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Abstract .  

We prove convergence results on finite time intervals, as the user-defined tolerance 
T -~ 0, for a class of adaptive timestepping ODE solvers that includes the ode23 
routine supplied in MATLAB Version 4.2. In contrast to existing theories, these con- 
vergence results hold with error constants that are uniform in the neighbourhood of 
equilibria; such uniformity is crucial for the deriwtion of results concerning the nu- 
merical approximation of dynamical systems. For linear problems the error estimates 
axe uniform on compact sets of initial data. The analysis relies upon the identification 
of explicit embedded Runge--Kutta pairs for which all but the leading order terms of 
the expansion of the local error estimate are (9(llf(u)l12). 
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1 I n t r o d u c t i o n .  

Consider the autonomous initial value problem 

du 
(1.1) d-7 -= f ( u ) ,  u(O) = U where f :  ]~m __+ ]~m 

over some finite time interval [0, T] with solution u(t) = S(U, t). Convergence 
results for fixed timestep Runge-Kut ta  and multistep approximations to the 
solution of (1.1) have been long known. However most routines actually used 
to solve (1.1) employ some form of local error control to allow the stepsize to 
change during the integration. By requiring that an estimate of the local error 
at each timestep is less than some user-defined tolerance % and by allowing the 
timesteps to increase or decrease subject to this constraint, it is assumed (or 
hoped) that the numerical solution will converge to the true solution as 7 -+ 0. 

For fixed timestepping implementations, with timestep At, the error estimates 
take the form C ( B ,  T ) A t  r for all initial data U E B, where B is a compact set. 
The uniformity of C(*, T) on compact sets is crucial to many results in the 
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approximation of dynamical systems. It is therefore natural to try and seek 
estimates of the form C(B, T)T ~, for all U contained in compact B, for adaptive 
timestepping algorithms. 

Although adaptive timestepping methods have been used for many years, 
there are still very few rigorous convergence results. This is partly because 
the timestep selection algorithm, and hence the timestep sequence itself, is dis- 
continuous with respect to the initial data U; this creates considerable problems 
in the analysis. Also, while there are only a few basic ideas underlying the error 
control mechanism, there are numerous possible differences in implementation 
making the mathematical description of a complete routine extremely compli- 
cated and perhaps too specific to be of general interest. 

Stetter [11, 12] and Stoffer and Nipp [13] proved convergence results under 
assumptions which implied that  as T --+ 0 the maximum timestep, Atmax, also 
tended to 0. However Hall [5] showed that  if the numerical trajectory enters 
the neighbourhood of a stable equilibrium point then the maximum timestep 
will approach the linear stability limit, independent of T. Higham and Stuart 
[6] assumed instead that  the timesteps obeyed the Tolerance Proportionality 
Assumption, i.e. that  the truncation error T(u, At) < gT~//kt for some positive 
constants K and 7. Under this assumption it is straightforward to show that  
the global error decreases as O(T~). This is a weaker assumption than those in 
[11, 12, 13] but still fails to hold in general. Stuart [14] took a different approach 
and examined the validity of the Tolerance Proportionality Assumption for a 
specific algorithm where the local error estimate is defined by a pair of Runge- 
Kutta methods. It was shown that  the Tolerance Proportionality Assumption 
holds away from neighbourhoods of equilibria, denoted by the set F(0), and 
the set where the leading term of the local error expansion, scaled by IIf(u)ll, 
disappears, denoted by ~(0). As a result, the error estimates obtained in [14] 
are not uniform with respect to the distance of the exact trajectory from these 
sets. 

In this paper we continue the analysis in [14]. We shall require all the higher- 
order terms in the expansion of the local error estimate to be O(llf(u)ll 2) and 
also the much weaker condition that the lower-order Runge-Kut ta  method does 
not increase its order when applied to linear problems (both these conditions 
are satisfied by the embedded Runge-Kut ta  pair used in MATLAB Version 4.2 
ode23). Then, by using an improved estimate of the truncation error close to 
equilibria, we are able to obtain convergence results that hold uniformly in the 
neighbourhood of equilibria F(0). Thus only proximity to the set ~(0) causes 
a lack of uniformity in the the error constants. In summary we derive error 
estimates of the form C(B, T)T ~ for initial data in sets B whose forward image 
under the semigroup generated by (1.1) over the time interval [0, T] is disjoint 
from ~(0). The set ~(0) is empty for autonomous linear problems defined by 
invertible matrices and hence a corollary of our results for this class of linear 
vector fields is that  the MATLAB Version 4.2 ode23 routine has error estimates 
of the form C(B, T)T ~ for any compact set of initial data B. 

The requirement on the expansion of the local error estimate is satisfied by all 
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explicit Runge-Kut ta  pairs of order ( p -  1,p) with precisely p stages (for such 
pairs, the higher-order method must use p stages since the maximal order of an 
explicit v-stage Runge-Kut ta  method is v, but the lower-order method may use 
p - 1 or p stages--either is allowable). Although the analysis does not require 
that  the Runge-Kut ta  pair be embedded (i.e. that the two methods use the 
same intermediate stages) such pairs are always used in practice and so we shall 
henceforth refer only to embedded pairs. In particular the embedded Fehlberg 
(2,3) pair lies within this class and this is the pair used in the MATLAB Version 
4.2 ode23 routine [1]. Such pairs only exist for p < 4 since the maximum order of 
an explicit p-stage Runge-Kut ta  method for v > 4 is strictly less than v (see [3]) 
but we note that by imposing extra conditions on the Runge-Kutta  coefficients 
it may be possible to find higher-order embedded pairs with order ( p -  1, p) and 
u-stages (u > p) for which the results obtained here also hold. 

The MATLAB Version 4.2 ode23 routine is relatively simple, containing only 
the essential components of an adaptive timestepping algorithm. It has also 
been widely used and results concerning this algorithm are likely to be of special 
interest. Therefore we prove convergence results for a class of algorithms that 
specifically includes this routine. However the analysis presented here extends 
to general adaptive algorithms under very weak assumptions on the timestep 
selection mechanism [7]. In particular, the improved convergence results in the 
neighbourhood of equilibria hold for the same class of explicit Runge-Kutta  pairs 
defined above. 

The paper proceeds as follows. In Section 2 we describe the MATLAB Ver- 
sion 4.2 ode23 algorithm and the generalisation that we study. In Section 3 the 
convergence results are proved, first for linear ODEs and then for the general 
nonlinear case. The main convergence result is given in Theorem 3.13. In Sec- 
tion 4 we examine the two situations in which the convergence results can fail, 
namely, when the initial timestep estimate is spuriously accepted and when the 
exact solution of (1.1) passes through the set ko(0). An argument is outlined 
to show that if the initial data and initial timestep estimate are treated as uni- 
formly distributed random variables then for the MATLAB Version 4.2 ode23 
routine, the probability of wrongly accepting the initial timestep tends to 0 as 
T -4 0. A corollary of Theorem 3.13 incorporating this probabilistic result for 
the MATLAB Version 4.2 ode23 routine is stated. Also, since the global error 
bound is not uniform with respect to the closeness of u(t) to g2(0) we follow 
[14] and, by calculating the probability of the exact solution u(t) entering given 
neighbourhoods of ko(0) for random initial conditions U, find the probability 
that the constant in the global error bound exceeds any given value. Finally, 
in Section 5 we briefly examine the new ode23 routine supplied in the recently 
released MATLAB Version 5.0. This routine has a more sophisticated timestep 
selection algorithm than the previous version but uses an embedded Runge- 
Kut ta  pair that does not fit into the class described above and we construct an 
example where this routine fails on a linear problem. 

If the orders of the Runge--Kutta pairs used are p - 1 and p then it is as- 
sumed throughout that  f E C p+I (~m, ~m) (note that this also ensures the local 
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existence and uniqueness of the exact solution u( t ) ) - -more  precise regularity 
conditions on f will also appear in the statements of the main results where 
appropriate. 

2 The MATLAB Version 4.2 ode23 routine. 

For succinctness all MATLAB routines mentioned will refer to those supplied 
with MATLAB Version 4.2 unless otherwise stated. The MATLAB ode23 rou- 
tine uses the embedded Fehlberg (2,3) pair of explicit Runge-Kut ta  methods 
in extrapolated error-per-step (XEPS) mode. That  is, the higher-order method 
is used to advance the solution and the local error estimates are controlled on 
an error-per-step basis. Denoting the 3rd-order method used to advance the 
approximation from a point u E ]~m by time t as S (1) (u, t) and the 2nd-order 
method as S (2) (u, t) we obtain 

(2.1) ~1 = u, 

(2.2) ~2 = u + tf(~ll), 

(2.3) r/3 : u +  4 [ f ( r ] l  ) + f(~12)], 

(2.4) S(1)(u,t) = u+ 6[f (nl )+f(~e) l+~f(na) ,  

(2.5) s ( ~ ) ( u , t )  = ~ + ~-[f(~l) + f (~ ) ] .  

