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Differential equations subject to random impulses are studied. Randomness is
introduced both through the time between impulses, which is distributed exponen-
tially, and through the sign of the impulses, which are fixed in amplitude and orien-
tation. Such models are particular instances of piecewise deterministic Markov
processes and they arise naturally in the study of a number of physical phenomena,
particularly impacting systems. The underlying deterministic semigroup is assumed
to be dissipative and a general theorem which establishes the existence of invariant
measures for the randomly forced problem is proved. Further structure is then
added to the deterministic semigroup, which enables the proof of ergodic theorems.
Characteristic functions are used for the case when the deterministic component
forms a damped linear problem and irreducibility measures are employed for the
study of a randomly forced damped double-well nonlinear oscillator with a gradient
structure. � 1999 Academic Press
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1. INTRODUCTION

In this paper we study the ergodic behaviour of ordinary differential
equations (ODEs) subject to random impulses��specifically impulses of a
fixed amplitude and orientation which occur after random, exponentially
distributed intervals of time, and have a random sign.
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Given a vector w # Rm (the impulse), an initial state u0 , and a vector field
f # C�(Rm, Rm), we consider the equation

du
dt

= f (u)+ :
�

n=1

%nw$(t&{n), u(0+)=u0+%0w. (1)

Here $( } ) denotes a unit point mass at the origin; the [%n]�
n=0 are inde-

pendent, identically distributed (IID) random variables with P[%0=\1]
= 1

2 ; and the waiting times tn={n+1&{n , n # Z+, {0=0, are IID random
variables exponentially distributed with parameter *. Moreover we assume
that the sequences [%n]�

n=0 and [tn]�
n=0 are independent. Here N=

[1, 2, 3, ...] and Z+=[0, 1, 2, ...].
We assume that the vector field is such that, for any initial data, the

deterministic problem underlying (1) has a unique solution for all t�0. We
denote by S # C�(Rm_R+, Rm) the semigroup generated by the problem

du
dt

= f (u), u(0)=U ; (2)

thus the solution of (2) is u(t)=S(U, t) for t�0. Occasionally we will use
S(U, } ) with negative argument, noting that this is well-defined on a U
dependent interval of R&. Using this semigroup we give Eq. (1) a precise
interpretation. Its solution is

u(t)=S(u({&
n )+%nw, t&{n), t # ({n , {n+1), n # N.

This follows by noting that, for t{{n , Eq. (1) is a standard ODE, whilst
integrating over ({n&=, {n+=) and letting = � 0 yields u({+

n )=u({&
n )+%nw.

Note that u is not defined at the impulse times {n . One could define u(0)=u0 ,
u({n)=u({&

n ), n # N+ for example, a choice that makes u left-continuous
with right-hand limits, but this definition is not used later.

If we set un :=u({&
n ), n # N+, then we obtain

un+1=S(un+%nw, tn), n # N. (3)

Since the pairs (%n , tn) are IID, Eq. (3) generates a discrete-time, homo-
geneous Markov chain with uncountable state-space Rm.

Equations such as (1) arise naturally in a variety of different contexts. In
[2] a collection of deterministic problems arising in engineering and
involving differential equations subject to impulses are studied; Eq. (1)
provides a natural first step into the study of randomly occuring impulses.
Motivated by applications in [14], the article [7] contains calculations of
first-passage times for (1) with f#0 and the %j exponentially distributed.
The paper [17] analyzes a linear problem of the form (1) but with %j

depending upon u (multiplicative noise). Both [7] and [17] rely heavily
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on explicit calculation of probability densities. An equation similar to (1)
with multiplicative noise is studied numerically in [10]; the numerical
method revolves around direct solution of the integral equation governing
probability density evolution. A problem closely related to ours is to consider
a vector field with random parameter which flips between two possible values
at random times��see [13]. Also (1) provides a particular instance of a
piecewise deterministic Markov process as in the important work of Davis
[3, 4]; however, we find it expedient to work directly with the Markov
chain (3) rather than the Markov process generated by (1).

We were originally motivated by random generalizations of the impulse
oscillators described in [2] and for such problems (2) represents a damped
oscillator; therefore our analysis will concern problems where a dissipative
mechanism is present. Our main contribution consists of some nontrivial
ergodicity proofs; ergodicity is a consequence of the balance between deter-
ministic dissipation and mean input of energy through noise.

However, ergodicity is difficult to prove in general for problems like (3)
essentially because a non-trivial interaction between the direction of random
impulses, and the underlying deterministic flow, is necessary to establish
irreducibility. Natural generalizations of our problem, for which it would
be easier to prove ergodicity, would allow random rotations of the impulse
vector, at least within some subspace of Rm, and impulses which have con-
tinuously distributed amplitude. For our problem, in which orientation and
amplitude of the impulse vector are fixed, we have been able to prove
ergodicity only for two examples. In the first, m=1 and hence the orienta-
tion of the impulse vector is immaterial. In the second, the dimension is
m=2 and the rotational character of the deterministic flow is combined
with fixed orientation impulses to deduce irreducibility; once this has been
done, a Lyapunov�Foster drift condition essentially gives ergodicity.

