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Abstract. Waveform relaxation algorithms for partial differential equations (PDEs) are tradi-
tionally obtained by discretizing the PDE in space and then splitting the discrete operator using
matrix splittings. For the semidiscrete heat equation one can show linear convergence on unbounded
time intervals and superlinear convergence on bounded time intervals by this approach. However, the
bounds depend in general on the mesh parameter and convergence rates deteriorate as one refines
the mesh.

Motivated by the original development of waveform relaxation in circuit simulation, where the
circuits are split in the physical domain into subcircuits, we split the PDE by using overlapping
domain decomposition. We prove linear convergence of the algorithm in the continuous case on an
infinite time interval, at a rate depending on the size of the overlap. This result remains valid after
discretization in space and the convergence rates are robust with respect to mesh refinement. The
algorithm is in the class of waveform relaxation algorithms based on overlapping multisplittings. Our
analysis quantifies the empirical observation by Jeltsch and Pohl [SIAM J. Sci. Comput., 16 (1995),
pp. 40–49] that the convergence rate of a multisplitting algorithm depends on the overlap.

Numerical results are presented which support the convergence theory.
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1. Introduction. The basic ideas of waveform relaxation were introduced in
the late 19th century by Picard [18] and Lindelöf [11] to study initial value problems.
There has been much recent interest in waveform relaxation as a practical parallel
method for the solution of stiff ordinary differential equations (ODEs) after the publi-
cation of a paper by Lelarasmee, Ruehli, and Sangiovanni–Vincentelli [10] in the area
of circuit simulation.

There are two classical convergence results for waveform relaxation algorithms for
ODEs: (i) for linear systems of ODEs on unbounded time intervals one can show linear
convergence of the algorithm under some dissipation assumptions on the splitting [15],
[14], [4], [9]; (ii) for nonlinear systems of ODEs (including linear ones) on bounded
time intervals one can show superlinear convergence assuming a Lipschitz condition
on the splitting function [15], [1], [3]. For classical relaxation methods (Jacobi, Gauss–
Seidel, SOR) the above convergence results depend on the discretization parameter
if the ODE arises from a PDE which is discretized in space. The convergence rates
deteriorate as one refines the mesh.

Jeltsch and Pohl propose in [9] a multisplitting algorithm with overlap, general-
izing the elliptic analysis of O’Leary and White in [17] to the parabolic case. They
prove results (i) and (ii) for their algorithm, but the convergence rates are mesh-
dependent. However, they show numerically that increasing the overlap accelerates
the convergence of the waveform relaxation algorithm. We quantify their numerical
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2015

results by formulating the waveform relaxation algorithm at the space-time continu-
ous level using overlapping domain decomposition; this approach was motivated by
the work of Bjørhus [2]. We show linear convergence of this algorithm on unbounded
time intervals at a rate depending on the size of the overlap. This is an extension of
the first classical convergence result (i) for waveform relaxation from ODEs to PDEs.
Discretizing the algorithm, the size of the physical overlap corresponds to the overlap
of the multisplitting algorithm analyzed by Jeltsch and Pohl. We show furthermore
that the convergence rate is robust with respect to mesh refinement, provided the
physical overlap is held constant during the refinement process.

Giladi and Keller [8] study superlinear convergence of domain decomposition al-
gorithms for the convection diffusion equation on bounded time intervals, hence gen-
eralizing the second classical waveform relaxation result (ii) from ODEs to PDEs.

It is interesting to note that, using multigrid to formulate a waveform relaxation
algorithm, Lubich and Osterman prove in [13] linear convergence for the heat equation
independent of the mesh parameter.

In section 2 we consider a decomposition of the domain into two subdomains. This
section is mainly for illustrative purposes, since the analysis can be performed in great
detail. In section 3 we generalize the results to an arbitrary number of subdomains.
In section 4 we show numerical experiments which confirm the convergence results.

Although the analysis presented is restricted to the one-dimensional heat equa-
tion, the techiques applied in the proofs are more general. Future work successfully
applies these techniques to higher-dimensional problems and to nonlinear parabolic
equations.

2. Two subdomains.

2.1. Continuous case. Consider the one-dimensional heat equation on the in-
terval [0, L],

∂u
∂t

= ∂2u
∂x2 + f(x, t), 0 < x < L, t > 0,

u(0, t) = g1(t), t > 0,
u(L, t) = g2(t), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ L,

(2.1)

where we assume f(x, t) to be bounded on the domain [0, L] × [0,∞) and uniformly
Hölder continuous on each compact subset of the domain. We assume furthermore
that the initial data u0(x) and the boundary data g1(t), g2(t) are piecewise continuous.
Then (2.1) has a unique bounded solution [5]. We consider in the following functions
in L∞ := L∞(R+;R) with the infinity norm

||f(·)||∞ := sup
t>0
|f(t)|.

The maximum principle, and a corollary thereof, establishing the steady state solution
as a bound on the solution of the heat equation are instrumental in our analysis.

Theorem 2.1 (maximum principle). The solution u(x, t) of the heat equation
(2.1) with f(x, t) ≡ 0 attains its maximum and minimum either on the initial line
t = 0 or on the boundary at x = 0 or x = L. If u(x, t) attains its maximum in the
interior, then u(x, t) must be constant.