The approximation to the local error (error-per-step) is 

(2.6) E ( u ,  t)  = IIS<X)(u, t)  - S<2)(u, t)l[~ 

and the values Un and integration timesteps At,~ are chosen by the following 
algorithm: 

= S(1)(Un,At,~), Uo = U, (2.7) Un+l 
where 

Ate) 

Ate)  

(2.s) 
Atn = 

where 
(2.9) 1 = 

---- At in i t  if n = 0, or 

( / = rain D , O \  E(Un_I,Atn_I ) ] A t n _ I , T - - E A t  j 
j=0 / 

if n > 0, 

= rain D,O ~ E(Un,At(k_l) ) ] At(nk-1),T - E A t J  
j=O 

for k_> 1, 

At~ ) 

min{k : E(Un, At (k)) <_ 7max(1, [[Un[[~)}. 
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The above algorithm generates an approximate solution Un to U(tn) where tn ---- 
n--1 ~j=o Atj.  The parameter 0 < 1 is fixed at 0.9 within the routine, the maximum 

stepsize is automatically chosen to be D = T/16 and the tolerance T is specified 
by the user. Unlike many routines, this algorithm does not include a maximum 
stepsize ratio. However the main convergence results presented here can be 
proved with minor modifications if a maximum stepsize ratio is included. Also, 
the initial guess At in i t  for the first timestep is fixed at A t i n i t  : D / 8  --- T/128. For 
integrations over long times this initial guess will be very large. It is much more 
natural for A t i n i  t to decrease with T and this point is discussed in Section 4.1. 

It is perhaps useful to think of the algorithm (2.1)-(2.9) as consisting of two 
separate parts; the local error estimate, defined by (2.1)-(2.6), and the timestep 
selection mechanism defined by (2.7)-(2.9). Rather than prove results only for 
the algorithm (2.1)-(2.9) we shall prove convergence results for a class of al- 
gorithms using explicit Runge-Kut ta  pairs of order ( p -  1,p) with precisely p 
stages. Such embedded pairs only exist for p < 4 (see Theorem 323B [3]) and 
include the Fehlberg (2,3) pair; note however that this class does not include 
the MATLAB Version 4.2 ode45 routine which employs an identical timestep se- 
lection mechanism but uses a (4, 5) embedded Runge-Kut ta  pair with 6 stages. 
We shall also consider all 4 combinations of error-per-step/error-per-unit-step 
and extrapolation/non-extrapolation modes using a timestep selection mecha- 
nism that  includes (2.7)-(2.9) as a special case, but generalises it. The complete 
description of the class of timestepping algorithms under consideration is given 
by 

i - 1  

(2.10) T]i = u + t E a i j f ( y j ) ,  i = l , . . . , p ,  
j = l  

P 
( 2 . 1 1 )  S ( I )  ('tt, t )  = ?~-~-tEb~l)f(I]j), 

j ~ l  
p 

(2.12) s ( : ) ( u , t )  = 
j=l 

where S (1) is the method used to advance the solution. In extrapolation mode, 
S (1) will be of order p and S (2) of order p - 1, otherwise the orders are reversed. 
The approximation to the local error is given by 

(2.13) E(u, t) = [[ S (1) (u, t) - S (2) (u, t)[[/t p 

for some choice of norm [[. [[, and where p = 0 in error-per-step mode and p = 1 
in error-per-unit-step mode. At each step the local error estimate will be tested 
against a function a(T,U) where, for every compact set J C N m, there exist 
constants C1 (J) and C2(J) such that 

(2.14) 
0 < Cl ( J )  _~ Cr(T,U) ~ C2(J) < oc V~- > 0 and Vu E J. 

T 
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Thus a wide range of error estimates with absolute and relative components are 
included in the analysis, including the specific combined absolute/relative error 
estimate used in MATLAB ode23. 

Integration timesteps Atn are chosen by the following algorithm: 

----- S(1)(Un, Atn), Uo -~ U, (2.15) 
where 

Un+l 

At (o) 

At(k) 

(2.16) 

Atn 
where 
(2.17) l 

---- Atini t  if n = 0, or 

= min D,O\E(Un_I,At~_I) ] Atn_l,T-t~ 

if n > O, 

( ~ a ( ~ U ~ ) ~ - o A t ( k - 1 ) , T _ t n )  
= min D,O~,E(U,~,At(k_,)) ] 

fo rk  _> 1, 

= Ate) 

= min{k:E(U~,At (k)) <_a(r, Un)}. 

We shall assume that  0 < 1, D and Atini t  a re  chosen by the algorithm but 
without specifying how. In Section 4.1 we consider the specific choice of Atini t  
used by MATLAB ode23 and state a corollary of the main convergence result. 

3 C o n v e r g e n c e  r e s u l t s .  

In this section we prove convergence results for the class of algorithms (2.10)- 
(2.17). The results and methods of proof are similar to [14] but are stronger 
because of our restriction to specific explicit Runge-Kut ta  pairs and the use of 
tighter error bounds in the neighbourhood of equilibria. 

After some necessary definitions and preliminary results we analyse the con- 
vergence for linear problems. Although this linear case is included in the general 
nonlinear analysis that  follows, it is a useful exercise to consider it separately as 
it gives an indication of the strength of the results that  can be expected in the 
general case. 

3.1 Preliminaries. 
We have the following local Taylor series expansion for the evolution operator 

s(u, t) of (11), 
r+l 

s(~,t) = Z ~ ~  ~ tj + -  
j=0 ?: J 

where 

t r-t-2 L 1 
(r + 1)! (1 - s)r+l~3!~2(u; st)ds Vr �9 Z + 

OJ zjo)(~,, t) = ~ { S ( u ,  t)}. 
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Similarly, for the Runge-Kut ta  approximations we have 

(3.1) 
r-Fl  

j~o 1 fgk)(u O~t j = = , , ,  + - -  

k = 1, 2, where 

tr+2 ~01 / ~,r+2(u;st)ds Vr E Z +, (r + 1)! (1 - sV +l~(k) / - 

~J 
t )  = t )} .  

We now define positive integers s and ql by 

~1) (U, O)~-~ ~}0)(U, 0), j = O , . . . , S ,  

g~2)(U, O)--= g}O)(U, 0), j = O , . . . , q I ,  

where agreement between the g's does not occur at the next order in each case. 
Note that s = p -- ql + 1 in extrapolation mode and s - p -  1 = ql - 1 in 
non-extrapolation mode. 

Since ~J l ) (u ,  0) ~ ]33(.2)(u, 0), j = 0 , . . .  ,p - 1 we obtain S(u ,  t) = O(t  q) where 
q --- p - p. The ratio s /q  plays a key role in the convergence proofs and so for 
clarity we list the values taken by s, q and s/q in each of the four operating 
modes: 

(3.2) 

Non-extrapolated error/step EPS : s/q = ( p -  1)/p < 1. 
Extrapolated error/step XEPS : s/q = p ip  = 1. 
Non-extrapolated error/unit-step EPUS:  s/q = ( p -  1)/(p - 1) = 1. 
Extrapolated error/unit-step XEPUS : s/q = p / ( p -  1) > 1. 

The truncation error 

(3.3) T(u,  t) = [IS(u, t) - S(1)(u, t)t t 

is the error committed by the advancing Runge-Kut ta  method at each timestep 
and the following result is proved as Lemma 2.5 of [14]. 

LEMMA 3.1. Let J C Rm be bounded. There is a constant K = K(J ,  D) such 
that, for all u E J, t E [0, D], 

(3.4) T(u , t )  < K{lf(u)llt s+I. 

We define Em (not to be confused with E(Um, Atm))  to be the total error 
between the exact solution and the computed value after the mth timestep. 
That  is, 

Em = [[u(tm) - Um[[. 

We shall always consider a solution, or families of solutions, of (1.1) defined for 
t E [0, T] with U C B, B compact. Using the notation S(B,  t) -- UU~B S(U, t) 
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we shall assume that  S ( B ,  t) C_ I Vt C [0, T] where I is some bounded set in ~m.  
We then define J = ~ ( I ,  d) as the closure of the d-neighbourhood of I for some 
fixed d > 0, independent of r. We will show that  our numerical approximation 
lies in J and our results will hence involve constants depending upon J .  

3.2 The linear case. 

We first prove convergence results for the linear problem, f ( u )  = Au,  u(O) = U 
where A is an invertible m • m matrix. We shall need the following lemma. 

LEMMA 3.2. Let f ( u )  = A u  where A is an invertible m • m matrix.  I f  
S (1) (u, t) and S (2) (u, t) are an explicit Runge -Ku t ta  pair of  orders p and p - 1 
with precisely p stages then for  some a > 0 

E (u ,  t) = ~lltq APull . 

PROOF. Although the lemma can be proved directly, we give a proof using 
rooted trees as this provides useful insights when we come to consider the ex- 
pansion of the local error estimate for nonlinear problems. 

