 1161.2 ISAU — z||
ISR, U — S(nA)U|| + ig&”S(nAt)U —x||
< ISAU = S(nAY)U|| + dist(S(nAt)U, A).

IA

Hence we have that
dist(SA.U, A) < dist(S(nA)U, A) + ||SR,U — S(nA)U||. (6.33)

Now, since A attracts B under S(¢) there exists T' = T'(¢) > 0 such that,
forall U € B,

St)U e N(A,¢/2) Vvt >T. (6.34)

Without loss of generality we may choose T = N At for some integer N. By
Theorem 3.8 it follows that, for any U € B, there exists A = A(e) > 0 such
that for any At € (0, A]

|1Sx.U — S(rAYU|| < €/2 Vn,At:0< nAt < 2T. (6.35)
Hence it follows from (6.33), (6.34) and (6.35) that, for all At € (0,A]
dist(Sx;B,A) <e¢ Vn,At:T <nAt<2T. (6.36)
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We now proceed to use induction. Suppose that, for some integer £ > 2

dist(SR,B,A) <e Vn,At:T <nAt <kT. (6.37)
Note that this has been proved true for k£ = 2. Now consider integer n such
that kT < nAt < (k+ 1)T. Choose m and p such that n = m +p, T <
mAt < 2T and pAt = (k — 1)T; thus p = (k — 1)N. Then S},B = SX,SX,B
and by (6.31) it follows that S%,B C B. This implies that

Sx.B = SX,Sk,B C S}, B;
since T < mh < 2T it may be shown, from (6.36) with n +— m, that
SX:B C N(A,e)
and hence that
SR:B CN(Ae) VYn,At: kT <n<(k+1)T.

This, together with (6.37), completes the inductive step and we deduce that

dist(Sx,; B, A) < e Vn,At:T < nAt < oc. (6.38)

Finally recall that

Ase= [ U SA:B

m>0n>m

and since (6.38) holds it follows that

U Sn BCN (A, e),

n>N
where NAt = T, and hence Aa; C X/'(A, €) as required. O

Note that Theorem 6.20 does not give a rate of convergence for the quan-
tity dist(Aa¢,.A). This is since nothing is assumed about the rate of attrac-
tion of the attractor. If the rate is assumed exponential then a stronger
result can be proved and we obtain the error bound given in Theorem 6.21
below. Note that the bound is less than the rate of convergence of individual
trajectories and reflects the competition between the exponential attraction
to A (which determines o) and the exponential divergence of trajectories on
A (which determines K).

Theorem 6.21 (Rate of convergence of attractors) Consider the ap-
proximation of (1.1) satisfying (6.3) by (1.2) and assume that the attractor
of the semigroup A is exponentially attracting in the sense that there exist
Ci1 > 0,a > 0 such that

dist(S(t)B, A) < Cre™ ", (6.39)
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Then there exist At.,Cy > 0 such that the the global attractors A4 and Ax,
of S(t) and SR, respectively, satisfy

dist(Aas, 4) < CrAL,
where 3 = ar/(K + «), for all At € (0, At.].

Proof. Using (6.33) and the arguments following it in the proof of Theorems
6.20, 6.39 and using Theorem 3.8, we obtain, for any U € B,

dist(S%,U, A) < Cre T + KTAL" for n,At: T <nAt < 2T. (6.40)

We can balance the contributions in (6.40) to find the relationship between
T and At which optimizes the error. We find that

At e—(a+K)T/r

is the appropriate choice. This shows that there exists Cy > 0 such that, for
any U € B,

dist(S%,U, A) < CoAt?  for n,At: T < nAt < 2T.

Proceeding with an induction argument as in Theorem 6.20 we obtain the
required result. O

We can use the construction of Theorem 6.20 to prove a result closely
related to Theorem 6.12.

Theorem 6.22 (Uniformly asymptotically stable sets under ap-
proximation) Consider the semigroup S(¢) for (1.1) under (6.3) with at-
tractor \A. Then there exists At, > 0 such that, for all At € (0, At.], the
approximating semigroup SR, for (1.2) has a compact, uniformly asymptot-
ically stable set Aa; 2 A which satisfies

dy(Aar, A) — 0 as At —0.