In Section 2 we prove the existence of invariant measures for (3) under
two distinct structural assumptions on f, both inducing some form of dis-
sipation in the deterministic problem (2). In Section 3 we study ergodicity
for the linear scalar problem f (u)=&#u; characteristic functions are
employed. Similar issues are addressed for a damped double-well nonlinear
oscillator in Section 4, employing the abstract theory of Markov chains in
uncountable state spaces from [11]. We note that the requirement that the
impulses have constant direction appears naturally in this nonlinear oscillator
example and makes ergodicity more difficult to prove.

2. DISSIPATIVE IMPULSE SYSTEMS

In this section we introduce the two classes of vector fields f in (1) of
interest to us. Both are dissipative (see [6]) in the sense that, in the absence
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of impulses, for the semigroup S( } , } ) generated by (2), there is a bounded
positively invariant absorbing set B such that, for any U # Rm, S(U, t) # B
for all t�T, T=T(U). Clearly in a dissipative system all positive orbits are
bounded; this implies in particular that the solution of (1) exists for all
positive t>0 provided that the waiting times tn are such that � tn=�,
which happens with probability 1. Roughly speaking, the balance between
this dissipativity property and the expected net input of energy through
noise will lead to the existence of invariant probability measures. Situations
where similar balances between dissipation and noise take place are of
course very common in statistical mechanics.

Throughout, & }& and ( } , } ) denote the Euclidean norm and inner
product.

2.1. The First Class

In the first class of problems, the semigroup is generated by (2) under
the assumption that there exist :>0 and ;>0 such that, for each u # Rm,

( f (u), u)�:&; &u&2. (4)

Such a semigroup is dissipative with absorbing set given by the ball of
centre 0 and radius :�;+= with arbitrary =>0. Examples include the scalar
linear problem

m=1, f (u)=&#u, #>0 (5)

and the Lorenz equations (m=3)

xt=&_(x& y),

yt=rx& y&xz, (6)

zt=&bz+xy.

For Eq. (6) with u=(x, y, z&r&_) the governing equations then satisfy
(4) (see [15]).

We now proceed to show that, for problems of this class, the expected
value of &un&2 is ultimately bounded independently of the initial (n=0)
distribution + of the Markov chain. This is a stochastic analog of the
dissipativity of the underlying deterministic systems.

Here and elsewhere, E + denotes unconditional expectation when the
initial state u0 is distributed according to +. Furthermore the notation
E( } | Fn), n # N is used to mean conditional expectation given the _-algebra
of the events that only depend on the first n+1 coordinates u0 , ..., un (note
the superscript + is not needed in view of the Markov property).
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Theorem 2.1. Consider the semigroup S( } , } ) generated by (1) under (4)
and assume that the Markov chain (3) has initial data distributed according
to a probability measure + with

|
Rm

&u&2 +(du)<�. (7)

Then,

E(&un+1&2 | Fn)�
*

*+2;
&un &2+2

:+'
*+2;

, (8)

where

' := 1
2 * &w&2. (9)

Furthermore, E +(&un&2)<� for all n # N and, for any C>(:+')�;, there
is N=N(+) such that, for n�N,

E+(&un&2)�C. (10)

Proof. Integrating the inequality

1
2

d
dt

&u&2�:&; &u&2,

we obtain, for t # ({n , {n+1),

&u(t)&2�
:
;

+e&2;(t&{n ) \&u({+
n )&2&

:
;+ .

Thus, recalling that un+1=u({&
n+1) and u({+

n )=un+%nw,

&un+1&2�
:
;

+e&2;tn \&un&2+2%n (un , w)+&w&2&
:
;+ .

Noting that tn and %n are independent of u0 , ..., un (and of each other) we
get, after computing the expected value of e&2;tn,

E(&un+1&2 | Fn)�
:
;

+
*

*+2; \&un &2+&w&2&
:
;+ ,

which gives (8).
From the last bound,

E+(&un+1 &2)�2
:+'

*+2;
+

*
*+2;

E+(&un&2),
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and E+(&un&2)<� for all n # N provided that (7) holds. Also

E+(&un&2)�
:+'

; \1&\ *
*+2;+

n

++\ *
*+2;+

n

E+(&u0 &2),

and the final result follows. K

Remark. In this result, and in Theorem 2.3, the ultimate bound for
E+(&un&)2 is an O(') perturbation of the bound in the corresponding deter-
ministic situation. This shows that, in our setup, '<<1 is an appropriate
definition of small noise.

