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THE ESSENTIAL STABILITY OF LOCAL ERROR CONTROL FOR
DYNAMICAL SYSTEMS*

A. M. STUARTt AND A. R. HUMPHRIES$

Abstract. Although most adaptive software for initial value problems is designed with an

accuracy requirement---control of the local error--it is frequently observed that stability is imparted
by the adaptation. This relationship between local error control and numerical stability is given a

firm theoretical underpinning.
The dynamics of numerical methods with local error control are studied for three classes of

ordinary differential equations: dissipative, contractive, and gradient systems. Dissipative dynamical
systems are characterised by having a bounded absorbing set which all trajectories eventually
enter and remain inside. The exponentially contractive problems studied have a unique, globally
exponentially attracting equilibrium point and thus they are also dissipative since the absorbing
set may be chosen to be a ball of arbitrarily small radius around the equilibrium point. The
gradient systems studied are those for which the set of equilibria comprises isolated points and all
trajectories are bounded so that each trajectory converges to an equilibrium point as c. If
the set of equilibria is bounded then the gradient systems are also dissipative. Conditions under
which numerical methods with local error control replicate these large-time dynamical features are
described. The results are proved without recourse to asymptotic expansions for the truncation error.

Standard embedded Runge-Kutta pairs are analysed together with several nonstandard error

control strategies. Both error per step and error per unit step strategies are considered. Certain
embedded pairs are identified for which the sequence generated can be viewed as coming from a
small perturbation of an algebraically stable scheme, with the size of the perturbation proportional
to the tolerance -. Such embedded pairs are defined to be essentially algebraically stable and explicit
essentially stable pairs are identified. Conditions on the tolerance - are identified under which
appropriate discrete analogues of the properties of the underlying differential equation may be proved
for certain essentially stable embedded pairs. In particular, it is shown that for dissipative problems
the discrete dynamical system has an absorbing set and is hence dissipative. For exponentially
contractive problems the radius of is proved to be proportional to 7. For gradient systems the
numerical solution enters and remains in a small ball about one of the equilibria and the radius of the
ball is proportional to . Thus the local error control mechanisms confer desirable global properties
on the numerical solution. It is shown that for error per unit step strategies the conditions on the
tolerance - are independent of initial data while for error per step strategies the conditions are
initial-data dependent. Thus error per unit step strategies are considerably more robust.
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1. Introduction. In this paper we consider numerical approximation of the ini-
tial value problem

(1.1) ut f(u), u(0) U,

where u(t) E IR" for each t > 0, and f: IR" - IR is assumed to be locally Lipschitz.
We study variable time stepping strategies designed to control the local error incurred
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at each step. In particular, our interest lies in the effect of the error control mechanism
on the long-time dynamics of the problem (1.1) and in assessing whether, and in what
sense, the dynamics are reproduced by the approximation scheme.

Embedded Runge-Kutta pairs are studied. Let tn denote a sequence of (unequally
spaced) grid points in time and let Un denote an approximation to u(tn); then the
embedded Runge-Kutta pair is defined as follows:

k

(1.2) ri U + AtnEaijf(j) i-- 1,...,k,
j--1

k

(1.3) U+ U + At-.bjf(j), Uo U,
j=l

(1.4)
k

Vn-i-1 gn -t- AtnE)j f rlj
j=l

For convenience we set V0 U0. The sequence {V}=0 is introduced only to estimate
the error so that the time step may be varied accordingly. The sequence {U}n__0 is
considered as the numerical approximation to u(t) and it is the asymptotic features
of this sequence that we shall study. The time step At is chosen so that either

(1.5)

or

(1.6)

where - << 1 is an error tolerance and e0 is a scale factor to be specified later. The
strategy (1.5) is known as error per unit step while the strategy (1.6) is known as
error per step. (The cubic dependence on - in (1.6) streamlines the presentation of
results and is, of course, simply a matter of definition.)

In the following it will be useful to define the matrix A and vectors b, b by

(1.7) {A}ij aij, b (bl,...,bk)T, (l,...,k)T.

These matrices and vectors are usually chosen so that the difference of U and V
provides an estimate of the error incurred over one step of the numerical method (1.2),
(1.3) as is standard for embedded Runge-Kutta pairs [3]. We say that the scheme
(1.2), (1.3), (1.4) has order (p,q) if A,b is an order p method and A,b is an order q
method. In many software codes q p + 1 and Un+l V+lll is an estimate of the
local truncation error for U+I. However, q p- 1 is sometimes used in codes so that
the solution is advanced using the higher-order method, although the error estimate
is only strictly valid for the lower-order scheme. This is known as local extrapolation.

In addition to studying these standard methods, we will also introduce some sim-
ple schemes with desirable properties where q 1; for these methods the construction
of V+I is computationally inexpensive. Furthermore, we analyse some simple rood-
ifications of standard error control strategies which are tailored to given structural
assumptions about the differential equations.
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To study the effect of local error control on large-time dynamics it is necessary
to work with particular structural assumptions on the vector field f(.) which defines
the differential equation (1.1). Throughout we assume that II" denotes a norm in
IR" induced by the appropriate inner product, i.e., one inherited from one of the
assumptions (D), (C), or (G) which we now introduce. Here, and throughout the
remainder of the paper,

(1.8)

and

(1.9) Q(x) {v e lR l]f(v)]] < }.

Note that Q(0) comprises the set of equilibria of (1.1). The three conditions on the
vector field f(.) which we consider are (D), (C), and (G)"

(D) ? > 0, Z > 0. (f(), ) < - Z ll , V e
(C) / > 0" (f(u) f(v),u- v) < -llu- vii 2, V u,v e IR and f(0) 0;
(G) k > 0 such that

(G1) f(u)- -VF(u), where F C(IR’,IR);
(G2) F(u) > 0, Vu IR and IF(u)l--+ oc as u

(G3) F(u) F(v) < (f (u), v u) + k u v , V u, v e IR’;
(G4) All members of Q(0) are hyperbolic and Ilvll
(G5) liminfll.ll_.o I/(v)ll > ,

See [24] for a review of the relevance of these classes of problems in numerical analysis
and in applications. The report [25] contains similar analysis to that presented here
for an additional structural assumption on f(.) weaker than, but strongly related to,
(D); the report also contains a slight weakening of (G), which allows an unbounded
set of equilibria. We now characterize the behaviour of (1.1) under these different
structural assumptions on f(.); the following definition is fundamental.

DEFINITON 1.1. The equation (1.1) is said to be dissipative if there exists
bounded absorbing set 13 c IR and, for each U IRn, a time t* t*(U) such that
u(t) e vt > t*.

The following properties hold for (1.1).
THEOREM ODE (i) under (D), (1.1)is dissipative with B- [(0, (a + p)//), for

any p > 0;
(ii) under (C), every solution of (1.1) satisfies u(t) 0 as t oc and thus (1.1)

is dissipative with 13- B(0, p), for any p > 0;
(iii) under (G), for every U IR v Q(O) such that the solution of (1.1)

satisfies u(t) v as t --+ oc and thus (1.1) is dissipative with 13- {u
maxeQ(0) F(v) + p}, for any p > O.

Proof. The proof of (i) may be found in [24] and underlies much of the work in

[26]. The proof of (ii) is straightforward. The proof of (iii) may be found in [10].
Throughout this paper our aim is to derive discrete analogues of Theorem ODE

under the weakest possible assumptions on the tolerance -. Note that, in fixed-step
implementation, only implicit methods will replicate the behaviour of the ODE unless
the time step is restricted in terms of initial data [24]. Thus it is of interest to derive
explicit embedded pairs which yield discrete analogues of Theorem ODE without the
tolerance - being restricted in terms of initial data. The key to our analysis is the
observation that, under certain conditions on the underlying Runge-Kutta method,
the local error control ensures that the embedded pair is close to an algebraically
stable Runge-Kutta scheme; the "closeness" is proportional to the error tolerance.
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We call such embedded pairs essentially algebraically stable and in 2 we construct
explicit embedded pairs which are essentially algebraically stable in this sense. Note
that algebraically stable schemes are necessarily implicit. In addition, we prove an
order barrier rain{p, q} < 4 for explicit essentially algebraically stable embedded pairs
of order (p, q), with nonnegative bi.

