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A b s t r a c t .  

Positive results are obtained about the effect of local error control in numerical 
simulations of ordinary differential equations. The results are cast in terms of the local 
error tolerance. Under the assumption that  a local error control strategy is successful, 
it is shown that  a continuous interpolant through the numerical solution exists that  
satisfies the differential equation to within a small, piecewise continuous, residual. The 
assumption is known to hold for the MATLAB ode23 algorithm [10] when applied to a 
variety of problems. 

Using the smallness of the residual, it follows that  at any finite t ime the continuous 
interpolant converges to the true solution as the error tolerance tends to zero. By 
studying the perturbed differential equation it is also possible to prove discrete analogs 
of the long-time dynamical properties of the equation--dissipative,  contractive and 
gradient systems are analysed in this way. 
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1 I n t r o d u c t i o n .  

Here we s tudy  adap t ive  numer ica l  a lgor i thms  for the  ini t ia l  value p rob lem 

(1.1) ut ---- f ( u ) ,  u(0) = U, 

where  u(t)  E A m for each t > 0; t h roughou t  f :  ~t  m ~-+ A m is a ssumed  to be 
local ly  Lipschitz .  We s tudy  adap t ive  a lgor i thms  and  assume t h a t  t hey  control  
the  t rue  local er ror  a t  each step.  Under  th is  a s sumpt ion  we prove t h a t  the  
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long-time behaviour of certain classes of differential equation is replicated by 
the adaptive algorithm. The assumption we make is a significant one but it 
has recently been proved to hold for the MATLAB ode23 algorithm [10] when 
applied to (1.1) with f (u )  = - A u  and A invertible and also for certain nonlinear 
problems approximated by the same code [9]. 

To examine the effect of local error control on large time dynamics it is neces- 
sary to work with particular structural assumptions on the vector field f ( . )  that 
defines the differential equation (1.1). We work with three structural assump- 
tions on f(e)  all of which imply that equation (1.1) is dissipative in the general 
sense of the following definition: 

DEFINITION 1.1. The equation (1.1) is said to be dissipative if 3 a bounded 
absorbing set B C ~ m  and, for each U E j~m, a time T such that u(t) E I3 Vt >_ 
T. 

This definition is taken from [6] and [17] and is widely employed in the modern 
literature of nonlinear semigroups. 1 

The three structural assumptions that we make are now detailed. Throughout, 
we assume that I] * H denotes a norm in t{ m induced by the appropriate inner 
product-- that  is, the one inherited from assumptions (D),  (C) or (G) below. 
We let 

B(v,  6) := {u C Ftm: IIv - ull < 6}, 

Af(x,6) : =  {u c  tm: 3x c X :  IIx - ull < 6}, 

(1.2) 

(1.3) 

and 

(1.4) Q(e) := {v C ~t '~: f[f(v)[ I ~ c}. 

Note that  Q(0) comprises the set of equilibria of (1.1). The three conditions on 
the vector field f(*) that we consider are (D), (C) and (G): 

(D) 3 a _ > 0 , f l > 0 : ( f ( u ) , u } < a - f l H u l ]  2 , v u c R m ;  

(C) 3/3 2> 0:  ( f (u)  - f ( v ) , u -  v) <_ - /3[ [u-  vii 2, V u,v C ~ m  and f(0) = 0; 

(G) 3k > 0 such that: 

(G1) 

(G2) 

(G3) 

(G4) 

(G5)  

f(U) = -~TF(u),  where F C C2 (~{ m, ~) ;  

F(u)  > 0, Vu C R '~ and IF(u)l ~ c~ as liuH -~ oo; 

F(u)  - F(v)  < ( f(u) ,  v - u) + kllu - vii 2, V u, v C ~m;  

all members of Q(0) are hyperbolic and Uvl] _< k, Vv E Q(0); 

liminfHvll_~oo ]if(v)ll > k. 

