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Abstract 

Time dependent solutions of the Cahn-Hilliard equation are studied numerically. In particular hetemclinic orbits, which 
connect different equilibrium solutions at t = - c o  and t = +co, are sought. Thus boundary value problems in space-time 
are computed. This computation requires an investigation of the stability of equilibria, since projections onto the stable and 
unstable manifoMs determine the boundary conditions at t = - c ¢  and t = +oo. This stability analysis is then followed by 
solution of the appropriate boundary value problem in space-time. The results obtained cannot be found by standard initial 
value simulations. By specifying the two steady states at t = +oo appropriately it is possible to find orbits reflecting a given 
degree of coarsening over the time evolution. This gives a clear picture of the dynamic coarsening admissible in the equation. 
It also provides an understanding of orbits on the global attractor for the equation. 

1. Introduction 

Consider a binary alloy in a homogeneous mixed 
state with both components initially uniformly dis- 
tributed in space. Below a certain critical tempera- 
ture this configuration is unstable. When such a binary 
alloy is quenched to a sufficiently low and uniform 
temperature beneath its critical value, the two compo- 
nents o f  the alloy tend to separate. The Cahn-Hill iard 
equation is a phenomenological  continuum model for 
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this process, which can be obtained by application of  
a Helmholtz free energy theory [5] .  The equation is 
posed o n / 2  C R 'n and is 

Ou 
- - = A w ,  x E / 2 ,  t > 0  (1.1) 
at 
0 = y A u + f ( u ) + w ,  x E / 2 ,  t > 0 ,  (1.2) 

subject to the boundary and initial conditions 

~ 7 u - n = 0 ,  Vw.n=O,  xEa/2,  t > 0 ,  (1.3) 

u(x,O) = u0(x) ,  x E /2 ,  (1.4) 

where n denotes the unit outward normal on 0/2. Here 
u(x ,  t ) is an order parameter determining the relative 
proportions of  the two solid phases at point x in space, 
t in time. The function w(x, t) is the chemical poten- 
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tial which drives the phase separation phenomenon. 
Integrating (1.1) over /2  and applying (1.3), (1.4) 
gives 

f u(x,t)dx= f uo(x)dx=M, Vt>_O, (1.5) 
12 12 

which implies conservation of total mass. 
In this note we consider the simple case of equation 

( 1.1 ),( 1.2) in one space dimension together with 

f ( u )  = u - u 3. (1 .6)  
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p = d i m { W ( o t ( x ) ) }  - dim{W(to(x))} - 1, (1.8) 

When u = +1 the mixture is entirely comprised of 
one phase and when u -- - 1  it is entirely comprised 
of the other; u = 0 denotes an equal mixture. Our ob- 
jective is to study numerically the coarsening process. 
To do this we shall compute time-dependent solu- 
tions of ( I. I ) -  (1.3) which connect equilibrium states 
with differing coarseness properties, to one another. 
These are known as connecting or heteroclinic orbits. 

We note that Eilbeck, Furter and Grinfeld [ 10] have 
already computed the equilibrium solutions for this 
problem and our intended contribution is to determine 
the dynamics of the equation by studying connecting 
orbits between these equilibria. Such connections sat- 
isfy equations ( 1.1)-(1.3)  subject to 

u ( x ,  t) --~ to (x )  as t --* +oo,  

u ( x ,  t) --* or(x) as t -+ - o o ,  (1.7) 

where to(x) and t~(x) are two equilibrium solutions 
satisfying (1 .1)- (1 .3)  with au /a t  = o. For such a 
connection to exist it is typically the case that a (x )  has 
a larger number of unstable modes associated with it 
than does to(x).  However, since both or(x) and to(x) 
may be unstable we solve (1 .1)-(1 .3)  and (1.7) as 
a boundary value problem in space and time. It is 
known that typically [ 3 ] the number of unstable spa- 
tial modes of an equilibrium grows with the spatial 
complexity of the solution, reflecting the penalisation 
of interfacial energy. Hence, for connecting orbits to 
exist, to(x) will be coarser than a ( x )  and solutions 
of ( 1.1 ) - (  1.3) subject to ( 1.7) thus reflect the coars- 
ening process. From geometric arguments one expects 
that, to describe a given set of connections between 
at(x)  and to(x),  one requires p parameters where 

and W(t~) denotes the unstable manifold of an equi- 
librium ~ and dim{o} dimension. (Note that any hete- 
roclinic orbit yields a one parameter family of hetero- 
clinic orbits through time translation; this trivial phase 
shift parameter is not included in the formula (1.8) 
for p.) 