Proof. Let At € (0,At;] where At. is given by Theorem 6.20. To prove
this result define

o0
AAt = -AAt U U Sgt‘A

n=0
where A = w(B) and, by Theorem 6.19, Aa; = w(B) (the limit sets being
defined through S(t) and SR, respectively.) Note that, by Theorem 6.19,
both A and Aa; are contained in B so that Aa; € B. Since Aa: contains
Apa¢ which is an attractor for S%,, it follows that Aa: is asymptotically
stable for SX,. Note also that Aa; is positively invariant under S}, since
Aat is invariant by Theorem 3.3 and U2 (SR, A is positively invariant by
construction; thus it follows by using a similar argument to that used in
establishing Theorem 6.4(ii), that Aa; is uniformly stable.
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It remains to establish the error bound. Since Aa; 2O A we have
dist(A4,Aa:) =0 VAt € (0, At.].

Note that, since A € B we have from (6.38) that, for any € > 0, there exists
T =T(e) > 0 such that

dist(SA, A, A) <e Vn,At: T <nAt < oo.

Furthermore, since S(t)A = A it follows from (6.35) that there exists A =
A(e€) > 0 such that, if At € (0, A] then

dist(Sx.A, A) < 3¢ Vn,At:0 < nAt < 2T.
Also Theorem 6.20 yields
dist(Aa¢, A) < €
for A < A(e). Combining these estimates shows that
dist(Aat, A) < €
for A < A(e) as required. O

6.4. Lower semicontinuity of attractors

As we have seen, lower semicontinuity results are not true in general. How-
ever, if we make assumptions about the nature of the flow on the attractor
A then it is possible to prove lower semicontinuity with respect to numer-
ical perturbations. One important case where this is possible is when the
dynamical system S(¢) is in gradient form and the set £ is a bounded set con-
taining only hyperbolic equilibria. We assume this henceforth. The method
of proof is to decompose the attractor .A according to the value of F'(-) and
build up the nearby approximate attractor Aa; starting from the smallest
value of F on the attractor.
We make the following assumption throughout this section:

Assumption 6.23 The dynamical system (1.1) has vector field f given by
(6.5) and is a gradient system; furthermore, the set £ of equilibrium points
is bounded and comprises only hyperbolic equilibria.

Thus we may enumerate the set of equilibrium points of S(t) as
E={zy,...,am} (6.41)
Let
v >V > ... > UN

be the distinct points of {F(x;),...,F(zp)}. Since £ is bounded the as-
sumptions of Theorem 6.10 hold. Thus the set B = B(R) given in that
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theorem is uniformly asymptotically stable for any R > £. Hence we may
define

EF={z €& F(z)=w}, U*={zeB: F(z)<uw}
(6.42)
WH = Upepr W¥(z), AF =UL, Wk

We will require the following lemma concerning these sets:

Lemma 6.24 Consider a dynamical system (1.1) under Assumption 6.23.
Then S(t) : U* — Uk, k =1,...,N and A* attracts all compact sets in
Uk-1,

Proof. See Hale (1988), Theorem 3.8.7. O

Since .A! contains the unstable manifolds of all equilibria, it follows from
Theorem 6.11, noting that all equilibria are assumed hyperbolic, that 4! =
A. On the other hand, since all points in EVY must be stable as there are
no equilibria with lower values of F' than those in EV and (6.6) holds, we
deduce that AN = EN. It is straightforward to show that EV is close to its
discrete counterpart; we use this as the basis of an inductive proof to build
up the properties of the approximate attractor. We require the following
lemma — recall the definition £a; of the fixed points of Si\t.

Lemma 6.25 Under Assumption 6.23 there exist C, At, > 0 such that,
for all At € (0, At.], the semigroup Sk,1 has M fixed points, X; € Ear C B
Jj =1,...,M, all of which are hyperbolic and satisfy ||z; — X;|| < CAt".
Furthermore, for any € > 0 there exists ¢ > 0 such that

dist(W™<(z;), W (X)) < CAF.

