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1. Introduction 

We consider Hamiltonian systems in ~2N of the form 

z, = JVH(z), 

z(0) = z0, 

where J is a skew-symmetric matrix. We assume that there is a set f~ ___ ~2N 
such that the solutions of (1.1) for z0ef~ exist and remain in ~ for all 
t e N+. We let S(o)o: N + x  ~2Nb'-'~ ~2N denote the evolution semigroup 
defined so that z(t) = S(t)zo and let dS(zo, t) denote the Jacobian matrix of 
S(t)Zo with respect to z0. Note that S(t) is defined for all t > 0 on f~. 
Fundamental to the evolution of (1.1) are the facts that the Hamiltonian is 
preserved: 

(i) H(S(t)Zo) = H(zo) = J, for all z0efl ,  t e ~+;  

and there is a symplectic structure that is preserved: 

(ii) dS(zo, t)TJdS(zo, t) = J ,  for all z0~fL t ~  +. 

We consider approximations of (1.1) computed on a uniform partition 
of N+: to = 0 < tl < t2 < ' "  with timestep At. Ideally, we would preserve 
both (i) and (ii) when considering schemes for the numerical solution of 
(1.1). Unfortunately, except for integrable systems, it is not possible to 
construct numerical algorithms that enforce (discrete analogs of) (i) and (ii) 
simultaneously ([ 18]). Thus, a choice has to be made between algorithms 
that conserve the Hamiltonian and satisfy a discrete analog of (i) (which we 
call Hamiltonian-conserving algorithms) or algorithms that conserve the 
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symplectic structure and satisfy a discrete analog of (ii) (known as symplec- 
tic algorithms). 

In recent years, there has been a proliferation of work on symplectic 
integrators (see [9], [11], and [17] for a review of the literature) while 
Hamiltonian-conserving algorithms have received considerably less atten- 
tion. Essentially, the literature contains three basic arguments put forward 
in favor of symplectic integrators: 

(a) In the neighborhood of an equilibrium point of center type, a symplectic 
algorithm has stability properties similar to those of (1.1) itself; see [10]. 

(b) For problems that have a periodic solution with the period determined 
uniquely by H(zo), such as Kepler's problem, the first term in a power 
series expansion of the error in terms of the time step At depends 
linearly on time. In contrast, for generic algorithms for (1.1), the error 
grows superlinearly with time; see [12], [8], and [17]. 

(c) The method of the modified equation shows that, for every integer q, 
there is a Hamiltonian system with Hamiltonian H(q)(z) such that the 
numerical solution of a symplectic algorithm is an (9(Atq) approxima- 
tion of the solution of a system with Hamiltonian H(q)(z). In some 
sense, this shows that symplectic algorithms "almost" satisfy a property 
related to (i) above. However, H (q) does not converge to a limit 
functional as q--, oo; see [11] and the references therein. 

Point (a) is certainly of interest. However, Hamiltonian-conserving 
algorithms have the same property in the plane. Furthermore, there are 
problems in which Hamiltonian-conserving algorithms have better stability 
properties than symplectic algorithms ([13], [14], and [5]) because the 
stability properties of the true solution in the neighborhood of complicated 
invariant sets, such as relative equilibria, are not necessarily inherited by 
symplectic algorithms, and symplectic algorithms can blow-up in such 
situations. Hamiltonian-conserving algorithms appear considerably more 
robust for such problems [5]. 

Point (c) is also of interest with possible consequences for the interpre- 
tation of data from numerical simulations over long time intervals ([9], 
[11]). But the asymptotic nature of the result, in terms of powers of At, 
makes it difficult to draw rigorous and definite conclusions. 

In this note, we show that (b) is also satisfied by Hamiltonian-conserv- 
ing methods. Indeed, the result for Hamiltonian-conserving methods is 
much stronger than for symplectic methods, since the total error grows 
linearly in time, not just the first term in a series expansion of the error in 
powers of At. This result is proved in section 2 and a numerical example is 
given in section 3. In the same context, we mention an analysis of the rate 
of propagation of error in energy-conserving schemes for the Korteweg-de- 
Vries equation ([3]). 
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Finally, we mention the work of Kirchgraber [7] on the Stiefel-Baum- 
garte stabilization procedure [ 15], [2]; this method replaces (1.1) by another 
ordinary differential equation for which the level sets of the conserved 
quantities are attractive. In the case where (1.1) is integrable it is then 
possible to show that application of any consistent method to the stabilized 
system yields an error which grows linearly in time and has the optimal 
order of convergence in powers of At [7]. A similar result holds for some 
special non-integrable systems, but a power of At is lost in the error bound 
[7]. Note that, in contrast, our analysis applies only to certain conserving 
methods but does not require transformation of (1.1) into a different 
problem, which may be hard to implement in practice. Further ramifications 
of the work of [7] are discussed in Important Remark (iii) following the 
proof of the Theorem in section 2. 