2.2. The Second Class
In the second class we assume that m=2l, u=(qT, pT )T, and that the

system is of the form

d
dt \

q
p+=\ p

&#p&{V(q)+ (11)

with #>0. This, of course, represents a damped mechanical system with
potential energy V; q contains particle coordinates and p the corresponding
scaled momenta. We assume that V�0, so that the undamped (#=0)
system is oscillatory. We let u=(qT, pT )T.

The system can be rewritten in second-order form as

d 2q
dt2 +#

dq
dt

+{V(q)=0;

this is in gradient form, with

d
dt

E=&# \dq
dt+

2

, E=E \q,
dq
dt+ :=

1
2 \

dq
dt+

2

+V(q). (12)

Thus all bounded orbits have |-limit sets contained in the set of equilibria
[6].

We further assume that there are :>0, ; # (0, 1), such that, for all q # Rl,

1
2

({V(q), q)�;V(q)+
#2;(2&;)
8(1&;)

&q&2&:. (13)

This assumption ensures dissipativity as we prove next. Note that dis-
sipativity, combined with the gradient structure, implies that all positive
orbits are bounded and have |-limit sets contained in the (bounded) set of
equilibria. In the proof of dissipativity and later, we need the function

G(u)=
1
2

&p&2+V(q)+
#
2

( p, q) +
#2

4
&q&2 ; (14)
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this is a perturbation of the standard gradient Lyapunov function E
(energy) appearing in (12).

Lemma 2.2. Assume that (13) holds. Then the following are true.

(i) The function G defined in (14) is positive definite; more precisely
for all u=(qT, pT )T # Rm

G(u)�
1
8

&p&2+
#2

12
&q&2. (15)

(ii) Along solutions of (11),

1
#

dG
dt

�:&;G. (16)

(iii) The system (11) is dissipative with absorbing set

B={u: G�
:
;

+==
for any =>0.

Proof. Since, for any $>0,

( p, #q)�&\$
2

&p&2+
#2

2$
&q&2+

and V(q) is positive, we have

G(u)�
1
2 \1&

$
2+ &p&2+

#2

4 \1&
1
$+ &q&2.

Choosing $= 3
2 leads to (15).

Next, for any $>0,

;G�
;
2

&p&2+;V(q)+
#;
2 \$

2
&p&2+

1
2$

&q&2++
#2;
4

&q&2,

which for $=2(1&;)�(#;) implies, by (13),

;G�
1
2

&p&2+;V(q)+
#2;(2&;)
8(1&;)

&q&2

�
1
2

&p&2+
1
2

({V(q), q)+:.
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The estimate (16) follows from here, because

dG
dt

=� p,
dp
dt�+�{V(q),

dq
dt�+

#
2 �p,

dq
dt�+

#
2 �q,

dp
dt�+

#2

2 �q,
dq
dt�

=&
#
2

&p&2&
#
2

({V(q), q) .

Part (iii) is a straightforward consequence of (16). K

Examples of systems (11) satisfying (13) include any problem where V(q)
is polynomial with leading term

V(q)=
a
2

&q&2r+ } } } , a>0, r # N+.

For problems (11) we consider always impulses of the form

w=(0T, vT )T (17)

with v # Rl. Such impulses have no effect on the positions q and cause a
jump in the momenta p, thus mimicking mechanical collisions. We will be
particularly interested in the one-degree-of-freedom case

l=1, V(q)= 1
4 (1&q2)2. (18)

This is a double well potential leading to an unstable equilibrium at q=0
and stable equilibria at q=\1.

The proof of the following result will be omitted; it is similar to that of
Theorem 2.1, but this time the starting point is (16). The remark following
Theorem 2.1 also applies to Theorem 2.3.

Theorem 2.3. Consider the semigroup S( } , } ) generated by (11), under (13)
and (17), and assume that the Markov chain (3) has initial data distributed
according to a probability measure + with

|
Rm

G(u) +(du)<�.

Then, with ' as in (9),

E(G(un+1) | Fn)�
*

*+#;
G(un)+

#:+2'
*+#;

. (19)
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Furthermore E+(G(un))<� for all n # N, and, for any C>(#:+2')�(#;),
there is N=N(+), such that, for n�N,

E+ \1
8

&pn&2+
#2

12
&qn&2+�C. (20)

2.3. Existence of an Invariant Probability Measure

Theorems 2.1 and 2.3 lead to the following result.

Theorem 2.4. Under the conditions of either Theorem 2.1 or 2.3, there is
a probability measure & on Rm invariant for (3).

Proof. It is clear that (10) or (20) imply the tightness of the sequence
[+n], where +n is the distribution law of un . By standard arguments (see
Proposition 12.1.3 of [11] or Proposition 1.8(e) in [9]) the sequence

&n=
1
n

:
n

j=1

+ j

possesses a weakly convergent subsequence whose limit & is invariant. K

We would really like to know that & is unique, so that some form of
ergodicity follows. This is hard to establish at the level of generality of
this section and so in the next two sections we restrict attention to the
two examples (5) (covered by Theorem 2.1) and (11), (18) (covered by
Theorem 2.3).