Such connecting orbits are also of interest in an ab- 
stract mathematical context, for the following reason. 
This system admits a Liapunov function [5,11 ]: let- 
ting I • I denote the standard L 2 (1-2) norm we obtain 

E(u) = f {r I: I v u  -F(u)}ax, 
12 

d{E(u(t))} = - [  V wl 2 , (1.9) 

where F l ( u )  = f ( u ) ;  this shows that the Cahn- 
Hilliard model is a gradient system and that the energy 
E ( u ( t ) )  always decreases in time, forcing the solu- 
tions to equilibria. Hence by [ 12], its global attractor 
is the union of all the equilibrium solutions of ( 1.1 ) -  
(1.3) together with the connecting orbits, satisfying 
( 1.1 ) - (1 .3)  and (1.7). For certain reaction diffusion 
equations the structure of the global attractor has been 
completely determined analytically [ 13-15]. It is of 
interest to extend this work to other equations, and 
our computational results shed light on this question. 
Finally, we note that the work of Carr and Pego [ 7 ] 
and Pego [ 17] indicates that, in one dimension, the 
phenomenon of metastability is closely related to the 
properties of solutions on these heteroclinic orbits 
and this provides a mathematical justification for the 
physical importance of heteroclinic orbits. 

In Section 2 we will briefly describe the spatial 
approximation we use and describe the basic proper- 
ties of the spatially discrete equations. In Section 3 
we show numerical results for the steady state solu- 
tions and their stability properties. Section 4 contains 
an outline of the computational methods and results 
for the connecting orbits; this leads us to a conjecture 
about the structure of the global attractor. Finally, in 
Section 5 we make some concluding remarks. 
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2. Numerical methods 

We approximate (1.1)-(1.3) in dimension m = 
1 with /2 = (0, 1) by means of a Galerkin spec- 
tral method, using the eigenfunctions {cos(jTrx)}~ 
as a basis. Let V N C HI ( (0 ,1 ) )  denote the space 
span{[cos(jzrx) ]JY=0} and seek us, ws E V s satisfy- 
ing 

N 

us(x, t) = ao(t) + E aj(t) cos(j~rx) (2.1) 
j=l 

and 

N 

WN(X, t) = bo(t) + E bj(t) cos(jTrx). (2.2) 
j=l 

Let ( . . . , . . . )  denote the usual L 2 inner product on 
(0, 1 ). The standard weak form of ( 1.1 )-(1.2) gives 
us 

- y ( v u ,  V( )  + (f(u)  + w, ~) = O, 

V~ E Hi((0 ,  1)). (2.3) 

Applying the Galerkin projection and asking that 
(2.3) hold only for all s ¢ E V N, we thus obtain 

/0u~ ) -~ - ,~  =-(~7wN,~7~), v ~  v N, 

-Y(~7us, ~7~) + ( f fus)  + wN,s c) = 0, V~:E V N. 

(2.4) 

After integrating by parts using (1.3), this yields 

,u. / --~-,cos(k~rx) --- (k~') 2 

_ I" O2uN ) 
× \ty-~-ffi-x2 + f(uN)],cos(k~rx) , 

k = l , 2  . . . . .  N. 

Note that, setting ~: = 1 in (2.4), yields 

dao( t ) 
- -  - ~ ' 0 ,  

dt 

so that we obtain 

1 1 

at(t) = f uN(x,t)ax= f uN(x,O)dx= M, 
0 0 

Vt >0. 
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(2.5) 

This is the discrete analogue of the conservation 
relation (1.5). Using (2.5) we obtain the the fol- 
lowing system of ordinary differential equations for 
{ak ( t )  }N 1 " 

da~(t) ( 
~-~ = (k~r) 2 - 7ak(t)k2~ 

1 

+2 / f(uN(x,t) )cos(kTrx)dx), (2.6) 

0 
1 

= a 0 = / u o ( x )  cos(k~rx)dx, ak(O)  

0 

k=  1,2 . . . . .  N. (2.7) 

By setting ~ = au#/at in (2.4) it may be verified that 
the semi-discrete equations possess the same Liapunov 
function (1.9) as the original equations and that 

d{E(uN(t))}  = -I v WN[ 2. 

