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Abstract Estimating the statistics of the state of a dynamical system, from partial 
and noisy observations, is both mathematically challenging and finds wide applica-
tion. Furthermore, the applications are of great societal importance, including prob-
lems such as probabilistic weather forecasting (Kalnay 2003) and prediction of epi-
demics (Keeling and Eames 2005). Particle filters provide a well-founded approach 
to the problem, leading to provably accurate approximations of the statistics (Doucet 
et al. 2001). However these methods perform poorly in high dimensions (Bickel 
et al. 2008; Snyder et al. 2008). In 1994 the idea of ensemble Kalman filtering was 
introduced (Evensen 1994) leading to a methodology that has been widely adopted 
in the geophysical sciences (van Leeuwen et al. 2019) and also finds application to 
quite general inverse problems (Iglesias et al. 2013). However, ensemble Kalman 
filters have defied rigorous analysis of their statistical accuracy, except in the linear 
Gaussian setting (Le Gland et al. 2011; Mandel et al. 2011). In this article we describe 
recent work which takes first steps to analyze the statistical accuracy of ensemble 
Kalman filters beyond the linear Gaussian setting (Carrillo et al. 2022). The subject 
is inherently technical, as it involves the evolution of probability measures according 
to a nonlinear and nonautonomous dynamical system; and the approximation of this 
evolution. It can nonetheless be presented in a fairly accessible fashion, understand-
able with basic knowledge of dynamical systems, numerical analysis and probability. 
We undertake such a presentation here. 
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1 Filtering Problem 

Consider a dynamical system for state.{vn}n∈Z+ evolving in.R
d , partially and noisily 

observed through data.{yn}n∈N in.R
K , with state and data determined by the following 

system, holding for .n ∈ Z
+: 

. State : vn+1 = n) + ξn ,

Data : yn+1 = h(vn+1) + ηn+1 .

Here .N := {1, 2, . . .} and .Z+ = {0, 1, 2, . . .}. We assume that the initial state of 
the system is a Gaussian random variable.v0 ∼ N(m0,C0). Furthermore we assume 
that .ξn ∼ N(0 is the mean-zero noise affecting the state evolution and . ηn+1 ∼
N(0 is the mean-zero noise entering the data acquisition process. We assume 
that the state evolution and data acquisition noise sequences are i.i.d. and that the 
following independence assumptions hold: 

. v0 ⊥⊥ {ξn}n∈Z+ ⊥⊥ {ηn+1}n∈Z+ .

The objective of filtering is to determine the probability distribution on .vn given 
all the data acquired up to that point. To this end we define, for a given realization 
of the data, denoted by a dagger . †, 

. Y †
n = {y†}n=1, vn|Y †

n ∼ μn.

With this notation we can state the objective of filtering more precisely: it is to 
determine the filtering distribution or true filter .μn and update it sequentially in. n.  As  
we now sho w .μn evolves according to a nonautonomous and nonlinear dynamical 
system on the space of probability measures. 

To determine this dynamical system, and various approximations of it that follow, 
it is helpful to define 

• .P(Rr ): all probability measures on .R
r . 

• .G(Rr ): all Gaussian probability measures on .R
r . 

For simplicity we will use the same symbol for measures and their densities 
throughout this article. Before writing the dynamical system for.μn we first determine 
the evolution of the measures .πn, rn defined by 

. vn ∼ πn, (vn, yn) ∼ rn.

These evolve according to 

.πn+1 = Pπn,

rn+1 = Qπn+1
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Here .P : P(Rd) → P(Rd) is the linear operator 

. Pπ(u) = 1

(2π)d det
exp −1

2
|u − |2 π(v) dv.

whilst .Q : P(Rd) → P(Rd × R
K ), which is also a linear operator, is determined by 

. Qπ(u, y) = 1

(2π)K det
exp −1

2
y − h(u)

2
π(u).