In 3 we consider the question of whether it is possible to find sequences {Un}n=0
and {Atn}=0 such that the error control schemes (1.2)-(1.4), (1.5) or (1.2)-(1.4),
(1.6) are satisfied. In particular we determine conditions under which schemes admit
sequences satisfying inf>0 Atn > 0 since, without this, the time integration may
terminate at a finite time. This simply boils down to proving boundedness of the
numerical solution. However, the section is included since our aim is to describe
a rigorous framework for the analysis of local error control. Since the details are
somewhat technical, the basic idea (which is simple) is described in the text with
details contained in the appendix.

It is known that algebraically stable Runge-Kutta methods implemented with a
fixed time step define dissipative numerical methods for (D) and (C), respectively, for
all At > 0 (see [1], [16], [24]). In 4 we show that essentially algebraically stable error
per unit step and error per step embedded pairs also preserve the dissipativity of the
underlying system. Under (D) there is an absorbing set B centred at the origin and
under (C) this set has radius proportional to - (see Theorems DC1 and DC2 which
are discrete analogues of Theorem ODE (i) and (ii)).

For (D) and (C) we consider both error per step and error per unit step strate-
gies. The error per unit step schemes have the advantage that the properties of the
underlying differential equation are inherited for - sufficiently small, but independent
of initial data; this means that codes based on such a strategy are extremely robust
since they operate effectively given any initial data. In contrast, the error per step
strategies can only be guaranteed to mimic the differential equation if - is bounded
above in terms of the initial data U. In situations where a number of simulations of
a system are made for a variety of initial conditions, it is extremely desirable to have
codes which will operate robustly with respect to changes in the initial data. For
this reason, codes which replicate the essential features of a problem for initial-data
independent ranges of - are useful.

In 5 we study gradient systems under (G). We consider only error per unit step
strategies although it is straightforward to generalise the results to the error per step
case as is done in 4. The assumptions (G1)-(G3) have the following interpretations:
(G1) is the standard gradient assumption; (G2) ensures global existence, uniqueness,
and boundedness of solutions to (1.1); and (G3) is equivalent to a one-sided Lipschitz
condition [17]. Both (G4) and (G5) are structural stability conditions on the gradient
system.

For gradient systems in a fixed-step implementation there are very few known
schemes which preserve the gradient structure for At independent of initial data (see
[6], [7], [16], and [17]). The simplest of these schemes is backward Euler. Thus in 5 we
consider an error control method designed to keep the solution sequence close to that
produced by the backward Euler scheme (see (2.24), (2.27), (1.5)). For - sufficiently
small, but independent of initial data, we prove in Theorem G1 that this simplified
order (p, 1) error control scheme forces the numerical solution to enter and remain in
a ball centred on one of the equilibria in Q(0); the radius of the ball is proportional
to -. Dissipativity follows from this. In addition, a modification of this error control
is proposed which actually ensures that the solution is driven to an equilibrium point
as n oc. This is based on error per unit step control relative to a discrete time
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derivative (see Theorem G2).
The work contained here is inspired by [11] and [9], where the dynamics of error

controlled schemes are studied for linear decay problems; in particular they show that
for such problems standard error control mechanisms drive the numerical solution to
a neighbourhood of the origin which scales with the error tolerance. This motivates
the results proved here for contractive and gradient systems.

The work is also related to the work of Stetter [22] (see also [13], [14], [21])
where it is shown that, over fized time intervals 0 < t < T, and assuming that the
asymptotic expansion governing the local error is valid, the global error is proportional
to some positive power of the tolerance; this is essentially a convergence result for error
controlled schemes as - - 0. Further analysis of time step control may be found in [19].
Here we show that the "error" in the asymptotic behaviour (t oc) is proportional
to a positive power of the tolerance; this is essentially a practical stability result for
error controlled schemes. In our analysis we do not need asymptotic expansions for
the truncation error to prove results; we simply use the closeness of the scheme to an
algebraically stable one.

Recently there has been some interest in the subject of spurious solutions intro-
duced by fixed time step discretisation (see [18] for a summary). One reason these
spurious solutions are of interest is that they can exist for arbitrarily small At and
thereby destroy the large-time properties of the underlying differential equation. How-
ever, in [20], a valid criticism of the body of literature on spurious solutions is voiced:
in practice, error control mechanisms will prevent spurious solutions. Our work goes
some way toward substantiating the claim in [20].

Numerical results illustrating the results contained here can be found in [25].

Summary. It is possible to make some progress in the rigorous analysis of error
control strategies without the use of asymptotic error expansions. To this end
We have introduced the notion of essentially algebraically stable embedded Runge-

Kutta pairs. These are error control strategies which ensure that the solution is an
(9(-) perturbation of an algebraically stable scheme, where 7 is the tolerance. It is
shown that ezplicit essentially algebraically stable embedded pairs exist but an order
barrier of rain{p, q} < 4 is proved for such explicit methods with nonnegative weights
bi. See Corollary 2.10.
New simplified and computationally inexpensive embedded pairs are introduced

with order (p, 1), p arbitrarily large, which are essentially algebraically stable. These
embedded pairs may be explicit. See Example 2.13.
New error control strategies are introduced for gradient systems for which the error

control is relative to a discrete time derivative. See 5.
For certain essentially algebraically stable embedded pairs applied to dissipative,

contractive, and gradient systems we prove that the underlying long-time behaviour
of the differential equation (see Theorem ODE) is inherited by the error controlled
scheme (see Theorems DC1, DC2 in 4 and Theorems G1 and G2 in 5).
For error per unit step strategies we find that the underlying properties of classes

(D), (C), and (G) are inherited for sufficiently small tolerance, but independent of
initial data. This implies a strong degree of robustness for codes based on such
strategies. The main technical difficulty in the analysis is to obtain results for -, the
tolerance, independent of initial data. The error per step strategies require initial-data
dependent tolerance restrictions and are hence far less robust.
Nowhere in the analysis do we actually describe how the time step is chosen to satisfy

the error control criteria. Instead we prove that, at each step, the error control criteria
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can be satisfied. (This amounts to showing boundedness of the solution sequence
{Un}%0; see 3.) Furthermore, under the appropriate structural assumptions on

f(.) we also show that it is possible to find step-size sequences uniformly bounded
from zero. This approach facilitates a straightforward approach to the analysis. To
the best of our knowledge this is the first rigorous treatment of error control strategies
over long time intervals.
The analysis is preliminary in the sense that only a small number of standard

embedded pairs have been shown to be essentially algebraically stable. However, no
recourse is made to (possibly unwarranted) assumptions about the validity of the
asymptotic expansions underlying the error control criteria. In a subsequent paper
([15]) the converse viewpoint is taken--a large class of error controlled schemes are
analysed using similar mathematical ideas, under the assumption that the asymptotic
expansion underlying the error control is valid. To close the gap between the analysis
presented here and that in [15] would be extremely interesting.

2. Essentially algebraically stable embedded pairs. In this section we de-
fine and analyse stable embedded pairs. Roughly these are embedded pairs where the
error control ensures that the scheme is close to a standard stable method. To this
end recall the following matrices:

M BA + ATB bbT, B=diag{b}.

DEFINITION 2.1. The Runge-Kutta method A, b is algebraically stable if M and
B are positive semi-definite. The Runge-Kutta method is DJ-reducible if for some
nonempty index set T C {1,..., s},

bj 0, j T, aij 0, T, j T,

and is said to be DJ-irreducible otherwise.
Recall that any algebraically stable method is DJ-reducible to a DJ-irreducible

scheme with b > 0, i= 1,..., s; see [5] or [12] for example.
We now find conditions under which the error control enables a given method

to be considered as a small perturbation of an algebraically stable method. Given
any scalar e0 - 0 and any vector e (el, e2,..., ek)T we create a new Runge-Kutta
method from the embedded pair (1.2)-(1.4) by defining

(2.1) (1 eo)b + eo{

and

We use the notation

ft A + eoe( b)T.

Froin (2.1), (1.4)it follows that

D-- (hi,b2,... ,k)T.

