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SIAM REVIEW ( 1994 Society for Industrial and Applied Mathematics 
Vol. 36, No. 2, pp. 226-257, June 1994 004 

MODEL PROBLEMS IN NUMERICAL STABILITY 
THEORY FOR INITIAL VALUE PROBLEMS* 

A.M. STUARTt AND A.R. HUMPHRIESt 

Abstract. In the past numerical stability theory for initial value problems in ordinary differential equations has 
been dominated by the study of problems with simple dynamics; this has been motivated by the need to study error 
propagation mechanisms in stiff problems, a question modeled effectively by contractive linear or nonlinear problems. 
While this has resulted in a coherent and self-contained body of knowledge, it has never been entirely clear to what 
extent this theory is relevant for problems exhibiting more complicated dynamics. Recently there have been a number 
of studies of numerical stability for wider classes of problems admitting more complicated dynamics. This on-going 
work is unified and, in particular, striking similarities between this new developing stability theory and the classical 
linear and nonlinear stability theories are emphasized. 

The classical theories of A, B and algebraic stability for Runge-Kutta methods are briefly reviewed; the dynamics 
of solutions within the classes of equations to which these theories apply-linear decay and contractive problems- 
are studied. Four other categories of equations-gradient, dissipative, conservative and Hamiltonian systems-are 
considered. Relationships and differences between the possible dynamics in each category, which range from multiple 
competing equilibria to chaotic solutions, are highlighted. Runge-Kutta schemes that preserve the dynamical structure 
of the underlying problem are sought, and indications of a strong relationship between the developing stability theory 
for these new categories and the classical existing stability theory for the older problems are given. Algebraic stability, 
in particular, is seen to play a central role. 

It should be emphasized that in all cases the class of methods for which a coherent and complete numerical 
stability theory exists, given a structural assumption on the initial value problem, is often considerably smaller than 
the class of methods found to be effective in practice. Nonetheless it is arguable that it is valuable to develop such 
stability theories to provide a firm theoretical framework in which to interpret existing methods and to formulate 
goals in the construction of new methods. Furthermore, there are indications that the theory of algebraic stability 
may sometimes be useful in the analysis of error control codes which are not stable in a fixed step implementation; 
this work is described. 

Keywords. numerical stability, Runge-Kutta methods, lineardecay, contractivity, gradient systems, dissipativity, 
conservative systems, Hamiltonian systems 

AMS subject classifications. 34C35, 34D05, 65L07, 65L20 

1. Introduction. Many problems of interest in the physical sciences and engineering 
require the understanding of dynamical features that evolve over long-time periods. Exam- 
ples include the process of coarsening in solid phase separation, where metastability causes 
extremely long time-scales, turbulence in fluid mechanics, where statistical measures (such as 
Lyapunov exponents) require averages over long time intervals, and the simulation of plane- 
tary interactions in the solar system. Thus the numerical approximation of evolution equations 
over long time intervals is of some importance. 

For simplicity we concentrate here on the system of ordinary differential equations 
du 

(1.1) d f(u), u(O) = uo, 

where u(t) E C1 (R+, CP) and f(.): OP -* CP. We will assume that f is, at least, continu- 
ously differentiable with respect to its arguments. Throughout the following we will denote 
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NUMERICAL STABILITY FOR IVPS 227 

the inner product on CP by (., ) with corresponding norm 11 * 11 denoted by 1lull2 = (u, u). 
The precise inner-product used will be that which appears in the structural assumptions made 
on f 

The large time dynamics of (1.1) can exhibit a variety of behavior ranging from very 
simple, such as reaching steady state, through moderately complex periodic or quasi-periodic 
behavior, to the extremely complex chaotic behavior observed in, for example, the Lorenz 
equations. A fundamental question in the numerical analysis of initial value problems is 
to determine how closely, and in what sense, the numerical approximation relates to the 
underlying continuous problem. If we let U, denote an approximation to the true solution 
u(t,), where t, = n At and the time-step At is typically chosen to be small relative to an 
appropriate time-scale in the problem, then standard analysis on sufficiently smooth problems 
of the form (1. 1) shows that the error satisfies 

(1.2) llu(tn) - Un 11 <? clec2TAtr, 

for 0 < n At < T. Here r > 0 is the order of the method and, typically, cl and c2 are positive 
constants. Notice that, for fixed T, letting At -O 0 results in a proof of convergence of the 
numerical scheme on finite time intervals. However, fixing At and letting T - oo gives 
no error bound; thus standard error analysis tells us nothing about the relationship between 
the long-time dynamics of the discrete and continuous problems. Understanding the behavior 
of algorithms for fixed At as T -* oo is what we shall term numerical stability for the 
purposes of this paper. In contrast to the question of convergence on fixed time intervals, 
it is necessary to impose structural assumptions on f(.) to make substantial progress with 
the question of numerical stability. These structural assumptions confer certain dynamical 
properties on the underlying equations and numerical stability is the question of whether, and 
in what sense, these dynamical properties are inherited by the numerical approximation. This 
form of stability is sometimes termed practical stability. 