Hence the approximation is also in gradient form and 
has a global attractor of the same qualitative type as 
the underlying partial differential equation. 

If we let A = ( a l , a2 , . . .  ,as)  then Eq. (2.6) may 
be written as 

dA 
- -  = G ( A ) .  (2.8) 
dt 

Since (2.8) is in gradient form, the global attractor 
is made up entirely of equilibria and heteroclinic or- 
bits connecting them to one another. Thus to study the 
global attractor for the approximate system we need 
only to study the steady states of (2.8) and the con- 
necting orbits between them, satisfying (2.8) and 

A(t) --~ A + as t --+ +cx~, 

A ( t )  ~ A -  as t --+ -oo, (2.9) 

for A + equilibria of (2.8). To compute such connec- 
tions we apply the approach described in [ 1 ] which in 
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turn relies on the work of Beyn [4]. All the continua- 
tion computations in this note are performed by using 
the package AUTO [9]. The basic idea of the compu- 
tational technique in [4] is to solve (2.8), (2.9) on a 
truncated time domain [ -T,  T] ; boundary conditions 
are imposed at t = T (resp. t = - T )  which project 
the solution onto the linearised stable (resp. unstable) 
manifold of A + (resp. A - )  at t = T (resp. t = -T.)  
In the case where p given by (1.8) is positive extra 
conditions are required to parameterise the orbit; once 
fixed these parameters specify a boundary value prob- 
lem for (2.8) with the correct number of boundary 
conditions. An example of such a parameter is (4.1) 
below. 

3. The steady states and their stability 

An equilibrium v of the Cahn-Hilliard equation 
( 1.1 ) - (  1.3) in dimension m = 1 with/2 = (0, 1 ) sat- 
isfies the following problem: find v (x )  such that 

1 

82v f 0 = 7--~x 2 + f ( v )  - f ( v l d x ,  

0 

x E (0 ,1 ) ,  t > 0 ,  (3.1) 
1 

~(0) = ~(1)=0 ,  fv(x)dx=M, (3.2) 

0 

where w is a constant by ( 1.1 ),(1.3) and (1.2), (1.3) 

gives its value w = - fo f ( v ) d x ;  the mass constraint 
(1.5) must be specified to obtain isolated solutions. 
Thus the solution set is parameterized by M and y. 
Recall that f is specified by (1.6). 

The local bifurcations from the constant trivial so- 
lution u =- M are studied in [ 10]. These bifurcations 
Bk o c c u r  at 

y = bk = f ' ( M ) / k 2 ~  2, (3.3) 

and bifurcate in the direction 

Ck = cos(k~rx). (3.4) 

In the case M = 0 the trivial solution is u ~ 0 and 
(3.1), (3.2) satisfy the symmetry 

u ---, ( - u ) .  (3 .5 )  

The bifurcations are of pitchfork type associated with 
the breaking of the symmetry (3.5). In the case M > 0 
the trivial solution is u =__ M and the symmetry (3.5) 
no longer holds, but the equations (3 .1) - (3 .2)  are 
invariant with respect to 

u(x)  ~ u(1 - x ) .  (3.6) 

If k is odd this symmetry is broken (as can be seen 
from (3.4)) and the bifurcations are again of symme- 
try breaking pitchfork type; however if k is even the 
bifurcating branches retain the symmetry (3.6). How- 
ever by carrying out the Liapunov-Schmidt reduction 
it is found that the bifurcations are still of pitchfork 
type (see [10]).  

We now consider the consequences for stability. Let 

1 

u=v+eP'¢, w= - f f(v(x))dx+e°tO, 
0 

where v (x) solves ( 3.1 ), (3.2). Substituting in ( 1.1 ) - 
(1.5) and linearising, we obtain the following eigen- 
value problem governing the stability of steady solu- 
tions of (3.1),(3.2) under (1 .1 ) - (  1.5): 

020 
pC = Ox 2 , (3.7) 

&2¢ 
o=~,--~2x2+f'(v)¢+a, x ~ (0,1), t>o,  

(3 .8 )  