Vn+I U + At- 1 bj + --[j f(]j).
e0 e0

Thus the error controls (1.5) or (1.6) imply, respectively, that

II l <
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or

(2.4/

where

f

7-3

k

[bj j]f(r/j).
j=l

Using (2.5), equation (1.3) may be rewritten as

(2.6)
k

U+ U + AtnZDjf(lj + AtnZ.
j--I

Furthermore, (1.2), (2.2)give

k k

l U + At&ijf(rlj) eoeiAt[j -bj]f(lj),
j=l j=l

and, by (2.1), we have ) b e0( b) and hence

k

li Un + AtZ&ijf(rlj) + eiAtnE.
j=l

Thus (2.6), (2.7) show that, under error control, the Runge-Kutta method (1.2),
(1.3) is a perturbation of the new ag-Ktt method defined by (2.1) and (2.2);
the perturbation E is small and controlled by (2.3) or (2.4) depending upon the type
of error control used. The basic idea behind this work is that, if the scalar e0 and
the vector e can be chosen to make the new Runge-Kutta method , ) have desirable
properties, then it may be possible to prove that those properties are also shared by
the underlying embedded pair A, b, b. Thus we give the following definition.

DEFINITION 2.2. The embedded Runge-Kutta pair (1.2)-(1.4) (briefly A, b, b) is
said to be essentially algebraically stable if there exists e E IRk and e0 E IR such that
the Runge-Kutta method A, b defined by (2.1), (2.2), is algebraically stable.

It is worth noting that if an embedded pair is essentially stable in non-

extrapolation mode, then it is also essentially stable in extrapolation mode. The
converse is also true. These facts are a simple consequence of Lemma 2.4 below. We
require the following definition.

DEFINITION 2.3. Given any embedded pair (1.2)-(1.4) we define the associated
embedded pair, found by interchanging the roles of bj and j, by considering (1.2)
together with

k

gn+l gn -- AtnZ)jf(lj), Uo U,
j=l

and

k

Vn+I U + AtZbjf(lj).
j=l
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LEMMA 2.4. If the embedded pair (1.2)-(1.4) is essentially algebraically stable,
then the associated pair is essentially algebraically stable.

Proof. Exchanging the roles of b and b in (2.1), (2.2) a short calculation shows
that it is sufficient to replace e0 and e by e5 and c*, given by

0

eo

to establish the result. V!
Note that it is possible for ezplicit embedded pairs to be essentially algebraically

stable and we will give examples of such schemes. With this possibility in mind
we now examine in detail the existence of essentially algebraically stable embedded
Runge--Kutta pairs. In the following we need the matrices

f4 A + ATe- T

We denote by I C ]R the closed interval for which / is positive semi-definite if

e0 I and also define

S- {x IR xrx- 1},
v { e s.(- t,)’’ o},
v {, e , I(- ,)’*1 }.

LEMMA 2.5. Given eo I\{0} for which is positive definite, the embedded pair
A, b, D is essentially algebraically stable if 2(/i is positive definite on V. Conversely, iffor
each eo I there exists z V for which zTfJz < 0, then the embedded Runge-Kutta
pair A, b, D is not essentially algebraically stable.

Proof. The Runge--Kutta method , D is algebraically stable if f/,/) are positive
semi-definite [1]. Now

rS/i x’Okx + xrfirOx

()(A + o(- b)’)- (b’)
2([3x)TAx + 2eo(- b)Tx(xTe)- (X)

+ o(- b)r.(.).

If kT/is positive definite on 12 then, by continuity, for sufficiently small (5 > 0 such
that

(2.9) xri/x > (5 on F.

Furthermore, since $ is a bounded set 37 > 0

If we chose k > 7/(2e() and let e be the solution of

Oe A( b)eo,
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then

(2.10)

The first part of the result follows since (2.9), (2.10) give lower positive bounds on
Mx on 8.

The second part of the result follows in a straightforward fashion since

This lemma shows that although there appear to be k / 1 parameters to play with
to ensure that , ) is positive definite, in fact there is only one in almost all cases;
this follows since e0 is the only free parameter in M. Thus we now concentrate on
studying M on 12. (The question of the positivity of matrices on a linear subspace is
considered in [23].) Notice that if A, b is explicit then, since 2f/is the algebraic stability
matrix for the explicit Runge-Kutta method A, ), it cannot be positive definite on IRk.
Furthermore, it is well known that the extreme values of the quadratic form xT2/x on

interleave the eigenvalues of 2/ [27] and so from Lemma 2.5 we have the following
result.

COROLLARY 2.6. If 2 has two negative eigenvaIues .for all eo I, then the
embedded pair A, b, b is not essentially algebraically stable.

Lemma 2.5 and Corollary 2.6 are suggestive of an order barrier for explicit essen-
tially algebraically stable methods and we now prove that if A, b, has order (p, q)
with min{p, q} > 5 and bi > 0 then it is not essentially algebraically stable. Preceding
this theorem are two lemmas needed in the proof.

LEMMA 2.7. If A, b, ) has order (p, q) with min{p, q} > 5 then ft, ) has order > 5.

Proof. Note that if , b and , have order 5 then so does , ) since ) appears
linearly in the order conditions [3]. Thus it is sufficient to show that , b (and hence
by an identical argument that A, b) has order 5. Noting that

(2.11) Z&ij Zaij + eoei()j bj) Zaij ci
j--1 j=l j-=l

the result follows from straightforward but lengthy manipulations of the order condi-
tions, using (2.2).

The following definition will be needed.
DEFiNiTiON 2.8. The embedded pair A, b, b is DJ-irreducible if no stages i can

be simultaneously removed from both the methods A, b and A, b to yield an equivalent
method with fewer stages.

LEMMA 2.9. Assume that the embedded pair A,b,) is explicit, DJ-irreducible,
essentially algebraically stable, and has order (p, q) with rain(p, q}
Z" )j 0}. Then

(i) J>3"T-{j’I<j < J};
(ii) -].=lajcj -=lajcj
(iii) by 7 O, by 7 by Vj e T;
(iv) aij eibj,gij O, Vi, j T,j T;
(v) j T" bj < O.

Proof. We define

k 2 2

(2.12) ci ci
k

j=l j=l
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Since , ), A, b, and A, have order at least 5, it follows from the proof of Lemma
IV.13.12 in [12] that

k k k

0, 0, 0.
i=1 i=1 i=1

Since , ) is algebraically stable it follows that )i > 0 for all i. Let T {j" )j 0}.
Thus

(2.14) di=0 ifiT.

Also

k k

Zgijcy E[aiycy + eoei({)y
j=l j=l

Eaijcy + eoei cy{)j- cjbj Eaijcy
j=l j=l j=l

since the methods A, b and A, b have order greater than 2. Thus, by (2.12) and (2.14),
di di Vi and so

0 Vi T.

Equations (2.14), (2.15)establish (ii).
Because the method , D is algebraically stable it is DJ-reducible [12] to a method

with Di > 0. Thus it follows that

(2.16) 5ij aij + eoei()j bj) =0, Vi T,j E T

and that

(2.17) j bj + eo({)j bj O, Vj E T.

For the purposes of contradiction, let j T and bj 0. Then bj 0 since e0 :fi 0 and
it follows that aij 0 Vi T, j T. But this contradicts the irreducibility of A, b, b.
Thus bj 0 and then bj bj by (2.17). Hence

(2.18) by C= 0 and by T by VT.

Combining (2.16), (2.17) gives

(2.19) aij eibj, Vi, j T,j T.

Equations (2.16)-(2.19)establish (iii) and (iv).
Now we characterise T. Clearly 2 E T for if not we have by (2.15)

k

d2 Za2jcj -c/2 O,
j=l

which is not possible for an irreducible explicit method. For the purposes of contra-
diction, let 1 T. Then, since the method is explicit a12 0 and (2.19) gives el 0
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since b2 0, by (2.18). Now (?1 0 implies alj alj 0 Vj, by (2.2). This gives a
contradiction since 1 0 implies

x ;Zx < o

if x (1, 0,..., 0)T and since D1 > 0 if 1 t T; this violates the algebraic stability of

Thus 1,2 E T. Assume that j E T for 1 < j < J and that J + 1 T. For the
purposes of contradiction, assume that Bj* > J + 1 j* T. Then, since the method
is explicit, aj+,j. 0 and so, by (2.19), ej+l 0, since by. 0 by (2,18). Thus, by

aj+l,j tj+l,j j.