3. THE SCALAR LINEAR PROBLEM

In this section we study ergodic properties of the Markov chain (3)
where S( } , } ) is generated by the scalar linear problem (5). The simplicity
of the problem allows use of characteristic functions (Fourier transforms)
for the proof; such an approach is instructive as it elucidates some of the
structure of the invariant probability measure in a way that the abstract
theory of ergodicity for Markov chains, employed for the nonlinear
oscillator problem in the next section, does not.

We begin with an auxiliary result, whose validity is not resticted to the
linear problem (5).

Lemma 3.1. Assume that for the Markov chain (3) the probability distri-
butions of un have densities ,n , n # Z+. Then

*,n+1(u)+{ } ( f (u) ,n+1(u))=
*
2

[,n(u+w)+,n(u&w)]. (21)
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Proof. Let �n(u, t) denote the probability density for the deterministic
equation (2) corresponding to the initial density

�n(u, 0)= 1
2 (,n(u+w)+,n(u&w)). (22)

Then, using the expression for the density of the exponential distribution,

,n+1(u)=* |
�

0
e&*t�n(u, t) dt,

so that ,n+1(u) is * times the Laplace transform of �n(u, t). Now �n(u, t)
satisfies the Liouville equation

��n

�t
+{ } ( f�n)=0

and has initial condition (22). Taking * times the Laplace transform of the
Liouville equation leads to the result. K

Remark. With ' given by (9), Eq. (21) may be rewritten in the follow-
ing revealing manner:

*(,n+1(u)&,n(u))+{ } ( f (u) ,n+1(u))

=
'

&w&2 (,n(u+w)&2,n(u)+,n(u&w)).

This form makes it is clear that, if * � �, &w& � 0 (the impulses become
smaller but more frequent) while keeping ' and the direction of w constant,
then the equation formally approaches a Fokker�Planck equation, as is to
be expected; see, for example, [5, 8, 18].

We are now ready to discuss the linear problem (5). We assume that +
is chosen with

|
R

u2+(du)<�,

so that, by Theorem 2.1, the variable u2
n has finite expectation for all n # N.

This ensures that the characteristic functions

8n(k)=E+(exp(ikun)), n # N,

are twice differentiable.
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Lemma 3.2. Consider (3) under (5). The characteristic function 8n+1 ,
n # N, can be obtained from 8n by means of the singular ordinary differential
equation

k
d

dk
8n+1(k)+$8n+1(k)=$ cos(kw) 8n(k), $ :=

*
#

. (23)

Proof. It is clearly enough to consider the case where the distributions
+n of un possess densities ,n . Then the result follows by taking Fourier
transforms in the equation (21), that now reads

*,n+1(u)+
d

du
[&#u,n+1(u)]=

*
2

[,n(u+w)+,n(u&w)]. K

We shall show that, for n � �, the 8n converge pointwise to the smooth
function

8(k)=exp \$ |
k

0

cos(mw)&1
m

dm+ (24)

solution of the initial value problem

k
d

dk
8(k)+$8(k)=$ cos(kw) 8(k), 8(0)=1. (25)

Note that, in (25), the initial condition is a normalization that 8 needs to
satisfy to be the characteristic function of a probability measure, while the
differential equation is obtained by imposing 8n+1=8n in (23).

Lemma 3.3. With the notation above, for each k # R, 8n(k) � 8(k), as
n � �. Thus 8 is the characteristic function of an invariant probability
measure & on Rm and the probability distributions +n of un converge weakly
to & as n � �.

Proof. The functions 2n=8n&8 obey the equation

k
d
dk

2n+1(k)+$ 2n+1(k)=$ cos(kw) 2n(k).

Integration, considering the cases k>0 and k<0 separately, yields

2n+1(k)=
1

|k|$ |
max[0, k]

min[0, k]
$ |m|$&1 cos(wm) 2n(m) dm. (26)
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Now, 20(0)=0 and 20 is twice differentiable and bounded, and therefore
there exists a constant C, such that |20(k)|�C |k| for each real k. Induc-
tion in n using (26) shows that, for each k,

|2n(k)|�\ $
1+$+

n

C |k| ,

and the convergence of 8n to 8 follows. The remaining statements follow
from this convergence��see [1]. K

As a direct consequence (see [1, Theorem 25.8]) of Lemma 3.3 we have
the following ergodic theorem.

Theorem 3.4. Consider the Markov chain (3) with semigroup S( } , } )
generated by (5) and with initial data distributed according to a probability
measure + with

|
R

u2+(du)<�.

Then for all continuous bounded real-valued functions g,

lim
n � �

E+g(un)= lim
n � � |

R

g(u) +n(du)=|
R

g(u) &(du),

where & is the invariant probability measure with characteristic function (24)
and +n is the distribution of un .