A rooted tree is a connected graph containing no cycles with one node iden- 
tiffed as the "root". Each rooted tree with precisely n nodes corresponds to an 

expression appearing in the i th component of fl(0) (u, 0) for the general nonlin- 
ear problem. These expressions are the elementary differentials of order n and 
this correspondence is achieved as follows. Let ,j~ f~l ,j2 . . . .  denote an n th  partial  
derivative of the i th component of f .  Now attach the label i to the root of the 
tree and labels j ,k, l, . . .  to the other nodes. Then for each node write down 
f with a superscript equal to the label of that  node and subscripts given by the 
nodes that  are connected away from the root node. For example, the rooted tree 

m 

k ~ /  o p 

~ q  

i 

corresponds to f j n f ~ J k f ~ f m f ~ p q f ~  q (using the summation convention) 
which is an elementary differential of order 9. It  is proved in [3] that  each 

~3 (k) (u, 0), k = O, 1, 2 are linear combinations of all the elementary differentials 
of order n. 

Note tha t  if a rooted tree has a "branch" at any node then there must be 
at least two end nodes and the corresponding elementary differential will be 
O(llf(u)ll2).  Thus for every n > 1, there exists precisely one elementary dif- 
ferential of order n which is O(ll f (u) l l )  but n o t  O(llf(u)ll2); this corresponds 
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to the rooted tree with n nodes and no branches shown below: 

i 

and equals fj1 fJ2 "'" fJ22~ fjn-1. In the proof of Theorem 321A of [3] it is shown 
that  no elementary differential of order n > u of this form appears in ~ ( u ,  0) 
for a u-stage explicit Runge-Kut ta  method (this in fact proves that the order of 
a u-stage explicit Runge-Kut ta  method is _< u). 

Because f is linear, all second partial derivatives and higher vanish. Thus 
the non-vanishing elementary differentials correspond precisely to the branch- 
less rooted trees shown above. Since the two explicit Runge--Kutta methods 
agree upto order p -  1, the local error estimate consists of precisely one term, 
proportional to fr fJ~ "" "f~PP-~ fJP 1. This, together with the boundedness of J 

and the fact that  f~ = {A}ij ,  proves the lemma. [] 

The higher-order method cannot increase its order on linear problems since the 
maximal order of a p-stage method on linear problems is p. If the lower-order 
method increases its order to p on linear problems then both methods agree 
(c~ = 0) resulting in a vacuous error estimate. We therefore exclude this case 
from our analysis. 

We now prove the main convergence result for the linear case. For each of the 
four possible operating modes, the exponent ~ in the rate of convergence O(T ~) 
has been optimised with respect to the constraint that K1 (.,  T) be uniform on 
compact sets. 

THEOREM 3.3. Let f (u)  = Au in (1.1), where A is an invertible matrix. 
Consider the numerical approximation over the time interval [0, T] generated 
by the algorithm (2.10)-(2.17) in XEPS, EPS, XEPUS or EPUS mode and 
assume that the lower-order method does not increase its order when applied 
to linear problems. Then for all compact sets B C ]~rn there exist constants 
K ~ ( B , T ) , K 2 ( B , T )  such that for all initial data U E B, all Atinit :> 0, and all 
sufficiently small T, 

(3.5) E~ = ]]u(t~) - V~]] <_ K~T ~, 

(3.6) U~ E J Vn: tn ~_ T, 
and 
(3.7) T(U~, Atn) ~ K2AtnT ~ 

where ~/ = 1 ]or XEPS, EPUS and XEPUS modes and ~/ = ( p -  1)/p for EPS 
mode. 

PROOF. Since B is bounded and the problem is linear there exists a bounded 
set I such that S(B,  t) C I C ]~m Vt C [0, T] which in turn defines the compact 
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set J -- ~ ( I ,  d). We prove first that  if (3.5) holds for n = 0, . . . ,  m then (3.6) 
holds for n = 0, . . .  , m. This follows since En <__ K1T'~ so that  for ~- sufficiently 
small, IlU(tn) -- U~II <_ d. Then u(t~) E I implies that  Un E J. 

We now prove (3.7). By the previous lemma we have 

(3.8) E(Un, Ate)  = ~II At~ APUn II. 

The assumption that  the lower-order method does not increase its order when 
applied to a linear problem implies that  a ~ 0. The timestep control therefore 
implies 

(3.9) ~IIAt~APUnlI <_ ~(T, u~) 

which immediately gives an upper bound for Atq (in Lemma 3.9 it will be proved 
that the timestep control must be satisfied after only finitely many  timestep 
rejections). 

From (3.9) and (3.4) and using the fact that  

IIAull ___ [IA-p+lll IIAPull 

we get, for XEPS, EPUS and EPS modes, 

(3.10) T(Un, Atn)  <_ K A t n  IIA-P+___~ll] IIA~Un II ~(~, f n ) ~  

II~ApUn[I~ 
and since s/q < 1 (see (3.2)) and J is bounded, there is a constant K3(J )  such 
that 

T(Un, Ate) <_ K3At~(~, U~)~. 
Similarly for XEPUS mode, 

T(U~, Ate) _< g A t  2 IIA-P+I 1[ HA P_~_U)~ II a(T, Us) (~1)  

II~apu~ll 
and since (s - 1)/q = 1 and At,~ _< D, there is again a constant Ka ( J )  such that  

T(Un, Atn) < K3At~a(~ -, U,,). 

Note that  in each case the exponent V on a is forced by requiring K3 uniform 
on J. Thus, by (2.14), there is a constant g 2 ( J )  such that  (3.7) holds. 

It remains to be proved that  if (3.5) holds for n -- 0 , . . . ,  m then it holds for 
n = m + 1. We shall do this by proving that  there exists L(J)  > 0 such that  

(3.11) En <_ K2tnT ~ exp(Lt~), Vn : t,~ < T. 

If (3.11) holds for a given n t hen wit h g l  (J, T) = K2 ( J ) T  exp ( L (J)  T), so does 
(3.5), and so we shall prove (3.11) by induction. Clearly (3.11) holds for m = 0. 
Writing um = u(tm) we have 

Era+, = [[S(um;Atm) - S(')(Vm;Atm)ll 
< HS(um; Atm) - S ( f m ;  Atm)ll + IIS(Um; Atm)  - S(I)(um; Atm)ll 

<_ exp(LAtm)Em + T(Um, Atm) 
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where L is the Lipschitz constant of f on J .  Therefore, by (3.7) 

Em+l _< exp(LAtm)Em ~- Z2AtmT ~ 

Since 1 < e ~ for all x > 0 the inductive hypothesis (3.11) gives 

Ern+l ~_ K2tmr~exp(Ltm+l) + K2AtmT~exp(Ltm+l) 

= K2tm+lT ~ exp(Ltm+l).  

This completes the induction. Since J is defined by B the result follows. [] 

Note that  due to our choice of linear problem together with a ( p -  1, p) Runge-  
Ku t t a  pair with precisely p stages the local error estimate (3.8) is just a single 
term. Hence E(u, t) is monotonic in t > 0 for every fixed u and is only small in 
some neighbourhood of t = 0. This immediately gives an upper bound on Atn 
and hence an upper bound on T(Un,/ktn). If a (p -- 1,p) pair with v > p stages 
is used instead then the local error estimate becomes 

i=• 

(3.12) E(Un, Atn) = At~ E aiAti~-PAiU~ 
i=p 

and E(u, t) is no longer monotonic in t and the analysis fails (see Section 5 for 
further discussion of this point). 

This lack of monotonicity of E(u, t) also occurs in the general nonlinear prob- 
lem even if v = F- - for  certain (9(1) values of the timestep, the local error 
estimate may be close to zero, as well as for t small, possibly resulting in an 
accepted step with a large local error. Thus we shall have to obtain bounds that  
ensure this cannot occur before obtaining results analogous to Theorem 3.3 for 
the nonlinear case. 

Since the lower-order method (2.5) does not increase its order on linear prob- 
lems and MATLAB Version 4.2 ode23 operates in XEPS mode, we have the 
following corollary. 

COROLLARY 3.4. Let f (u)  = Au in (1.1), where A is an invertible matrix and 
consider the numerical approximation over the time interval [0, T] generated by 
the MATLAB Version 4.2 ode23 routine. Then for all compact sets B there exist 
constants K1 (B, T), K2( B, T) such that for all initial data U E B, all Atinit > 0, 
and all sufficiently small T, 

(3.13) En = Hu(t~) - U~] I _< gl~- 

and 
T(Un,/ktn) ~ t(2AtnT. 