~ x ( O , t )  = O-z-~ (1 , t )  = O0 ax ~x (0, t) 
&O 

=a--~(1,t)=0, t > 0 ,  (3.9) 

1 

dp(x)dx O. (3.10) 

0 

Note that these equations are invariant under (3.5) 
for M = 0 and (3.6) for M > 0, and hence conjugate 
pairs of solutions breaking the symmetries will have 
the same stability properties. To be precise, for M > 
0 with k odd, eigenvalues of (3 .7)- (3 .10)  on conju- 
gate solutions ( v ( x ) , y )  and (v(1 - x ) , 7 )  are iden- 
tical, and hence these solutions have identical stabil- 
ity properties. A similar situation arises for M = 0 for 



F. Bai et al. I Physica D 78 (1994) 155-165 159 
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Fig. 1. Notation for equilibria, l(A) = a~, where 
lakl = max{lajl : 1 < j < N}. 

all k. However for M > 0 with k even the symmetry 
(3.6) is not broken. Hence no information can be ob- 
tained using symmetry arguments about the eigenval- 
ues of (3 .7) - (3 .10)  for points on the upper and lower 
branches of the pitchfork at the same 3, value. Indeed 
our numerical results show that though the number of 
positive eigenvalues on these pairs of branches is the 
same, their values are different depending on which 
branch is chosen. Thus the quantitative behaviour near 
each branch differs. 

We now describe numerical results. Fig. 1 shows the 
notation we will use to distinguish different equilibria 
and different ranges of 3/. 

Note that the local bifurcation points are labeled Bk 
with 3/= bk given by (3.3). These local bifurcations 
exist for the physically meaningful case of 3/> 0 only 
i f 0  < M < 1/V~; this follows from (1.6),(3.3).  A 
normal form analysis given in [ 10] shows that the bi- 
furcations are subcdtical in 3/-1, and hence that turn- 
ing points Lk :t: exist, only if m > l /x/5;  the turning 
points occur at values of 3/denoted by V = lk and sat- 
isfy 

bl < l l  < o o ,  b k < I s < b k - l ,  k >  I, 

provided 1 / v ~  < M < 1 / v/3. 
Because of the multitude of solutions, the notation 

in the figures is quite complicated. Here we summarise 
all the relevant notation. The equilibria are labeled 

, + u  . - - u  , + 1  . - - 1  k ,"k ,"k ,"k • (3.11) 

Here k is determined by Bk, the local bifurcation 
point of the branch in question. The index, "u" or 
"l" distinguishes solutions above ("upper") or below 
("lower") the solution at the turning point Lff in norm, 
see Fig. 1. The index 4- distinguishes solutions which 
bifurcate from u = M along the directions 4-~bt, given 
by (3.4), at 3/= bk. The following modifications of 
the notation (3.11 ) will also be used to cover the vari- 
ations on the situation just outlined: 

(i) note that all solutions in (3.11) depend upon 
3/and, where this dependence is important, we 
shall denote it by use of the notation u~ u (3/) etc.; 

(ii) note that the indices l, u in notation (3.11) are 
redundant if 0 < M < 1/V~ where no turning 
points are observed. In this case they will be 
dropped; 

(iii) the notation (3.11) will be extended to the case 
1 / v ~  < M < 1, where no local bifurcations oc- 
cur, by appealing to continuity in M in a straight- 
forward way. 

Solutions for (3.1),(3.2) are given in Fig. 2, where 
solid lines represent stable branches and dashed lines 
represent unstable branches. Note that numbers on 
the solution branches in Figs. 2a,c,e give the value of 
dim{W(~) } - the dimensions of the unstable mani- 
folds of fi; "o" are turning points and "x" are bifurca- 
tion points in both Figs. 1 and 2. The computations 
agree with known analytical results concerning stabil- 
ity, see [6] and [2]. 