We conclude this section with some remarks. The integrand in (24) is an
analytic function of m; hence all moments of & exist. On the other hand, as
|k| � �, the integral in (24) diverges logarithmically, implying that |8(k)|
only decays as a negative power of |k| and that & cannot be very smooth.
In fact, from (21) the equation for the density , of & is

d,(u)
du

=($&1)
,(u)

u
&\$

2+
,(u+w)+,(u&w)

u
,

with $=*�# (note that $ is nondimensional, as both 1�* and 1�# possess the
dimension of t). The behaviour of , near the origin is easily investigated by
standard asymptotic analysis. A lack of smoothness is present, but the
regularity improves as $ increases, i.e. as the ratio of noise to dissipation
increases (in the absence of noise the invariant probability measure is a
point mass at the origin and , does not exist). If $ # (0, 1) then, for |u|<<1,

,(u)rC |u|$&1, $&1 # (&1, 0).

If $=1 then, for |u|<<1,

,(u)r&1
2 [,(w)+,(&w)] ln( |u| ).
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If $ # (1, 2) then, for |u|<<1,

,(u)r
$

2($&1)
[,(w)+,(&w)]+C |u|$&1, $&1 # (0, 1).

The ergodicity result of Theorem 3.4 can be extended to sample path
averages by employing the techniques of the next section. We do not give
the details.

4. A DAMPED NONLINEAR OSCILLATOR

In this section we invoke the theory of Markov chains in uncountable
state spaces developed in [11] (see also [12, 16]) to study ergodicity of the
Markov chain (3) generated by Eqs. (11), (18).

4.1. The Deterministic Problem

We first need to prove some results concerning the behaviour of the
oscillator in the absence of impulses. The corresponding phase portrait is
presented in Fig. 1.

FIG. 1. The phase portrait of the deterministic double-well problem. Horizontal axis is q,
vertical axis is q$.
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Let q0 be a fixed value of q and consider the half-line

L+ :=[(q, p)T : q=q0 , p>0].

If u # L+ and u is not on the unstable manifold A of the origin, then the
backwards trajectory S(u, &t), t>0 that starts at u meets L+ again. We
may therefore define a Poincare� return map 5: L+ & Ac � L+ & Ac such
that for each u # L+ & Ac, 5(u)=S(u, &t� ) with t� =t� (u)=min[t>0 :
S(u, &t) # L+]. By identifying each point u=(q0 , p)T on L+ with the
corresponding value of p, we may, if convenient, see 5 as a real-valued
function of the real variable p. It may be shown that 5 is smooth in view
of the transversality of L+ to the flow. The next result gives the behaviour
of 5 for large p.

Lemma 4.1. There exists a constant ;>0 such that the Poincare�
mapping 5 defined above satisfies

5( p)= p+; - p+r( p), (27)

with

r( p)=O(1),
dr
dp

=O \ 1

p - p+ , p � �.

Proof. We solve (11), (18) with initial condition q(0)=q0 , p(0)=1�=2,
= small and non-zero. By integrating (12), we have

5( p(0))2& p(0)2=2# |
0

&t�
p({)2 d{, (28)

where t� =t� ( p(0))>0 denotes the return time from p(0) as defined above.
After introducing the new time s=t�= and the new function Q(s)==q(=s),

the problem (11), (18) becomes

d 2Q
ds2 +=#

dQ
ds

&=2Q+Q3=0, Q(0)==q0 ,
dQ
ds

(0)=1 (29)

and (28) can be written as

5( p(0))2& p(0)2=
R(=)

=3 (30)

with

R(=) :=2# |
0

&s� (=) }
dQ
ds

(_, =) }
2

d_.
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Here s� (=) :=t� ( p(0))�==t� (=&2)�= coincides with the return time for the back-
ward time Poincare� section for (29) with the half-line Q==q0 , dQ�ds>0.

In the limit = � 0, we obtain from (29) the reduced problem

d 2Q0

ds2 +Q3
0=0, Q0(0)=0,

dQ0

ds
(0)=1; (31)

this, since the level curves of the resulting Hamiltonian are closed curves,
describes an undamped oscillation. Clearly s� (=) is a smooth function of = up
to ==0, with s� (0)>0 given by the period of the solution of (31). Further-
more R(=) is a smooth function of = which, at ==0, has the value

R(0)=2# |
0

&s� (0) }
dQ0

ds
(_) }

2

d_>0.

Upon rearranging (30), we obtain

5 \ 1
=2+=

1
=2 - 1+=R(=). (32)

Expansion of the square root leads to

5 \ 1
=2+=

1
=2+

1
2=

R(0)+O(1), = � 0,

which proves the estimate for r. The estimate for dr�dp follows similarly
after differentiation in (32). K

From Lemma 4.1 (or by inspection of the phase portrait), it is clear that,
for any p>0 for which 5( p) is defined, the sequence of iterates 5( p),
52( p), ... grows to �. Actually the growth with n of 5 n( p) is O(n2) as we
show next.