If the vector x is defined by {x}i i,J+l with the usual Kronecker-delta notation

then it follows that x is orthogonal to/x

{AX}i i,J+l, {X}i bii,J+l,

so that

o,

since a 0 for explicit methods. Hence xTf/Ix --/+ < 0 and the contradiction

follows since Dj+l > 0 as J + 1 T.
Finally, to complete (i), we need to show that J > 3. By (2.12), (2.13), and (2.15)

we deduce that

J

(2.21) E bd O.
i--1

Note that d2 : 0 for an irreducible explicit method by the argument following (2.20).
Since dl 0 for an explicit method, d2 - 0 and b2 : 0 by (iii), we deduce that J > 3.

To complete (v), note that since b2, d2 0 it follows that there exists j T for
which bj < O. F1

Corollary 2.10 follows automatically from Lemma 2.9(v).
COROLLARY 2.10. There are no explicit essentially algebraically stable embedded

pairs with nonnegative weights b and order (p, q) satisfying min{p, q} > 5.
Proof Assume to the contrary that p, q > 5 and the weights b > 0. By Lemma

2.9(v) we obtain a contradiction, f,1

Remark. Many standard methods are constructed with the simplifying assump-
tion that the b > 0 [3]; thus Corollary 2.10 maybe of interest. However, some
embedded pairs used in practice do not satisfy b > 0, leaving open the question of
the existence of high-order essentially stable methods.

We now proceed to give some examples of essentially algebraically stable embed-
ded pairs.

Example 2.11. One of the simplest error control strategies is to take the explicit
Euler scheme

(2.22) U+=Un+Atf(U)
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and then form the second-order accurate approximation

(2.23) Atn
Vn+l Un -- ---[f(Un)+ f(Un+l)].

This method has order (1, 2). In the standard Butcher notation we have that

0 0 1
A= b- =

1 0 0

If we take e0 2 and e (0, 1)T then

0 1 1

The new method is DJ-reducible [12] to the backward Euler scheme. Thus (2.22),
(2.23) are essentially algebraically stable.

We can also consider the scheme in extrapolation mode so that

Vn+I Un + Atf(Un)

and

Atn
Un+l gn + ---[f(U)+ f(Vn+l)].

By Lemma 2.4 this method is also essentially algebraically stable.
Ezample 2.12. As a second example we consider the Fehlberg order (2,3) method

given by

In the standard Butcher notation we have that

A= 0 0 b= g
0 24 0 5

)T then3 ande=(0,0 7If we take e0

A- o b- o
0 0 1
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The new method is DJ-reducible to the implicit midpoint rule and hence algebraically
stable. As in the previous example, the scheme can be shown to be essentially alge-
braically stable in extrapolation mode by means of Lemma 2.4.

Ezarnple 2.13. Because of the order barrier established in Corollary 2.10, it is
not possible to find explicit essentially algebraically stable embedded pairs with order
(p, p + 1), p > 5 and positive weights bi. However it is possible to seek methods of
order (p, 1) for arbitrarily large p. Let

(2.24) Vn+l Vn -t- Atnf(Un; Atn), Uo U,

denote any Runge-Kutta method where f(U; Ate) is defined by the internal stages
of the Runge-Kutta method by (1.2), (1.3). Thus in the case of explicit embedded
pairs we have

i-1

(2.25) i(u, At) Zaijf(u + At{Tj(u, At)), i= 1,...,k,
j=l

(2.26) f(u, At) Zbjf(u + At{Tj(u, At)).
j=l

Now define, for 0 E (0, 1],

(2.27) Vn+ Un + Atn[(1 -o)f(un;/ktn) + Of(Un+l)].
The error controls (1.5), (1.6) with e0 0- then imply that

(2.28) Ilf(Un; tn) f(Un+l)ll
oF

(2.29) IIf(U ; Atn) f(Un+l)ll

respectively, so that the original scheme is close to the backward Euler scheme and
hence it may be shown that the embedded pair is essentially algebraically stable. (The
details are omitted for brevity.)

Notice that while this error control is nonstandard, it is cheap to implement since
f(U+) must be calculated as the first function evaluation in the next step of any
explicit method. Indeed the error controls (2.28) or (2.29) can be implemented directly
without calculating V+ and could be used, for example, in addition to a standard
error control mechanism based on an order (p,p + 1) pair. It is conceivable that,
provided is chosen sensibly in relation to the tolerance arising from the standard
error control code (that is, substantially larger), then the additional constraint on the
choice of time step will not greatly increase computational expense. However this has
not been verified.

If (2.24) is the explicit Euler scheme and 0 1/2, then the method is simply the
order (1, 2) pair of Example 2.11. However, if the method (2.24) has order p > 1 then
(2.27) has order 1: Assume that (2.24) is defined by a (k- 1)-stage Runge-Kutta

a- a denote the standard weights for the Runge-m t oa
Kutta methods (2.24) and (2.27), respectively. If (2.24) has order p > 1 then, by

k-1 k-1
1

i=1 i=1
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The method (2.27) has

i=l,...,k-1

and

bk=0, ck--1.

Clearly

k

bi 1;
i=1

however

k 1-0 1 0 1

2
i=1

since 0 0 is not admitted. Thus (2.27) has order 1.
Ezarnple 2.14. The methods of Example 2.13 can be generalised as follows. Let

(2.30) gn+l gn -]- ztnf(gn; /Ntn), No U,

(2.31) V,+I U, + Atn[(1 o)f(un; Atn) + 0f(q)],

where

(2.32) r/= (1 q)Un + bUn+l,

1]. Equation (2.30) represents any explicit Runge-Kutta method definedand qSE [3,
by (1.2), (1.3) and f is therefore defined by (2.25), (2.26). The assumption that

1] is necessary and sufficient for the embedded pair to be essentially algebraically[5,
stable. If 0 7, b 1, and f(u; At) f(u) then the method is the embedded (1,2)

0 2 and f is appropriately chosen, then the methodpair of Example 2.11. If
is the Fehlberg (2,3) pair described in Example 2.12.

Notice that the methods of Example 2.12 correspond to choosing q5 1. Setting
b 1 allows higher-order error control than is possible with the methods of Example
2.12, but at the cost of introducing an extra stage to the Runge-Kutta method.

The order barrier min(p, q) < 2 for (2.30)-(2.32) can be established by manipu-
lating the order conditions. It is also easy to see that if p > 2 and b 7 then q 2
and hence that there exist schemes of order (p, 2) for arbitrarily large p.

3. Satisfaction of error control criteria. The numerical approximation to
(1.1) is given by a sequence {Un}=0 generated by (1.2)-(1.3). To specify such a
sequence, given initial data U0 U, it is necessary to show that there exists a sequence
{At}_0 so that the Runge-Zutta equations (1.2) are solvable for every n > 0 (which
is, of course, trivial, if the error control scheme is explicit) and so that the error control
criteria (1.5) (or (1.6)) is satisfied for every n > 0.

Furthermore, for the kind of problems in which we are interested here, the un-
derlying differential equation has solutions which are defined and remain bounded for
all t > 0. For this reason it is important to show that the error control criteria may
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be satisfied for a time step sequence {At}__0 uniformly bounded from zero, that is,
inf>0 At > 0.

In this section we describe a general framework in which we analyse these is-
sues. The basic idea is simple: if f(.) is Lipschitz and the solution sequence remains
bounded, then it is possible to satisfy the error control criteria with a step-size se-
quence uniformly bounded from zero. The technicalities are rather lengthy and rel-
egated to an appendix. Statements of results and definitions are all that are given
here.

We commence by defining appropriate classes of flmctions and making a definition.
NOTATION 3.1. We denote the class of Lipschitz continuous functions mapping

IR into IRm and satisfying (D), (C), or (G) by jr(D), jr(C), and Jr(G), respectively.
Since we do not specify how a solution sequence satisfying the error control criteria

(1.5) or (1.6) is actually found (we simply prove that such sequences can be found) it is
necessary to distinguish between sequences which have time steps uniformly bounded
from zero and those which do not. Roughly an admissible sequence is one with time
steps uniformly bounded from zero. A more precise definition follows.