Proof. The proof can be found in [21].
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2016 MARTIN J. GANDER AND ANDREW M. STUART

Corollary 2.2. The solution u(x, t) of the heat equation (2.1) with f(x, t) ≡ 0
and u0 ≡ 0 satisfies the inequality

||u(x, ·)||∞ ≤ L− x
L
||g1(·)||∞ +

x

L
||g2(·)||∞, 0 ≤ x ≤ L.(2.2)

Proof. Consider ũ solving

∂ũ
∂t

= ∂2ũ
∂x2 , 0 < x < L, t > 0,

ũ(0, t) = ||g1(·)||∞, t > 0,
ũ(L, t) = ||g2(·)||∞, t > 0,

ũ(x, 0) = L− x
L ||g1(·)||∞ + x

L ||g2(·)||∞, 0 ≤ x ≤ L.

(2.3)

The solution ũ of (2.3) does not depend on t and is given by the steady state solution

ũ(x) =
L− x
L
||g1(·)||∞ +

x

L
||g2(·)||∞.

By construction, we have ũ(x)− u(x, t) ≥ 0 at t = 0, and on the boundary x = 0 and
x = L. Since ũ − u is in the kernel of the heat operator, we have by the maximum
principle for the heat equation ũ(x)− u(x, t) ≥ 0 on the whole domain [0, L]. Hence

u(x, t) ≤ L− x
L
||g1(·)||∞ +

x

L
||g2(·)||∞.

Likewise ũ(x) + u(x, t) ≥ 0 at t = 0, x = 0, and x = L, and is in the kernel of the
heat operator. Hence

u(x, t) ≥ −
(
L− x
L
||g1(·)||∞ +

x

L
||g2(·)||∞

)
.

Therefore we have

|u(x, t)| ≤ L− x
L
||g1(·)||∞ +

x

L
||g2(·)||∞.

Now the right-hand side does not depend on t, so we can take the supremum over t,
which leads to the desired result.

To obtain a waveform relaxation algorithm, we decompose the domain Ω = [0, L]×
[0,∞) into two overlapping subdomains Ω1 = [0, βL]×[0,∞) and Ω2 = [αL,L]×[0,∞)
where 0 < α < β < 1 as given in Figure 2.1. The solution u(x, t) of (2.1) can now
be obtained from the solutions v(x, t) on Ω1 and w(x, t) on Ω2, which satisfy the
equations

∂v
∂t

= ∂2v
∂x2 + f(x, t), 0 < x < βL, t > 0,

v(0, t) = g1(t), t > 0,
v(βL, t) = w(βL, t), t > 0,
v(x, 0) = u0(x), 0 ≤ x ≤ βL,

(2.4)

and

∂w
∂t

= ∂2w
∂x2 + f(x, t), αL < x < L, t > 0,

w(αL, t) = v(αL, t), t > 0,
w(L, t) = g2(t), t > 0,
w(x, 0) = u0(x), αL ≤ x ≤ L.

(2.5)D
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2017

Fig. 2.1. Decomposition into two overlapping subdomains.

First note that v = u on Ω1 and w = u on Ω2 are solutions to (2.4) and (2.5).
Uniqueness follows from our analysis of a Schwarz-type iteration introduced for elliptic
problems in [19] and further studied in [12] and [6]. We get

∂vk+1

∂t
= ∂2vk+1

∂x2 + f(x, t), 0 < x < βL, t > 0,

vk+1(0, t) = g1(t), t > 0,
vk+1(βL, t) = wk(βL, t), t > 0,
vk+1(x, 0) = u0(x), 0 ≤ x ≤ βL,

and

∂wk+1

∂t
= ∂2wk+1

∂x2 + f(x, t), αL < x < L, t > 0,

wk+1(αL, t) = vk(αL, t), t > 0,
wk+1(L, t) = g2(t), t > 0,
wk+1(x, 0) = u0(x), αL ≤ x ≤ L.

Let dk(x, t) := vk(x, t) − v(x, t) and ek(x, t) := wk(x, t) − w(x, t) and consider the
error equations

∂dk+1

∂t
= ∂2dk+1

∂x2 , 0 < x < βL, t > 0,

dk+1(0, t) = 0, t > 0,
dk+1(βL, t) = ek(βL, t), t > 0,
dk+1(x, 0) = 0, 0 ≤ x ≤ βL,

(2.6)

and

∂ek+1

∂t
= ∂2ek+1

∂x2 , αL < x < L, t > 0,

ek+1(αL, t) = dk(αL, t), t > 0,
ek+1(L, t) = 0, t > 0,
ek+1(x, 0) = 0, αL ≤ x ≤ L.

(2.7)

The following lemma establishes convergence of the Schwarz iteration on the interfaces
of the subdomains in L∞. Using the maximum principle convergence in the interior
follows.
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2018 MARTIN J. GANDER AND ANDREW M. STUART

Lemma 2.3. On the interfaces x = αL and x = βL the error of the Schwarz
iteration decays at the rate

||dk+2(αL, ·)||∞ ≤ α(1− β)

β(1− α)
||dk(αL, ·)||∞,(2.8)

||ek+2(βL, ·)||∞ ≤ α(1− β)

β(1− α)
||ek(βL, ·)||∞.(2.9)

Proof. By Corollary 2.2 we have

||dk+2(x, ·)||∞ ≤ x

βL
||ek+1(βL, ·)||∞ ∀x ∈ [0, βL](2.10)

and

||ek+1(x, ·)||∞ ≤ L− x
(1− α)L

||dk(αL, ·)||∞ ∀x ∈ [αL,L].(2.11)

Evaluating (2.11) at x = βL and (2.10) at x = αL and combining the two, we obtain
inequality (2.8). Inequality (2.9) is obtained similarly.