We now return to the general framework of Theorem 3.3. We can increase 
the convergence rate in the linear case for XEPUS mode to T~ -~-~ (which is the 
convergence rate observed in most numerical experiments for trajectories which 
remain far from equilibria) by assuming that  the exact solution remains outside 
some given neighbourhood of the equilibrium point at 0. 
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THEOREM 3.5. Let f (u)  = Au in (1.1), where A is an invertible matrix. 
Consider the numerical approximation over the time interval [0, T] generated by 
the algorithm (2.10)-(2.17) in XEPUS mode and assume that the lower-order 
method does not increase its order when applied to linear problems. Assume 

1 also that (~ = ~ minveB minte[0,T] IIA(S(u, t))p[ > o. Then for all compact sets 
B there exist constants KI (B ,  T), K2(B, T) such that for all initial data U E B, 
all Atinit :> 0, and all sufficiently small T, 

(3.14) E n  = Ilu(t ) - Unll __ K1 , 

(3.15) U ,~EJ  and [[AUn[[_>5 V n : t n _ < T  

and 
(3.16) T(Un, Atn) <_ K2AtnTP~- 

PROOF. The proof is very similar to the proof of Theorem 3.3. To prove that  
if (3.14) holds for n -- 0 , . . . ,  m then (3.15) holds for n = 0 , . . . ,  m we need only 
additionally prove that [[AUn [] > 5 for sufficiently small T which follows since 

[[AUnI[ _ [[Aun[[ - [[AU~ - Aunl[ 

_> 2 5 -  I[Al[[[un - un[[ 

>_ 25 - [IA[[KI (5-~)  p~- 

> 

for T sufficiently small. 
Now we proceed as before and obtain the following estimate for Em+l where 

T(Um, Atm) is estimated using (3.10), s/q = p / ( p -  1) and [[AUn[[ _> 5, 

Em+, < e x p ( L A t m ) E m +  K2Atm ( 5 ~ )  p---~ 

using a similar induction to complete the proof. [] 

Theorems 3.3 and 3.5 show that  in XEPUS mode the algorithm converges 
at a superlinear rate (in fact O(T~---~)) except in the neighbourhood of equi- 
libria where the convergence rate is only linear in T. However, we note that  
if the algorithm (2.10)-(2.17) were modified so that  the timestep sequence in- 
stead satisfied E(Un, Atn) <_ a(T, Un)[[AUn[[~ then O(TP -~-1 ) convergence can be 
obtained, uniformly with respect to the closeness of the trajectory to the origin. 

3.3 Nonlinear convergence results. 

We start by defining 

BI(u) - 

B2(u,t)  = 

1 

p! 

ds, L-,+I - - p + l  
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b~(u) = ( w,Bl(u)/lJf(u)l]' II:(u)llllf(u)ll =~ 0,~ 

b2(u,t) = ( w,B2(u't)/[lf(u)[[' IIf(u)llllY(u)ll _-r 0.~ 

where w E ~m is an arb i t rary  choice of non-zero vector since bl (u) and b2 (u, t) 
may  not  be defined when ]lf(u)l] -- 0. Note also tha t  by (3.1) with r = p - 1 
and (2.13), 

(3.17) 
E ( u , t )  = tql lBl(u)  + tB2(u , t ) ]  I 

= tqllf(u)ll ][bl(u)+tb2(u,t)ll. 

The  following lemma is proved as Lemma 2.4 of [14]. 

LEMMA 3.6. Let J C ]~m be bounded and f C CP+I(]~m,]Rm). Then, if dBl(.)  
denotes the Jacobian of BI(.) ,  

sup I]bl(U)]] < oo, sup Hb2( u, Oil < ~ ,  
u6J (u,t)CJx[O,D] 

sup ]]dBl(su + (1 - s)v)] I < oc. 
(u,v,s)CJxJx[0,1] 

Lemma 3.6 holds for general embedded R u n g e - K u t t a  pairs. We shall need the 
following stronger result for (p - 1, p) pairs with precisely p-stages. 

LEMMA 3.7. Define 

(3.18) /,2(u, t) -- ( w,S2(u't)/llY(u)ll=' II:(u)llllf(u)ll _-# 0.0' 

and let J C ~m be bounded and f E Cp+l(~m,]~m). Then for a ( p -  1,p) pair 
of explicit Runge-Kutta methods with precisely p stages, 

sup IIb2(u,t)ll < ~ .  
(u,t)EJx[O,D] 

PROOF. We prove tha t  flp(~l(U, t), k -- 1, 2, and hence B2 (u, t), are O(H f (u )  H~). 
b4rom Lemma 4.2.6 in [15] there exist constants ci(g) such tha t  

(3.19) IlY(~(u,t))]l _< (l +c~t)tlf(u)ll, 1 < i < p. 

Therefore we need only prove tha t  each term in B2(u, t) is O(l l f (~) l l  IIf(~m)ll) 
for some integers l, m, 1 _< l, m < p which for convenience we shall write as 
CO(llY211). 

Consider either the Runge--Kutta  method  (2.11) or (2.12) and define 

~p+l (~, t) = s(k) (~, t), ap+l,j = b~ k) 
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where k = 1, 2 respectively. Then  the method  may  be wri t ten as 

i-1 
vli(u , t) = u + t ~ a i j f ( r l j (u  , t) ), 

j = l  
i =  l , . . . , p +  l. 

We now prove by induct ion tha t  

d n 

d---~(vii)=O(llYll 2) Y l  < i < n < p + l .  

Our inductive hypothesis  is tha t  for some i < I < p, the following two s ta tements  
hold: 

d n  

(AI) V 1 < i < I ,  nd-~(rh)  = o(llfll 2) vi  < n < p + 1. 

(Bz) V I < i < I ,  ~(f(vii))  = O(llfll 2) V i < n < p + l .  

Note that  these hold if I = 1 since VI1 = u, f(vi1) = f ( u )  are independent of  t. 
We now prove tha t  (AI )  and (BI)  imply  (AI+I )  and (BI+I)  by showing tha t  

d n  

(3.20) dt n (vi,§ = O(llfll  2) vI-4- 1 < n < p + 1, 

(3.21) (f(viI+a)) = O(llfll 2) v r  + 1 < n < p + 1. 
dt ~ 

Note that  

d n 

dtn(viI+ 1 ) ,,."-( • ,) -- t al+l, j f (vi j  
" j = l  z 

I d n  I dn_ 1 
= t Z a ' + l ' J a t ~ ] ( v i ' ) )  +nZa~§ 

j = l  j = l  

From (BI) we deduce tha t  (3.20), and hence (AI+I) ,  holds. 
b3arthermore, (dn/d tn) f (v i l+l )  is a sum of terms of  the form either dr(vii+l) 

(dn/dtn)(vil+l) or products  of  at least two derivatives of r/i+1 with respect to t. 
By (Aj+I the first type  is of O(]]f]] 2) and by Lemma 4.6.4 of  [15], 

d j 
dt--j(vii) = O([If]] ) Vj > 1 

and so the second type  of term is also O(ll f l[2) - Therefore (Bz+l)  also holds. By 
induction so does (Ap+l).  

Since the above argument  applies to bo th  R u n g e - K u t t a  methods,  

tip(k) d p+I 
+1 -- dtP+l (S(k)(u'  t)) = O(llfll 2) 
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for k = 1, 2. By the definition of B2(u, t) and using the fact that the methods 
agree upto order p - 1 it follows that 

(3.22) 

I[B2(u,t)ll < C max Ilfl(pl)+l(u,r) ~(2) - -  0 < r < t  --t-'P+I(U' T)[[ ; O(llfll2) 

proving the lemma. [] 

Lemma 3.7 is crucial to our analysis of the general nonlinear case as it enables 
us to expand the local error as 

(3.23) E ( u , t ) = t q l l f ( u ) l l  {bl(U)+tllf( )llf,2(u,t)} 
which in turn will provide a better upper bound on the sequence of timesteps 
(see Lemmas 3.10 and 3.11) than in [14]. 

Lemma 3.7 can also be understood in terms of rooted trees. As was demon- 
strated in the proof of Lemma 3.2 the only rooted trees that  correspond to 
elementary differentials that are O(l l f (u)  H) and not o(t[f(u)ll2) are the branch- 
less trees. Thus the result that no elementary differential of order n > p of 
this form appears in/~n(u, 0), n > p for a p-stage explicit Runge--Kutta method 
proves Lemma 3.7 when f is analytic since the remainder term in (3.1) can be 
removed. The above proof, by examining/~p+l (u, t) appearing in the remainder 
term, relaxes the smoothness requirement. 

Lemma 3.7 fails to hold in general for (p - 1,p) pairs that use v > p stages 
since elementary differentials corresponding to branchless trees may then ap- 
pear in ~n(U, 0) for n = p + 1 , . . . ,  v. However, by imposing extra restrictions 
on the Runge--Kutta coefficients it may be possible to find higher-order embed- 
ded Runge-Kut ta  pairs in which these elementary differentials either are not 
reproduced or cancel so that the local error estimate can again be expanded as 
(3.23). 

We shall also need the following lemma. 

LEMMA 3.8. For U n C J, IIf(Un+I)II <_ KIIf(U,0[I for some K ( J , D )  > 0. 