Proof. Let At. be given by the minimum At, found in Theorems 4.10 and
4.11 and Corollary 4.13. By Theorem 4.10 the existence and closeness of the
approximate fixed points follows and, by Theorem 4.11 we deduce that no
others exist. Corollary 4.13 gives the required bound for the local unstable
manifolds. O

Thus we may set
Ene={X1,...,Xm}. (6.43)
and let
Vi>Ve>...> VN
be the distinct value of F(-) on the members of £4;. Definitions analogous

to (6.42) can be made for the dynamical system generated by (1.2). Thus
we define

EZt = {.’E € gAtZF(.’L‘) = Vk}andUgt = {.’L‘ c BF(.’I,') < Vk},
k

; 6.44
WAt = UerZt WAt(.’E)a,nd.AkAt = U_;V:k Wgt ( )
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Notice that since the global attractor must include the union of all unsta-
ble manifolds of fixed points by Theorem 6.11, we have

Ak, C Appk=1,...,N (6.45)

and this is the only property required of the Agt. We now use the decom-
position to prove lower semicontinuity for the numerical method.

Theorem 6.26 (Lower semicontinuity of attractors) Consider (1.1)
under Assumption 6.23 with attractor .A. Then there exists At. > 0 such
that for At € (0, At.] the numerical solution (1.2) possesses an attractor
Aa: which satisfies

dH(.AAt,.A) — 0 as At — 0.

We postpone the proof of the theorem until after the following lemma,
which is fundamental in the proof.

Lemma 6.27 Consider (1.1) under Assumption 6.23. Assume that there
exists Ay such that

. €
dist(A*, A%,) < o VAtE (0,4 (6.46)
Then there exists Ag_1 such that
. — — €
dist(A*1, A5 < ST VAtE (0,8 ). (6.47)

Proof. In the proof it is useful to observe from (6.42) and (6.44) that

Ak-Y = wk-1y 4%

k— k— (6.48)
AAtl = Wx, tu ‘Agt'

Suppose that (6.46) holds. Now, since A% D AKX, by (6.48), it follows

that
€

dist(A", AR;") < dist(A", AR, = o
Furthermore, by (6.48) we deduce that
dist(AF 1, AETY) = max(dist(WH—1, 4571, dist (AF, A5T)).
Hence, to establish (6.47), it is sufficient to show that

€
2k—1'

dist(W*=1, 4571 < (6.49)
Recall the notation (3.3) and let

k-1 U (W""S(;z:)ﬂaB(a:ﬁ)),
CEEEk_l
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for some 6§ > 0. The set ['*~! is compact and, by Lemma 4.2, we have

wki= | {W”’é(a:)} U s@rk-t, (6.50)

zeEk-1 t>0

To establish that (6.49) holds we consider three separate cases corresponding
to a breakdown of W*~1 into three different subsets.

(a) Note that T*~1 ¢ U*! by (6.6). By Lemma 6.24 AF attracts all
compact subsets of U¥~! and so there exists t;_; such that
€

dist(S(t)I*~1, Ak) < o5 VE>ten

But by the inductive hypothesis (6.46) and (6.48) we have
dist( |J st Algh) <dist( J s@rit Al

t2>t—1 2>t 1

<dist( |J SO, A%) + dist(A*, AR,) (6.51)

>t
< 2¢/2F = ¢/28 1.

(b) Recall the time tx_; given in (a), the constant Ax > 0 from (6.46)
and the constant K from Assumption 3.7.

Now, given z € E*~1 let X € Efgl be the approximate fixed point given
by Lemma 6.25. By Lemma 6.25 it follows that there exist A! > 0 and
8" > 0 such that

dist(W3'(2), W§ ae(X)) : :

1
< T c— < ST VAt € (0,A]. (6.52)

Hence
€

2k-17

dist(Wg(z), A1) < (6.53)

since Wi A4(z) C AR

(c) Now we show that dist(S(t)Fk_l,AZ_tl) <e¢/2 1 fort € (0,t,_;]. By
Theorem 4.11 we can choose At? > 0 such that for At € (0,At2] and any
v,w € IR satisfying

€

Il —wll < 720

(6.54)

we have
|S(nAt)yy — SR,w]| < €/2571 for nAt < tp_i + Ax. (6.55)

Now let Az_, = min(At', At?, Ag). Suppose At < Ax_; and that u €
S(t)T*~! for t € (0,x_1). Then, by Lemma 4.2, there exists v so that

v € B(z,8) nW¥(z)
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for some x € EF~!, such that S(nAt)v = u and nAt € [0,t;_; + At). By
(6.52) there exists w € WZ,(X) such that (6.54) holds. Now, by (6.55),

lu = SRewll = S(nAt)y — Swll < /2571 VAL € (0, Ag-y].