1The class of contractive problems (1.1), (C) defined herein are also sometimes termed 
dissipative in the numerical analysis literature, a nomenclature consistent with that in certain 
branches of semigroup theory [11]. However, in order to distinguish between the assumptions 
(D), (C) we have chosen to follow the terminology of [6, 17] used in Definition 1.1. 
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The class of problems (1.1), (D) denotes dissipative problems with dissipa- 
tivity induced via an inner-product and for which the rate of absorption into 
the absorbing set is at least exponentially fast; the Lorenz equations provide a 
natural example. The class (1.1), (C) denotes contractive problems, in the norm 
induced by the inner-product, with rate of contraction which is at least expo- 
nentially fast. In the terminology of [3], the condition (C) implies the existence 
of a negative one-sided Lipschitz constant. The class (G) denotes a natural 
class of gradient systems; the condition (G3) is equivalent to the existence of 
a positive one-sided Lipschitz condition--see [15], Lemma 2.8.19. The problem 
with f (u)  = - A u  and A positive-definite symmetric is a member of each of the 
three problem classes. Furthermore, all three problem classes are dissipative in 
the general sense of Definition 1.1: 

THEOREM ODE [6, 15, 17] 

(i) under (D), (1.1) is dissipative with I3 = [~(0, ~ + p), any p > 0; 

(ii) under ((3) every solution of (1.1) satisfies u(t) -+ 0 as t -+ co. Thus (1.1) 
is dissipative with B =/~(0, p), any p > 0; 
(iii) under (G), ]or every U E ~ m  3v E Q(o) such that the solution of (1.1) 
satisfies u(t) -+ v as t -+ co. Thus (1.1) is dissipative with 13 = {u E t~ m : 
F(u) <_ maxveQ(o)[F(v)] + p}, any p > O. 

Our aim is to derive discrete analogues of Theorem ODE for error-controlled 
numerical schemes. We make the assumption (discussed below) that the scheme 
successfully controls the local error-per-unit-step, and we show that this confers 
good global properties on the numerical solution. Our results are expressed in 
terms of the tolerance parameter; our assumptions do not require the time steps 
to be uniformly small as the error tolerance approaches zero. Indeed, typically 
they will not be small in neighbourhoods of equilibria. 

This work is motivated by the analysis in [16], which concerns a class of adap- 
tive Runge-Kutta schemes termed essentially algebraically stable. For these 
schemes, positive results about long-time behaviour are derived for sufficiently 
small tolerances but independently of initial data; furthermore no assumptions 
are made about the error control other than that the sequence of time steps 
is uniformly bounded from above. However, the class of methods to which the 
analysis in [16] applies is very restrictive. The results that we derive in this 
paper apply to all time-stepping methods under the assumption that the local- 
error-per-unit-step is controlled by the particular adaptation strategy used--see 
Assumption 2.1. Although the results proved here apply to a wider class of 
methods than those used in [16], they are weaker than those in [16] in the sense 
that the tolerance must be chosen sufficiently small, depending upon initial data. 
The method of analysis differs from that in [16]: here we construct a continuous 
interpolant, 7/(t), through the numerical solution, rather than dealing directly 
with the discrete approximation. We use the fact that the error control forces 
~/(t) to satisfy the system (1.1) to within a small residual. This facilitates a 
straightforward analysis, mimicking, to a large extent, the analysis for (1.1). 

We mention that in [1] Ayes et al. adopt a different approach to the study of 
long-term behaviour of error-controlled methods. That work is concerned solely 
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with spurious fixed points, and it does not require any structural assumptions 
about f ( . ) .  The main conclusions in [1] are similar in spirit to those presented 
here: positive results can be derived about the effect of error control, for small 
tolerances. Specifically, whilst locally adaptive schemes may possess spurious 
fixed points in one dimension, these are shown to be typically unstable. In 
higher dimensions such spurious fixed points will typically not exist. 

In section 2 we introduce some notation and definitions used throughout and 
state (and discuss) the basic assumption concerning the error control. In sec- 
tion 3 the numerical solution at any finite time is shown to converge to the true 
solution as the tolerance tends to zero. The numerical approximation under (D) 
and (C) is studied in section 4, and discrete counterparts of the properties of the 
true solution (see Theorem ODE (i),(ii)) are established for the error-controlled 
approximation. Section 5 contains similar discrete counterparts of the results 
for gradient systems satisfying (G)--see Theorem ODE (iii). The main contri- 
bution of the paper is contained in section 5 where we prove a strong result 
concerning the dynamics of the discretization (mimicking continuous time prop- 
erties studied in [2]) from which a discrete analog of Theorem ODE (iii) is a 
simple corollary. The results in sections 3 and 4 are stated for completeness; 
their proofs are straightforward and may be found in [8]. 