The evolution for.πn , which describes the probability of the state. vn , is determined 
by a Markov process on .R

d defined via the linear operator . P. The linear operator . Q
lifts .πn to the joint space of state and data .(vn, yn). It is worth highlighting that, by 
moving from the evolution of .(vn, yn) ∈ R

d × R
K (finite dimensions) to the evolu-

tion of .(πn, rn) ∈ P(Rd × R
K ) (infinite dimensions) we have converted a nonlinear 

stochastic problem into a linear autonomous one. 
However, the dynamical system for.μn is nonlinear and nonautonomous. To deter-

mine the dynamical system for .μn we need to introduce a nonlinear operator on 
probability measures. Specifically, let B(•; y†) : P(Rd × RK ) → P(Rd ) describe 
conditioning of a joint random variable .(v, y) on observation .y = y†: 

. B(ρ; y†)(u) = ρ(u, y†)

Rd ρ(u, y†) du
.

Armed with this we define .vn+1|Y †
n ∼ μn+1 and observe that 

. μn+1 = Pμn, vn+1|Y †
n ∼ μn+1

ρn+1 = Qμn+1, (vn+1, yn+1)|Y †
n ∼ ρn+1

μn+1 = B(ρn+1; y†n+1), conditioning on yn+1 = y†n+1.

Thus we have the nonlinear and nonautonomous dynamical system 

. μn+1 = B(QPμn; y†n+1), μ0 = N(m0,C0).

This evolution may be thought of in terms of sequential application of Bayes 
theorem:.Pμn is prior prediction; L(•; y†) := B(•; y†) ◦ Q maps prior to posterior 
according to Bayes theorem. This leads to the following equivalent formulation of 
the evolution: 

. μn+1 = L(Pμn; y†n+1), μ0 = N(m0,C0).

The resulting evolution is an infinite dimensional problem since.μn is a probability 
density over .Rd . Approximating this evolution is thus a significant challenge.
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2 Particle Filter 

During the last quarter of the last century, the particle filter became a widely adopted 
methodology for solving the filtering problem in moderate dimensions. d; the method-
ology is overviewed in Doucet et al. (2001). 

To describe the basic form of the method we introduce a random map on the space 
of probability measures; this map encapsulates Monte Carlo sampling. To this end 
let . denote an abstract probability space (encapsulating the sampling underlying 
the Monte Carlo method) and define .SJ : P(Rr ) × → P(Rr ) to be the empirical 
approximation operator: 

. SJμ = 1

J

J

j=1

δv j , v j
i.i.d.∼ μ .

Here . is a probability space capturing the process through which independent 
draws (from. μ) are made. We suppress explicit dependence on.ω ∈ in the expres-
sion .SJμ for notational convenience. Then, for large . J and fixed .ω ∈ , .SJ is a 
random approximation of the identity on .P(Rr ), a statement made precise in the 
remarks that follow Theorem 1. 

Since.SJ ≈ I , we may introduce the approximation.μPF
n ≈ μn evolving according 

to the map 

. μPF
n+1 = L(SJPμPF

n ; y†n+1), μPF
0 = μ0.

In the preceding expression it is implicit that each application of .SJ is based on 
an independent realization of .ω ∈ . It then follows that, for .n ∈ N, 

. μPF
n =

J

j=1

w( j)
n δ

v
( j)
n

where the particles .v( j)
n and weights .w( j)

n evolve according to 

. v
( j)
n+1 = v( j)

n + ξ ( j)
n , v( j)

n
i.i.d.∼ μPF

n ,

( j)
n+1 = exp −1

2
y†n+1 − h v

( j)
n+1

2
,

w
( j)
n+1 = ( j)

n+1

J

m=1

(m)
n+1 .

Here .ξ
( j)
n are .N(0 Gaussians that are i.i.d. with respect to both . n and . j . 

Systemization of the analysis of this method may be found in the work of Del Moral 
(1997), with the significant extension to analysis over long time-intervals in Del
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Moral and Guionnet (2001) and to continuous time in Crişan et al. (1999). We 
describe a prototypical theoretical result, based on the formulation underpinning 
Rebeschini and van Handel (2015); for precise statement of conditions under which 
the theorem holds see Law et al. (2015, Theorem 4.5). The theorem deploys a metric 
d(•, • ) on random probability measures. This is defined as follows. First let . μ, ν

be elements of the space of random probability measures defined over a probability 
space . and let .μω (resp. . νω) denote the specific probability measure that arises 
when random probability measure . μ (resp. . ν) is evaluated at .ω ∈ .  Le  t .Eω denote 
expectation with respect to .ω ∈ . Then 

. d(μ, ν)2 = sup
| f |≤1

E
ω μω[ f ] − νω[ f ] 2

,

where .μω[ f ] = f (u) μω(du) and similarly for . νω. 
The metric reduces to TV distance if applied to deterministic probability measures. 