3.1. The parameter regime 0 < M < 1/v/'5 

Figs. 2a and b show the steady state solutions com- 
puted for M = 0, where (a) shows the L 2 norm of 
u versus the parameter y - i  and (b) plots the largest 
component (in absolute value) of the Fourier modes. 
The bifurcations are supercritical in this case, as shown 
by the local bifurcation analysis in [ 10]. The kth bi- 
furcation point we denote by Bk with 3/= bk. Thus, 
by points (i) and (ii) above, we denote by uff(3/) 
the two branches bifurcating from Bk. For the case of 
M = 0, it is proved in Bates and Fife [3] that 

d i m { W ( u ~ ( y ) ) } = k - 1 ,  k = l , 2  . . . . .  (3.12) 
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The dimension of the unstable manifold of uff (7) 
changes at the turning point. Numerically, we observe 
that for k -- I, 2 . . . . .  

d i m { W ( u ~ U ( y ) ) }  = k -  i ,  

dim{W(u~t(y) )}  = k ,  y < Ik. (3.13) 

lul it) 
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3.3. The parameter regime 1/ x/~ < M < 1 

No local bifurcations exist in this range. Figs. 2e 
and f show the steady state solutions computed for 
M -- 0.6. As mentioned in (iii) above we denote by 
uff(y)  the kth pair of nontrivial branches counting 
from the left. A continuity argument in M shows that 

this notation is analogous to that used in the previous 
parameter range for M. Numerically we observe that 
the dimension of the unstable manifold is as described 
by (3.13). 

4. Results  for heterodin ic  orbits 

Fig. 2. Steady state solution, l(A) = ak, where 
[ak[ = max{lay I : I _< j <_ N}. 

For the general case of  0 < M < 1 /v~ ,  no theoreti- 
cai results are known about the dimension of the un- 
stable manifold, but we believe that (3.12) still holds 
since the bifurcation remains subcritical and no turn- 
ing points are observed on the nontrivial solutions. 
Numerical results confirm this conjecture. 

3.2. The parameter regime 1/v/-5 < M < 1/x /~ 

The local bifurcations are now subcritical. Figs. 2c 
and d show the steady state solutions computed for 
M = 0.5; recall that the kth bifurcation point is Bk, 

where y = bk, and that there are turning points Lff, 
located at y = Ik. Recalling the notation from (3.11 ) 
we have that 

lUk~"(y)l > lU~k(lk)l, 

lu~t(y)l < lu~(/D[, vy < Ik, 

where 

C ( l k )  =- C" ( l k )  -- 

Throughout the following we use the notation de- 
tailed in the last section for the steady solutions of  
the problem and for bifurcation and turning points. 
(Notice that the steady state bifurcation diagrams in 
the last section are plotted against 1 /y  rather than the 
parameter y itself.) In the heading of the examples, 
a ( x )  and to(x) denote the a and to limit sets of  the 
computed heteroclinic orbit respectively, where the a 
limit set is the equilibria at t -- - c ~  and the to limit 
set the equilibria at t = +oo. 

Our objective here is simply to determine the an- 
swers to the following two questions: (i) which equi- 
libria are connected via heteroclinic orbit(s)?; (ii) 
how many parameters are required to describe the 

heteroclinic orbits between any given ~ and to limit 
sets? The answers to these questions are completely 
resolved for a certain reaction-diffusion equation (the 
Chafee-Infante problem) [ 8,12,13] and some of what 
we say will involve relating the Cahn-Hilliard equa- 
tion to that Chafee-Infante equation by use of the the- 
ory of Mischaikow [ 15]. 

Finding a connection involves solving a nonlinear 
boundary value problem and the primary difficulty 
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here is to determine an initial starting guess for the 
computations. This issue is resolved by using the tech- 
niques described in [ 1 ]. 

4.1. The parameter regime 0 < M < 1/v/-5 

For M -- 0, Mischaikow [15] has proved that 
on a subset of the global attractor the dynamics of 
( 1.1 ) - (1 .5 )  are semi-conjugate to the dynamics of 
the Chafee-Infante problem [ 12,13 ], for any ~, # bk. 
Thus in this case, a certain subset of the connecting 
orbit set is completely understood. Our numerical 
computations do not reveal any connecting orbits 
other than those predicted in [ 15]. 

Furthermore, if our conjecture that (3.12) is true 
for all M E [0, l /v /5) ,  then the theory of [15] ap- 
plies and again the dynamics on a subset of the global 
attractor are equivalent to the dynamics of the Chafee- 
Infante equation. Our numerical experiments indicate 
that, as for M = 0, the only connecting orbits for 0 < 
M < l / r e5  are precisely those predicted by [ 15]. 