2 B a c k g r o u n d .  

We start with some notation and terminology used throughout. 

DEFINITION 2.1. We denote by S(U,t)  : A m • ~ +  ~-~ l~t m the solution 
operator for (1.1), so that u(t) = S(U, t). 

We suppose that  an adaptive time-stepping method is used to compute ap- 
proximations Un ~, u(tn) with Uo = U. The time step At,~ = tn+l - An, and 

r t - - 1  hence tn = ~ j = o  At j .  A user-supplied tolerance parameter T > 0 determines 
the time steps and so, indirectly, controls the accuracy of the process. 

DEFINITION 2.2. The local error over a step from tn to tn+l is defined to be 
LEn+I : =  Un+l - S(Un,  Atn). 

Our assumptions about the overall numerical method are as follows. 

ASSUMPTION 2.1. There is a constant D > 0 and, for any U E B;t m constants 
K = K(U)  > 0 and Vc = To(U) > 0 such that, for all 7" C (O, Tc), the method 
produces a solution sequence { Atn, Un }n~=o with 

oo 

(2.1) E Atn  = o0, 
n = 0  

(2.2) sup{Atn} < D, 
n_>0 

(2.3) IILEn+lll _~ g T A t n ,  V n >  0. 

Condition (2.1) is needed to ensure that the process does not break down at 
a finite time. (If, for example, Atn  = 1In 2 then the limit n ~ cr does not 
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correspond to the limit t -~ c~.) Condition (2.1) will be satisfied by the MAT- 

U LAB ode23 code [10], for example, provided the computed sequence { n}n=0 
remains in a bounded set [9]. Condition (2.2) is reasonable since most codes 
have a maximum allowable time step constraint and D will then be independent 
of U--MATLAB ode23, for example, has a maximum allowable time-step propor- 
tional to the length of the time integration; for the unbounded case t E [0, co), 
D can be obtained by repeatedly using the code on finite time intervals. 

The third condition, (2.3), is our key assumption--the adaptive method must 
successfully control the local-error-per-unit-step in terms of the tolerance. Most 
adaptive algorithms attempt, either directly or indirectly, to control some mea- 
sure of the local error over each step. This is usually done by applying two 
formulas and taking the difference to obtain an approximation of the true local 
error, the local error estimate. Unfortunately the local error estimate can vanish 
at places where the true local error is non-zero and it is then possible for (2.3) to 
fall. However, for linear problems f ( u )  = - A u  with A invertible it is proved in 
[9], Corollary 3.4 that  (2.3) holds for the MATLAB ode23 code provided that  the 
computed sequence {Un}n~176 remains in a compact set. For typical nonlinear 
problems approximated by MATLAB ode23, (2.3) will hold for all but a set of 
initial data of small Lebesgue measure--see Theorem 3.12 and section 4.2 of [9]. 
Thus we believe that  (2.3) is a good assumption to make since it is intuitively 
reasonable and it is provably true in certain circumstances. Note that  by work- 
ing with Assumption 2.1 we are able to derive results about adaptive time-step 
software without studying the details of the time-step selection mechanism. 

The condition (2.3) was used in the early work on tolerance proportionality by 
Shampine [12]. Stetter investigated conditions under which local error estimates 
could break down, meaning that  (2.3) might not hold; he then proceeded to study 
tolerance proportionality on the assumption that  this break-down did not occur 
[13]. Some recent work of Stoffer and Nipp [14] proves interesting, positive results 
about the behaviour of variable time step integrators in the neighbourhood of 
a periodic solution; specifically, convergence of an approximate invariant curve 
to the true periodic solution is established as T -4 0. The work in [14] makes 
the assumption that  Atn  <_ K T  u for some u > 0, which implies (2.3); however, 
unlike (2.3), this assumption requires the time step to be uniformly small for all 
time, something which is not true in general, in particular for solutions which 
pass close to equilibria [7]. Note that  for the MATLAB ode23 code, (2.3) can hold 
for solutions passing arbitrarily near equilibria without Atn necessarily being 
small. This is because local errors for Runge-Kutta methods are proportional to 
f (Un) ,  which is small near equilibria. 