In the application that follows. is defined to include the randomness that arises from 
the successive empirical approximations using.SJ over multiple steps of the particle 
filter. 

Theorem 1 (Law et al. 2015, Theorem 4.5) It holds that 

. sup
0≤n≤N

d(μn, μ
PF
n ) ≤ C(N )√

J
.

Remark 1 The following remarks explain and interpret the theorem: 

• The theorem states that a distance between the particle filter and the true filter is 
bounded above by an error which decreases at the Monte Carlo rate with respect 
to the number of particles . J . 

• The proof follows a typical numerical analysis structure: Consistency + Stability 
Implies Convergence. 

• Consistency: .d(SJμ,μ) ≤ 1√
J
. This shows that .SJ approximates the identity. 

• Stability: .P,L are Lipschitz in d(•, • ) .
• The theorem assumes upper and lower bounds on the .n-dependent likelihood 
arising from sequential application of Bayes theorem; the constant . C depends on 
these bounds. Furthermore . C grows exponentially with . N . 

In practice, especially in high dimensions. d, the method often suffers from weight 
collapse (Bickel et al. 2008; Snyder et al. 2008). This refers to the phenomenon where 
one of the weights .{w( j)

n }Jj=1 is close to . 1 and the others are therefore necessarily 
close to . 0. When this happens the method is of little value because the effective 
number of particles approximating .μn is . 1. This leads us to consider the ensemble 
Kalman filter which, by design, has equal weights.
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3 Ensemble Kalman Filter 

The ensemble Kalman filter, introduced by Evensen (1994), is overviewed in the 
texts (Evensen 2009; Evensen et al. 2022). We will state the basic particle form of 
the algorithm, from Evensen (1994). We will then show how it may be derived from 
a mean-field perspective highlighted in Calvello et al. (2025). Finally we describe 
analysis of this mean-field ensemble Kalman filter, and its relationship to the true 
filter (Carrillo et al. 2022). This analysis of the mean field method is a first step to 
eventually obtaining an error estimate between the ensemble Kalman filter and the 
true filter in the finite-ensemble setting. 

To describe the particle form of the method we first introduce key notation relating 
to covariances. Specifically we write covariance under .ρ ∈ P(Rd × R

K ) as: 

. cov(ρ) = Cvv(ρ) Cvy(ρ)

Cvy(ρ) Cyy(ρ)
.

We use similar notation (.meanρ) for the mean under . ρ. The ensemble Kalman 
filter from Evensen (1994) then has the form, for .n ∈ Z

+, 

. v
( j)
n+1 = v( j)

n + ξ ( j)
n ,

y( j)
n+1 = h(v

( j)
n+1) + η

( j)
n+1,

v
( j)
n+1 = v

( j)
n+1 + Cvy ρ

EK,J
n+1 Cyy ρ

EK,J
n+1

−1
y†n+1 − y( j)

n+1 ,

ρ
EK,J
n+1 = 1

J

J

j=1

δ
v

( j)
n+1,y

( j)
n+1

.

Here .ξ
( j)
n ∼ N(0 i.i.d. with respect to both . n and. j and.η

( j)
n ∼ N(0 i.i.d. 

with respect to both . n and . j . Furthermore the set of .{ξ ( j)
n } is independent of the set 

of .{η( j)
n }. 

Remark 2 Note that the components of .cov(ρEK,J
n+1 ) involve empirical learning of 

the covariances . and . of the .{ξ ( j)
n }Jj=1 and .{η( j)

n+1}Jj=1 respectively. It is possible, 
and indeed often desirable, to directly input the matrices. and. , only using empir-
ical estimation for the covariance based on the .{ ( j)

n )}Jj=1 and .{h(v
( j)
n+1)}Jj=1.  In  

particular to use

.Cvy(ρ
EK,J
n+1 ) ≈ Cvh,J , (2a) 

.Cyy(ρ
EK,J
n+1 ) ≈ Chh,J + (2b) 

where .Cvh,J is the empirical cross-covariance between the .{ ( j)
n )}Jj=1 and the 

.{h(v
( j)
n+1)}Jj=1, whilst .Chh,J is the empirical covariance of the .{h(v

( j)
n+1)}Jj=1.  Note
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that this leads to a definition of .Cyy(ρ
EK,J
n+1 ) which differs from the original one, 

which employs an empirical approximation . n+1 of the covariance . ,  formed  fr  om
.{η( j)

n+1}Jj=1. 