For any function g(·, t) in L∞([a, b], L∞) we introduce the norm

||g(·, ·)||∞,∞ := sup
a≤x≤b

||g(x, ·)||∞.

Theorem 2.4. The Schwarz iteration for the heat equation with two subdomains
converges in L∞([a, b], L∞) at the linear rate

||d2k+1(·, ·)||∞,∞ ≤
(
α(1− β)

β(1− α)

)k
||e0(βL, ·)||∞,(2.12)

||e2k+1(·, ·)||∞,∞ ≤
(
α(1− β)

β(1− α)

)k
||d0(αL, ·)||∞.(2.13)

Proof. Since the errors dk and ek are both in the kernel of the heat operator they
obtain, by the maximum principle, their maximum value on the boundary or on the
initial line. On the initial line and the exterior boundary, both dk and ek vanish.
Hence

||d2k+1(·, ·)||∞,∞ ≤ ||e2k(βL, ·)||∞, ||e2k+1(·, ·)||∞,∞ ≤ ||d2k(αL, ·)||∞.
Using Lemma 2.3 the result follows.

2.2. Semidiscrete case. Consider the heat equation continuous in time, but
discretized in space using a centered second-order finite difference scheme on a grid
with n grid points and ∆x = L

n+1 . This gives the linear system of ODEs

∂u
∂t

= A(n)u+ f(t), t > 0,

u(0) = u0,
(2.14)

where the n×n matrix A(n), the vector-valued function f(t), and the initial condition
u0 are given by

A(n) =
1

(∆x)2


−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2

,f(t)=


f(∆x, t) + 1

(∆x)2 g1(t)

f(2∆x, t)
...

f((n− 1)∆x, t)
f(n∆x, t) + 1

(∆x)2 g2(t)

,u0 =

 u0(∆x)
...

u0(n∆x)

 .

(2.15)
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2019

We note the following property of A(n) for later use: let p := (p1, . . . , pn)T , where
pj := j. Then

A(n)p =

(
0, . . . , 0,

−(n+ 1)

(∆x)2

)T
.(2.16)

Likewise, let q := (q1, . . . , qn)T where qj := n+ 1− j. Then

A(n)q =

(−(n+ 1)

(∆x)2
, 0, . . . , 0

)T
.(2.17)

We denote the ith component of a vector-valued function v(t) by v(i, t), and v(t) ≥
u(t) is understood componentwise. We now establish the discrete analogs of the
maximum principle (Theorem 2.1) and Corollary 2.2.

Theorem 2.5 (semidiscrete maximum principle). Assume u(t) solves the semidis-
crete heat equation (2.14) with f(t) = (f1(t), 0, . . . , 0, f2(t))T and u(0) = (u1(0), . . . ,
un(0))T . If f1(t) and f2(t) are nonnegative for t ≥ 0 and u(i, 0) ≥ 0 for i = 1, . . . , n
then

u(t) ≥ 0 ∀t ≥ 0.

Proof. We follow Varga’s proof in [20]. By Duhamel’s principle the solution u(t)
is given by

u(t) = eA(n)tu(0) +

∫ t

0

eA(n)(t−s)f(s)ds.(2.18)

The key is to note that the matrix eA(n)t contains only nonnegative entries. To see
why write A(n) = −2I(n) +J(n), where J(n) contains only nonnegative entries and I(n)

is the identity matrix of size n× n. We get

eA(n)t = e−2I(n)teJ(n)t = e−2teJ(n)t = e−2t
∞∑
l=0

J l(n)t
l

l!
,

where the last expression clearly has only nonnegative entries. Since the matrix
exponential in (2.18) is applied only to vectors with nonnegative entries, it follows
that u(t) cannot become negative.

Corollary 2.6. The solution u(t) of the semidiscrete heat equation (2.14) with
f(t) = ( 1

(∆x)2 g1(t), 0, . . . , 0, 1
(∆x)2 g2(t))T and u0 ≡ 0 satisfies the inequality

||u(j, ·)||∞ ≤ n+ 1− j
n+ 1

||g1(·)||∞ +
j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.(2.19)

Proof. Consider ũ(t) solving

∂ũ
∂t

= A(n)ũ+ f̃ , t > 0,

ũ(j, 0) =
n+ 1− j
n+ 1 ||g1(·)||∞ +

j
n+ 1 ||g2(·)||∞, 1 ≤ j ≤ n,(2.20)

with f̃ = ( 1
(∆x)2 ||g1(t)||∞, 0, . . . , 0, 1

(∆x)2 ||g2(t)||∞)T . Using the properties (2.16) and

(2.17) of A(n) and the linearity of (2.20) we find that the solution ũ of (2.20) does
not depend on t and is given by the steady state solution

ũ(j) =
n+ 1− j
n+ 1

||g1(·)||∞ +
j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.
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2020 MARTIN J. GANDER AND ANDREW M. STUART

Fig. 2.2. Decomposition in the semidiscrete case.

The difference φ(j, t) := ũ(j)− u(j, t) satisfies the equation

∂φ
∂t

= A(n)φ+


1

(∆x)2 (||g1(·)||∞ − g1(t))

0
...
0

1
(∆x)2 (||g2(·)||∞ − g2(t))

 , t > 0,

φ(j, 0) =
n+ 1− j
n+ 1 ||g1(·)||∞ +

j
n+ 1 ||g2(·)||∞, 1 ≤ j ≤ n,

and hence by the discrete maximum principle φ(j, t) ≥ 0 for all t > 0 and 1 ≤ j ≤ n.
Thus

u(j, t) ≤ n+ 1− j
n+ 1

||g1(·)||∞ +
j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.