3 B a s i c  e r r o r  e s t i m a t e .  

We now construct a piecewise continuous interpolant to the numerical solution 
sequence. The same construction was used by Stetter [13] to study global error 
behaviour in a different context. The construction is a purely theoretical device 
since it employs the local error (which is not known) to form the interpolant. ~ 
Our main use of this theoretical tool will be to facilitate analysis of the numerical 
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algorithm by use of continuous time analysis; this enables us to build directly on 
the methods of analysis used for the underlying equation (1.1). Since the inter- 
polant passes through the numerical data this analysis yields direct information 
about the computed solution sequence. 

In this section we will show that,  under Assumption 2.1, the interpolant sat- 
isfies a perturbed version of the original system (1.1). Bounding the residual 
in terms of the error tolerance allows the global error to be assessed. Similar 
results may already be found in the literature (see [12, 13]) and we state them 
here as a basic introduction to our methodology. 

DEFINITION 3.1. Given {Atn, Un}n~162 we define the numerical interpolant 
~l(t) by ~1(0) = U and 

(3.1) rl(t) :=S(Un, t - t n ) +  ( t ~ t n ) L E ~ + l  VtE (tn,t,+l]. 
t n  

By construction 71(tn+l) = Un+I and as t tends to tn from above 7/(t) tends 
to Un. Hence r/(t) is continuous for t > 0. The first derivative rh(t), however, is 
not continuous in general. For definiteness, we will define yt(tn) by taking the 
limit from the left; that  is, 

~t(tn) := lim 9t(t). 
t - + t n  - 

The following result shows that the numerical interpolant satisfies an equation 
which is a small perturbation of (1.1). 

THEOREM 3.1. Suppose that Assumption 2.1 holds, and that there is a bounded 
set X and time T > 0 such that o(t) E X C ~'~ for all t E [0,T]. I l L  is 
the Lipsehitz constant for f on the set Y := AZ(X, 5) for some ~ > O, K := 
supuey K(U)  < co and 7- e (0, ~ /DK) ,  then 

(3.2) lint- f(~)ll < (1 + L D ) K T ,  Vt E [0,T]. 

PROOF. See [8]. [] 

The next result shows that, at any finite time T, the numerical interpolant 
converges to the true solution of (1.1) as the tolerance is decreased. The result 
is a minor extension of the "fundamental lemma" (Theorem 10.2 of [5]) to allow 
for the fact that  we do not have a global Lipschitz constant for f .  

THEOREM 3.2. Suppose that Assumption 2.1 holds, and that there is a bounded 
set X and time T > 0 such that u(t) E X C 1~ m for all t E [0,T]. / f L  
is the Lipschitz constant for f on the set Y := JV'(X, 5) for some 5 > 0 and 
K := suPuey K(U) < co, then there exists 7-* = T*(5,L,T) and C = C(L, t )  
such that, /fT- E (0, T*), we have 

[[7/(t)--u(t)[[ _< C(L, t )T Yt E [0,T]. 

PROOF. See [8]. [] 
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4 Dissipative and contractive problems. 

Here we prove that  the numerical interpolant mimics the asymptotic behaviour 
of solutions to (1.1) when applied to dissipative and contractive systems. We 
start with the dissipative system and then give a result concerning contractive 
problems as a corollary. 

The following result shows that  the numerical method is dissipative with an 
absorbing set which may be chosen to be the same as the absorbing set for the 
underlying differential equation. Note however that  T must be chosen sufficiently 
small, dependent upon initial data, to obtain this result. Note also that, in the 
proof, r must be chosen proportional to 5. 

THEOREM 4.1. Suppose that (1.1) satisfies Assumption (D) and is approxi- 
mated by a numerical method satisfying Assumption 2.1. For any R, 5 > O, there 
exists Tc = Tc(R, 5) )> 0 such that, if T E (0, To), there is a T = T(R,  5) > 0 with 
the property that, for any U E B(O, R), 

~/(t) E / ~ ( 0 , ~ + 5 )  V t > T .  