In conclusion, this note is an addition to the growing body of literature 
which indicates that the relative merits of symplectic and Hamiltonian-con- 
serving algorithms needs further investigation. 

2. The result 

Our result is motivated by the study of planar Hamiltonian systems near 
a center and by study of bounded solutions of the two-body Kepler 
problem. For such systems it is natural to assume that there is a set on 
which H is smooth with the following property: solutions starting in this set 
are periodic with period determined solely by the initial value of the 
Hamiltonian. More precisely: 

Assumption 1. There is an open set ~ ~_ R 2N such that H e C~(f~,  ~). For 

any zo e f~ there exists a T = T(H(zo))  such that S(T)zo  = Zo and there exists 
a closed, bounded set B1 c f~ such that S(t)Zo e Bl for  all t >- O. 

Functional relationships between the period and the Hamiltonian are 
natural in Hamiltonian systems (see [6]) so that Assumption 1 is not as 
restrictive as it might first appear. 

We recall that the continuity of the semigroup means that if zl, z2 e ~, 
a bounded subset of fL [Izl-z211-< 6, and z >0 ,  then there exists a 
C2 = C2(~, r) such that 

I I s ( t ) z ,  - s ( t ) z211  -< c2 , vt e [0, T]. (2.1) 

Next, we assume that ~+ is partitioned uniformly with time step At and 
let Zn denote the approximation to z(nAt)  for n > 0, with Z 0 = z0. We 
introduce the semigroup S~, : R2NF --' R 2N that produces the approximation, 

Z , ,+  ~ = S i , Z , , ,  (2.2) 
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and we let SXt = S ~ o  . �9 �9 oSl t ,  n times. We recall that S~atS'2t = SX + m. We 
now assume that the numerical method converges with order r on finite time 
intervals, remains bounded for all time for data taken in a certain set, and 
conserves the Hamiltonian. More precisely: 

Assumption 2. For any Zo ~ ~,  a closed, bounded subset o f  f~, and ~ ~ ~+ 
there exists an integer r > 0 and constants CI = C1 (~,  ~) and Atc = At~(~, ~) 
such that 

IlSX~zo- S(nat)zol[ <- C 1 A t  r 

for  all n and At with 0 < nAt  < t and 0 < At <_ Atc. Furthermore, for  any 
Zoef~ and At e N + the approximation satisfies H(SX~zo )=H(zo )  for  all 
integers n, and there exists a closed, bounded set B2 ~ f~, such that SX~zo e B2 

for  all integers n. 

Note that both the true solutions and the numerical approximations are 
assumed to remain bounded away from the boundary of f~, where H may 
fail to be defined, uniformly in time. Our main result is: 

Theorem. Assume that Assumptions 1 and 2 hold. For any Zo ~ f], let 
T = T(H(zo))  be given by Assumption 1 and assume that At = T / N f o r  some 
integer N. Then, there exists a closed, bounded set B ~ ~ such that S(t)Zo, 
S~zo  ~ B for  all t, n >- O. Furthermore, there are constants C3 = C3(B, T)  and 
At~ = Atc(B, T)  such that for  any integer m >- 0, 

[[S~xtZo-S(nAt)zol[ < (1 + m)C3AK 

for  all n and At with m T  <- nAt  <- (m + 1)T and 0 <- At <_ Ate. 

Since (73 is independent of m, the Theorem implies that the error grows 
linearly with the number of periods that pass, and hence linearly with time. 