Lemma 4.2. For any p such that (q0 , p)T # L+ & Ac there exist positive
constants C1 and C2 such that, for all n # N,

5n( p)�C1 n2+C2 .

Proof. By induction in n using (27). K

The next result will be crucial in later developments.

Lemma 4.3. Let I be a segment of positive length contained in L+ & Ac.
The the successive images In=5 n(I ), n # N, possess lengths that tend to �
as n � �.
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Proof. We may write, with | } | denoting length,

|In |
|I |

=6 n&1
i=0

|Ii+1 |
|Ii |

,

so that our task is to show that the infinite product 6 �
i=0( |Ii+1 |�|I i | )

diverges to �. It suffices to show that, if ci :=( |Ii+1 |�|Ii | )&1, then the
series ��

i=0 ci diverges. Now, using (27),

ci�min[5$( p) : p # Ii]&1

=min { ;

2 - p
+r$( p) : p # Ii= .

Since 5 i ( p0) � � as i � � we may neglect the contribution of r$( p), p # Ii .
For p # Ii the minimum of ;�(2 - p) occurs at the upper end pi of Ii . From
the preceding lemma, pi=5 i ( p0) is O(i2) and therefore 1�- pi possesses an
O(1�i) lower bound and the divergence of ��

i=0 ci follows. K

4.2. Irreducibility

As in [11], we shall work hereafter with the transition probabilities pn

of the Markov chain (3) rather than with the probability distributions +n

of un given an initial distribution + for u0 .
The crucial step in establishing ergodicity is to exhibit an irreducibility

measure , for the chain, i.e., a nontrivial Borel measure on Rm such that,
for any u # Rm and any Borel set A with ,(A)>0, there exists an n # Z+ for
which pn(u, A)>0 (in other words every set of positive measure can be
reached from every initial condition with positive probability after a finite
number of steps). Irreducibility ensures that the chain is not a juxtaposition
of two chains each acting on disjoint subsets of the state space.

If a given chain possesses an irreducibility measure ,, then it possesses
many other irreducibility measures ,$. Among these measures there is
([11], Proposition 4.2.2) an essentially unique maximal irreducibility
measure �, such that any measure ,$ is an irreducibility measure if and
only if ,$ is absolutely continuous with respect to �. In practice it is
convenient to show irreducibility by exhibiting an ``easy'' irreducibility
measure ,, rather than finding � directly. This is the approach we take
here.

We construct , as follows. As in the preceding subsection, we consider
the half-line L+ where q=q0 :=1�2, p>0 (the exact value of q0 is
immaterial as long as q0 does not coincide with any of the equilibria 0,
\1). On L+ we fix a small interval I; for definiteness let us take

I :=[u=(q0 , p) : q0= 1
2 , 1�p�1+$],
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with 0<$<1 (again, the range 1�p�1+$ could be replaced by any
other range p0�p�p0+$, provided that p0>0 is not too small). For each
point u # I we carry out the following process:

(i) We move u upwards in the (q, p)T plane by giving it an impulse
w, i.e., we transform u into u+w.

(ii) From u+w, we form the flow arc Au=[S(u+w, s) : s # [0, 2]],
where 2 is a small positive number.

(iii) We move Au downwards by giving it a negative impulse. This
results in the translated arc Au&w.

(iv) From each point u� # Au&w we form the arc [S(u� , t) : t # [0, 2]]

For each u # I, the collection of the arcs in (iv), i.e., the set

Pu= .
u� # Au&w

[S(u� , t) : t # [0, 2]],

coincides with the image set of the mapping

8u(s, t)=S(S(u+w, s)&w, t),

defined for (s, t) # [0, 2]2. From the geometric construction above (or by
differentiation of 8u)

�8u

�s
(0, 0)= f (u+w),

�8u

�t
(0, 0)= f (u);

here f is the vector field in our problem (1), (11), (18). The vectors f (u+w)
and f (u) are not parallel because {V(q0){0 and hence, for 2 sufficiently
small and each fixed u # I, 8u is a diffeomorphism onto its image Pu . Thus
Pu is a small curvilinear parallelogram with a vertex at u. Note that Pu

depends continuously on u and, by reducing $ if necessary, we can ensure
that the intersection

,
u # I

Pu (33)

has a nonempty interior. We choose a closed ball B contained in the
interior of the intersection (33) and then the measure , is defined to be
Lebesgue measure restricted to B.

Theorem 4.4. The measure , constructed above is an irreducibility
measure for the Markov chain (3) originating from the double-well oscillator
(11), (18).
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Proof. Before we go into the proof, we determine n� # N such that J :=
5n� (I )/L+ has length >v. This is possible by Lemma 4.3; note that I
does not intersect the unstable manifold of the origin because (i) for the
origin the energy E in (12) equals 1�4, (ii) points in I have E>1�2, and (iii)
E decreases along trajectories.