DEFINITION 3.2. Given an embedded pair (1.2)--(1.4), (1.5) (respectively, (1.2)--
(1.4), (1.6))a sequence {(U’,V[,At)}__o with (U,V,At) IRp+ satisfying
(1.2)-(1.4), (1.5) (respectively, (1.2)-(1.4), (1.6)) is admissible if infn>0 At > 0. An
embedded pair is Jr(.)-admissible if, for every function f Jr(.) and all U IR,
there exists -* -*(f, U) such that the embedded pair has an admissible sequence
for each - (0, -*). The pair is (.)-globally admissible if it is Jr(.)-admissible and

-* -*(f) is independent of U.
Note that an 9c(.)-globally admissible embedded pair is considerably more robust

than an Jr(.)-admissible embedded pair since a suitable - can be found which is
independent of initial data U. The following theorems and corollaries are proved in
the appendix. Lemma A1 in the appendix, concerning solvability of the implicit
Runge-Kutta equations, is frequently referred to in the text.

THEOREM 3.3. Assume that -* -*(U) > 0 and a compact set I I(U) c IR
,such that for - (0,-*) any solution sequence {U}_0 satisfying (1.2)-(1.4), (1.5)
remains in I Vn > O. Then, for any - (0, -*), there exists an admissible sequence
satisfying (1.2)-(1.4), (1.5).

COROLLARY 3.4. Assume that, for every function f :F(.) and all U IR",
-* -*(f, U) > 0 and a compact set I I(f, U) c IR such that for - (0, -*) any
solution sequence {U}__0 satisfying (1.2)-(1.4), (1.5) remains in I Vn > O. Then
(1.2)--(1.4), (1.5) is Jr(.)-admissible. If -* is independent of U then (1.2)-(1.4), (1.5)
is Jr(.)-globally admissible.

THEOREM 3.5. Assume that z-* -*(U) > 0 and a compact set I I(U) c ]R

that e
remains in I Vn > O. Then, for any - (0, z-*), there exists an admissible sequence
satisfying (1.2)-(1.4), (1.6).

COROLAaY 3.6. Assume that, for every function f Jr(.) and all U IR

-* -*(f, U) > 0 and a compact set I I(f, U) IR such that for - (0, -*) any
solution sequence {U}=0 satisfying (1.2)-(1.4), (1.6) remains in I Vn > O. Then
(1.2)-(1.4), (1.6) is Jr(.)-admissible. If -* is independent of U then (1.2)-(1.4), (1.6)
is Jr(.)-globally admissible.

To clearly state the sense in which the numerical method inherits the properties
of the differential equation for problems under (D), (C), and (G), we give the following
definition, analogous to Definition 1.1 for (1.1).

DEFiNITiON 3.7. Let the embedded pair (1.2)-(1.4), (1.5) be 9c(.)-admissible
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and denote inf>0 At At for a given admissible sequence. The embedded pair is
said to be (.)-dissipative if there exists a set B c IRr and -c -c(f- U) such that,
for every admissible sequence with U0 U C IR and - c (0, -), n* n*(U,-,At)
such that

UB- Vn>n*.

The pair is (.)-globally dissipative if it is (.)-globally admissible and if, in addition,- -(f) is independent of U.
Note that, from the definition B is independent of U. It is also essential in

applications that B be uniformly bounded as - 0; this has not been made part
of the definition but is true in all cases in this paper. Note that absorbing sets are
not unique so that it does not make sense to talk of convergence of absorbing sets as
7 --+ 0. Nonetheless, it is possible to talk about convergence of the B with minimal
possible radius. However we are unable to show convergence of the B of minimal
possible radius to the B of minimal possible radius as - 0. An error proportional
to the largest allowable time step remains as - - 0.

4. Dissipative and contractive problems. In this section we analyse error
control schemes under assumptions (D) and (C), respectively. We assume throughout
that there is an upper bound Atmx on the time step; this need not be small and can be
thought of as an (9(1) bound independent of -. Such an upper bound is often imposed
by an actual implementation of an embedded pair in a software code to prevent
enormous steps from being taken (see [8] for a discussion of this point). Furthermore,
we make the following assumption, recalling that any algebraically stable method , 9
is DJ-reducible to one with positive weights [12]:

(Z) For the algebraically stable scheme f, ) DJ-reduced so that I) is positive def-
inite, there exist vectors x--(x,...,x) and (d,...,d) such that

Ard + _/l/x diag{e}

and

wT’d- 1

where w (1,..., 1) r.
Note that (K) requires that some linear combination of the columns of f/and

is an invertible matrix. The schemes in Examples 2.11-2.14 all satisfy this condition.
We prove the following two results which show that the error control enforces

discrete analogues of Theorem ODE(i), (ii). Notice that, for the error per unit step
scheme, the upper bound on the tolerance is independent of initial data. This is not
true for the error per step scheme.

THEOREM DC1. Consider (1.2)-(1.4) with error control (1.5). Assume that
A, b, D is essentially algebraically stable and satisfies condition (K) and that At <
Atmx Vn > 0. Then the embedded pair is (D)-globally dissipative and (C)-globally
dissipative. In the second case c > O" ]In 2 < c_ Vu 137, the absorbing set.

THEOREM DC2. Consider (1.2)-(1.4) with error control (1.6). Assume that
A, b, b is essentially algebraically stable and satisfies condition (K) and that At <
Atmx Vn > 0. Furthermore, assume that the unique solution of the Runge-Kutta
equations (1.2) satisfying rl Q(U) constructed in Lemrna A1 is used for each n > O.
Then the embedded pair is (D)-dissipative and (C)-dissipative. In the second case

> o. I1 11 absorbing set.
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Note that Theorem DC1 is considerably stronger than DC2 since global dissipa-
tivity is achieved.

The property of the differential equation which follows under structural assump-
tion (D) and which we wish to exploit in our numerical analysis is that

ld
2 dt

{llu(t)l =} < llu(t)ll2;

this implies that II(t)II = is strictly decreasing outside a ball of sufficiently large radius,
yielding dissipativity. We now derive a preliminary lemma for the scheme (1.2)-(1.4),
using the representation (2.6), (2.7). This lemma is related to the property of the
differential equation just described. Our approach is motivated by the papers [1] and
[16] where similar manipulations are performed in the case E 0. Throughout we
use the notation f f(r).

If A, b, is essentially algebraically stable then the new Runge-Kutta method ,
is algebraically stable by definition. Furthermore , is DJ-reducible to a method with
/) positive definite [4], [12]. If such a nontrivial reduction is possible then we define
a reduced Runge-Kutta method from , ) by removing r/j, j E T (where T is defined
in Lemma 2.9) from the definition. However we will use the same notation fi, for
the reduced method and the same index k for the number of stages. All subsequent
manipulations of (2.6), (2.7) apply with k, ), ) given by reduced method. Notice (from
Examples 2.11 and 2.12 that the reducibility of the method , ) does not imply the
reducibility of the method A, b, b.