Proof. The existence of B follows from Assumptions 1 and 2; without 
loss of generality, we take B = B1 w B2, the union of the two sets B given in 
those assumptions. Define 

S A t  ZO, Tmzo = S(m T)zo, TZzo  u,, 

Thus, 

Ir E m  + l zo II = II ~(m + + ~ "Zo--r(m l~Zol [ 
N Nm __ = Hs~tsAt Zo S(T)S(mr)zoll 

Emzo = T ~ z o -  T m z o  �9 

N Nm IIS(T)SNmzo-- S<T)S(mT)zotr + IJS~,SA, Zo- S(T)SN~Zo I1" 

(2.3) 
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Note  that  H(S~2zo)= H(zo) by Assumpt ion  2; thus, we deduce that  
S(T)gU~,zo = Nm Sex, z0 by Assumpt ion  1, since the period is uniquely deter- 
mined by H(zo). Similarly S(T)S(mT)zo = S(mT)zo. Thus,  

HEmzot] = HS~'Zo-  S(mT)zo]] = ]tS(T)S~'~Zo- S(T)S(mT)zo]]. (2.4) 

By Assumpt ion  2 with ~ = B, r = T, and n = N, 

N N m  [ISex, Sex, z o -  S(T)SNT'zoH <-- C,(B, T)At  r (2.5) 

for At --< Atc(B, T). Thus,  (2 .3)- (2 .5)  imply that  

Ite'+'Zo[l -< ]]Emzoll -}- CI(B, T)AtL (2.6) 

Since E~ = 0, we have 

[Iemz01t _< mCl(B, W)Atq (2.7) 

This gives the desired result at times t = mT. It remains to fill in time nodes 
between integer multiples of  the period T. Let mT <- nat  < (m + 1)T. We 
have for n = mN + l, with 0 -< lAt < T, 

l N m  HS~,zo- S(nat)zo[I = liSa, Sex, Zo-  S(lAt)S(mT)zoll 

< IIS(IAt)SN'~zo- S(1At)S(mZ)zol] 

- oex, oex, Zol[. (2.8) 

_~_ ~ N m  Using (2.7) in (2.1) with O = B ,  zl S(mT)zo, z2 Sex, zo, and 
a = mCI(B, T)At", we obtain 

HS(IAt)SN~Zo- S(lAt)S(mT)zo 11 <<- C2(B, T)mCI(B, T)At  r, (2.9) 

since the true and numerical  solutions both  lie in B. Fur thermore ,  Assump- 
tion 2 implies that  

- Ja ,  aa,  ZoH -< C~(B, IAt)at ~ <- C~(B, T)AK, (2.10) 

for sufficiently small At depending only on B and T. Hence, (2 .8)-(2.10)  
give 

11S~a, zo -- S(nAt)zolt < [1 + mC2(g, T)]C~(B, Z)At  ~ 

for all n and At with m T <  nat  <- (m + 1)T and 0 < At -< Ate(B, T). This 
gives the result with 

C3(B , T) = C~(B, T) max{l ,  C2(B, T)}. [] 

Important remarks 

(i) The assumpt ion  that  the true solution remains in a closed bounded  
subset of  f~ for all t > 0 is a consequence of the conservat ion of the 
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Hamiltonian and the conservation of angular momentum in the example of 
Kepler's problem that motivates this work. In the next section, we analyse 
an approximation scheme that also conserves these two quantities so that the 
approximate solution also remains in a closed, bounded subset f~ for all n > 0. 
If, however, a scheme conserves only the Hamiltonian and not the angular 
momentum,  then it is not possible to show on this basis alone that the 
numerical solution remains in a closed bounded subset of ~ for all n > 0. 
Nonetheless, a result similar to that proved here can be formulated except 
that Atc will depend upon m. The proof  is straightforward and is left to the 
reader. An example of such a scheme is the continuous Galerkin method [4] 
and, in section 3, we present numerical results for this method also. 

(ii) The key to the error analysis is to examine the error propagation 
over multiples of the period T as in [12]. It is also important that the 
propagation of errors be estimated in terms of the true solution operator, 
which has the property S ( T )  - I for all solutions on the same level set of H. 
See (2.3). Note that the standard way to analyse error propagation uses the 
numerical solution operator to propagate the errors to obtain 

II E ~ +  'Zotl < [[sANtsANmZo - SU, S(mT)zo[t  

+ HSN, S ( m T ) z o  - S(T)S(mT)zoI[, 
instead of the last line of (2.3). This, however, does not allow direct 
exploitation of the periodicity of solutions on the same level set of the 
Hamiltonian H. Convergence proofs exploiting the true solution operator 
for the error propagation may be found in [16], pages 491 and 492. 

(iii) In the case where equation (1.1) is integrable, a result similar to the 
Theorem can be proved by different techniques which we now outline. In 
this case there is a locally invertible transformation ~P:z~ ~2N~__~y = 
(q~, a) ~ ~N • RN under which (1.1) becomes 

Ct = co(a), ~b(0) = ~b0, (2.11) 

at = 0, a(0) = a0; 

furthermore, the N integrals of the integrable system (1.1), denoted by 
I (z)  = ( I 1 ( z ) , . . . ,  IN(Z) )Tc  ~N, satisfy I(z)  = a(O). 