Likewise, from ψ(j, t) := ũ(j) + u(j, t), we get

u(j, t) ≥ −
(
n+ 1− j
n+ 1

||g1(·)||∞ +
j

n+ 1
||g2(·)||∞

)
, 1 ≤ j ≤ n.

Hence we can bound the modulus of u by

|u(j, t)| ≤ n+ 1− j
n+ 1

||g1(·)||∞ +
j

n+ 1
||g2(·)||∞, 1 ≤ j ≤ n.

Now the right-hand side does not depend on t, so we can take the supremum over t,
which leads to the desired result.

We decompose the domain into two overlapping subdomains Ω1 and Ω2 as in
Figure 2.2. We assume for simplicity that αL falls on the grid point i = a and βL on
the grid point i = b. We therefore have a∆x = αL and b∆x = βL. For notational
convenience we define

f1(x, y, z) :=

(
x(1) +

y

(∆x)2
,x(2), . . . ,x(b− 2),x(b− 1) +

z

(∆x)2

)T
,

f2(x, y, z) :=

(
x(a+ 1) +

y

(∆x)2
,x(a+ 2), . . . ,x(n− 1),x(n) +

z

(∆x)2

)T
.

As in the continuous case, the solution u(t) of (2.14) can be obtained from the solu-
tions v(t) on Ω1 and w(t) on Ω2, which satisfy the equations

∂v
∂t

= A(b−1)v + f1(f(t), g1(t),w(b− a, t)), t > 0,

v(j, 0) = u0(j), 1 ≤ j < b,
(2.21)
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2021

and

∂w
∂t

= A(n−a)w + f2(f(t),v(a, t), g2(t)), t > 0,

w(j − a, 0) = u0(j), b ≤ j ≤ n.(2.22)

Applying the Schwarz iteration to (2.21) and (2.22) we obtain

∂vk+1

∂t
= A(b−1)v

k+1 + f1(f(t), g1(t),wk(b− a, t)), t > 0,

vk+1(j, 0) = u0(j), 1 ≤ j < b,

and

∂wk+1

∂t
= A(n−a)w

k+1 + f2(f(t),vk(a, t), g2(t)), t > 0,

wk+1(j − a, 0) = u0(j), b ≤ j ≤ n.

Let dk(t) := vk(t)− v(t) and ek(t) := wk(t)−w(t) and consider the error equations

∂dk+1

∂t
= A(b−1)d

k+1 + f1(0, 0, ek(b− a, t)), t > 0,

dk+1(0) = 0,
(2.23)

and

∂ek+1

∂t
= A(n−a)e

k+1 + f2(0,dk(a, t), 0), t > 0,

ek+1(0) = 0.
(2.24)

The following lemma establishes convergence of the Schwarz iteration on the interface
nodes of the subdomains in L∞. Using the discrete maximum principle, convergence
in the interior then follows.

Lemma 2.7. On the interface gridpoints a and b the error of the Schwarz iteration
decays at the rate

||dk+2(a, ·)||∞ ≤ α(1− β)

β(1− α)
||dk(a, ·)||∞,(2.25)

||ek+2(b, ·)||∞ ≤ α(1− β)

β(1− α)
||ek(b, ·)||∞.(2.26)

Proof. By Corollary 2.6 we have

||dk+2(j, ·)||∞ ≤ j

b
||ek+1(b− a, ·)||∞, 1 ≤ j < b,(2.27)

and

||ek+1(j, ·)||∞ ≤ n+ 1− a− j
n+ 1− a ||dk(a, ·)||∞, 1 ≤ j ≤ b− a.(2.28)

Evaluating (2.28) at j = b− a and (2.27) at j = a and combining the two we get

||dk+2(a, ·)||∞ ≤ a(n+ 1− b)
b(n+ 1− a)

||dk(a, ·)||∞.

Now using a∆x = αL, b∆x = βL, and (n+ 1)∆x = L we get the desired result. The
second inequality (2.26) is obtained similarly.
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2022 MARTIN J. GANDER AND ANDREW M. STUART

Fig. 3.1. Decomposition into N overlapping subdomains.

For any vector-valued function h(t) in L∞(R+,Rn) we define

||h(·, ·)||∞,∞ := max
1<j<n

||h(j, ·)||∞.

Theorem 2.8. The Schwarz iteration for the semidiscrete heat equation with two
subdomains converges in L∞(R+,Rn) at the linear rate

||d2k+1(·, ·)||∞,∞ ≤
(
α(1− β)

β(1− α)

)k
||e0(b− a, ·)||∞,

||e2k+1(·, ·)||∞,∞ ≤
(
α(1− β)

β(1− α)

)k
||d0(a, ·)||∞.

Proof. By Corollary 2.6 we have

||d2k+1(·, ·)||∞,∞ ≤ ||e2k(b− a, ·)||∞, ||e2k+1(·, ·)||∞,∞ ≤ ||d2k(a, ·)||∞.

Using Lemma 2.7 the result follows.

3. Arbitrary number of subdomains. We generalize the two-subdomain case
described in section 2 to an arbitrary number of subdomains N . This leads to an
algorithm which can be run in parallel. Subdomains with even indices depend only
on subdomains with odd indices. Hence one can solve on all the even subdomains
in parallel in one sweep, and then on all the odd ones in the next one. Boundary
information is propagated in between sweeps.