LEMMA 4.1. Let the embedded pair A, b, ) be essentially algebraically stable and
satisfy (K). Then, under assumption (D) on f, solutions of the embedded pair (1.2)-
(1.4) satisfy

k

i=1
(4.)

where

k k

(4.2) C Z IrhiJXiZJl + 2ZIdjejl + 1.
i,j=l j=l

Proof. From (2.6) we obtain, with the notation ]) f(j),

INn+ill 2 Ignl[ 2 + 2Atj(gn, fj) + At ibj(fi, fj)
j=l i,j=l

+ 2Ate(E, U)+ 2At(E, f)+ AtIEll.
j=l

Now, from (2.7) we have that

j=l
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Combining these expressions gives

(4.3)
i:1

k k

-2At
i,j=l i=1

k

+t (fi, fy}
i,j=l

k

j=l

Now note that, by assumption (K) on d and by (2.7),
k k k k k

(4.4) U diU di tndiaijfj tndiiE.
i:1 i:1 i:1 j:l i:1

Recall defined by (2.8) and let {}. By the symmetry of it follows
that

i,j=l i,j=l
(4.5)

k k

i,j=l i,j=l

Noting that

k k

i,j--1 i,j=l

and combining (4.3)-(4.5) gives

k k

IIU+lll 2 -IIUll 2 + 2t<,fi}- Atij(fi xiE, fj xjE}
i=1 i,j=l

k k

-ztx(,f) +t xII
i,j=l i,j=l

k k

j=l i=1

k k

i,j=l i=1

Using the structural assumption (D) on f, the positivity of , and condition (K) on
the method, we deduce that (4.1), (4.2) hold. This completes the proof.
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4.1. Error per unit step. We now prove Theorem DC1 through a basic lemma
on admiss!bility. Recall that., for the DJ-reduced method which for simplicity we
denote A, b, it is known that b > 0 for all i. Now, using

we obtain from Lemma 4.1, in the error per unit step case (1.5} (which implies (2.3))

k

(4.6) IIUn+lll 2 IIU II + 2AtE/[o-
i--1

where

T2C/ktmax T Idol T Idol(4.7) c)=c+
2 +max=--,ibi /-/-[ imax Di

and we have assumed that Atn < Atm. If we define

(4.8) -* min
2/Di

then/ > 0 provided that r < r*.
LEMMA 4.2. Assume that Atn Atmax Vn ) 0. Then, under the conditions

of Lemma 4.1, the embedded Runge-Kutta pair (1.2)-(1.4), (1.5) is Y(D)-globally
admissible and Jz(C)-globally admissible.

Proof. Note that Y(D) global admissibility implies Y(C) global admissibility
since assumption (C) implies (D) with a 0. Let r* be defined by (4.8), noting that
it is independent of U. Given any p > 0, define

(4.9) R
c + p + AtmaxK

where

2 E bieiJ07i’ f(]J)} + Atmxbi Eeijf(j)
i,j=l i=1 j=l

eij bj aij

(4.10) 7 + p

Let

We show that any solution sequence must remain in I(U). Noting that Uo E I(U), we
proceed by induction.
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Assume that UN E I(U). Now, if

k

$[- 11,1] < o
i=I

then (4.6), which follows from Lemma 4.1, gives

and UN+I I(U) follows. Alternatively, if

then

p>0.

Now (1.2), (1.3) give

k

Un+ rli + AtnEeijf(rlj)
j=l

and hence

k

I]gil] 2 + 2AtEeij(, f(j))+ At2n
j=l

k

eijf(rlj)
j=l

Noting that

k

Ilan+l 2--- Ei]lan+ll] 2

i=1

we obtain UN+ I(U) and the inductive step follows. This completes the proof by
Corollary 3.4, since T* is independent of U.

Proof of Theorem DC1. The $’(D)- and $’(C)-global admissibility of the scheme
are established in Lemma 4.2. Thus it remains to exhibit an absorbing set B for
every admissible sequence.

Let Tc T* defined by (4.8) and define

(4.11)

where R is defined by (4.9). Take any p > 0. While

k

(4.12) E/[c)-/]lr/]l 2] < -p
i----I

we have from (4.6)

(4.13) IIU,+lll < IIull e 2ztnp.
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Alternatively, if

(4.14)

it follows that

i=1

k c+p

and then, as in the proof of Lemma 4.2, that

(4.15) ]lUn+lll < R.

Now, if IIUnll < R and (4.12) holds, then from (4.13), we have that IIUn+ll < R.
On the other hand, if (4.14) holds then IIUn+ll 2 < R by (4.15). Hence the set B
is positively invariant. It remains to show that iterates starting outside B enter B
after a finite number of steps n*(U, T). A simple contradiction argument shows that
this must occur, for if IIUn+l 12 > R Vn > 0, then (4.13) holds for all n > 0 and hence,
since the sequence is admissible, 3At > 0

Letting N oc gives a contradiction. Thus we have SO(D)- and )c(C)-global dissi-
pativity.

In the second case where (C) holds we have that c 0; using the fact that

1 52
 11 11 +

and making the choice " 2 for each we obtain (4.6) with

The proof proceeds as for (D) except that now we take p r in the construction of
R given by (4.9). Clearly / O(r) and by the Lipschitz continuity of f it follows
that

max max IIf(r/)- f(0)ll < ’1/2

for some constant independent of -. Thus, since f(0) 0, (4.9) shows that R c-,
c independent of -, and this completes the proof. [:1

4.2. Error per step. We now extend the analysis of 4.1 to the error per step
case. We require explicit bounds on the solutions of (1.2) in this subsection and
hence frequently appeal to Lemma A1 of the appendix where a constructive existence
theorem for ri satisfying (1.2) is given.

We define R as in (4.9) and set

{ o+’r+p}(4.16) Rl=max R,
--T
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We may then define

(4.17) I(U)- {u m. ilul12 mx{llg I,/h}}
Now let

(4.18) r{ minr*,,2|(gz+D))k27Li sup f(u)l
e(u)

where r* is defined by (4.8), the constants g, ), and -y are as in Lemma A1,

Lx- sup L(X),
x(u)

and L(X) is the Lipschitz constant for f described in Lemma A1.
We now prove Theorem DC2 through a basic lemma on admissibility, paralleling

the proof of Theorem DC1.
LEMMA 4.3. Assume that Atn < Atmax Vn > 0. Furthermore, assume that the

unique solution of the Runge-Kutta equations (1.2) satisfying r E Q(U) constructed
in Lernrna A1 is used. Then, under the conditions of Lernrna 4.2, the embedded Runge-
Kutta pair (1.2)-(1.4), (1.6) is (D)-adrnissible and Y(C)-adrnissible.

Proof. Assume for the purposes of induction that

Clearly this is true for N 0. Recall the bound (2.4) for I111 under (1.6). Clearly,
if AtN > r2 then I11 < and (4.6) follows just as in the error per unit step case.

Thus, if AtN > we deduce that, as in the proof of Theorem DC1, either

(4.19) [[UN+I[[ 9 < []UN[ 2AtNp

or

(4.20) IUN+lll /1,

since R < R1 by (4.16).
If AtN < r2 then we may exploit the size of AtN and work with the numerical

method in the original form (1.2), (1.3). From (1.3) we obtain

UN+I UN + AtNEbjf(UN+I +/ktNEbj[f(]j)- f(UN+I)].
j=l j=l

Taking the inner product with UN+I we obtain, from (D) and using L(.) as defined
in Lemma A1,

k

IIUN+lll 2 -IIUNII 2 + AtN[C--/IIUN+I 12] + AtNEbjL(UN)llrlj --UN+I II UN+IlI.
j=l

Applying Lemma A1 we obtain

< AtgkTI f(Un)l + At)kTIIf(Un)ll.
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Hence

sup
uI(U)

and using 7 < -{ we obtain

1 12 1
IIUN+I < IUNII

Thus, either (4.19) holds or

which is equivalent to (4.20).
Hence we have shown that (4.19), (4.20) are true regardless of whether Atn

or Atn > _2. From these it follows simply that UN+I C I(U) and the induction is
complete. The proof then follows from Corollary 3.6, noting that -i depends on U.

Proof of Theorem DC2. The proof is identical to that of Theorem DC1, noting
that (4.19) and (4.20) form the basis for the induction; we take -c - and

Because of the dependency of -i on U only (D)- and (C)-admissibility are ob-
tained. Note that, in the case of structural assumption (C) we take p - to obtain
the result.

5. Gradient systems. In this section we consider error control schemes for gra-
dient systems satisfying (G). Recall that in a fixed time step implementation there
are very few schemes that are known to be gradient stable (see [24]); the simplest
gradient stable scheme is backward Euler. Hence we are unable to prove results for
arbitrary essentially algebraically stable embedded pairs, but derive positive results
for the order (p, 1) embedded pair (2.24), (2.27) constructed in Example 2.13. This
is possible since the error control forces the numerical method to behave as a small
perturbation of the backward Euler scheme. We will impose an upper bound Atmx
on the time step. Unlike the previous section, where for dissipative problems Atmx
could be taken to be arbitrarily large, for gradient systems Atmx will be bounded
above in terms of the one-sided Lipschitz constant k appearing in (G3).