We apply a numerical method to (1.1) yielding the map (2.2). Employ- 
ing the same change of variables q? as used for (1.1), we obtain the 
following approximation to (2.11) with local accuracy of (9(At r+ 1): 

cb,+, = cb, + Ato~(~,,  A,), CI)o = qSo (2.12) 

A ,  + j = A ,  + Atfl( O, ,  A , ) ,  Ao = ao. 

(To obtain this explicit form, we have inverted all nonlinear equations 
defining the implicit numerical method.) Provided that the numerical me thod  
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also conserves the same N integrals I(o) as the equation itself, it then follows 
that/~(e,  e) - 0 so that 

An = a0 Vn > 0, 

o r  

[IAn - an I[ : 0 Vn > 0. 

Using consistency, we deduce that 

II n+,- + l)At)ll <-II n-- (nAt)ll +O(At r+*) 
yielding 

II*n - ~(nAt) II -< o(TAtr) 

for 0 -< nAt < T, the required result. In [7], a more elaborate version of this 
technique is used to prove analogous results in a more complicated situa- 
tion. 

3. An example  

In this section, we illustrate the theory in the previous section using 
Kepler's problem for two bodies. Let u e N2 and v e N2 solve 

u~ = v, u(O) = Uo, 

(3.1) 
u 

v , -  ilul [F'(l[ull), v(0) =v0, 

where F ( x ) =  - k x  -1 for some real k > 0 and /I,II denotes the Euclidean 
norm. Since z r = (u r, v r ) ,  

1 
g(z)  = ~ IIv[I 2 - k l l ,  II -~. (3.2) 

Thus, there exists kl E N such that 

g(z(t)) = - k l ,  Yt > 0. (3.3) 

It is well-known that all solutions are periodic if k 1 > 0, and that the period 
is uniquely determined by the energy ([ 1]). Furthermore,  angular momen-  
tum is conserved. Since we are in two dimensions, this is equivalent to the 
statement that 

v(t)rJlu(t) = ~, Vt > 0, (3.4) 

where ~ is a constant independent of  t satisfying [~1 = k2 for some k2 - 0 and 
J~ is a skew-symmetric matrix with norm 1. Thus (3.3) and (3.4) imply that 
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k2 <-ll~(t)tlllu(t)ll = ttu(t) t l x / 2 [ - k l  -i- k /tlu(t) ll]. 

Therefore, there cannot be sequences {t,} such that Iru(ti)ll ~ o  as i -~  o0. In 
fact, straightforward calculation shows that 2klk~ < k 2 and therefore that 
u _< liu(t)tl -< u+,  where 

k q- ~ [ k  2 -  2k ,  k~] 

u+ - 2k~ 

Then (3.3) implies that v_ <- I]v(l)]] <- v+, where 

v ++ = x/2[k  /u ; - k, ]. 

Thus Assumption 1 holds with 

n - -  { z : ( u T , ~ T ) T ~  4 Ilull > 0 }  

and 

B 1 = {z  = (IdT, u T ) T ~ - [ ~  4" H ,  ~ HLttl ~ U+, U ~ IIUll ~ U+}. 

Now consider the following numerical approximation of (3.1) studied in 
[5]: given (u {, v g ) r a  R 4, {u. }~__0 and {v.}L0 satisfy 

bln + l --  Un Un + l AV Un 

At 2 ' 
(3.5) 

v . + , - v , , _  u n + , +  u. [ F ( l l u n + , ! l l - F ( H u  . I[)] 

At lluf+~ I] + Iluo tF ~;~- - - t luo  tl 
This scheme conserves the Hamiltonian and also the angular momentum 
(see [5]). Thus, Assumption 2 holds with B2 =B~ where B~ is given in 
Assumption 1; the convergence of the method is second order so that r = 2 
and the constants C~ and Arc depend only upon the time interval under 
consideration and the derivatives of H in a set determined by the initial 
data, using the positive invariance of B~. Thus, the Theorem of section 2 
shows that the error for this scheme grows at most linearly with time when 
k~>0.  