From the particles defined by this algorithm we may define an empirical measure 

. μEK,J
n = 1

J

J

j=1

δ
v

( j)
n

,

noting that for .n = 0 we choose .v
( j)
0 ∼ μ0 i.i.d. Practitioners like this methodology 

because it assigns equal weights to the particles and cannot suffer from the weight 
collapse arising in the particle filter. Furthermore, in the setting where . h are 
both linear, and .μn is Gaussian, .μEK,J

n converges to .μn as .J → ∞, at the Monte 
Carlo rate (Le Gland et al. 2011; Mandel et al. 2011). In this linear setting, with 
Gaussian noise and initial condition, the problem can be solved explicitly by the 
Kalman filter (Kalman 1960); this is a nonautonomous and nonlinear dynamical 
system for the mean and covariance of the (in this setting) Gaussian .μn . However 
forming and propagating .d × d covariances, when .d 1, is impractical; ensemble 
methods, on the other hand, operate by computing a .J × d low-rank approximation 
of the covariance and can be used when .d 1. Thus particle methods are of some 
practical value even in this linear Gaussian setting, avoiding the need to work with 
large covariances when .d 1. 

We now outline recent new work aimed at determining the statistical accuracy 
of the mean field ensemble Kalman filter, beyond the linear Gaussian setting. The 
mean-field limit of the particle system, found by letting .J → ∞, is determined by 
the map 

. vn+1 = n) + ξn,

yn+1 = h(vn+1) + ηn+1,

vn+1 = vn+1 + Cvy ρEK
n+1 Cyy ρEK

n+1
−1

y†n+1 − yn+1 ,

(vn+1, yn+1) ∼ ρEK
n+1.

Once again .ξn ∼ N(0 i.i.d. with respect to . n and .ηn ∼ N(0 i.i.d. with 
respect to . n; and the set of .{ξn} is independent of the set of .{ηn}. 
Remark 3 The covariances .Cvy and.Cyy can be calculated exactly from the covari-
ance of .vn+1 with .h(vn+1), from the covariance of .h(vn+1) with itself and from . . 
The  formulae  are  the .J → ∞ limit of those given in (2). 

Note that the map .vn vn+1 is nonlinear, stochastic and nonautonomous in the 
sense that it depends on the observed data. But, furthermore, the map depends on the 
law of.vn since knowledge of this law is required to define.ρEK

n+1. Thus we now focus 
on finding an evolution equation for the law of . vn , which we denote by .μEK

n . 
With this goal we define . T as follows:
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. T(•, •; ρ, y†) : Rd × R
K → R

d;
(v, y) v + Cvy(ρ)Cyy(ρ)−1 y† − y ,

noting that this map is linear for any given pair.(ρ, y†) ∈ P(Rd × R
K ) × R

K . Recall-
ing the notation .F ν for pushforward of a probability measure . ν under a map. F ,  we  
define the operator

. T(ρ; y†) = T(•, •; ρ, y†) ρ.

Notice that . T, like . B, is nonlinear as a map on probability measures. With the 
definition of . T it then follows (Calvello et al. 2025) that 

. μEK
n+1 = T(QPμEK

n ; y†n+1), μEK
0 = μ0.

The mean-field map.vn vn+1 is now well-defined by coupling it to this nonlinear 
evolution equation for.μEK

n ,  the  law  o  f. vn . We refer to it as a mean-field map precisely 
because of this dependence on its own law. 

The key question we wish to address is the relationship between.μEK
n and.μn .  To  

focus on this question we write their evolution equations in parallel:

. μEK
n+1 = T(QPμEK

n ; y†n+1),

μn+1 = B(QPμn; y†n+1).