Recall that the equation (1.1) has the property that under (G) all trajectories
approach equilibria as t oc. In 5.1, we consider the error per unit step strategy
(1.5) and prove the following result.

THEOREM G1. Consider (2.24)-(2.27) and (1.5). Assume that At,, < 1/2k Vn >
O. Then the embedded pair is (G)-globally admissible; furthermore, there exists -* >
0 such that, for any - (0, -*) and any admissible sequence, N* N*(U, -) > O,
v v(U,’r) Q(O), and K > 0

IIu- ll-< to; w > X*.

Thus (2.24)-(2.27) under (1.5) is U(G)-globally dissipative.
This result is analogous to Theorem ODE(iii); however, rather than obtaining

convergence to equilibrium we are guaranteed that solutions eventually enter and re-
main in a neighbourhood of an equilibrium point. It is possible to generalise Theorem
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G1 to the error per step case as for the dissipative case in 3 and also to implicit (2.24)
but we do not give details here. In accordance with the work of Hall [11] and Griffiths
[9] on linear decay problems we know that the numerical solution may perform small
oscillations about an equilibrium and hence that Theorem G1 is best possible for the
error control (1.5). If we wish to ensure that the numerical solution is actually driven
to equilibrium then we must modify (1.5). We consider a modification of the error
control mechanism (1.5) specifically designed for gradient systems; we replace (1.5)
by

This is a form of error per unit step error control relative to an approximation of
the time derivative, that is, when the time derivative is small then the time step is
made small also. Clearly (5.1) may not be an appropriate error control in general
but, once a trajectory of a gradient system has approached and remained inside a
small neighbourhood of an equilibrium for a substantial time, it is natural to drive
the solution to that equilibrium. It is clear that (5.1) should achieve this and in 5.2
we outline proof of the following theorem.

THEOREM G2. Consider (2.24)-(2.27) and (5.1). Assume that At < 1/2k Vn >
O. Then the embedded pair is oP(G)-globally admissible; furthermore, there ezists -* >
0 such that, for any - C (0, -*) and arty admissible sequence, v v(U, -) Q(O)

lira Un-v -0.

Thus (2.24)-(2.27) under (5.1) is (G)-globally dissipative.
Note that, with error control (5.1) in Theorem G2, the structural stability as-

sumption (G5) is not required in the proof and a modified statement could be made
to reflect this fact.

5.1. Error per unit step. Since the set of equilibria is bounded and each mere-
bet is hyperbolic, the set Q(0) contains a finite number of points which we label
{vj} J Furthermore there exists > 0 such thatj=l"

(5.2) rain a.
#j

We now prove that the set Q(c) is made up of a finite number of isolated neighbour-
hoods of equilibrium points, each of which may be inscribed in a ball with radius
proportional to c. For simplicity we drop the argument e of Q, and the associated (j
defined below, throughout the remainder of the section.

LEMMA 5.1. There exist constants e*, C > 0 such that, for all [0, e*),

J

j=l

Q C B(v, c), j ,..., J.

Proof. By (G5) it follows that c*, R > 0 such that, for all g [0, g*), Q B(O, R).
Then, by continuity of f it follows, possibly by further reduction of *, that r > 0
such that, for all e [0, c*),

j--1
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Now consider v satisfying

f(v) ew, Ilwll < 1.

Note that v is of this form if and only if v E Q(e). By (5.3) it follows that there exists

v. E Q(0) IIv vii < 7. Now define G IRm x IR H IR" by G(v,e) f(v) ew
and note that G(vj, 0) 0. Clearly dGv(vj, 0) is invertible by (G4) and also G(v, ) is
continuously differentiable with respect to v (by (G1)) and . Hence, by the implicit
function theorem, we deduce that Cj > 0 such that IIv vj < Cje, for all v Qj.
Taking the maximum over all Cj, j 1,..., J we obtain the desired result. I’l

The proof of Theorem G1 now proceeds through a sequence of lemmas. Recall
that differential equations in gradient form have the property that

d
{F(.(t)) } -I1- (t)IId-

which forms the basis of the proof that solutions approach equilibrium points as
t oo. The error controlled scheme has the property that F(Un) is nonincreasing
except in small neighbourhoods of equilibria and this is the basis of our proof of
Theorem G 1.

LEMMA 5.2.
v Qj and

IF(v)- F(vs)l < C(1 + C) W [0,*).

Proof. The existence of a j v E Qj follows from Lemma 5.1.
Lemma 5.1 we have

F(vj) F(v) < (f(vj), v vj) -4. kllvj vii 2 < kC22.

Similarly

Let v Q. Then there exists an integer j 1 < j < J such that

By (G3) and

F(v) F(vj) < <f(v), vy v} -4. llvj vii 2

< IIf(vDllllvj vii + llvj vii 2 < C +C.
This completes the proof. I-I

In the remainder we set e 4T and assume that

(5.4) T (0, e*/4) and 2Atnk < 1.

LEMMA 5.3. Let (5.4) hold. Assume that there exist positive integers N, M with
N < M such that U, Q(e) for n N + 1,... ,M and UN, UM+I Q(e). Then

M-1
T

F(UM)- F(UN)--- E IlU/l- Ull.

Pro@ By (G3) we have, from (5.4),

F(Un+I) F(Un) < <f(Un+l), Un gn/l) -4. llgn+l grill 2

(f(Un; Atn), Un Un+l) -4. ]llUn+l Unll 2 -4- (f(Un+i) f(U,; Ate), U Un+l)

< IIU+l-Ull -Jr- TllUn Un+l2At

2
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By assumption we have that

IIf(Un+l)l] >/47, n N,... ,M- 1.

Hence, by (1.5) (which implies (2.28)), we have

I]f(Un;At,)l > 37, n- N,...,M- 1,

so that

]]/(U,;At)]]-27.>T, n=N,...,M-1.

Thus

T
F(U+) F(U,) < -[Ia+l a ll, N,... ,M 1.

The result follows, rl

LEMMA 5.4. Let (5.4) hold. Assume that there exists an integer M such that
UM Q(a) and UM+I E Q(a). Then

F(UM+I) F(UM)
4k

Proof. By (2.24), (1.5)we have

5T
IIUM+I UMII tnllf(UM; /ktM)ll < /ktn[I f(UM+I)II + 7] <

Also, by (G3),

F(UM+I) F(UM) < IIf(UM+I)IIIIUM+I UMII + ]1UM+X UM 12.
Combining these two completes the proof since UM+I E ((e) Q(47).

LEMMA 5.5. Under the same conditions as Lemma 5.3, with the assumption that
UN Qj, UM+I Qj, it follows that there exists K1 > 0 such that

]]U--UNI] <K1, n=N+I,...,M.

Proof. Note that Lemmas 5.3 and 5.4 give

M-1
7 6572

(5.8) F(UM+I) F(UN) -- E I]Uk+l Ukl] -}-
4k

n=N

Hence, for N + 1 < n < M we have that

n-1 M-1

k=N

2 6572< + F(UN) F(UM+I)
7 4k

Note that UN and UM+I C=_ Qj; hence, applying Lemma 5.2 and noting that e 47
gives the required result, rl
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LEMMA 5.6. Under the same conditions as Lemma 5.3, with the assumption that
UN E Qj, UM+I Q, and j, it follows that there exists t > 0 such that

T
F(vi) F(vj) < -- + aT2.

Hence, possibly by further reduction of e*, we have

T
F() F(vj)

4

Proof. By Lemma 5.2 we have that

F(UN) F(vj) < 16C(1 + kC)"
and

F(vi)- F(UM+I) 16C(1 + kC)w.
Thus by (5.8) it follows that

M-1
7 657

F(vi) F(vj) < -- Z IIUk+ U,II / - / 32C(1 + kC)T2.
k--N

Also, using (5.2), (5.7), and Lemma 5.1 we obtain

< Ilv- vjll < ]IUM UNII + IIUM+I UMII + IIUM+ vll + IIUN vjll
M-1

5"r< IIg + - g [I + + 8c .
k=N

Putting these estimates together gives the desired result.
Proof of Theorem G1. Let

F max F(v)
veQ(0)

and assume throughout this proof that T (0, e*/4). Note that, from (5.5), (5.6), it
follows that if Un+l Q(4T) then

(5.9) F(Un+) F(U,) < --372At,/2.