PROOF. Using (2.11) and (3.19) 

IIf(Un+l)ll -< Ilf(Un+x) - f(Un)[I + Ilf(un)l[ 

< Lllfn+x - U~ll + II/(Un)ll 

< L A t h  b~(1 + c~Atn) + 1 IIf(g~)ll, 

where L is the Lipschitz constant of f on Utc[0,o],ueJ S(1)(u, t )  �9 Since Atn is 
bounded above by D this completes the proof. [] 

We define the following sets: 

r  := {u e Rm:  Ilbx(u)ll _< e}, r(~) := {u ~ Rm: IIf(u)]l _< ~} 
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and, given sets I, J C R m, 

Jo,~ = J \ ( r (5)  u r  
j~ = J \  ff!(e), 

I~,~ = I \ (F(5) U ~(c)) 
I~ = I\k~(e). 

The constants C3 , . . . ,C7  (depending upon bounded J C ~'~ and D) are 
defined as follows: 

c~  = supl lb l (~ ) l l ,  
uCd 

c~ --  sup I1~,~(~, t)ll, 
(u,t)eJx[O,D] 

C5 = sup IIdB,(su + (1 - s)v)l l ,  
(u,v,s)eJxJx[0,1] 

C6 = L i p { f ( u ) , u  E J},  

C7 = sup E ( u , t ) / t  q. 
(u,t)eJx[O,D] 

These constants are finite by Lemmas 3.6, 3.7, the smoothness of f (u)  and (3.17). 
We now prove that  if the numerical solution sequence Un remains inside some 

bounded set J then at each step the timestep selection mechanism must termi- 
nate after a finite number of rejections; also there is a lower bound on Atn for 
all timesteps except the first and the last. Together these results ensure that  the 
algorithm terminates in finite time. 

LEMMA 3.9. Let J C ~m be compact and consider the sequence (Un, ntn) 
generated by the algorithm (2.10)-(2.17) for some fixed 7. Then for all Un E 

J, 3k = k(J, D) : E(Un, A t  (k)) <_ a(T, Un). Furthermore assume that Un E 
J Vn : tn < T. Then for all suj~ciently small T there exists an integer N = 
N(v) < [T/(80)] + 2 such that tg  = T and for n = 1 , . . . , N -  2, 

(3.24) Atn _> 8r 

where r = ('rC1/CT) �88 

PROOF. Let us fix Un E J. Note that if the timestep At~  ) is rejected then 

Atl~(+') <_ OAt~) 

so that, eventually, At~ ) _< r for some j. But if t _< r then 

E(Un, t) <_ tqc7 <_ C1T <_ ~(~, Un). 

Therefore at each step, the timestep selection scheme must terminate and the 
maximum possible number of rejected timesteps is [(ln r - in D ) / I n  8)] where [.] 
denotes the integer part. 
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Now, Y n : 0 < t n  < T a n d j > l ,  

1 

o'(7"~_Un) "~  At (j-l) D T -  tn) 
Ate )  = min(O ~ E(Un, At~_I)) / n , , 

1 

> min(0 ~O'(T~Un) ) ~ 
\ C7 , D , T - t ~ )  

1 

> min(o(TCl~  ~ , D , T - t n )  
- \ c ~ ]  

= min(0r D, T -  tn) 

from the definitions of C1 and C7. Similarly, for j = O, 

1 

At (~ = min(O \E(U---~-I,A~n-1)] A t n _ , , D , T - t ~ )  

_> min(Or D, T - tn) 

Therefore we deduce that  

A t n > m i n ( 0 r  V n : 0 < t n  < T .  

We now choose T small enough so that  0r < D which proves the lower bound 
on the all the accepted timesteps apart  from possibly the first and the last. The 
upper bound on the total  number of timesteps N(~-) follows immediately. [] 

We now use the timestep selection mechanism to inductively obtain bounds 
from above on the sequence of accepted timesteps. 

LEMMA 3.10. Let u E J~. Then all t E ]~+ satisfying 

also satisfy 

( E(u,t) < a(T,U) and t C 0, 2C4][~(u)]] ~ 

tq < 2a(T,U) 
-II](u)]]~ 

PROOF. Note that  if f(u) = 0 then the result is vacuously true. Otherwise if 
E(u, t) < a(T, U) and u E J~ then (3.17) and Lemma 3.7 give 

But 

t q (bl(u) -}- tUf(u)llb:(u,t)) 

(bl(u) + tllf(u)llb2(u,t)) 

o(~,u) 
_< 

ll/(u)ll 

]]bl(u)l]- tllf(u)llllb2(u,t)l I 

> ~ - C 4 t l l I ( ~ ) l l  

> c/2. 

Thus e t q < 2a(T, U)/]] f(U) N and the result follows. [] 
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LEMMA 3.11. Assume that there exist integers M = M(T)  and N = N(T)  such 
that U,~ E J, for n = M, .  . . ,  N where (Un, Atn) are generated by (2.10)-(2.17). 
Then if 

(3.25) AtM <_ 
2C4ll f (UM)ll  

it follows that for T su~ciently small, 

(3.26) At~ < 2a(T, U~) Vn = M , . . . ,  N. 
Ibf(Vn)llE 

PROOF. If f(U~) = 0 for some n then f (Um) = 0, Vm > n, so that  the result 
clearly holds for all subsequent steps; hence we assume f (Un) # 0, VM < n < 

N. Note that  (2.16) implies that  At,~ < At  (~ so it suffices to prove 

(3.27) Ate)  < 2C411f(Un)ll Vn = M , . . . , N  

and then apply Lemma 3.10. We use induction. Clearly (3.26) holds for n = M 
by assumption. Assume that  (3.26) holds for n -- p < N - 1. Then 

Atp+ 1 <_ 0 
IIf(Up)ll 

~(~, up) ~ ~ 
(bl(Up)+mtpHf(Up)[]b2(Up, mtp)) ] 

Now, as in the proof of Lemma 3.10 

(bl (Up) -~ Atpllf(Uplllb2(Up, Atp) ) Ilbl(Up) II - ~xtpllf(Up)ll lib2 (Up, ~Xtp)ll 

E - C4~Xtpllf(Up)ll 
>_ ~/2. 

Therefore, 

1 1 

~o;+~ <_ O \ e[[f(Uv)[[ _ - \e[[ f (Uv)[[]  
1. { 2c2-K  )q 

< \ e l l ~ ) l l  by Lemma 3.8 

s 
< 
- 2C~][f(Vp+l)][ 

where the last inequality holds for sufficiently small T since q > 1 and IIf(u)ll is 
bounded on J~. [] 

Note that  the accepted timesteps Atn are not bounded above by a constant 
(as in the analysis of [14]) but instead by an inverse power of IIf(Un)l]. 



C O N V E R G E N C E  R E S U L T S  F O R  T H E  M A T L A B  O D E 2 3  R O U T I N E  769 

The bound on the timestep sequence given by Lemma 3.11 must hold with 
M = 0 in order to obtain convergence results for the method. Tha t  is, the first 
accepted timestep At0 must satisfy (3.25). This point is discussed further in 
Section 4.1 for the choice of initial t imestep estimate A t i n i t  used by MATLAB 
Version 4.2 ode23. 

Before proving the main convergence result we must make the following as- 
sumption. 

ASSUMPTION 1. There exist 5*,e* > 0 such that Vu E J, IIf(u)ll < 5* 
IIbi( )ll > 

Assumption 1 holds under very general conditions, for example those given in 
the following lemma. 

LEMMA 3.12. Suppose that the compact set J contains finitely many equilib- 
rium points Uk, k = 1 , . . . ,  N,  and on some neighbourhood of each Uk, f (u)  
Ak(u--Uk)+O(llu--Ukl[ 2) and df(u) = Ak +O(l lu-Ukll  ). Assume that each Ak 
is invertible and also that the lower-order Runge-Kutta method does not increase 
its order on linear problems. Then Assumption 1 holds. 

PROOF. We choose an arbi trary Uk and some u ~ Uk in a small neighbour- 
hood of Uk. Without  loss of generality we set Uk = O. Then Bl(U) is a linear 
combination of the elementary differentials of order p and the only elementary 
differential which is O(llf(u)  ll) and not O(llf(u) ll2) corresponds to the branch- 
less rooted tree with p nodes. Thus we may write the i th component of B1 (u) 
a s  

fjp-2 fjp_l (3.28) [BI(u)]~ = ~f~i f ]2""  jp_~, + O(llf(u)ll2). 

Note that  the coefficient a ~ 0 or else the lower-order method would increase its 
order on linear problems. Now, under the assumptions on f and the Jacobian 
df at Uk, we can write 

[Bl  (U)]i = o~Ai , j lAj i , j~  . . . Ajp_2,jp_~ Ajp_ l , jp  ujp q- CO(llull2). 