PROOF. See [8]. [] 

The following is a counterpart of Theorem ODE (ii) for the continuous inter- 
polant. However, rather than establishing convergence of the numerical inter- 
polant to zero, we establish convergence into a ball of radius proportional to 
T. Such a result is "best possible" in the sense that  the work of Griffiths [4] 
and Hall [7] indicates that  exact solutions of error control schemes exist which 
oscillate in neighbourhoods of equilibria whose diameters tend to zero with the 
tolerance. 

THEOREM 4.2. Suppose that (1.1) satisfies Assumption (C) and is approxi- 
mated by a numerical method satisfying Assumption 2.1. There is a universal 
constant a > 0 so that for any U E B(0, R), there exists Tc = rc(R) > 0 and 
T -= T(R)  such that, if T E (0, Tc), 

~I(t) E B(O, aT) Vt > T. 

PROOF. See [8]. D 

For contractive problems satisfying (C), it is also possible to show the much 
stronger result that ;/(t) remains uniformly close to S(t,  U) for all t > 0. 

THEOREM 4.3. Suppose that Assumption 2.1 and (C) hold. Then there is a 
bounded set X such that u(t) E X C ~ m  ]or all t >_ O. If  L is the Lipschitz con- 
stant for ] on the set Y :-= Af(X, 5) for some 5 > 0 and K := suPuc Y K(U) < 
oc, then there exists T* = r*(5, L) and C = C(L) such that, / fT E (0, T*), we 
have 

]]~(t) - u(t)I I _< C(L)T Vt > O. 
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PROOF. The proof of Theorem 3.4 in [8] can be adapted by exploiting one- 
sided Lipschitz constants. [] 

We finish this section with a few remarks concerning the dynamics of (1.1) 
under Assumption (D), and its numerical approximation, inside the set 

(4.1) B :=/~(0, X / ~  + ~). 

Recall that a compact invariant set ,4 is a global attractor for the solution op- 
erator S(*, t) if it attracts every bounded open neighbourhood of itself. See 
[15] for precise definitions of these dynamical systems concepts in the context 
of numerical analysis. By applying, for example, Theorems 2.8.8 and 2.8.13 in 
[15] it is straightforward to show that (1.1) under (D) has a global attractor 
,4 C_ B. The set of points comprising the attractor provides a description of 
where the complicated dynamics lie within the set B. We now show that under 
our error control assumptions the numerical approximations eventually lie close 
to the true attractor ,4. 

THEOREM 4.4. Suppose that (1.1) satisfies Assumption (D) and is approx- 
imated by a numerical method satisfying Assumption 2.1. Then equation (1.1) 
has a global attractor A contained in B given by (4.1). Furthermore, for any 
e > 0 there exist T, Tc > 0 such that for Uo �9 B and any T E (0, 7c), 

7/(t) �9  V t > T .  

PROOF. See [8]. [] 

Note that Theorem 4.1 shows that  all solutions starting in a bounded set E 
eventually enter B for T SUfficiently small, depending upon E. Thus Theorem 4.4 
is a statement about the long time dynamics of all numerical solutions, provided 
T is sufficiently small. 

We have not proved that the numerical approximation has an attractor. There 
are two reasons for this. First, to do so we would need to define a dynamical 
system on ~ m  • ~t+ generating sequences (U T, Atn) T E ~t m+l and this requires 
specification of a time step mechanism; in contrast the viewpoint taken in this 
paper is to say as much as possible about sequences satisfying Assumption 2.1 
without specifying the time step selection mechanism. Second, even if a time 
step selection mechanism is chosen, it will typically be discontinuous. Hence 
the standard theory of dynamical systems does not apply and, for example, 
important properties such as invariance of limit sets no longer hold. 

5 Gradient systems.  

Recall Theorem ODE(iii). Here we prove that for gradient systems, the nu- 
merical interpolant mimics this key property of the true solution. Specifically 
we show that the numerical solution eventually enters and remains in a small 
ball about an equilibrium point; the ball has radius proportional to 7. As in the 
case of Theorem 4.2, this is consistent with the work of Griffiths [4] and Hall [7]. 
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We will assume without explicit statement that  (G) holds throughout Lemmas 
5.1-5.5. The equilibrium points are isolated and finite in number under (G) and 
are labelled {vi}J=l . Because they are isolated we may define 

(5.1) 0 < 3' : =    nllvk - v, ll. 