4.2. The parameter regime 1/x/'5 < M < 1/x/~ and 
Ik+l < 9, < bkfor k = 1,2 . . . .  

For this range of M turning points may be found in 
the bifurcation diagram and the theory of [ 15] does 
not apply. Nonetheless if 1~+1 < 9, < bk, the number 
of solutions is identical to the number for bk+l < 9, < 
bk if 0 < M < l / x /5  since the extra equilibrium 
solutions introduced by those turning points do not 
exist in 9, E (lk+l,bk) (cf. Figs. 1 or 2c and 2d). 
Furthermore the stability properties are also identical. 
Our computations indicate that, again, the structure of 
the connecting orbit set is identical to that found for 

M = O, bk+l < 9, < bk. 

4.3. The parameter regime 1/ x/~ < M < 1/ v/3 and 
bk < 9, < lkfor k = 1,2 . . . .  

In this regime a fundamentally new structure arises 
in the global attractor, due to the presence of extra 
equilibria introduced at turning points. We describe 
this by means of examples. 
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Example 4.1. ot = u~t(9,), to = u2U(9,), 9,-1 = 344, 

M = 0.5. We consider first connections between 

u~-l(9,) and u2" (y) ,  for b3 < 9' < 13. See Fig. 1 or 
Fig. 2b. It then follows from (3.13) that u~-l(9,) has 
an unstable manifold of dimension 3 and u~U(9,) has 
as unstable manifold of dimension 1. Since one free 
parameter is needed to eliminate the non-uniqueness 
in time due to the phase shift we deduce from (1.8) 
that such connections are parameterized by a single 
real number, for which we take 

1 

IX = / a](r)dT". (4.1) 

0 

Here r is a rescaling of time to place the computed 
connection on a unit interval in time, see [ 1 ] for de- 
tails. 

Figs. 3a-d show a sequence of connecting orbits 
for values of /z  E (0,0.0155). In Fig. 3d, where/~ is 
at its biggest, the connecting orbit passes close to the 
solution u~-U(9,) before finally reaching u~-U(9,) at t = 
+c~. Similarly, Fig. 3a, where/z is at its smallest, the 
connecting orbit passes close to the constant solution 
M, before finally reaching u2U(9,) at t = +c~. Thus 
Fig. 3 contains a sequence of connections occupying 
the left-hand lower quadrant of Fig. 7. 

The other kinds of connections for b3 < 9' < 13 are 
more straightforward and are given by the following 
three examples. 

Example 4.2. a = u~t(9,), to = u~-U(9,), 9,-I = 344, 
M = 0.5. From (1.8), (3.13) a single connection 
exists n this case; the result is shown in Fig. 4. 

Example 4.3. a --- u~-t(9,), to = M, 9,-~ = 344, M -- 
0.5. From (1.8), (3.13) a single connection exists in 
this case; the result is shown in Fig. 5. 

Example 4.4. tr = M, to = u~-"(y), y - i  = 344, M = 
0.5. From (1.8), (3.13) a single connection exists in 
this case; the result is shown by the Fig. 6. 

Remark 4.1. Fig. 7 shows the structure ofheteroclinic 
orbits obtained by our numerical computations for 
b3 < 9, < 13. We have not proved this structure but 
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Fig. 4. The connection for ot = u+l('y), to = u+U(7), y - I  = 344, 
M= 0.5. 

0 0 
x 

Fig. 5. The connection for a = u+~(~,), to = M, ~,-I = 344, 
M = 0.5. 

t 0 0 x 

Fig. 3. Connections for a = u~t('y), to = u~-U(y), T - l  = 344, 
M = 0.5. (a )  /~ = 4 .20 x 10 -3 ;  (b)  /~ = 6.03 × 10-3;  (c )  
/~ = 8.04 × 10-3;  (d)  /x = 1.55 × 10 - 2 .  

I -  

0.5-  

0. 

-0.5. 

- I :  
4 

t 0 0 x 

Fig. 6. The connection for a = M, to = u2U(y),  7 -1 = 344, 
M= 0.5. 

the computa t ions  descr ibed and further  exper imenta-  

t ion we  are about  to descr ibe  s t rongly suppor t  it. F r o m  

the analysis o f  Mischa lkow [ 16,15] it fo l lows  that 

there are four  possibi l i t ies  for  the phase  portrai t  at 

M = 0.5, b3 < "y < /3, inc luding  that depic ted  in 
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, ~  Fig. 8. Numerical  relative energy levels with M = 0.5, a 

• 2 b3 < T < 13. 

