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Abstract Estimating the statistics of the state of a dynamical system, from partial
and noisy observations, is both mathematically challenging and finds wide applica-
tion. Furthermore, the applications are of great societal importance, including prob-
lems such as probabilistic weather forecasting (Kalnay 2003) and prediction of epi-
demics (Keeling and Eames 2005). Particle filters provide a well-founded approach
to the problem, leading to provably accurate approximations of the statistics (Doucet
et al. 2001). However these methods perform poorly in high dimensions (Bickel
et al. 2008; Snyder et al. 2008). In 1994 the idea of ensemble Kalman filtering was
introduced (Evensen 1994) leading to a methodology that has been widely adopted
in the geophysical sciences (van Leeuwen et al. 2019) and also finds application to
quite general inverse problems (Iglesias et al. 2013). However, ensemble Kalman
filters have defied rigorous analysis of their statistical accuracy, except in the linear
Gaussian setting (Le Gland et al. 2011; Mandel et al. 2011). In this article we describe
recent work which takes first steps to analyze the statistical accuracy of ensemble
Kalman filters beyond the linear Gaussian setting (Carrillo et al. 2022). The subject
is inherently technical, as it involves the evolution of probability measures according
to a nonlinear and nonautonomous dynamical system; and the approximation of this
evolution. It can nonetheless be presented in a fairly accessible fashion, understand-
able with basic knowledge of dynamical systems, numerical analysis and probability.
We undertake such a presentation here.
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1 Filtering Problem

Consider a dynamical system for state {v,},cz+ evolving in R?, partially and noisily
observed through data {y, } e in R¥, with state and data determined by the following
system, holding for n € Z*:

State . Upt+1 = \IJ(Un) + sn )
Data:  y,;1 = h(yt1) + Dol -

Here N:={1,2,...} and Z* = {0, 1, 2, ...}. We assume that the initial state of
the system is a Gaussian random variable vy ~ N (mg, Cy). Furthermore we assume
that &, ~ N(0, X) is the mean-zero noise affecting the state evolution and 7,41 ~
N (0, T') is the mean-zero noise entering the data acquisition process. We assume
that the state evolution and data acquisition noise sequences are i.i.d. and that the
following independence assumptions hold:

Vo u {én}n€Z+ i {nn-‘rl}nEZ*'

The objective of filtering is to determine the probability distribution on v,, given
all the data acquired up to that point. To this end we define, for a given realization
of the data, denoted by a dagger ",

YJ = {YZ}LI, vn|Y,j ~ MUn.

With this notation we can state the objective of filtering more precisely: it is to
determine the filtering distribution or true filter 1, and update it sequentially in n. As
we now show p,, evolves according to a nonautonomous and nonlinear dynamical
system on the space of probability measures.

To determine this dynamical system, and various approximations of it that follow,
it is helpful to define

e P(R"): all probability measures on R".
e G(R"): all Gaussian probability measures on R".

For simplicity we will use the same symbol for measures and their densities
throughout this article. Before writing the dynamical system for u,, we first determine
the evolution of the measures 7, t, defined by

Un ~ TTns (Vs V) ™~ T
These evolve according to

7Tn+l = Pnrh

tr1 = Qg
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Here P: P(RY) — P(RY) is the linear operator

Pr(u) = 7 (v) dv.

1 1
V(Q2m)ddet T /exp <—§|u B \D(UNZE)

whilst Q: P(R?) — P(R? x RX), which is also a linear operator, is determined by

Qr(u,y) =

| 1
N (_5|y B h(u)ﬁ) .

The evolution for 7,,, which describes the probability of the state v,, is determined
by a Markov process on R? defined via the linear operator P. The linear operator Q
lifts m,, to the joint space of state and data (v,, y,). It is worth highlighting that, by
moving from the evolution of (v,, y,) € R? x RX (finite dimensions) to the evolu-
tion of (1, t,) € P(R? x RX) (infinite dimensions) we have converted a nonlinear
stochastic problem into a linear autonomous one.

However, the dynamical system for 1, is nonlinear and nonautonomous. To deter-
mine the dynamical system for u, we need to introduce a nonlinear operator on
probability measures. Specifically, let B(e; y"): P(R? x RX) — P(R?) describe
conditioning of a joint random variable (v, y) on observation y = y':

pu, y")

B(p; f = -
(p; y")(u) T Gt v du

Armed with this we define v, 1|YnT ~ .41 and observe that

ﬁn-&-l = PM}la Un+1 |YJ ~ ﬁn+l
Pnr1 = Qlly41, Wt 1> Yus DY) ~ Pug
i1 = B(opar; y;H), conditioning on y,| = yZH.