We fix an arbitrary initial state u* and prove that it is possible to find
an integer N=N(u*) such that pN(u*, A)>0 for each set A with ,(A)>0.
In order to determine N, we need some quantities depending on the
chosen u*:

(a) We first determine an integer l # N such that the positive orbit
[S(u*+lw, t): t�0] starting at u*+lw intersects L+ at a point u**=
S(u*+lw, T1) above J (i.e., at a point u** for which the value of the
momentum p* is greater than or equal to the value of p for the points in
J). The possibility of choosing such an l follows from the geometry of the
flow of the deterministic problem (11), (18).

(b) Next we determine m # N such that u**&mw # J. This is possible
because both u** and J lie on L+, u** is above J and J has length >v.

(c) Then we determine T2�0 such that u*** :=S(u**&mw, T2) # I.
This is possible because u**&mw # J=5n� (I ).

Once we have found the values of l, T1 , m, T2 , we set N :=l+m+2
and introduce the space Rl+m

+ of vectors = # Rl+m, ==(=0 , ..., =l+m&1)T,
=j�0, j=0, ..., l+m&1. Let |j=(%j , t j), with %j and t j the random sign
and random waiting time in (1) and consider the events

G==[z # DE : |j=(1, =j)
T, j=0, ..., l&2,

|l&1=(1, T1+=l&1)T,

|l+ j=(&1, =l+ j)
T, j=0, ..., m&2,

|l+m&1=(&1, T2+=l+m&1)T]

(for l=1 or m=1, the sets [ j=0, ..., l&2] or [ j=0, ..., m&2] are under-
stood to be empty) then clearly

pT(u*, A)

�|
R +

l+m
6 N

= (u*, A)
*l+m

2l+m e&*=0 } } } e&*(T1+=l&1 ) e&*=l } } } e&*(T2+=l+m&1 ) d=,

where 6 N
= (u*, A) denotes the probability of the event [uN # A], condi-

tioned to G= , when the chain starts from u0=u*. If we prove that, for = in
a neighbourhood of 0 in Rl+m

+ and ,(A)>0, we have 6 N
= (u*, A)>0, then

the proof will be complete.
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In order to prove that, for &=& small and ,(A)>0, 6 N
= (u*, A)>0, it is

clearly enough to show, for &=& small and ,(A)>0, the positivity of the
smaller quantity pN

= (u*, A) defined as the probability, when u0=u*, of the
event [uN # A] & Z conditioned to G= , with

Z :=[|l+m # (1, [0, 2])T, |l+m+1 # (&1, [0, 2])T ].

We first show that pN
0 (u*, A)>0, if ,(A)>0. When the event G0 takes

place, the initial state u* undergoes l consecutive upwards impulses,
u* � u*+lw. These are followed by flowing for T1 units of time to reach
the point u** defined above. Then m downward impulses occur, followed
by flowing for T2 units of time. This leads surely to the point u*** # I after
l+m transitions. Now the event Z has a positive probability independent
of G0 (namely (1�4)(1&exp(&*2))2). When Z takes place, u*** undergoes
an upwards impulse, followed by flowing for s # [0, 2] units of time,
followed by a downwards impulse and flowing for t # [0, 2] units of time.
Hence, if G0 and Z are true, the initial state u* moves after N transitions
of the chain into a point of the curvilinear parallelogram Pu*** and every
point in Pu*** can be reached in this way. We therefore conclude that a
constant K=K(u*)>0 exists, such that for each Borel set E/Pu*** ,

pN
0 (u*, E)�K,R 2Leb(E),

where ,R 2Leb(E) is the standard Lebesgue measure in the plane. In
particular pN

0 (u*, A)>0 for each A/B with ,R 2Leb(A)>0, i.e., for each A
with ,(A)>0.

By the continuity of the deterministic semigroup S(u, t) with respect to
both of its arguments, it is clear that, when the events Z and G= , &=& small,
occur, the point u* moves in N transitions to a point in a slightly deformed
version of Pu*** that still contains the support B of ,. Then, for ,(A)>0,
pN

= (u*, A)>0 for &=& small. In fact for =c sufficiently small, and possibly by
redefinition of K,

pN
= (u*, E)�K,R 2Leb(E),

for all = # [0, =c]. K

Remark. It is perhaps useful to point out that, for this theorem to hold,
it is not essential to assume that the waiting times tn are exponentially
distributed. The proof only uses the fact that the density of the waiting
times, with respect to Lebesgue measure, exists and is positive.

Before closing this subsection, it is convenient to deal with some techni-
cal points. Given a Markov chain on the state space Rm, a Borel set C is
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called a small set [11, Section 5.2], if there exists m # Z+ and a non-trivial
Borel measure & such that, for all u # C and all Borel sets A,

pm(u, A)�&(A).