Consider N subdomains Ωi of Ω, i = 1, . . . , N , where Ωi = [αiL, βiL] × [0,∞)
and α1 = 0, βN = 1, and αi+1 < βi for i = 1, . . . , N − 1 so that all the subdomains
overlap, as in Figure 3.1. We assume also that βi ≤ αi+2 for i = 1, . . . , N − 2 so
that domains which are not adjacent do not overlap. The solution u(x, t) of (2.1)
can be obtained as in the case of two subdomains by composing the solutions vi(x, t),
i = 1, . . . , N , which satisfy the equations

∂vi
∂t

= ∂2vi
∂x2 + f(x, t), αiL < x < βiL, t > 0,

vi(αiL, t) = vi−1(αiL, t), t > 0,
vi(βiL, t) = vi+1(βiL, t), t > 0,
v(x, 0) = u0(x), αiL ≤ x ≤ βiL,

(3.1)

where we have introduced for convenience of notation the two functions v0 and vN+1

which are constant in x and satisfy the given boundary conditions, namely, v0(x, t) ≡
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2023

Fig. 3.2. Overlapping subdomains and corresponding error functions ei.

g1(t) and vN+1(x, t) ≡ g2(t). The system of equations (3.1), which is coupled through
the boundary, can be solved using the Schwarz iteration. We get for i = 1, . . . , N

∂vk+1
i
∂t

=
∂2vk+1

i

∂x2 + f(x, t), αiL < x < βiL, t > 0,

vk+1
i (αiL, t) = vki−1(αiL, t), t > 0,

vk+1
i (βiL, t) = vki+1(βiL, t), t > 0,

vk+1
i (x, 0) = u0(x), αiL ≤ x ≤ βiL,

(3.2)

where again vk0 (t) ≡ g1(t) and vkN+1(t) ≡ g2(t). Let eki := vki (x, t) − vi(x, t), i =
1, . . . , N , and consider the error equations (compare Figure 3.2)

∂ek+1
i
∂t

=
∂2ek+1

i

∂x2 , αiL < x < βiL, t > 0,

ek+1
i (αiL, t) = eki−1(αiL, t), t > 0,

ek+1
i (βiL, t) = eki+1(βiL, t), t > 0,

ek+1
i (x, 0) = 0, αiL ≤ x ≤ βiL,

(3.3)

with ek0(t) ≡ 0 and ekN+1(t) ≡ 0.
For the following lemma, we need some additional definitions to facilitate the

notation. We define α0 = β0 = 0, αN+1 = βN+1 = 1, and the constant functions
e−1 ≡ 0 and eN+2 ≡ 0.

Lemma 3.1. The error ek+2
i of the ith subdomain of the Schwarz iteration (3.3)

decays on the interfaces x = βi−1L and x = αi+1L at the rate

||ek+2
i (βi−1L, ·)||∞ ≤ riri+1||eki+2(βi+1L, ·)||∞ + ripi+1||eki (αi+1L, ·)||∞

+piqi−1||eki (βi−1L, ·)||∞ + pisi−1||eki−2(αi−1L, ·)||∞(3.4)

for i = 2, . . . , N and

||ek+2
i (αi+1L, ·)||∞ ≤ qiri+1||eki+2(βi+1L, ·)||∞ + qipi+1||eki (αi+1L, ·)||∞

+siqi−1||eki (βi−1L, ·)||∞ + sisi−1||eki−2(αi−1L, ·)||∞(3.5)

for i = 1, . . . , N − 1, where the ratios of the overlaps are given by

ri =
βi−1 − αi
βi − αi , pi =

βi − βi−1

βi − αi , qi =
αi+1 − αi
βi − αi , si =

βi − αi+1

βi − αi .(3.6)

Proof. By Corollary 2.2 we have

||ek+2
i (x, ·)||∞ ≤ x− αiL

(βi − αi)L ||e
k+1
i+1 (βiL, ·)||∞ +

βiL− x
(βi − αi)L ||e

k+1
i−1 (αiL, ·)||∞.(3.7)
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2024 MARTIN J. GANDER AND ANDREW M. STUART

Since this result holds on all the subdomains Ωi, we can recursively apply it to the
errors on the right in (3.7), namely,

||ek+1
i+1 (βiL, ·)||∞ ≤ βi − αi+1

βi+1 − αi+1
||eki+2(βi+1L, ·)||∞ +

βi+1 − βi
βi+1 − αi+1

||eki (αi+1L, ·)||∞,

||ek+1
i−1 (αiL, ·)||∞ ≤ αi − αi−1

βi−1 − αi−1
||eki (βi−1L, ·)||∞ +

βi−1 − αi
βi−1 − αi−1

||eki−2(αi−1L, ·)||∞.

Substituting these equations back into the right-hand side of (3.7) and evaluating (3.7)
at x = βi−1L leads to inequality (3.4). Evaluation at x = αi+1 leads to inequality
(3.5).