Thus we have the nonlinear and nonautonomous dynamical system

tnet = BQPu: vl ). 1o = N(my, Co).

This evolution may be thought of in terms of sequential application of Bayes
theorem: Py, is prior prediction; L(e; y") := B(e; y") o Q maps prior to posterior
according to Bayes theorem. This leads to the following equivalent formulation of
the evolution:

st = L(P: vl ), o = N(mo, Co).

The resulting evolution is an infinite dimensional problem since w,, is a probability
density over R?. Approximating this evolution is thus a significant challenge.
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2 Particle Filter

During the last quarter of the last century, the particle filter became a widely adopted
methodology for solving the filtering problem in moderate dimensions d; the method-
ology is overviewed in Doucet et al. (2001).

To describe the basic form of the method we introduce a random map on the space
of probability measures; this map encapsulates Monte Carlo sampling. To this end
let 2 denote an abstract probability space (encapsulating the sampling underlying
the Monte Carlo method) and define S’ : P(R") x © — P(R") to be the empirical
approximation operator:

1
Sju=728vj, vjlflvd "w.

Here €2 is a probability space capturing the process through which independent
draws (from 1) are made. We suppress explicit dependence on w € €2 in the expres-
sion S’ for notational convenience. Then, for large J and fixed w € €, S’ isa
random approximation of the identity on P(R"), a statement made precise in the
remarks that follow Theorem 1.

Since S’ ~ I, we may introduce the approximation uF' &~ , evolving according
to the map

W = LS Py D, = o

In the preceding expression it is implicit that each application of S’ is based on
an independent realization of w € €. It then follows that, for n € N,

J
= Z w,(zj)%ﬁn
j=1

where the particles 33 and weights w'” evolve according to

~) _ W 0 (h M4 PR
vn+1 - \y(vnl ) + gn] ’ vnl /"Ln )

. 1 - ;
Eiﬂ:l = exXp (_§|yn+l - h(/v\(njvzl)|12‘> ’

J

)] ) (m)
wn]-i—l = Enj-l—l/(z Knlil)'

m=1

Here é,fj ) are N (0, ¥) Gaussians that are i.i.d. with respect to both n and ;.
Systemization of the analysis of this method may be found in the work of Del Moral
(1997), with the significant extension to analysis over long time-intervals in Del
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Moral and Guionnet (2001) and to continuous time in Crisan et al. (1999). We
describe a prototypical theoretical result, based on the formulation underpinning
Rebeschini and van Handel (2015); for precise statement of conditions under which
the theorem holds see Law et al. (2015, Theorem 4.5). The theorem deploys a metric
d(e, ») on random probability measures. This is defined as follows. First let u, v
be elements of the space of random probability measures defined over a probability
space 2 and let u, (resp. v,) denote the specific probability measure that arises
when random probability measure p (resp. v) is evaluated at w € Q. Let E“ denote
expectation with respect to w € 2. Then

2
)

d(u, v)* = sup E°|pol 1= volf]

where u,[f] = f f () p,(du) and similarly for v,,.

The metric reduces to TV distance if applied to deterministic probability measures.
In the application that follows €2 is defined to include the randomness that arises from
the successive empirical approximations using S’ over multiple steps of the particle
filter.

Theorem 1 (Law et al. 2015, Theorem 4.5) It holds that

C(N)
sup d(p, ") < —=.

0<n<N \/7
Remark 1 The following remarks explain and interpret the theorem:

e The theorem states that a distance between the particle filter and the true filter is
bounded above by an error which decreases at the Monte Carlo rate with respect
to the number of particles J.

e The proof follows a typical numerical analysis structure: Consistency + Stability
Implies Convergence.

e Consistency: d(Su, p) < \Lﬁ This shows that S/ approximates the identity.

e Stability: P, L are Lipschitz in d(e, ).

e The theorem assumes upper and lower bounds on the n-dependent likelihood
arising from sequential application of Bayes theorem; the constant C depends on
these bounds. Furthermore C grows exponentially with N.

In practice, especially in high dimensions d, the method often suffers from weight
collapse (Bickel et al. 2008; Snyder et al. 2008). This refers to the phenomenon where
one of the weights {wflj )}JJ.=1 is close to 1 and the others are therefore necessarily
close to 0. When this happens the method is of little value because the effective
number of particles approximating w,, is 1. This leads us to consider the ensemble

Kalman filter which, by design, has equal weights.
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3 Ensemble Kalman Filter

The ensemble Kalman filter, introduced by Evensen (1994), is overviewed in the
texts (Evensen 2009; Evensen et al. 2022). We will state the basic particle form of
the algorithm, from Evensen (1994). We will then show how it may be derived from
a mean-field perspective highlighted in Calvello et al. (2025). Finally we describe
analysis of this mean-field ensemble Kalman filter, and its relationship to the true
filter (Carrillo et al. 2022). This analysis of the mean field method is a first step to
eventually obtaining an error estimate between the ensemble Kalman filter and the
true filter in the finite-ensemble setting.