Fig. 7. Structure o f  heteroclinie orbits at M = 0.5, b3 < Y < 13. 

Fig. 7. We have been unable to eliminate the other 
three possibilities but computations make them appear 
very unlikely. The other three possibilities occur only 
if global bifurcations yield heteroclinic connections 
between equilibria with a ( x )  and to(x) satisfying 

dim{W(a)  } = dim{W(to) }, (4.2) 

(violating (1.8) ). In order for this happen we require 
E(to) < E ( a )  by (1.9). Thus in order to try and 
computationally eliminate such global bifurcations be- 
tween equilibria satisfying (4.2), it is necessary to un- 
derstand the behaviour of E ( ~ ( T )  ). Fig. 8 shows the 
behaviour of E ( ~ ( T )  ) for u(Y) = u~ (Y) and ~(Y) ---- 
M. Note that 

dim{W(u3~U)} = dim{W(M)} = 2. 

Using Fig. 8 we obtain some knowledge of parame- 
ter regimes where global heteroclinie bifurcations may 
occur and then try to eliminate such a possibility by 
means of computation. This does not constitute a proof 
but we find no evidence of the necessary global bifur- 
cations and hence conjecture that Fig. 7 is correct. 

4.4. The parameter regime 1 / V ~  < M < 1 

In this regime the structure of the global attractor 
becomes much more complicated, due to the presence 

of extra equilibria introduced at turning points as T 
O. In particular, if 7 < ll there is now one more stal~ 
solution if M > 1/V~ than there is for M < 1/x 
since the trivial solution u -= M is stable for all 
We illustrate the effect of this on the connecting od 
structure by means of examples. 

Example 4.5. ot = u 2 t ( y ) ,  y - z  = 333, M = 0.6..  
See Fig. 2f. The linear unstable manifold at u~ t is tv 
dimensional and generated by span{~71,~12}, whe 
~71 and 772 are eigenvectors satisfying (3.7)-(3.1t 
with v = u2 t. We then take initial conditions as 

U0 = U 2 1 ( y )  "~- e lT] l  -Jr- e2~72, 

where ey are small. In Fig. 9, (a) is for e I = 10 -8, e 2 
10--6; (b) is for el = 10 -7, e2 = 10-6; (c) is for el 
- - 1 0 - 7 , e 2  = 10  - 6 .  

If M < 1/x/~ then almost all initial data startil 
near u~t (y ) ,  9' < 12 converge to u ~ ( y )  as t ---* c 
However, as our computation results in Fig. 9 ha 
shown, if M > l/x/-3 then there are three stable 
tracting solutions for initial data starting near u2 t (? 
This means that continuation of heteroelinic conne 
tions in M for M < 1/V~ to M > l /x /3  may e 
counter difficulties and indeed we have observed th 



164 F. Bai et al. / Physica D 78 (1994) 155-165 

(a) Acknowledgements 

o.i 

=o.d 

0.:  

i 

(b) 

0 

-0.5 

1.5 

i 
l 

(c) 

I 
x 

Fig. 9. Connections for M = 0.6. 

5. Condusions and remarks 

In this paper we have described the application of  a 

computational  technique, specifically designed to cap- 

ture the dynamical  behaviour of  gradient partial differ- 

ential equations, to the Cahn-Hi l l ia rd  model  o f  phase 

transitions. We have interpreted the coarsening pro- 

cess as a connecting orbit  in phase space and investi- 

gated the parameter  dependence of  such orbits as the 

mass constraint is varied. This has led to a conjecture 

about the structure o f  the global attractor, see Fig. 7. 

Whils t  there is probably  nothing contentious about the 

conjecture and broad agreement could probably be ob- 

tained that it is l i ke ly  to be correct, we believe that 

such computat ions are valuable in this context. This 

is since: ( a )  the computations lend further weight to 

the conjecture and (b )  the computations give quanti- 

tative structure of  orbits on the attractor. It is hoped 

that further knowledge about the structure of  attractors 

for other partial differential equations can be obtained 

by using the computational  technique described here 

to compute heteroclinic and homoclinic orbits. 

We are very grateful to Konstantin Mischaikow and 

Gerald Moore  for helpful suggestions and discussions. 
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