This result is different from the result in the two-subdomain case (Lemma 2.3),
because we cannot get the error directly as a function of the error at the same location
two steps before. The error at a given location depends on the errors at different
locations also. This leads to the two independent linear systems of inequalities,

ξk+2 ≤ Dξk and ηk+2 ≤ Eηk,(3.8)

where the inequality sign here means less than or equal for each component of the
vectors ξk+2 and ηk+2. These vectors and the matrices D and E are slightly different
if the number of subdomains N is even or odd. We assume below that N is even.
The case where N is odd can be treated in a similar way. For N even we have

ξk =



||ek1(α2L, ·)||∞
||ek3(β2L, ·)||∞
||ek3(α4L, ·)||∞
||ek5(β4L, ·)||∞

...
||ekN−1(βN−2L, ·)||∞
||ekN−1(αNL, ·)||∞


and ηk =



||ek2(β1L, ·)||∞
||ek2(α3L, ·)||∞
||ek4(β3L, ·)||∞
||ek4(α5L, ·)||∞

...
||ekN−2(αN−1L, ·)||∞
||ekN (βN−1L, ·)||∞


and the banded (N − 1)× (N − 1) matrices

D =



q1p2 q1r2

p3s2 p3q2 r3p4 r3r4

s3s2 s3q2 q3p4 q3r4

p5s4 p5q4 r5p6 r5r6

s5s4 s5q4 q5p6 q5r6

. . .
. . .

pN−1sN−2 pN−1qN−2 rN−1pN
sN−1sN−2 sN−1qN−2 qN−1pN


(3.9)

and

E=



p2q1 r2p3 r2r3

s2q1 q2p3 q2r3

p4s3 p4q3 r4p5 r4r5

s4s3 s4q3 q4p5 q4r5

. . .
. . .

pN−2sN−3 pN−2qN−3 rN−2pN−1 rN−2rN−1

sN−2SN−3 sN−2qN−3 qN−2pN−1 qN−2rN−1

pNsN−1 pNqN−1


.(3.10)
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2025

Note that the infinity norm of D and E equals 1. This can be seen, for example, for
D by looking at the row sum of interior rows,

pisi−1+piqi−1+ripi+1+riri+1 = pi(si−1+qi−1)+ri(pi+1+ri+1)=pi+ri=1,
sisi−1+siqi−1+qipi+1+qiri+1 = si(si−1+qi−1)+qi(pi+1+ri+1)=si+qi=1.

(3.11)

The boundary rows, however, sum up to a value less than 1, namely

q1p2 + q1r2 = q1(p2 + r2) = q1 < 1,
pN−1sN−2 + pN−1qN−2 + rN−1pN = pN−1(sN−2 + qN−2) + rN−1pN ,

= pN−1 + rN−1pN < 1,
sN−1sN−2 + sN−1qN−2 + qN−1pN = sN−1(sN−2 + qN−2) + qN−1pN ,

= sN−1 + qN−1pN < 1.

(3.12)

A similar result holds for the matrix E. Since the infinity norm of both D and E
equals 1, convergence is not obvious at first glance. In the special case with two
subdomains treated in section 2 the matrices E and D degenerate to the scalar q1p2,
which is strictly less than 1, and convergence follows. In the case of N subdomains the
information from the boundary needs to propagate inward to the interior subdomains
before the algorithm exhibits convergence. Hence we expect that the infinity norm of
E and D raised to a certain power becomes strictly less than 1. We need the following
lemmas to prove convergence.

Lemma 3.2. Let r(A) ∈ Rp denote the vector containing the row sums of the
p× p square matrix A. Then r(An+1) = Anr(A).

Proof. Let 1I = (1, 1, . . . , 1)T . Then we have r(A) = A1I and hence r(An+1) =
An+11I = AnA1I = Anr(A).

Lemma 3.3. Let A be a real p×q matrix with aij ≥ 0 and B be a real q×r matrix
with bij ≥ 0. Define the sets Ii(A) := {k : aik > 0} and Jj(A) := {k : bkj > 0}. Then
for the product C := AB we have

Ii(C) = {k : Ii(A) ∩ Jk(B) 6= ∅}.
Proof. We have, since aik, bkj ≥ 0,

cij > 0⇐⇒
q∑

k=1

aikbkj > 0⇐⇒ ∃k s.t. aik > 0 and bkj > 0⇐⇒ Ii(A) ∩ Jj(B) 6= ∅.

Hence for fixed i, cij > 0 if and only if Ii(A) ∩ Jj(B) 6= ∅.
Lemma 3.4. Dk and Ek have strictly positive entries for all integer k ≥ N−1

2 .
Proof. We show the proof for the matrix D; the proof for E is similar. The row

index sets Ii(D) are given by

Ii(D) =



{1, . . . , i+ 2}
{1, . . . , i+ 1}

i even
i odd

}
1 ≤ i < 4,

{i− 1, . . . , i+ 2}
{i− 2, . . . , i+ 1}

i even
i odd

}
4 ≤ i ≤ N − 3,

{i− 1, . . . , N − 1}
{i− 2, . . . , N − 1}

i even
i odd

}
N − 3 < i ≤ N − 1.

The column index sets are given by

Jj(D) =


{1, . . . , 3} 1 ≤ j < 3,
{j − 1, . . . , j + 2}
{j − 2, . . . , j + 1}

j odd
j even

}
3 ≤ j ≤ N − 2,

{N − 2, N − 1} j = N − 1.
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2026 MARTIN J. GANDER AND ANDREW M. STUART

We are interested in the growth of the index sets Ii(D
k) as a function of k. Once

every index set contains all the numbers 1 ≤ j ≤ N − 1, the matrix Dk has strictly
positive entries. We show that every multiplication with D enlarges the index sets
Ii(D

k) on both sides by two elements, as long as the elements 1 and N − 1 are not
yet reached. The proof is done by induction: for D2 we have, using Lemma 3.3,

Ii(D
2) =



{1, . . . , i+ 4}
{1, . . . , i+ 3}

i even
i odd

}
1 ≤ i < 6,

{i− 3, . . . , i+ 4}
{i− 4, . . . , i+ 3}

i even
i odd

}
6 ≤ i ≤ N − 5,

{i− 3, . . . , N − 1}
{i− 4, . . . , N − 1}

i even
i odd

}
N − 5 < i ≤ N − 1.