A Borel set C is a petite set if, for all u # C and all Borel sets A,

:
�

n=0

a(n) pn(u, A)�&a(A),

where a=[a(n)] is a probability measure on Z+ and &a a nontrivial Borel
measure.

The definitions of small sets and petite sets try to encapsulate the idea of
sets that are probilistically not large. Note that small sets are always petite:
just take a to be a point mass.

Lemma 4.5. For the Markov chain (3) for the double-well oscillator (11),
(18), every compact set in R* is petite.

Proof. We reconsider the proof of the Theorem 4.4. By continuity
arguments similar to those used at the end of the proof, given a point
u* # Rm, there exist positive constants K$, r such that, for the integer
N=N(u*) we determined there,

pN (u, A)�K$,R2Leb(A) (34)

for each Borel set A/B and each u in the open ball B(u*, r) of (sufficiently
small) radius r and centre u*. By definition B(u*, r) is then a small set
and hence petite. By choosing u* in B we ensure that B(u*, r) has
,R 2Leb(B(u*, r))>0 and, a fortiori, �(B(u*, r))>0 (recall that � is the
maximal irreducibility measure). The result is then a direct consequence of
Proposition 6.2.8 in [11]. K

4.3. Aperiodicity

Given an irreducible Markov chain with maximal irreducibility measure
�, the sets [Di]d

i=1 are said to form a d-cycle if (i) they are disjoint, (ii) for
x # Di , p1(x, Di+1)=1, i=1, ..., d (mod d), (iii) the complement [�d

i=1 Di ]
c

is �-null. The chain is aperiodic if the maximal such d is 1.

Theorem 4.6. The irreducible Markov chain (3) for the double-oscillator
(11), (18) is aperiodic.

Proof. We again reconsider the proof of Theorem 4.4. If in that proof
we choose the interval J to have length >2v (rather than merely to have
length >v), then, in point (b) of the proof, it is possible to have both
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u&mu** and u&(m+1)u** in J. Then (34) holds for N=l+m+2
and N=l+m+3, two coprime integers, and aperiodicity follows from
Theorem 5.4.4 in [11]. K

4.4. Drift

The last property of the chain to be discussed before proving ergodicity
is the probabilistic drift towards a petite set. We work with the function

G� (u)=1+G(u), (35)

with G as defined in (14). Note that G� (u)�1 for all u by (15) and also that
the sets [u : G� �n], n # N are compact and therefore (Lemma 4.5) petite
(in the terminology of [11], G� is unbounded off petite sets). We shall prove
that, for our Markov chain and outside a petite set C, the value of G�
decays geometrically at each step (see Condition (V4) in [11, Chapter 15]).

Lemma 4.7. For the Markov chain (3) generated by the double-well
oscillator (11), (18), there exists a petite set C and constants a>0 and b # R,
such that, for the function G� in (35), all u # Rm and all n # Z+,

E(G� (un+1)&G� (un) | un=u)�&aG� (u)+bI[u # C]. (36)

Proof. By (19),

E(G(un+1 | un=u)�a1G(u)+a2 , a1 # (0, 1).

From here

E(G� (un+1) | un=u)�a1G� (u)+(1&a1+a2),

and we can apply Lemma 15.2.8 in [11] to obtain (36). K

4.5. Ergodicity

We are ready to present our main result.

Theorem 4.8. For the Markov chain (3) generated by the double-well
oscillator (11), (18), there exists a unique invariant probability measure ?, a
constant R<� and a uniform rate of decay \<1 such that, for all
Borel-measurable functions f with | f |�G� and all u* # Rm,

}|Rm
( pn(u*, du)&?(du)) f (u) }�RG� (u*) \n, n # Z+, (37)

where G� is the function in (35).
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Proof. This result is a direct application of Theorem 16.0.1 in [11]
because the chain is irreducible, aperiodic and possesses a geometric
drift. K

Note that (37) implies in particular that

lim
n � � |

R m
pn(u*, du) f (u)=|

Rm
?(du) f (u)

for every bounded measruable function f (even if f is not continuous). It is
also possible to prove the following sample path ergodic theorem:

Theorem 4.9. Consider the Markov chain (3) generated by the double-
well oscillator (11), (18). Then for any g # L1(?),

lim
n � �

1
n

:
n

k=1

g(uk)=|
R m

g(u) ?(du), P$x-a.s., \x # R2.

Proof. The Markov chain is Harris recurrent by Theorem 9.1.8 in [11]
because Theorem 2.3 shows that, if we define the set

C`=[ y: G( y)�`],

then

E(G(ui+1) | ui=x)�G(x), \x # C c
`

for `�(#:+2')�(#;). Theorem 17.1.7 of [11] proves the sample path
result. K
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