In the following we will use Q to denote Q(e). 
The first two lemmas are Lemmas 5.1 and 5.2 of [16] respectively. 

LEMMA 5.1. There exist constants e*,C > 0 such that, for all ~ E [0,~*), 

J 

Q =  U Q i ,  Q i N Q j = O , i # j ,  
j m l  

Qj c B(vj ,  Ce), 1 <_ j <_ J. 

LEMMA 5.2. There is a constant e* > 0 such that, if E E [0,c*) and v E Q, 
then there exists vj E Q(O) such that v E Qi and 

IF(v) - F(vj)  I < C(1 + kC)e 2. 

Note that,  without loss of generality, we have taken the same e* in both the 
previous lemmas. Next we prove three lemmas that allow us to reach the final 
theorem. To help orient the reader, we first summarize these lemmas loosely in 
words, and explain how they combine to prove the result. 

Our main aim is to show that  ~(t) is eventually contained in a ball of radius 
proportional to T around some equilibrium point. We know from Lemma 5.1 
that,  for small c, Q - Q(e) is made up of distinct neighbourhoods {QJ}J=I that  
are contained in balls of radius proportional to e around the equilibrium points. 
Taking ~ as some multiple of 7, it would therefore be sufficient to show that  
y(t) is eventually contained in Q for all t sufficiently large. Lemma 5.3 below 
shows that  if y(t) is outside Q then [I ~?t (t) II can be bounded away from zero, and 
F(y(t))  is strictly monotonic decreasing. But by (G2), F is bounded below, and 
so it follows that  ~?(t) cannot remain outside Q indefinitely. If ~?(t) eventually 
remains inside one neighbourhood, Qi, then we are done. Otherwise, y(t) must 

J leave and re-enter [Jj=l QJ indefinitely. Lemma 5.4 shows that  if y(t) leaves 
and re-enters the same neighbourhood Qi, without visiting any other Qi, J # i, 
in the meantime, then y(t) cannot stray more than an O(T) distance from the 
equilibrium point vi, as required. The remaining possibility is that  ~7(t) continues 
to visit different members of {QJ}J=I. However, Lemma 5.5 shows that if Qj 
and Qi, with j ~ i, are visited in succession, then F(vi) <_ F(vj)  - C2r, for some 
constant C2. Since F is bounded below, this cannot continue indefinitely--there 
must be a final neighbourhood to be visited, and Lemma 5.4 then becomes 
applicable. 

LEMMA 5.3. Suppose that Assumption 2.1 holds, and that there is a bounded ~ 
set X and time T > 0 such that y(t) E X C_ ~ '~ for all t E [0, T]. Let L denote 
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the Lipschitz constant for f on the set Y := Af(X,6) ,  E = (1 + L D ) K  and 
c = 3Er.  Then, if 

T < T *  := min{ (i ~ }  
D K '  

t �9 [0, T] and ~l(t) • Q it follows that 

IIm(t)ll _ 2ET 

and 

d{F0? ( t ) ) }  _< -Ilyt(t)llE~'. 

PROOF. Theorem 3.1 holds. Using the property (G1), 

Oh(t), ~?t (t)) = - (VF0?( t ) ) ,  ~t (t)) + (r(t), ~t(t)). 

So, 

d{F(~?(t))} = (VF(y(t)) ,  ~?t(t)) = -(~?t(t), yt(t)) + (r(t), Yt (t)). 

From the Cauchy-Schwarz inequality, it follows that  

(5.2) d { F ( y ( t ) ) }  _< -n~t(t)n 2 -~-Hr(t)llnyt(t)n <_ -II~?t(t)ll(Hyt(t)ll - ET) ,  

using the bound from Theorem 3.1. 
Finally, with E = 3ET and y(t) ~t Q, we have IIf(~?(t))ll > 3ET, so that,  from 

(3.2), 
II 77t(t) II >- II f (~( t ) )  II - II r(t) II > 2Er.  

Using this in (5.2) completes the proof. [] 

In the remainder of the analysis we take ~ = 3ET. 