Now suppose that for k we obtained the sets

Ii(D
k) =



{1, . . . , i+ 2k}
{1, . . . , i+ 2k − 1}

i even
i odd

}
1 ≤ i < 2 + 2k,

{i− 2k + 1, . . . , i+ 2k}
{i− 2k, . . . , i+ 2k − 1}

i even
i odd

}
2 + 2k ≤ i ≤ N − 2k − 1,

{i− 2k + 1, . . . , N − 1}
{i− 2k, . . . , N − 1}

i even
i odd

}
N − 2k − 1 < i ≤ N − 1.

Then for k + 1 we have, applying Lemma 3.3 again,

Ii(D
k+1)=



{1, . . . , i+ 2(k + 1)}
{1, . . . , i+ 2(k + 1)− 1}

i even
i odd

}
1 ≤ i < 2 + 2(k + 1),

{i−2(k+1)−1, . . . , i+2(k+1)}
{i−2(k+1), . . . , i+2(k+1)−1}

i even
i odd

}
2+2(k+1) ≤ i ≤ N−2(k+1)−1,

{i−2(k+1)− 1, . . . , N − 1}
{i−2(k+1), . . . , N − 1}

i even
i odd

}
N − 2(k + 1)− 1 < i ≤ N − 1.

Hence every row index set Ii(D
k) grows on both sides by 2 when Dk is multiplied by

D, as long as the boundary numbers 1 and N − 1 are not yet reached. Now the index
set I1(Dk) = {1, . . . , 2k} has to grow most to reach the boundary number N − 1, so
we need for the number of iterations

k ≥ N − 1

2

for the matrix Dk to have strictly positive entries.
The infinity norm of a vector v in Rn and a matrix A in Rn×n is defined by

||v||∞ := max
1≤j≤n

|v(j)|, ||A||∞ := max
1≤i≤n

n∑
j=1

|Aij |.

Lemma 3.5. For all k > N
2 there exists γ = γ(k) < 1 such that

||Dk||∞ ≤ γ and ||Ek||∞ ≤ γ.

Proof. We prove the result for D; the proof for E is similar. We have from (3.11)
and (3.12) that
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WAVEFORM RELAXATION FOR THE HEAT EQUATION 2027

r(D) =



q1

1
...
1

pN−1 + rN−1pN
sN−1 + qN−1pN


.

By Lemma 3.4Dk has strictly positive entries for any k ≥ N
2 . Note also that ||Dk||∞ ≤

1 since ||D||∞ ≤ 1. Now by Lemma 3.2 we have

||Dk+1||∞ = max
i
ri(D

k+1) = max
i

∑
j

Dk
ijrj(D) < 1

since Dk
ij > 0 for all i, j,

∑
j D

k
ij ≤ 1 for all i, rj(D) ∈ [0, 1] and r1(D) < 1, rN−1(D) <

1, and rN (D) < 1.
Remark. It suffices for each row index set to reach one of the boundaries, either

1 or N − 1, for the infinity norm to start decaying. Hence it is enough that there are
no more index sets Ii(D

k) (compare the proof of Lemma 3.4) such that 2 + 2k ≤ i ≤
N − 1− 2k so that the requirement k ≥ N−1

2 can be relaxed to k > N−3
4 .

We now fix some k > N−3
4 and set

γ := max(||Dk||∞, ||Ek||∞) < 1.(3.13)

Lemma 3.6. The vectors ξ and η satisfy

||ξ2km||∞ ≤ γm||ξ0||∞,(3.14)

||η2km||∞ ≤ γm||η0||∞.(3.15)

Proof. By induction on (3.8), using that the entries of D, E, ξk, and ηk are
nonnegative, we get

ξ2km ≤ Dkmξ0 and η2km ≤ Ekmη0.

Taking norms on both sides and applying Lemma 3.5 the result follows.
Theorem 3.7. The Schwarz iteration for the heat equation with N subdomains

converges in the infinity norm in time and space. We have

max
1≤2i≤N

||e2km+1
2i (·, ·)||∞,∞ ≤ γm||ξ0||∞,(3.16)

max
1≤2i+1≤N

||e2km+1
2i+1 (·, ·)||∞,∞ ≤ γm||η0||∞.(3.17)

Proof. We use again the maximum principle. Since the error eki is in the kernel of
the heat operator, by the maximum principle, eki attains its maximum on the initial
line or on the boundary. On the initial line eki vanishes, therefore

max
1≤2i≤N

||e2km+1
2i (·, ·)||∞,∞ ≤ ||ξ2km||∞, max

1≤2i+1≤N
||e2km+1

2i+1 (·, ·)||∞,∞ ≤ ||η2km||∞.

Using Lemma 3.6 the result follows.
Note that the bound for the rate of convergence in Theorem 3.7 is not explicit.

This is unavoidable for the level of generality employed. But, if we assume for sim-
plicity that the overlaps are all of the same size, then we can get more explicit rates
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2028 MARTIN J. GANDER AND ANDREW M. STUART

of convergence. We set ri = si = r ∈ (0, 1) and pi = qi = p ∈ (0, 1) where p+ r = 1.
The matrices D and E then simplify to

D̃ =



p2 pr
pr p2 pr r2

r2 pr p2 pr
pr p2 pr r2

r2 pr p2 pr
. . .