Since the unstable manifold is invariant by Theorem 4.2 and is contained in
the attractor by Theorem 6.11, we have S}, w € A’th; hence it follows that

dist(u, AR;1) < /257

But u is an arbitrary point in Uye(os, 4] S(t)I'*~1 and hence

dist( U S(t)r’“—l,A’g;l)Sle_l. (6.56)

te(0,tx_1]

By the definition (6.50) of W*~!  the estimates (6.51), (6.53) and (6.56)
together establish that

dist(W*=1, A5 < e/2F 1
and complete the proof of the lemma. O

Proof of Theorem 6.26. First note that, since S(¢) has an attractor A, it
follows from Corollary 6.18 that .S lAt has a nearby uniformly asymptotically
stable set Aa; and an attractor Aa: = w(Aa:) satisfying

dist(Aa¢, A) — 0 as At — 0.
Thus it remains to establish the lower semicontinuity result that
dist(A4, Aa:) — 0 as At —0.

It is sufficient to prove that given any € > 0 there exists A = A(e) such that
if At < A then dist(A, Aa;) <e.

Recall the notation and decomposition of A and Aa; given in (6.42) and
(6.44). Note that, as described above, AY = EV and AY, = E¥,. Applying
Lemma, 6.25 we deduce that there exists Ay > 0 such that

dist(EN, EX,) = dist(AN, AY,) < e/2V VAt € (0,An].

By induction, using Lemma 6.27, we deduce that there exists Ay such that,
fork=1,... N

dist(A*, AK,) < /28 VAt € (0, Ag).
In particular, since A! = A and AL, C Aa; by (6.45) we deduce that
dist(A, Aae) < e VAt € (0,4,4].
This completes the proof. O
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6.5. Lower semicontinuity of global unstable manifolds

In this section we examine the lower semicontinuity of the global unstable
manifolds of (1.1) with respect to numerical perturbation. Recall that we
have already studied a related question for the local unstable manifold in
Section 4 — see Corollary 4.13. Since the global unstable manifold of a fixed
point is necessarily contained in the global attractor by Theorem 6.11, it
is natural to study them in the context of attractors. As a corollary we
shall obtain a simpler proof of Theorem 6.26 since, for gradient systems
with only hyperbolic equilibria, the attractor comprises unstable manifolds
of equilibrium points.

Theorem 6.28 (Global unstable manifold under approximation)
Assume that (1.1) has an equilibrium point v and that V is the equilibrium
point of (1.2) which converges to v as At — 0. Then if the unstable manifold
W*(v) is bounded it follows that

dist(W¥(v), WX, (V)) — 0 as At — 0.

Proof. It is sufficient to prove that, given any ¢ > 0, there exists A > 0
such that for every y € W*(v) there exists Y € W*(V') with the property
that ||y — Y| < 2¢ for At € (0, Al.
Recall 0B(v;r) and I" given by (3.3) and (4.7). Now set
W = W¥(u)\W*(v). (6.57)

Then, for € sufficiently small,

w=Js@r
>0

Since W*(v) is bounded it follows that W is compact. It may be noted that
{B(z;€):x € W} is an e-cover for W and hence, since W is compact, we may
extract a finite subcover. Denote this subcover by {B;(e)}/_; and note that
each B;(e) contains a point y; € W, where B;(¢) = B(y;, e) By construction
there exists z; € I’ and T; > 0 such that S(7T};)z; = y; for each y; € W. Now,
by Corollary 4.13, it follows that there exists X; € W*(V) and A(:) > 0
such that

lzs — Xl < €/(2e"T) VAt € (0, A®0)); (6.58)
by the invariance of the unstable manifold (see Lemma 4.2) it follows that
Y, = S}, Xi e WHV).