If all the components of the first term vanish for some u r 0 then APu = 0 and 
A cannot be invertible. Therefore (3.28) cannot vanish and there exists a 5~, e~ 
such that  Assumption 1 holds on some sufficiently small neighbourhood of each 
Uk. Since there are only finitely many equilibria and the set J is closed, there 
exists 5*, e* such that  Assumption 1 holds. [] 

The condition that  the lower-order method does not increase its order on linear 
problems is of course a very weak one---those methods that  do increase their 
order on linear problems form a small subclass of explicit Runge-Kut ta  methods. 
However, if this condition is not met then c~ = 0 and IlBi(u)ll = O ( l l f ( u ) l l  2) and 
so bi(u) = 0 whenever f (u)  -- 0 contradicting Assumption 1 even under the 
general conditions of Lemma 3.12. If this condition on the lower-order method 
is satisfied Assumption 1 may fail to hold if equilibria in J are not isolated or 
the Jacobian A at some equilibrium point is singular. These cases will not occur 
for typical vector fields f .  In the following convergence results we shall explicitly 
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require that  Assumption 1 holds but  it should be remembered tha t  this is, in the 
generic case, equivalent to choosing a lower-order me thod  tha t  does not  increase 
its order on linear problems. 

We can now prove the main convergence result. 

THEOREM 3.13. Consider the numerical approximation of (1.1) over the time 
interval [0, T] generated by the algorithm (2.10)-(2.17) in XEPS, EPS, XEPUS 
or EPUS mode. Assume that S(B,  t) C_ I2~,, I bounded, for t E [0, T], that 
Assumption 1 holds and that 

Ato _< 
2c411S(Uo)H 

where e = min(e*, e'). Then there exist constants K1 = K1 (B, T),  K2 = K2 (B, T)  
such that for all sufficiently small T and all U E B, 

(3.29) E ~ =  Ilu(tn)-Unll _< g l  ( T ) 7  

2a(T, Un) 
(3.30) Un E J~ and At  q <_ 

IIS(u~)II~' 
and 
(3.31) T(Un, Atn)  <__ K2Atn ( ~ )  ~ 

where 7 = 1 for XEPS, EPUS and XEPUS modes and ~/ = (p - 1)/1) for EPS 
mode. 

PROOF. We prove first tha t  if (3.29) holds for n = 0 , . . . ,  m then (3.30) holds 
for n = 0 , . . . , m .  We have E~ <_ KI(T/e)  ~ so tha t  for T sufficiently small, 
En _< d. Since Un E I it follows tha t  U~ E J. 

If IlY(g~)ll < ~* then Un C J~ by Assumption 1. Otherwise, if liY(g~)ll __ ~*, 

IIB,(Un)II > IIBl(Un)ll - C511Un-- ~nll 

= Ilbl(Un)lll l f(Un)ll-C5E,,  

>- ILbdun)llllf(f,  d l l -  Ilbl(un)llllf(un) - f(Un)ll - CsEn 

>_ 2~'ll f(fn)ll  - (C3C6 +C5)En .  

We choose T sufficiently small tha t  

Then 

(~* /. 

so that  IIBI(U~)II _ e'llf(U~)iJ. Thus  IIbl(Un)II _> e' _> e as required. Hence 
Un E J~ for n = 0 , . . . , m  if (3.29) holds for n = 0 , . . . , m .  It follows that ,  if 
(3.29) holds for n = 0 , . . . , m  then the second s ta tement  in (3.30) holds for 
n = 0 , . . . ,  m by Lemma 3.11. Thus, to prove (3.29) and (3.30), it is sufficient 

(c3c6  + C5)En ~ ~* E' ~ Ilf(gn)lle' 
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to prove that  if (3.29) holds for n = 0 , . . . ,  m then it holds for n -- m + 1. We 
shall do this by proving that  there exists K2(J) ,  L(J) > 0 such that  

(3.32) En < K2tn -~ exp(Ltn) Vn : tn < T. 

If (3.32) holds for a given m then so does (3.29) with g l  (J, T) = K2 (J)T exp(LT), 
so we shall prove (3.32) by induction. Clearly (3.32) holds for m = 0 and 

Em+l = IIS(um; Atm) - S ( 1 ) ( U m ;  A t m ) l l  

<_ [IS(urn; Arm) -- S(gm; Atm)[[ + [[S(Um; Arm) -- S (1) (Urn; Atm)[[ 

<_ exp(LAtm)Em 4- KAt~+IIIf(Um)II 

by Lemma 3.1 and where L(J) is the Lipschitz constant of f on J .  We have by 
Lemma 3.11 

s/q 

(3.33) AtOm -< \ Ill(Urn)lie 

and as in the proof of Theorem 3.3 

Em+l <_ exp(LAtm)E.~ + K3Atm (a(r~-Um) ) s/q 

(3.34) <_ exp(LAtm)Em + K2At.~ (~) ~ 

for XEPS, EPUS and EPS mode using s/q < 1, llf(u)ll bounded on J ,  and by 
(2.14). For XEPUS mode we instead have 

s--1 [/2a(T, Um)'~ - -  
Arm <_ \li /(s. ,)l l~/ (3.35) 

and thus 

s--1 
q 

s--1 
< q 

s--1 

s--1 

(3.36) < exp(LAtm)Em + K2Atm (T) q 

since (s - 1)/q = 1. Since 1 _< e x for all x _> 0 the inductive hypothesis gives, for 
all modes of operation, 

Em+l < K2 (~)~tmexp(Ltm+l)4- K2Atm (T)~exp(Ltm+l) 

= K2(T)~tm+lexp(Ltm+l). 
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This completes the induction. We now note that  (3.31) has already been proved 
in (3.34) and (3.36). Since J is defined by B, K1 = KI(B,  T) which completes 
the proof. [] 

Note that these error estimates are independent of the closeness of the exact 
trajectory to equilibria. This considerable improvement over the analysis in [14] 
is afforded by the special properties of the class of Runge-Kut ta  pairs that we 
consider. The details of the timestep selection mechanism appear most crucially 
in the proofs of Lemmas 3.10 and 3.11. In [7] these Lemmas are generalised 
to include other algorithms, with only very weak assumptions on the timestep 
selection mechanism; and the same class of Runge-Kut ta  pairs is shown to confer 
superior convergence properties close to equilibria. 

By allowing the distance of the exact trajectory from equilibria to appear in 
-2 - - -  

the error statement, we can also obtain O(7-,-1 ) for the XEPUS mode, in a 
direct analogue of Theorem 3.5 for the linear case. 

THEOREM 3.14. Consider the numerical approximation of (1.1) over the time 
interval [0, T] generated by the algorithm (2.10)-(2.17) in XEPUS mode. Assume 
that S(B, t) C I2~,,25, I bounded, for t e [0, T], that Assumption 1 holds and that 

Ato _< 
2c4H/(Uo )ll 

where c = min(c*, e'). Then there exist constants K1 = KI(B,  T), 1(2 = 
K2(B,T)  such that for all sufificiently small ~- and U E B, 

(3.37) E n = , , U ( t n ) - U n , ]  < Kl  ( ~ e )  p-~- , 

Vn) 
(3.38) Un E J~,~ and At  q < 

and 
P 

PROOF. The proof is very similar to the previous one. To prove that if 
(3.37) holds for n = 0 , . . . ,  m then (3.38) holds for n = 0 , . . . ,  m we need only 
additionally prove that  Un E J~ for sufficiently small T which follows since 

llf(U~)ll IIf(U ) - f (un) l t  

- C611Un -- Unll 
P 

> 

> 5 

for r sufficiently small. 
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Now we proceed as before and obtain the following estimate for Em+l, 

Em+l <_ exp(LAtm)Em + gAtPm+lllf(Um)ll 
P 

< exp(LAtm)Em + K2Atm \5~ , ]  " 

A similar induction to before completes the proof. [] 

As in the linear case, we note that  if the timesteps were instead required to 
satisfy 

E(u,t) <_ ~(~,u)llY(u)ll~ 
then the rate of convergence, independent of the distance of the exact trajectory 

from equilibria, can be increased to O(Tp ~ -  ) for XEPUS mode. 

4 Except ional  cases and probabilistic arguments .  

Theorem 3.13 is our main convergence result. We note that  there are three 
situations in which it can fail. 

1. At0 is not small enough for the convergence theorems to apply. 

2. The exact trajectory passes through ~(0). 

3. Assumption 1 does not hold. 

The first situation is particularly relevant to the MATLAB Version 4.2 ode23 
routine since A t i n i t  = T/128 will not in general lie in the interval (0, 2c41~(u)11]. 
Then if the function E(U, .) has zeros for 59(1) values of t it is possible for the 
initial guess Atinit to be wrongly accepted. We shall consider this possibility in 
Section 4.1 and state a corollary of Theorem 3.13 for the MATLAB Version 4.2 
ode23 routine. 

The second situation reflects the fact that  the global error bounds proved here 
do not hold uniformly in the neighbourhood of ~(0).  In Section 4.2, the results 

! _ 2 _  
of [14] are used to calculate the probability that  the terms e -~ and (eSp) p- l ,  
appearing in the error bounds of Theorems 3.13 and 3.14 respectively, do not 
exceed some value R for generic functions f(u) and initial conditions chosen 
uniformly with respect to Lebesgue measure from a ball in R m. 