From this it is clear that the key is to understand when .T ≈ B. In fact .T ≡ B on 
the set of Gaussian measures .G(Rd × R

K ) (Calvello et al. 2025). This is related to 
the fact that, in the Gaussian case, the map. T effects an exact transport from the joint 
distribution of state and data to the conditional distribution of state given data. To 
obtain an error bound between .μEK

n and .μn it is helpful to define 

. G : P → G,

Gπ = argminp∈G dKL(π p),

where .dKL(π p) is the Kullback–Leibler (KL) divergence of . π from. p, defined as 

.dKL(π p) =
Rd

dπ

dp
log

dπ

dp
dp. (3) 

It then follows that.Gπ = N(meanπ , covπ ) (Sanz-Alonso et al. 2023, Theorem 4.7). 

Remark 4 The map . T is not an optimal transport, in the sense of transporting one 
measure into another at minimal cost (Villani 2009), but it is a transport that is well-
adapted to numerical implementation. Links between transport and data assimilation 
were pioneered by Sebastian Reich; see Reich and Cotter (2015) and the references 
therein.



Statistical Accuracy of Approximate Filtering Methods 303

When analyzing the particle filter we used a metric on random probability mea-
sures which reduces to the TV distance in the non-random case. Here we use a 
different metric; we have no need to consider random probability measures, but 
standard TV alone does not allow us to control first and second moments. Control 
of these moments is useful for the analysis because of the Gaussian approximations 
underlying the use of. T rather than. B. We thus use a weighted TV metric, with weight 
.g(v) = 1 + |v|2. Specifically we define 

. dg(μ, ν) = sup
| f |≤g

μ[ f ] − ν[ f ] ,

with .μ[ f ] and.ν[ f ] defined as before. In order to state our theorem about closeness 
of .μn and .μEK

n we introduce the following measure of how close the true filter . {μn}
is to being Gaussian, in the lifted space of state and data: 

Definition 1 We define the closeness between the filtering distribution.μn , lifted to 
the joint space of state and data, and its projection onto Gaussians, over .N steps: 

. ε := sup 0≤n≤N dg(GQPμn,QPμn).

For precise statement and proof of the following theorem, and in particular details 
of the conditions under which it holds, see Carrillo et al. (2022). 

Theorem 2 Let .μEK
0 = μ0 and assume that . L∞ , h L∞ and .|h|C0,1 are bounded 

by . r . Then there is .C := C(N , r) ∈ (0,∞) such that 

. sup
0≤n≤N

dg(μn, μ
EK
n ) ≤ Cε.

Remark 5 The following remarks explain and interpret the theorem: 

• The theorem states that a distance between the mean-field ensemble Kalman filter 
and the true filter is bounded above by a quantity which measures how close the 
true filter is to being Gaussian. This is natural because . T and . B are identical on 
Gaussians. 

• As for the particle filter, the proof follows a typical numerical analysis structure: 
Consistency + Stability Implies Convergence. 

• Consistency: in Carrillo et al. (2022) a class of problems is identified within which 
there are sequences of problems along which.ε → 0. This demonstrates that there 
are problem classes within which the mean-field ensemble Kalman filter accurately 
approximates the true filter; at .ε = 0 a Gaussian problem is obtained and so the 
result concerns a class of problems in a small neighbourhood of Gaussians. 

• Stability: .P,Q are Lipschitz in dg(•, • ). Whilst .B,T are not Lipschitz, stability 
bounds can be proved in dg(•, • ) , given certain information such as moment 
bounds and lower bounds on covariances. 

• The theorem assumes upper bounds on the vector fields. h defining the filtering 
problems, and the constant .C depends on these bounds. Furthermore .C grows 
exponentially with . N .
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4 Conclusions 

Ensemble Kalman filters are widely used, yet many open problems remain concern-
ing their properties. In this article we have concentrated on understanding the sense 
in which they approximate the true filtering distribution. This is important for under-
standing the sense in which probabilistic forecasts made using ensemble Kalman 
filters predict accurate statistics. In the context of weather forecasting, an example is 
determining the probability of rain at levels that will cause flooding; in the context 
of forecasting epidemics, an example is determining the probability of an infection 
peak that will overwhelm health services, in the absence of interventions. The work 
described in Theorem 2 is a first step to build theory in this area, for non-Gaussian 
problems. Many challenges lie ahead to develop this theory so that it applies under 
more complex and realistic conditions. 
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