Note also that if Un+ Q(4T), then by Lemma 5.2 we have

F(U,+I) < 16C(1 + kC)7.
Assume for the purposes of induction that

(5.11) F(U) < I(U)’= max{F(Uo), / + 16C(1 + kC)T2}.

Clearly this holds for n 0. Assume it is true for n N. If UN+I Q(4T), then (5.9)
gives

F(UN+I) < F(UN) < I(U).
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On the other hand, if UN+I e ((47"), then (5.10) gives

F(UN+I) --[- 16C(1 + kC)T2 I(U).

Hence (5.11) holds by induction for all n > 0. By (G2) this implies a global bound on
the solution sequences provided r E (0, e*/4) and Corollary 3.4 yields global 2r(G)
admissibility.

Now consider an admissible sequence with Atn > At Vn > 0. By (5.9) and (G2)
we deduce that, if U, Q(4r) then there exists M < 2I(U)/(3r’eAt) such that
UM Q(4r). Let mj denote the (possibly infinite) sequence of integers such that
U,o Q(4r) and U,+I Q(4r). If the rnj is a finite set of integers then the proof is
complete by Lemma 5.1. If the mj comprise an infinite set then rnj --+

By Lemma 5.6 we deduce that there exists an integer k > 0 and integer [0, J] such
that

U, Q(4r), U,+l Q(4T) Vj > k,

since otherwise we obtain a contradiction to the fact that F(.) > 0 by (G2).
Lemmas 5.1 and 5.5 we deduce that

By

IIU 11 (/1 -}- C)T Vn > Trtkq. 1.

This completes the proof.

5.2. Relative error per unit step. We now consider the relative error strategy
(2.24)-(2.27) and (5.1). Notice that (5.1) can be rewritten as

(5.12) /(U; Atn) f(Un+) < At)ll.

The proof is similar to that for Theorem G1 but simplified because the function
F(Un) is nonincreasing for all n > 0. We omit the proof of the theorem but sketch
the essential details. The details of the proof can be found in [25] where slightly more
general structural conditions (G), including the case considered here, are studied.

First note that under the error control (5.1) analogous manipulations to those
used in the proof of Lemma 5.3 show that, for 7 suciently small, there exists > 0
such that

(5.13) F(Un+I) F(U) -Atilf(u; Atn)I 2 Vn > O.

This automatically gives boundedness of the solution sequence from (G2).
Second, note that the concept of admissibility, and related theorems showing that

boundedness implies admissibility, can be extended to the error control (5.12) using
techniques analogous to those in the appendix.

Finally, using (5.13) it is possible to show that

lim f(Un; Ate) 0

and that

lim f(Un+l) O.

This allows us to show that all solution sequences are bounded and that any accumu-
lation point of the sequence {U}=0 is contained in Q(0). Arguing similarly to the
proof of Theorem 4.3 in [16] we deduce that, in fact, the whole sequence converges to
a point in Q(0).
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6. Appendix. In this appendix we provide the mathematical detail leading to
the proofs of Theorems 3,3 and 3.5 and Corollaries 3.4 and 3.6. We start by addressing
the solvability of the Runge-Kutta equations. In the following it will be useful to
define

(6.1) = max laijl and b= max Ibil.<i,j < k < <k

Note in the following that L(X) depends upon At.
LEMMA A1. For any > 1 let

L(X) be the Lipschitz constant for f(.) on Q(X), and let K(X) supQ(x IIf(u)ll.
Let Ate(X) be the minimum over all At satisfying

(6.2) katL(X) 1 -,
or be oo if no such At exists. Then, for all At E [0, Ate(X)), there exists a unique
solution {?’]i}ik=l ?i ]Rm of the equations

(6.3)
k

ri X + At_,ajf(j)
j=l

satisfying Q(X). Furthermore if {r/}i=l, 1, 2 are solutions of (6.3) correspond-
ing to distinct values At At and At At2, respectively, At [0, Ate(X)), 1, 2
then

Finally, if U- X, then

Proof. Note that the construction of At in (6.2) is slightly nontrivial since L(X)
depends upon At. Nonetheless it is clear that Arc > 0 and that, furthermore,

(6.4) At < 5kL(X)

for all At (0, Ate).
The existence of a solution satisfying the appropriate bound on the rli follows

from a contraction mapping argument, similar to that in [2] and here based on the
iteration scheme

k

/k+l X nt- AtEaijf() i= 1,... ,If.
j=l

If {r] k}i=1, l- 1, 2 solve (6.3) then

k

X + AttEajf(}),
j--1

i-1,...,k, 1=1,2.
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Hence

k

j=l

5’E[/ktl If(@)- f()l
j=l

25kL(X)At max IIj
ljk

Since this is true for ny and since kL(X)A < (1 -?-) it follows that

2m I < (x)lt

The final bound follows from (1.3) since each
Next we discuss whether it is possible to satisfy (1.5) or (1.6). To this end, define

i, V, W N x N which are functions of t and X satisfying

(6.5) i X + taif(), i- 1, ,
j=l

(6.6)

and

k

W X + Atbjf(j),
j=l

k

(6.7) V X + AtEjf((j).
j--1

Note that these functions are well defined by Lemma A1 for any X ]R and any
At e [0, Ate(X)). Hence we may define G: [0, Ate(X)) lR by

(6.8) (t,x) t

and H: [0, Arc(X)) x m by

(6.9) H(At, X) Ata(At, X).

The functions G(., U) and H(., U,) must be made sumciently small in order to sat-
isfy the error controls (1.5) or (1.6), respectively. Thus their properties are important.

LEMMA 12. The functions G(At, X) and H(At, X) satisfy G(O, X) H(O, X)
0 VX and are Lipschitz in At [0, Ate(X)).

k kProof. Since j=lbj j=lbj 1 and j(O,X) X VX it follows that
G(O,X) 0. We now show that G(.,X) is Lipschitz continuous in At [0, Ate(X)).
Note that

IG(At x) a(At, X)I
k k

(by j)f(j(X, Atl)) (bj j)f(j(X, Ate))
j=l j=l
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k

< (bj Dy)[f(j(X, At1)) f(j(X,
j=l

< kL(X) max Ibj jl IIj (X, t1) j (X, t2)

Thus, by Lemma A1,

I(/xt,X)- G(At,X)I < CL(X)K(X) zt1- zt2l,

with C independent of X. Thus G(.,X) is Lipschitz.
The properties of H(.,X) follow immediately from those of G(.,X) since

H( t, x) x).
Finally we prove Theorem 3.3.

Proof of Theorem 3.3. Let

(6.11) Ate inf
x(u)

t(X), IolCL(X)K(X)

where C is defined in (6.10) and Ate(X) is defined in (6.2). Notice that At > 0 since
both the Lipschitz constant for f and K(.) are bounded on any compact set. Now
consider (1.2)-(1.5) with Atn At Vn > 0. Assume, for the purposes of induction,
that there exist solution sequences {Un}v and {Atn N-1}=0 satisfying (1 2)-(1.5) forrt--0

n 0,...,N- 1 with At Ate. Then, by assumption UN I(U) and hence,
by Lemma A1 and (6.11) there exists a solution {i}i=a to (1.2) and thus a vector

UN+ satisfying (1.3) with n N and At Ate. By Lemma A2 and (6.11)

Ia(/xt , u )l la(0, a(/xt , u )l <  /l 01.

So, by construction, the error control criteria is satisfied. Thus there exist solution
rT ].N+I and {At Nsequences {J=0 }=0 satisfying (1.2)--(1.5) for n 0, N with At

Ate. The inductive hypothesis is true for N 1 by an identical argument since U c
I(U) and hence an admissible sequence has been constructed satisfying infn>0 At
At >0. [1

Corollary 3.4 is immediate. Furthermore the proofs of Theorem 3.5 and Corollary
3.6 follow similarly for the error control scheme (1.2)--(1.4), (1.6).
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