To describe the particle form of the method we first introduce key notation relating
to covariances. Specifically we write covariance under p € P(RY x RX) as:

cv cw
covip) = (C“—" o CW‘EZ;) ‘

We use similar notation (mean,) for the mean under p. The ensemble Kalman
filter from Evensen (1994) then has the form, forn € Z™,

A(/) _\p( (j))+Sr(Lj)’

n+1
A(J) ~(j) @)]
Y1 = h@) + 0,700,

U;(IJ+)1 _Aflj-':] +Cv)( Sfij)cw(pfflj) (y2+1 _3’;(121)’

J
EK,J __
,O,,_H - A(/) A(j)

n+1 }n+1

Here S,Ej) ~ N(0, ¥) i.i.d. with respect to both n and j and n(J) ~ N, T) iid.
with respect to both n and j. Furthermore the set of {é,,’ )} is independent of the set

of (ns"}.

Remark 2 Note that the components of Cov(pffij) involve empirical learning of
the covariances ¥ and I' of the {S,Ej )}11:1 and {n,(l{: 1},J'=1 respectively. It is possible,
and indeed often desirable, to directly input the matrices ¥ and I, only using empir-
ical estimation for the covariance based on the {\IJ(v(j ))}jj.zl and {h(A( 1)}

particular to use
C¥(pii’) = C™Y, (2a)

CV (o ~ M 4T (2b)

where C""/ is the empirical cross-covariance between the {\IJ(U(J ))}J _,; and the
{h(’\( ])} i1 whilst C"/ is the empirical covariance of the {h(’\( l)} . Note
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that this leads to a definition of C*” (,offij) which differs from the original one,

which employs an empirical approximation I',;; of the covariance I', formed from
() 7

bz

From the particles defined by this algorithm we may define an empirical measure

EKJ E 8 (/)a

noting that for n = 0 we choose v( ~ o i.i.d. Practitioners like this methodology

because it assigns equal weights to the particles and cannot suffer from the weight
collapse arising in the particle filter. Furthermore, in the setting where W, i are
both linear, and p, is Gaussian, u%/ converges to w, as J — oo, at the Monte
Carlo rate (Le Gland et al. 2011; Mandel et al. 2011). In this linear setting, with
Gaussian noise and initial condition, the problem can be solved explicitly by the
Kalman filter (Kalman 1960); this is a nonautonomous and nonlinear dynamical
system for the mean and covariance of the (in this setting) Gaussian u,. However
forming and propagating d x d covariances, when d >> 1, is impractical; ensemble
methods, on the other hand, operate by computing a J x d low-rank approximation
of the covariance and can be used when d >> 1. Thus particle methods are of some
practical value even in this linear Gaussian setting, avoiding the need to work with
large covariances when d > 1.

We now outline recent new work aimed at determining the statistical accuracy
of the mean field ensemble Kalman filter, beyond the linear Gaussian setting. The
mean-field limit of the particle system, found by letting J — o0, is determined by
the map

i)\nJrl = “I/(vn) + En»
Ynt1 = h@us1) + Mg,

Un+1 = i)\n+1 +va (,0,, I)Cy) (pn+1) l(yjl-+1 - 5)\,,+1),

~ ~ EK
(Vnt1s Yny1) ~ Pnt1-

Once again &, ~ N (0, X) i.i.d. with respect to n and 1, ~ N(0, I') i.i.d. with
respect to n; and the set of {§,} is independent of the set of {n,}.

Remark 3 The covariances C*” and C*” can be calculated exactly from the covari-
ance of v, with 4 (,4), from the covariance of (v, ) with itself and from I'.
The formulae are the J — oo limit of those given in (2).

Note that the map v, — v, is nonlinear, stochastic and nonautonomous in the
sense that it depends on the observed data. But, furthermore, the map depends on the
law of v, since knowledge of this law is required to define p. . Thus we now focus
on finding an evolution equation for the law of v,, which we denote by uEX

With this goal we define ¥ as follows:
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T(o, 050, ¥"): R x RX — RY,
0, y) = v+C(PIC () (v —y),

noting that this map is linear for any given pair (p, y') € P(R? x RX) x RX Recall-
ing the notation F;v for pushforward of a probability measure v under a map F, we
define the operator

T(p; y') = (T(e, 50, ¥9),p.