LEMMA 5.4. Suppose that Assumption 2.1 holds, and that there is a bounded 
set X and time T > 0 such that ~(t) E X C_ l~l m for all t E [0, T]. Let L denote 
the Lipschitz constant for f on the set Y := Af(X, 6), E = (1 + L D ) K  and 
c = 3ET. Then, if 

T < r * : = m i n  D K '  3E ' 

t E [O,T], rl(t• E Qi, with t_ < t+ <_ T and ~(t) ~ Q for t �9 ( t_ , t+) ,  there 
exists C1 > 0 such that 

1177(t) --Vi II <-- CIT, for all  t E [ t - , t + ] .  

PROOF. From Lemma 5.2, setting 5 :-- C(1 + kC)9E 2, we have 

IF(~(t-) )  - F(v~)l <_ 5r 2, 

IF (q ( t+) ) -F (v~ )  I < 5r 2. 
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So, from the triangle inequality, 

IF(rl(t+)) - F (~ ( t - ) ) l  _< 2 ~  2. 

But  

I t +  d {F(~( t ) ) }d t  f t  t+ I F ( ~ ( t + ) ) -  F0?( t - ) ) l  -- _ ~ > ET 

using Lemma 5.3. Hence, 

25r 2 > ET II rh (t) I I dt, 

II or(t)II dt, 

giving 

I? (5.3) 2__~ > II o,(t)II dt. 
E - 

Now, using (5.3), for any t E [t_, t+], 

i 
t +  2 ~ T  

It~(t) - ~ ( t - ) l l  < Ilrlt(t) lldt < E 

Lemma 5.1 gives ]1 r/(t_) - vi [I < Cr and hence 

2~r 2~ 
II r/(t) - vi II < II r/(t) - ~(t_)II + II r/(t_) - v~ II < ~ + C~ = (~- + 3CE)T. 

So, the result holds with C1 = 2~/E + 3CE.  [] 
LEMMA 5.5. Suppose that Assumption 2.1 holds, and that there is a bounded 

set X and time T > 0 such that 71(t ) E X C_ ~ m  for all t E [0, T]. Let L denote 
the Lipsehitz constant for f on the set Y := Af(X,5),  E = (1 + L D ) K  and 
c = 3ET. Then, if 

T < r := min{T* E'y ]}  
'413C2E 2 + 5  ' 

~l(t+) E Qi, y(t_) E Qj with t_ < t+ < T, i 7~ j ,  and rl(t) ~ Q for t E (t_,t+),  
then there exists C2 > 0 such that 

F(vi) <_ F(vj)  - C2T. 

PROOF. Let E E (0,~*) for c* given by Lemmas 5.1 and 5.2. We have 

F(~l(t+)) - F(~l(t-)) = {F(r/(t))} dt <_ - E v  II ~t(t)II dt, 
_ t _  

from Lemma 5.3. Hence, 

F(rl(t+ ) ) - F(rl(t_ ) ) <_ --ETI] rl(t+ ) -- y(t_ ) I]. 



ERROR CONTROL AND GLOBAL DYNAMICS 55 

So, using Lemma 5.1, the triangle inequality and (5.1), 

(5.4) F(~l(t+)) - F(y( t_))  <<_ - - E T  [l[ Vj -- Vi 1[-  2Ce] ~ - E r 7  + 6 C E 2 T  2. 

Also, using Lemma 5.2 with 5 given in the proof of Lemma 5.4, 

F(y(t+)) >_ F ( v i ) - S r  2, 

-FO?(t_)) >_ - F ( v j ) -  ~T 2, 

which, together, imply that 

(5.5) FO?(t+) ) - F(~(t_))  >_ F(vi) - F(vj)  - 257- 2. 

Now, combining (5.4) and (5.5) gives 

F(vi) - F(vj)  < --ET 7 -t- 6CE2T 2 + 2g~r 2 = --T[E 7 -- 662E2T - 25r]. 