It now follows from Theorems 3.8 and (6.58) that
lys = Yall < (5T = 1AL +
for At € (0, A(¢)]. Thus, by further reduction of A( ) if necessary, we find
that
v — Vil < e, VAL € (0,AG)]
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Since I is finite, we deduce that there exists {Y;}/_; each lying in W*(V)
and A > 0 such that

- Y|l < :
max Jly: — Yill < e VAL €(0,A]

Thus, since y; is the centre of B;(€), we deduce that for every y € B;(e) and
i:1 <14 <1I there exists Y; € W*(V) such that

ly — Yi|l < 2¢ VAt € (0,A]

Since the B;(e),i =1,...,I form a cover of W we deduce that

distW, W*(V)) < 2¢ VAt € (0,A]. (6.59)
Now, by Corollary 4.13 there exists §' > 0 such that
dist(W*®(v), Wef' (V) < 2¢ VAt € (0, H], (6.60)

possibly by further reduction of A. Putting (6.59) and (6.60) the result
follows by (6.57). O

We now use this result to study lower semicontinuity of attractors. We
make the following assumption:

Assumption 6.29 The dynamical system (1.1) has a global attractor A
where

A= | W)
zel!

and &' comprises a finite number of hyperbolic equilibrium points of (1.1).

Note that this assumption is a consequence of Assumption 6.23 but that
Assumption 6.29 is weaker. For example, Assumption 6.29 admits the equa-
tions (3.12) with global attractor given by the disc z2 + y? < 1. Under
Assumption 6.29 we may prove lower semicontinuity of the attractor, yield-
ing a simpler proof of Theorem 6.26.

Corollary 6.30 (Lower semicontinuity of attractors) Consider (1.1)
under Assumption 6.29. Then there exists A > 0 such that for At € (0, A]
the numerical solution (1.2) possesses an attractor Aa; which satisfies

dy(Aae, A) — 0 as At — 0.

Proof. It follows from Corollary 6.18 that there exists an approximate at-
tractor Aa¢ satisfying

dist(Aa¢, A) — 0 as At — 0.
Thus it remains to establish the lower semicontinuity result that

dist(A, Aa;) =0 as At —0. (6.61)
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Let v € £'. By Theorem 6.28 we deduce that there exists a fixed point V
of S}, such that

dist(We(v), WX, (V)) — 0 as At — 0.

But, by Theorem 6.11, WX, (V) C Aa; and hence it follows that

dist(W¥(v), Aat) — 0 as At — 0.

Since Assumption 6.29 holds it is clear that (6.61) follows and the proof is
complete. O

6.6. Bibliography

The material in Section 6.1 can be found in several books, notably Hale
(1988), Bhatia and Szego (1970), Hirsch and Smale (1974) and Yoshizawa
(1966). For Theorem 6.2 and related results see Hale (1988). For Theorem
6.5 see Yoshizawa (1966); Bhatia and Szego (1970) also contains similar re-
sults on converse theorems for Lyapunov functions. The importance of gra-
dient systems is that they enable an explicit decomposition of the dynamics
into equilibrium points together with a Lyapunov function decreasing along
all trajectories connecting equilibrium points at ¢ = £o0; this idea can be
generalized to allow the equilibrium points to be replaced by more general
limit sets. For results concerning gradient systems see Hirsch and Smale
(1974) and Hale (1988).

The first article concerning a detailed analysis of the effect of numeri-
cal approximation on sets possessing some general form of attractivity is
Kloeden and Lorenz (1986). They essentially proved Theorem 6.12, which
concerns upper and lower semicontinuity of uniformly asymptotically stable
sets Corollary 6.18, concerning upper semicontinuity of attractors, is a con-
sequence of their work. The approach of Kloden and Lorenz, using Lyapunov
functions, was generalized to partial differential equations in Kloeden and
Lorenz (1989); it is extended to multistep methods in (Kloeden and Lorenz,
1990). Theorem 6.20 is due to Hale and Raugel (1989) although their result
is more general, concerning an arbitrary attractor in a Banach space. A sim-
ilar result may also be found in Temam (1988). As can be seen by comparing
the work required to prove Corollary 6.18 (via Theorem 6.12) and Theorem
6.20, the approach of Hale et al. (1988) is considerably shorter than that of
Kloeden and Lorenz (1986) if interest is focused only on attractors. Further-
more, as pointed out in Hill and Suli (1993), results strongly related to those
of Kloeden and Lorenz (1986) concerning uniformly asymptotically stable
sets can be deduced from the approach of Hale et al. (1988) — this is then
proved in Theorem 6.22. Theorem 6.21, concerning the rate of convergence
of the attractor when it is exponentially attracting, has not appeared in the
literature; however, the basic idea for the proof is contained in the study of
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exponential attractors in Babin and Vishik (1992). The issues concerning
the derivation of upper semicontinuity results for partial differential equa-
tions are considerably more subtle than for ordinary differential equations
since, frequently, the spaces in which the attractors lie are not sufficiently
regular to apply standard smooth initial data error bounds; Larsson (1989)
contains a self-contained and clear presentation of this issue in the context
of the finite-element approximation of the reaction-diffusion equation and
that work is generalized to cover the Cahn-Hilliard equation in Elliott and
Larsson (1992). In Yin-Yan (1993) similar issues are considered for finite
difference approximations of the Navier-Stokes equation and in Lord and
Stuart (1994) for finite difference approximations of the Ginzburg-Landau
equation. The whole question of the existence of global attractors under
approximation is reviewed in Humphries et al. (1994).