Notice that T, like B, is nonlinear as a map on probability measures. With the
definition of T it then follows (Calvello et al. 2025) that

pES = T@QPUER v ), wER = .

The mean-field map v, — v, isnow well-defined by coupling it to this nonlinear
evolution equation for uEX, the law of v,,. We refer to it as a mean-field map precisely
because of this dependence on its own law.

The key question we wish to address is the relationship between uEX and w,,. To
focus on this question we write their evolution equations in parallel:

s = TQPS: v ),
fas1 = BQP; ¥, ).
From this it is clear that the key is to understand when T &~ B. In fact T = B on
the set of Gaussian measures G(R? x RX) (Calvello et al. 2025). This is related to
the fact that, in the Gaussian case, the map T effects an exact transport from the joint

distribution of state and data to the conditional distribution of state given data. To
obtain an error bound between MEK and p, it is helpful to define

G:P— G,
Grr = argmin, g dgi(7|p),

where dg (7 ||p) is the Kullback—Leibler (KL) divergence of 7 from p, defined as

dx. (T ||p) _/ d 1 (d > d 3)
T — — 10 _ .
KL P re dp g dp P

It then follows that Gt = N (mean,, cov, ) (Sanz-Alonso et al. 2023, Theorem 4.7).

Remark 4 The map T is not an optimal transport, in the sense of transporting one
measure into another at minimal cost (Villani 2009), but it is a transport that is well-
adapted to numerical implementation. Links between transport and data assimilation
were pioneered by Sebastian Reich; see Reich and Cotter (2015) and the references
therein.
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When analyzing the particle filter we used a metric on random probability mea-
sures which reduces to the TV distance in the non-random case. Here we use a
different metric; we have no need to consider random probability measures, but
standard TV alone does not allow us to control first and second moments. Control
of these moments is useful for the analysis because of the Gaussian approximations
underlying the use of T rather than B. We thus use a weighted TV metric, with weight
g(v) = 1+ |v|?. Specifically we define

)

dg(p,v) = sup |l f1=vIf]

I<g

with [ f] and v[ f] defined as before. In order to state our theorem about closeness
of u, and MEK we introduce the following measure of how close the true filter {u,,}
is to being Gaussian, in the lifted space of state and data:

Definition 1 We define the closeness between the filtering distribution u,,, lifted to
the joint space of state and data, and its projection onto Gaussians, over N steps:

& 1= supo<p<n dg(GQPwu,, QPu,).

For precise statement and proof of the following theorem, and in particular details
of the conditions under which it holds, see Carrillo et al. (2022).

Theorem 2 Let ,uOEK = 1o and assume that |V ||, |||~ and |h|co1 are bounded
by r. Then there is C := C(N,r) € (0, 0o) such that

sup dg (i, n5%) < Ce.

0<n<N
Remark 5 The following remarks explain and interpret the theorem:

e The theorem states that a distance between the mean-field ensemble Kalman filter
and the true filter is bounded above by a quantity which measures how close the
true filter is to being Gaussian. This is natural because T and B are identical on
Gaussians.

e As for the particle filter, the proof follows a typical numerical analysis structure:
Consistency + Stability Implies Convergence.

e Consistency: in Carrillo et al. (2022) a class of problems is identified within which
there are sequences of problems along which ¢ — 0. This demonstrates that there
are problem classes within which the mean-field ensemble Kalman filter accurately
approximates the true filter; at ¢ = 0 a Gaussian problem is obtained and so the
result concerns a class of problems in a small neighbourhood of Gaussians.

e Stability: P, Q are Lipschitz in d, (e, ). Whilst B, T are not Lipschitz, stability
bounds can be proved in d, (e, ), given certain information such as moment
bounds and lower bounds on covariances.

e The theorem assumes upper bounds on the vector fields W, i defining the filtering
problems, and the constant C depends on these bounds. Furthermore C grows
exponentially with N.
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4 Conclusions

Ensemble Kalman filters are widely used, yet many open problems remain concern-
ing their properties. In this article we have concentrated on understanding the sense
in which they approximate the true filtering distribution. This is important for under-
standing the sense in which probabilistic forecasts made using ensemble Kalman
filters predict accurate statistics. In the context of weather forecasting, an example is
determining the probability of rain at levels that will cause flooding; in the context
of forecasting epidemics, an example is determining the probability of an infection
peak that will overwhelm health services, in the absence of interventions. The work
described in Theorem 2 is a first step to build theory in this area, for non-Gaussian
problems. Many challenges lie ahead to develop this theory so that it applies under
more complex and realistic conditions.
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