The third situation, provided that  the lower-order method does not increase 
its order on linear problems, will not occur for typical vector fields and so we 
shall not discuss it here. 

4.1 The choice of initial timestep for MATLAB Version 4.2 ode23. 

Let us first fix the integration t ime T (and hence Atinit) and the initial data  

U. Then, if E(U, i t i n i t )  ~ 0, by (2.16) the step At  (~ = i t ini  t will rejected 
for sufficiently small T and furthermore the conditions of Lemma 3.11 will be 
satisfied with M = 0 since 

At0 _< At(1) _< 
2C411f(Uo )lf " 
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Therefore, if E(U, Atini t  ) __~ /~ > 0 ~/U E B, then Theorem 3.13 holds for all 
sufficiently small T. Thus we state the following corollary for MATLAB Version 
4.2 ode23. 

COROLLARY 4.1. Consider the numerical approximation of (1.1) over the time 
interval [0,T] using MATLAB Version 3.2 ode23. Assume that S(B, t)  E I2~,, 
I bounded, for t E [0, T] and that Assumption 1 holds with 5*,e* > O. Assume 
also that E(U, Atinit) ~ I~ > 0 VV C B. Then, for e = min(e*, e'), 

s 

(4.1) At0 < 2c411y(v0)ll 

for all sufficiently small ~-. Furthermore there exists a constant K1 (J, T) such 
that for all su~ciently small T and U e B, 

E n  = Ilu(t, ) - gril l < g l  

and 
2T max( l ,  IIU,~ll~) 

Un e J~ and A t e <  
IIf(V, )llc 

We now consider the zeros of the local error estimate E(U, t) and treat  U and 
Atinit in turn as random variables. 

Note first that  for fixed T (and hence fixed Atinit), 

S(1)(O, t t i n i t )  _ S (2 ) (o ,  At in i t )  : ]~m ~ ]~rn 

and thus for typical vector fields f the set of initial data  U for which E(U, Atinit) 
= 0 consists of isolated points. 

Now, for a given fixed U, we treat  the integration t ime T as a random variable 
uniformly distributed on some interval I T - ,  T +] so that,  in turn, Atinit is uni- 
formly distributed on the interval [T- /128 ,  T+/128]. Let us suppose that  the di- 
mension of the problem m = 1 and there exists a unique At* C [T- /128,  T+/128] 
such that  E(U, At*) = 0. Then, for sufficiently small T, E(U, Atinit) ~ 0"(7", U) 
and (4.1) holds except for Atinit in some small interval containing At*. In the 
generic case that  dE(U, t)/dt  evaluated at At* is nonzero the size of this interval, 
and hence the probabili ty of spuriously accepting Atinit, is O(T) as T --~ 0. 

In higher dimensions the argument is similar, but we note also that,  for 
given initial data  U, there will typically be no At* >_ e/(2C41]f(U)]]) such that  
E(U, At*) = 0. For such a At* to exist would requires that  all the components 
of E(U, At*) to vanish simultaneously. A rigorous probabilistic argument for the 
higher-dimensional case appears to be very complicated so we satisfy ourselves 
with the statement that  the probability of At in i t  being accepted as T -+ 0 is no 
worse than for the one-dimensional case. 

Our analysis suggests two alternative strategies for selecting Atini t. Firstly, we 
observe that  as T --~ 0 it seems reasonable to also require Atinit --~ 0. Then, for 
all sufficiently small T the first accepted timestep will satisfy (4.1). A choice of 

1 
Atinit  , consistent with Lemmas 3.10 and 3.11, would be Atin i t  ~-~ CT ~ for some 
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C > 0. A second, more pragmatic, approach is simply to choose Atinit close 
to machine precision. Then Atinit should be accepted as At0 (if it is rejected 
then either 7- is also close to machine precision or the ODE is extremely stiff 
and in either case the integration should probably not be allowed to continue!). 
The proof of Lemma 3.9 shows that,  independent of the size of At0, At1 _> 
min(8r D, T - t l)  and so only a small amount of computational effort is wasted 
on unnecessarily small timesteps. Of course, this argument does not hold if the 
algorithm includes a maximum stepsize ratio c~ enforcing A t n + l / A t n  <_ ~. 

3.2 Behaviour near ~P(O). 

In [14] it was argued that,  for a generic function f ( u ) ,  the set q2(0) where 
bl disappears will consist of isolated points. Therefore, if the dimension of the 
problem m is greater than 1 then an exact trajectory u(t),  with random initial 
conditions chosen from a ball, will pass through the set kg(0) with probability 
zero. Let us define the following quantities: 

5 = 5(U,T)  := inf IIf(S(U,t))II 
0 < t < T  

e = e(U,T)  := inf IIb,(S(U,t))ll. 
0 < t < T  

Then, in the statement of Theorem 3.13, it is of interest to know with what prob- 
ability an exact trajectory, chosen by picking an initial condition U randomly 
with respect to Lebesgue measure from a ball in ]~m satisfies 

c-~_<R 

so that the global error is bounded by K 1 R T  ~. The analysis in [14] shows that, 
for all sufficiently large R and dimension m > 1, 

C m - 1  
Prob{e - ~ < R } _ > l - ~ - 7  w h e r e l -  

7 

and C is a constant. 
Similarly, for XEPUS mode in Theorem 3.14 we require 

P 
1 _< 

for the global error to be bounded by K 1 R T p ~ - .  For sufficiently large R, 

Prob e6~ -~---~ < R  > 1 - ~  w h e r e l -  
- - m p + m - 1  

and C is a constant. 
The situation where the exact trajectory passes through ~(0) in one dimension 

was studied numerically in [4] on a variety of test problems. It was observed, 
for a slightly different algorithm, that in the neighbourhood of @(0) there is a 
local reduction in the convergence rate and a corresponding degradation in the 
global convergence rate. 
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5 M A T L A B  Vers ion  5.0 o d e 2 3 .  

We now briefly turn our attention to the new ode23 routine supplied in MAT- 
LAB Version 5.0. This algorithm is far more sophisticated than that  in MAT- 
LAB Version 4.2 and allows the user far greater control over the integration via 
a number of different parameters such as the initial timestep, maximum step- 
size and choice of absolute and relative tolerances. The algorithm also performs 
interpolation and produces output at user-specified times, if so desired, and per- 
forms event detection. However, all the above are either not relevant to the 
timestep selection mechanism or have already been incorporated into the class 
of algorithms (2.10)-(2.17) analysed above. 

However, there are two major differences in the timestep selection mechanism 
from MATLAB Version 4.2 ode23. Firstly there is a maximum timestep ratio 
of 5 (i.e., Atn+l/Atn < 5). Secondly, after the first stepsize rejection at step 
n, a new timestep is selected according to the asymptotic approximation (2.16) 
but if subsequent stepsize rejections occur at the same n then the timestep is 
repeatedly halved until the local error estimate satisfies the local control. Both 
of these differences are included in the analyses of [14, 7] and so the convergence 
results presented there (which are not uniform with respect to initial data on 
compact neighbourhoods of equilibria) apply to MATLAB Version 5.0 ode23 
(with minor modifications in the case of [14]). (A third change is the introduction 
of a minimum timestep based upon the precision of the floating-point arithmetic 
being used. If the error-control criterion cannot be satisfied with a timestep 
larger than this minimum then the integration is halted. Since we are only 
concerned with convergence results in real arithmetic we shall not consider this 
further.) 

The crucial difference, as far as convergence properties are concerned, is that  
the routine uses a different embedded Runge-Kut ta  pair, namely the Bogacki- 
Shampine (2,3) pair [10, 9, 2]. This is designed to be operated in extrapolation 
mode and is a FSAL method (First Same As Last) so that while the higher-order 
method has 3 stages, the lower-order method uses the first stage of the next step 
and thus in reality has 4 stages. This means that  the convergence results proved 
here do not apply to this pair, even if used in conjunction with the timestep 
selection mechanism from MATLAB Version 4.2 ode23. To summarise, the best 
available results for MATLAB Version 5.0 ode23 are of the same type as those 
appearing in [14] with error constants that  are not uniform in neighbourhoods 
of equilibria. 

Because the convergence results proved in Section 3, compared with those 
in [14], are stronger only on neighbourhoods of equilibria, it is sufficient, and 
indeed revealing, to illustrate the difference in convergence results that can be 
achieved for the different versions of ode23 by studying a linear ODE. Consider 
the two-dimensional problem 

xt x 1 01 x ) .  

This has a saddle point at the origin and exact solution (x0e t, y0e t) given initial 
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Table 5.1: Numerical results for MATLAB Versions 5.0 and 4.2 ode23. The errors 
are measured in the a - n o r m .  To enable a direct comparison, only those outputs from 
MATLAB Version 4.2 ode23 that  closely match the output times of the Version 5.0 
algorithm are given. 