Section 6.4 contains an exposition of the work of Hale and Raugel (1989)
concerning the lower semicontinuity of attractors for gradient systems. The
presentation given here is closely related to that given in Humphries and Stu-
art (1994) where Runge-Kutta methods are studied in this context. As can
be seen, the proof is not at all straightforward and for this reason more ac-
cessible proofs have been sought. An alternative, more accessible approach
is described in Section 6.5, culminating in Corollary 6.30. This approach
is due to Humphries (1994); it is interesting to note that, whilst a more
general class of problems is considered in Section 6.5 than in Section 6.6,
Humphries’ proof of lower semicontinuity is more straightforward than that
of Hale and Raugel — compare Theorems 6.26 and Corollary 6.30. Fur-
thermore, the approach of Humphries also yields further information about
the global unstable manifolds and can be trivially modifed to obtain upper
semicontinuity of global unstable manifolds. The approach of Humphries is
extended to partial differential equations in Humphries et al. (1994).

Note that we have described a variety of results in this section some of
which supersede others, at least on a superficial level. However, since it
is not clear in which direction these results can be generalized, we feel it
worthwhile to document in detail the various approaches to these problems.

7. Conclusions

In this article we have concentrated on the convergence of limit sets and
invariant sets of a time continuous semigroup, under numerical approxima-
tion of the evolution semigroup by a time discrete semigroup. It should be
clear that a fairly full picture of this subject has now been developed and
that, furthermore, there are a variety of approaches to some of the questions
studied. It is natural to ask at this point what future directions are likely
to be of scientific interest in this subject area. We give a purely subjective
answer by describing areas likely to be fruitful for future development.
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7.1. Convergence of attractors

As the work of Section 6 shows, it is not in general possible to prove lower
semicontinuity of attractors. In practice this means that numerical compu-
tations may ‘miss’ part of the true attractor. The only situations in which it
is currently possible to prove both upper and lower semicontinuity are those
in which something is known about the flow on the attractor — specifically,
lower semicontinuity has been proved for certain hyperbolic gradient systems
(Section 6.4) and for systems whose attractors are the union of the closure
of unstable manifolds of equilibria (see Section 6.5). The important point
about the assumptions made in Sections 6.4 and 6.5 is that they amount to
a form of hyperbolicity of the flow on the attractor. There are two directions
that the study of attractors can be taken.

The first is to investigate further the hyperbolicity conditions on the flow
on the attractor which yield lower semicontinuity results. However, since
such questions are by no means fully understood even in the context of
smooth perturbations of the vector field in (1.1), this question appears quite
difficult. To pursue this avenue will require a parallel development of the
general theory of structural stability of attractors. The work of Pliss and
Sell (1991) is of interest in this context.

The second is to weaken the concept of attractor to obtain an object which
is, for example, exponentially attractive and retains favourable properties
under perturbation. In a sense this is what the concept of uniformly asymp-
totically stable sets (see Section 6.2) does. However, other generalizations
are possible. The inertial manifold is an enlargement of the global attractor
to obtain an exponentially attracting object and it is possible to prove both
upper and lower semicontinuity for the inertial manifold - see Foais et al.
(1988), Demengel and Ghidaglia (1989) and Jones and Stuart (1993). If this
work could be combined with, for example, the approach of Pliss and Sell
(1991) it might be possible to make useful deductions about the relationship
between the flows on the true and numerical attractors. The concept of in-
tertial sets is of also interest (see Eden et al. (1990)). The inertial set is an
enlargment of the attractor to a positively invariant set which is contained in
an inertial manifold and is exponentially attracting. It is plausible that this
object is both upper and lower semicontinuous with respect to numerical
perturbations of the semigroup.