We present the results of a computation that confirms the analysis and 
shows that the linear-in-time bound on the error growth is sharp. We take 
the initial conditions (0.4, 0, 0, 2) r and compute to time 1300, which 
represents approximately 207 periods, with time step At = re/500. We com- 
pute the error every 0.5 time unit and plot the results in Fig. 1. In order to 
determine the rate of accumulation of error, we compute three lines fitted to 
subsets of the data using least squares. The first line is computed using all 
of the error data. The second line is computed using the minimum errors 
from each period. The third line is computed using the maximum errors 
from each period. The correlation for this last fit is 0.99999, which indicates 
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Figure 1 
The error of the Gonzalez-Simo difference scheme com- 
puted with timestep At = 7t/500 starting with initial data 
(0.4, 0, 0, 2). The errors are plotted every 0.5 time unit. 

that the maximum error grows linearly with the number of periods. Though 
the error varies greatly in each period, the overall trend is linear growth. 

Note that for the total error in both position and velocity to grow 
linearly in time the velocity errors cannot have a consistent bias of one sign. 
This is illustrated in Fig. 2 in which the error growth for the velocities (third 
and fourth components of the solution) is shown. Whilst the envelope 
encompassing the errors grows linearly, the errors clearly oscillate around 
zero. We compute lines using the least squares fit, obtaining approximately 
lines with slope 8 x 10 -8 for the third component and 2 x 10 -7 for the 
fourth component, indicating that in an average sense, the errors in the 
velocity are accumulating extemely slowly. 

To illustrate Important Remark (i) following the Theorem, we briefly 
describe computations with the continuous Galerkin (q = 1) finite element 
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The error in the velocity components of the Gonzalez-Simo difference scheme computed with timestep 
At = n/500 starting with initial data (0.4, 0, 0, 2). The errors are plotted every 0.5 time unit. 
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Figure 3 
The error of  the continuous Galerkin method computed 
with timestep At =7~/650 starting with initial data 
(0.4, 0, 0, 2). The errors are plotted every 0.5 time unit. 

method, which conserves the Hamiltonian but not the angular momentum. 
As remarked above, a result similar to the Theorem holds in this case but 
with Ate depending upon m. Let t, = nAt. This method produces a piecewise 
linear continuous approximation Z(t) taking values Zn at t,. On the interval 
[tn, tn-I 1], 

Z ( t ) = Z  t n + l - t  __t-t" (3.6) 
At + Z~+ I A t '  

where the new nodal value Z~ +l satisfies 

tn + 1 

Z~+I = Z ,  + JVH(Z( t ) )  dt. (3.7) 
n 
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The error in the velocity components  of  the continuous Galerkin method computed with timestep 
At = n/650 starting with initial data (0.4, 0, 0, 2). The errors are plotted every 0.5 time unit. 
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This defines a nonlinear equation for Zn + 1 by substitution of the expression 
(3.6) for Z(t) on [tn, t,+ 1]. It may be shown that the continuous Galerkin 
method conserves the Hamiltonian by taking the inner product of (3.7) with 
J;~,, where 2~ denotes the derivative of Z on the time interval [tn, tn + l ]; see 
[4]. 

We compute again using initial condition (0.4, 0, 0, 2)r to time 1300, 
but we use timestep At = rc/650 so that the error of this approximation is 
roughly equal to the error of the Gonzalez-Simo scheme. (Computations for 
the continuous Galerkin method with At = 7c/500 have the same qualitative 
behavior.) In Fig. 3, we plot the error recorded every 0.5 time unit with 
three least square line fits computed using all of the data, the minimum 
errors in each period, and the maximum errors in each period, respectively. 
Again the correlations are very close to 1 and verify that the error grows 
linearly. In Fig. 4, we plot the errors in the velocity components together 
with least square line fits. These lines have slopes -1 .58  x 10 - 7  and 
-9.41 x 10 .8 respectively, indicating that in an average sense, the errors in 
the velocity are accumulating extremely slowly. 
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Abstract 

In this note, we consider numerical methods for a class of Hamiltonian systems that preserve the 
Hamiltonian. We show that the rate of growth of error is at most linear in time when such methods are 
applied to problems with period uniquely determined by the value of the Hamiltonian. This contrasts to 
generic numerical schemes, for which the rate of error growth is superlinear. Asymptotically, the rate of 
error growth for symplectic schemes is also linear. Hence, Hamiltonian-conserving schemes are compet- 
itive with symplectic schemes in this respect. The theory is illustrated with a computation performed on 
Kepler's problem for the interaction of two bodies. 
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