. . .

pr p2 pr
r2 pr p2


, Ẽ =



p2 pr r2

pr p2 pr
pr p2 pr r2

r2 pr p2 pr
. . .

. . .

pr p2 pr r2

r2 pr p2 pr
pr p2


.

In this case we can bound the spectral norm of D̃ and Ẽ by an explicit expression
less than one. We use common notation for the spectral norm, namely,

||v||2 :=

√√√√ n∑
i=1

v(i)2, ||A||2 := sup
||v||2=1

||Av||2.

Lemma 3.8. The spectral norms of D̃ and Ẽ are bounded by

||D̃||2 ≤ 1− 4pr sin2 π

2(N + 1)
, ||Ẽ||2 ≤ 1− 4pr sin2 π

2(N + 1)
.

Proof. We prove the bound for D̃. The bound for Ẽ can be obtained similarly. We
can estimate the spectral norm of D̃ by letting D̃ = J + r2F , where J is tridiagonal
and F has only O(N) nonzero entries and these are equal to 1. In fact ||F ||2 = 1.
Using that the eigenvalues of J are given by

λj(J) = p2 + 2pr cos
πj

N + 1
,

the spectral norm of D̃ can be estimated by

||D̃||2 ≤ ||J ||2 + r2||F ||2 = p2 + 2pr cos
π

N + 1
+ r2

= p2 + 2pr + r2 − 4pr sin2 π

2(N + 1)
= 1− 4pr sin2 π

2(N + 1)
,

since p+ r = 1.
Lemma 3.9. Assume that all the N subdomains overlap at the same ratio r ∈

(0, 0.5]. Then the vectors ξ and η satisfy

||ξ2k||2 ≤
(

1− 4r(1− r) sin2 π

2(N + 1)

)k
||ξ0||2,

||η2k||2 ≤
(

1− 4r(1− r) sin2 π

2(N + 1)

)k
||η0||2.

Proof. The proof follows as in Lemma 3.6.
Note that r = 0.5, which minimizes the upper bound in Lemma 3.9 and cor-

responds to the maximum possible overlap in this setting, namely βi−1 = αi+1 in
Figure 3.2.
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Fig. 4.1. Theoretical and measured decay rate of the error for two subdomains and three
different sizes of the overlap.

Theorem 3.10. The Schwarz iteration for the heat equation with N subdomains
that overlap at the same ratio r ∈ (0, 0.5] converges in the infinity norm in time and
space. Specifically, we have

max
1≤2i≤N

||e2k
2i (·, ·)||∞,∞ ≤

(
1− 4r(1− r) sin2 π

2(N + 1)

)k
||ξ0||2,(3.18)

max
1≤2i+1≤N

||e2k
2i+1(·, ·)||∞,∞ ≤

(
1− 4r(1− r) sin2 π

2(N + 1)

)k
||η0||2.(3.19)

Proof. From the proof of Theorem 3.7 we have

max
1≤2i≤N

||e2k+1
2i (·, ·)||∞,∞ ≤ ||ξ2k||∞, max

1≤2i+1≤N
||e2k+1

2i+1 (·, ·)||∞,∞ ≤ ||η2k||∞.

Since the infinity norm is bounded by the spectral norm we get

max
1≤2i≤N

||e2k+1
2i (·, ·)||∞,∞ ≤ ||ξ2k||2, max

1≤2i+1≤N
||e2k+1

2i+1 (·, ·)||∞,∞ ≤ ||η2k||2.

Using Lemma 3.9 the result follows.
The results derived above for the continuous heat equation remain valid as in the

two-subdomain case, when the heat equation is discretized. Details of this analysis
can be found in [7].

4. Numerical experiments. We perform numerical experiments to measure
the actual convergence rate of the algorithm for the example problem

∂u
∂t

= ∂2u
∂x2 − e−(t−1)2−(x− 1

4 )2

, 0 < x < 1, 0 < t < 3,

u(0, t) = e−2t, 0 < t < 3,
u(1, t) = e−t, 0 < t < 3,
u(x, 0) = 1, 0 < x < 1.

(4.1)

To solve the semidiscrete heat equation, we use the backward Euler method in time.
The first experiment is done splitting the domain Ω = [0, 1] × [0, 3] into the two
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Fig. 4.2. Theoretical and measured decay rate of the error in the case of eight subdomains.

subdomains Ω1 = [0, α] × [0, 3] and Ω2 = [β, 1] × [0, 3] for three pairs of values
(α, β) ∈ {(0.4, 0.6), (0.45, 0.55), (0.48, 0.52)}. Figure 4.1 shows the convergence of
the algorithm on the grid point b for ∆x = 0.01 and ∆t = 0.01. The solid line is
the predicted convergence rate according to Theorem 2.8, and the dashed line is the
measured one. The measured error displayed is the difference between the numerical
solution on the whole domain and the solution obtained from the domain decomposi-
tion algorithm. As initial guess for the iteration we used the initial condition constant
in time. We also checked the robustness of the method by refining the time step and
obtained similar results.

We solved the same problem (4.1) using eight subdomains which overlap by 35%.
Figure 4.2 shows the decay of the infinity norm of ξk. The dashed line shows the
measured decay rate, and the solid line the predicted one. Note that in the initial
phase of the iteration the error stagnates, since information has to be propagated
across domains.
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