7.2. Shadowing

We have not explicitly described the subject of shadowing at all in this
article although it will almost certainly play an increasingly important role
in making statements about the meaning of long-time computations. The
general area of shadowing is enormous and there is not room in this article
to do it justice. We briefly mention some existing literature in this area.
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Seminal work in this area can be found in Hammel et al. (1987; 1988)
where the effect of round-off error is studied on the computer iteration of
certain chaotic maps, such as the quadratic map and the Henon map. Subse-
quently this work was generalized to consider the effect of numerical approx-
imation and the following references in the area are representative of this
growing field: Chow and Palmer (1990a,b), Chow and Van-Vleck (1993),
Corless (1992), Corless and Pilyugin (1993) and Sauer and Yorke (1991).

The concept of shadowing is closely related to the notion of backward error
analysis, familiar to numerical analysts. The approach of Beyn (1987b) to
the approximation of phase portraits is a form of backward error analysis
and the idea has been taken further in Eirola (1993), Corless and Corliss
(1991) and Elliott and Stuart (1994).

7.8. Direct numerical approximation of invariant sets

In this article we have been mainly concerned with numerical approxima-
tion of the semigroup S(t) generated by (1.1). This approach, where the
invariant sets of the differential equation are observed indirectly as corre-
sponding invariant sets in the numerical method, is sometimes termed the
indirect approach (Beyn, 1992). An alternative is the direct approach where
a numerical method is constructed to compute a given invariant set di-
rectly. To do this it is necessary to set-up defining equations, typically a
boundary value problem, for the invariant set of interest. This is an area
in which there is some existing work but in which there is much room for
further development, especially as increases in computational power mean
that computations previously prohibitively expensive, in comparison with
standard indirect simulations, are now straightforward. We briefly describe
some of the existing literature.

The simplest invariant objects (1.1) are, of course, equilibrium solutions
and much literature exists concerning solution of equilibrium problem ex-
ists; indeed, the development of the subject is such that excellent packages
now exist — for example the package PITCON; see Rheinboldt (1986). It is
also true in the case of periodic solutions arising from Hopf bifurcations that
excellent packages exist — see for example the package AUTO described in
Doedel and Kervenez (1986). The computation of quasi-periodic solutions
(invariant tori) has not yet evolved to the extent where automatic software
is available. However, considerable advances have been made and the fol-
lowing references summarise the existing literature: Aronson et al. (1987),
Van Veldhuizen (1988), Dieci et al. (1991) and Dieci and Lorenz (1993).
The article by Moore (1993) contains a unified treatment of computational
techniques for periodic solutions and invariant tori.

It appears that it is not possible to formulate the question of the existence
of a general compact invariant set as a boundary value problem. However,
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there are a number of direct computational methods of relevance to the
study of general, possibly strange, invariant sets. In Beyn (1990) the con-
cept of computing connecting orbits directly was introduced and analysed.
Connecting orbits are solutions of (1.1) which connect together two limit
sets as ¢ — =*o0; they are of importance in understanding dynamical sys-
tems in many different contexts, including the existence of chaos. The work
of Beyn has been taken further in Bai et al. (1993), Moore (1993) and Liu
et al. (1993). Connecting orbits may be viewed simply as the intersection
of stable and unstable manifolds; the direct computation of stable and un-
stable manifolds is considered in Homburg et al. (1993) and Hubert (1993).
In many circumstances the charactersitics of a strange attractor can be well
understood by investigating the Lyapunov exponents; an article contain-
ing recent developments in this area, together with a survey of the existing
literature, is Dieci et al. (1993).

7.4. Generalization to partial differential equations

Much of the numerical analysis described in Sections 3, 4 and 5 has only
been fully developed for ordinary differential equations and there are many
interesting remaining questions concerning extensions to partial differential
equations. Some of these have been addressed for specific equations (typi-
cally in reaction-diffusion) and specific methods.
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