M A T L A B  Version 5.0 ode23 M A T L A B  Version 4.2 ode23 

T ime  Er ror  T ime  Er ror  

t o = O  

t l = l  

t 2 = 2  

t3  = 3 

t4 = 4 

t5 = 5 

t6 = 6 

t 7 = 7  

ts = 8 

t9 = 8.783268 

tlo = 9.566536 

t l l  = I0 

E 0 =  0 

E1 = 3.454611 

E 2 =  2.422417 

E 3 =  1.275003 

E 4 =  0.596996 

E5 = 0.262272 

E 6 =  0.110701 

ET= 0.045463 

Es= 0.018305 

E9= 0.0O9749 

El0 = 0.022364 

E l l  = 0.034693 

to = 0  

t7 = 1.059370 

t13  = 2.040615 

t19 = 3.021860 

t25 = 4.003105 

t31 = 4.987268 

t36 = 5.979402 

t4o = 7.063932 

t43  ---- 8.186425 

ta4 = 8.656907 

t47 = 9.775934 

t 4 s  = I0 

E 0 = 0  
E7 = 7.1254 • 10 -3  

El3  --  5.3198 • 10 -3  

E19 = 2.9868 • 10 -3  

E25 = 1.4916 • 10 -3  

E31 = 6.9828 • 10 -4  

E36 = 3.5937 • 10 -4  

E40 = 2.2255 • 10 -4  

E43 = 1.6944 • 10 -4  

E44 = 2.9399 • 10 -4  

E47 = 1.2331 • 10 -3  

E4s = 1.5620 z 10 -3  

d a t a  (xo, Yo). F rom the  R u n g e - K u t t a  coefficients of the  B o g a c k i - S h a m p i n e  (2,3) 
pa i r  and  (3.12) we find t ha t  the  local  error  e s t ima te  for M A T L A B  Version 5.0 
ode23 is 

(5.1) E(Un, Atn)  = 4~llAt3nA3(I + AtnA)Unll 

where I is the  2 • 2 iden t i ty  mat r ix .  Note  t ha t  if A tn  = 1 then  (I + At~A) in 
(5.1) becomes s ingular  wi th  nul lspace given by  the  line x = 0. Thus  for any fixed 
to lerance  and  a r b i t r a r y  Y0 we can force M A T L A B  Version 5.0 ode23 to accept  
an  in i t ia l  t imes tep  At0 = 1 by  choosing x0 sufficiently smal l  (<< v). We can 
make  the  s i tua t ion  even worse by  also a r rang ing  t ha t  the  m a x i m u m  t imes tep  
equals  1 so t ha t  a sequence of t imes teps  A t  = 1 are accepted,  the  t imes teps  only 
reducing when xn becomes O(T). 

The  first two columns in Table  5.1 show the  numer ica l  results  for M A T L A B  
Version 5.0 ode23 app l ied  to  the  above  example  over the  t ime  interval  [0, 10] 
wi th  the  re la t ive  and  abso lu te  error  tolerances  set to  R e l T o l = A b s T o l - 1 0  -3  and  
the  in i t ia l  t imes t ep  I n i t i a l S t e p = l .  The  defaul t  m a x i m u m  t imestep ,  MaxStep ,  
is chosen to  be 1 of the  in tegra t ion  t ime  and  is therefore also 1. The  ini t ia l  
d a t a  is (x0,Y0) = (10 -5 ,  100). The  ini t ia l  t imes tep  es t imate  I n i t i a l S t e p = l  is 
accepted because  x0 is sufficiently smal l  causing an O(1) error. Then,  due to 

the  choice of m a x i m u m  t imes tep ,  At(n ~ = 1 is r epea ted ly  accepted unt i l  x = 
O(T) at  n = 9 where the  error  control  recovers. These  numerica l  results  should 
be  cont ras ted  wi th  those  for the  Version 4.2 a lgo r i thm given in the  last  two 
columns of Table  5.1. The  in i t ia l  t imes tep  is a u toma t i c a l l y  set to  10/128 and  
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the maximum timestep is 10/16. The tolerance T is chosen to be 10 -3 so that 
the tolerance is identical to that  used in the Version 5.0 integration. For this 
algorithm the local error is given by (see Section 3.2) 

(5.2) ~]IAt3A3U~II E(Un, Atn) = 

and, in accordance with Corollary 3.4, the algorithm works effectively and will 
do so for any choice of initial timestep. 

The failure of the Version 5.0 algorithm in the above linear example was con- 
structed by a careful choice of A t i n i  t . But the example is also representative o f  
what may occur at intermediate timesteps during the integration of a nonlinear 
problem for any fixed T. At some time during the integration, for initial data 
sufficiently close to the stable manifold of the equilibrium point, a computed tra- 
jectory may enter the neighbourhood of the equilibrium point with the timestep 
sequence increasing to (9(1). Once this occurs, because the local error estimate 
(5.1) can vanish on linear problems for certain non-zero values of Atn, the error 
can no longer be bounded independently of the distance of the exact trajectory 
from equilibria. This possibility cannot be ruled out by the above analysis al- 
though it will be unlikely to occur for any randomly chosen set of initial data. 
So, although the changes in the timestep selection mechanism of Version 5.0 
certainly improve the efficiency of the code for the majority of problems, the 
strength of the convergence results that can be proved in the neighbourhood of 
equilibria is limited by the Runge--Kutta pair used. 

6 Conclus ions .  

We have identified a class of algorithms, based upon the timestep selection 
mechanism used in the MATLAB Version 4.2 ode23 routine, for which conver- 
gence (as T --+ 0) holds uniformly on neighbourhoods of equilibria. Crucially, 
these algorithms use explicit Runge-Kut ta  pairs of orders p and p - 1 with 
precisely p stages to estimate the local error and so include MATLAB Version 
4.2 ode23. 

In fact the analysis can be extended to cover many other algorithms, under 
weak assumptions on the timestep selection mechanism [7]. Uniform conver- 
gence close to equilibria occurs for the same class of Runge-Kut ta  pairs de- 
scribed above. In Section 5 we briefly discussed the more sophisticated ode23 
routine supplied with MATLAB Version 5.0. While the new routine has many 
benefits and is undoubtedly far more efficient for most problems, it neverthe- 
less has demonstrably poorer convergence properties close to equilibria due to 
the embedded Runge-Kut ta  pair employed. One possible remedy, that can be 
applied very generally to algorithms using Runge-Kut ta  pairs of all orders, is 
to switch to a (p - 1, p) Runge-Kut ta  pair with precisely p stages whenever the 
numerical solution enters the neighbourhood of an equilibrium point (i.e. when 
Ill(u) II becomes sufficiently small). Then, even if this alternative Runge-Kut ta  
pair is of lower-order, O(T ~) global convergence can be maintained, uniform with 
respect to distance from equilibria, by using the alternative Runge-Kut ta  pair 
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in an appropriate operating mode. The loss in overall efficiency should be small 
while improving the convergence properties of the algorithm near equilibria. 

For algorithms that  converge uniformly on neighbourhoods of equilibria, con- 
vergence may not occur, or occur at a reduced rate, only in the neighbourhood 
of points where the leading term of the local error estimate, scaled by ]]f(u)]], 
vanishes. (For linear problems defined by an invertible matrix, such points do 
not exist and so convergence occurs uniformly on all compact sets of initial data). 
In [8] modified adaptive algorithms are introduced which eliminate this mode of 
failure for generic vector-fields. 

We conclude by observing that  the convergence results we have derived have 
been stated for embedded Runge-Kut ta  pairs of orders p and p -  1 with precisely 
p stages and such pairs only exist for p < 4. However, the results may also 
apply to certain higher-order Runge-Kut ta  pairs. Consider a ( p -  1, p) pair with 
v > p stages. All we required for the results of Section 3 to hold was that  
the lower-order method does not increase its order on linear problems and that  
the higher-order terms of the local error estimate expansion are all O(]]f]]2). If 
v > p then this second condition is no longer satisfied automatically. But this 
can be achieved by imposing v - p extra conditions on the coefficients of the 
embedded Runge-Kut ta  methods to ensure that  the O(]]f]l ) terms in b2(u, t) 
vanish. Since the number of extra conditions increases linearly with v and the 
number of free Runge-Kut ta  coefficients increases quadratically it seems at least 
possible, if not likely, that  Runge-Kut ta  pairs with p > 4 exist for which the 
convergence results presented here also hold. For a (4,5) embedded pair with 6 
stages it can easily be shown that  the single extra condition to be satisfied is 

b~ 1) = b~ 2). However, the pair used in MATLAB Version 4.2 ode45 (which uses 
an algorithm identical to MATLAB Version 4.2 ode23 in every other respect) 
does not satisfy this extra condition and so the improved convergence results 
do not apply. Indeed MATLAB Version 4.2 ode45 can be made to fail in the 
same way as the example given in Section 5 for MATLAB Version 5.0 ode23. A 
more detailed analysis of algorithms using such higher-order Runge-Kut ta  pairs 
in the neighbourhood of equilibria would be valuable. 
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