By choosing T sufficiently small, we can ensure that E 7 -  6 C 2 E 2 T -  25r > E7/2,  
and hence the required result holds with C2 = E~f/2. [] 

The desired analog of Theorem ODE(iii) follows from (ii) of the next theorem 
after noting that t + = oc. Actually we prove more than a discrete analog of 
Theorem ODE (iii). The work of Babin and Vishik [2] shows that, for (1.1) 
under (G), the solution passes through a finite number of small neighbourhoods 
of equilibria, ordered by decreasing Lyapunov function F( . ) .  Such a result is true 
for the numerical approximation, with neighbourhoods of O(~-), as the following 
theorem shows. 

THEOREM 5.6. Suppose that (1.1) satisfies Assumptions (G) and is approx- 
imated by a numerical method satisfying Assumption 2.1. Then there are con- 
stants ~1,tr and Tc = Tc(U) > 0 such that, i f  T E (O, rc), there is an integer N 

=t= N and times {t i }i=1 satisfying: 

(i) t~- < t + < t i + l , i=  l , . . . , g -  l ,O< t 1,t~v < t + = c o ;  

(ii) y(t) e B(vi, N1T), Vt e (ti-, t/T); 

(iii) F ( v i )  < F ( v i - 1 )  - g2T, 

PROOF. Let 

and define 

i = 2 , . . . , N .  

:= max F(v) 
v~Q(O) 

Z := {u e l~rn: F(u) < {F(U),/O + ~}} 

noting that this is a compact set by (G2). Let X = Af(Z, 5) and let L denote 
the Lipschitz constant for f on Af(X, 5). We define E, ~, ~ as in the previous 
lemmas of this section. Let 
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Note that  ~/(0) = U E Z so that,  by continuity there exists t* > 0 such that  
~/(t) G X for all t E [0, t*). On this interval Lemmas 5.3, 5.4 and 5.5 hold with 
X = N'(Z, 5). Now consider t E [0, t*). If ~/(t) e Q(T) then Lemma 5.2 gives, for 
some vj E Q(0), 

F(71(t)) <_ F(vj) + 5r 2 

so that  

(5.6) F(~l(t)) <_ F + 5. 

If ~/(t) • Q(T) then either there exists tc < t such that  ~l(tr E Q(T) and ~l(S) 
Q(T) for all s E (tc, t, or ~/(s) ~t Q(r) for all s E [0, t]. In the first case 

(5.7) F(~l(t)) < F(~l(tc)) <_ F + 5 

by Lemmas 5.2 and 5.3 and the same argument leading to (5.6); in the second 
c a s e  

(5.8) F(~l(t)) < F(~/(0)) = F(U) 

by Lemma 5.3. Points (5.6), (5.7) and (5.8) show that  ~/(t) E Z for all t E [0,t*). 
Hence we may take t* arbitrarily large for otherwise we have a contradiction to 
the continuity of ~/(t). It follows that  ~/(t) E Z for all t E (0, oo). 

We now have that  Lemmas 5.3, 5.4 and 5.5 hold for any T E [0, oc). Let 
i = 1 , . . . ,  N be an index set labelling those vi such that  ~/(t) E Qi for some 
t > 0. Note that  N < J and is hence finite. Define 

t~- = inf{t E ~t+:7/(t)  E Qi}, 

t, + = sup{t  e e 

for each i = 1 , . . . ,  N. By Lemma 5.5 it follows that there is no integer j ~ i such 
that  ~/(t) E Qj for t E (t•,t+). Furthermore, by Lemmas 5.1 and 5.4 it follows 
that  there exists ~1 = max{C1, C} > 0 such that  

,l(t) e B ( v ,  Vt �9 (ti-, 

Possibly by further reduction of Tc we can ensure that 

(5.9) B(vi,tr N B j ( v y , g , T )  = ~, Vi ~ j, 

since (5.1) holds. Now note that  there exists at least one integer i such that (ii) 
holds for t �9 (t~-, t +) since, if not, then ~/(t) ~t Q for all t �9 R+ and then, by 
Lemma 5.3, 

d{F(~/(t))} <_ Vt �9 R+;  - - 2 E 2 T  2 ' 

this contradicts (G2). Now, by (5.9), we may re-order the intervals so that  
t + < t~-+l as required and point (iii) follows by Lemma 5.5. Note that  t + = oo, 
since otherwise, by Lemma 5.3, 

d{F(~/(t))} < --2E2T 2, Vt >_ t+N, 

again contradicting (G2). [3 
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