This article is concerned entirely with aspects of stability in the integration of differential 
equations over long time intervals. The question of the convergence properties of dynamical 
systems under discretization is reviewed in [51 ]; the existence and convergence of a variety of 
invariant sets (such as equilibria, unstable manifolds, periodic solutions, and strange attractors) 
is studied. Note that it is primarily through stability analyses that it is possible to distinguish 
between the usefulness of different integration techniques over long time intervals. Conver- 
gence of invariant sets, if it occurs, typically occurs for all consistent numerical methods and 
(other than the rate of convergence) such convergence analyses do not distinguish between the 
usefulness of the different methods [51]. 

The purposes of the paper are: (1) to unify the classical and the currently evolving nu- 
merical stability theories as far as possible; (2) emphasize the somewhat restrictive dynamical 
properties of the problems covered by classical stability theories and to draw attention to other, 
more dynamically complex, categories motivated by applications in science, engineering and 
the theory of differential equations; (3) to show that there are strong relationships between the 
classical and developing theories and, in particular, to emphasize the unifying role of a form 
of numerical stability for Runge-Kutta methods termed algebraic stability. 

For the purposes of this paper it is possible to think of the numerical methods which 
approximate (1. 1) as mappings of the form 

(1.3) U,+1 = /(Un; At). 

We shall only study Runge-Kutta methods in detail here and, for the purposes of this review, it 
is sufficient to be aware only of the following facts concerning these approximation methods: 
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228 A M. TI TART AND A. R 14H1 MPHRIES 

(i) while the numerical solution sequence (UO, Ul, U2, ...) remains in a compact set B 
there is At (B) such that the Runge-Kutta method may be thought of as a mapping of the form 
(1.3) forO < At < At(B); 

(ii) Runge-Kutta methods satisfy a local approximation property which may be expressed 
as 

1I/(u(t,1); At) - U(tn+1)Il < CAtr+l, 

where u(t,1) satisfies (. 1); this approximation property implies an estimate of the form (1.2); 
(iii) Runge-Kutta methods depend on certain parameters (see below) which form a matrix 

A and vector b. In particular, the matrices M and B formed from A and b (see below) are 
important in framing our stability results. The parameters in A and b are generally adjusted to 
achieve many different, sometimes conflicting, goals. An example is the choice of the integer 
r in (1.2). In this paper we shall concentrate on the choices of A and b which ensure important 
stability properties, in the sense alluded to earlier. We shall not discuss in detail the important 
question of how these choices interact with other choices (such as the determination of r). 

The notation used for Runge-Kutta methods is now described: given a sequence of points 
t,, = n At and approximations Un - u (t,) to the solution of (. I) we define a general k-stage 
Runge-Kutta Method (RKM) by 

k 

ri = U,, + ?At ,aj. f(r j), i- k, 
1=1 
k 

,,+ = U,, + At Zbif(ri), U0 = tio. 

Let A, I denote the k x k matrices with entries 

(A,j1 = a,j, U{iji = 3ij, 

let 

b = [bl,.. ., bkIT, 1 = [1 I. T 

let B denote the k x k matrix 

(1.4) B := diag(bi, b2..-. bk), 

and let M denote the k x k mnatrix 

(1.5) M:= BA+ATB-bbT. 

We use the notation 

ni1 i= AM) i = biaij + ?b,a., - bib1. 

Note that, assuming the solvability of the equations for the qi, the RKM defines a map from 
CP into CP. For any given U,, the solvability of the Runge-Kutta equations is ensured for 
sufficiently small At 151. However, the question of solvability for a complete sequence (U,) )1=0 
and given arbitrary At and u() is nontrivial and we will return to it throughout the paper 
when particular structural assumptions on f (u) allow us to make more detailed comments. 
However, all general statements about the large ni behavior of the RKMs are made on the 
implicit assumption that a solution sequence exists. O 
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NUMERICAL STABILITY FOR IVPS 229 

Ensuring stability usually boils down to certain constraints on the coefficients in the 
matrix A and vector b which define the Runge-Kutta method. The classical theories of A- 
and AN-stability (for linear decay problems) and B- and algebraic stability (for contractive 
nonlinear problems) are reviewed with emphasis placed on the implications of the structural 
assumptions for the relatively simple dynamics of the underlying equations. Various other 
classes of problems, which admit complicated dynamics, are then discussed. Specifically 
gradient, dissipative, conservative, and Hamiltonian equations are considered in turn. (Note 
that contractive problems are often referred to as dissipative in the numerical analysis literature; 
this conflicts with the definition of dissipativity in the differential equations literature which 
we use here; see ?5 and [30].) For most of these problems numerical stability theory is far from 
complete and is currently developing. Nonetheless, we make it clear that there are striking 
relationships with the classical theory. 

Sections 2-7 go through a sequence of model problems relevant to numerical stability, 
starting with linear decay and ending with Hamiltonian systems. In section 8 we discuss briefly 
analogous problems for linear multistep and one-leg methods. Section 9 contains a description 
of the effect of error control on numerical stability; it is shown that algebraic stability is useful 
in the analysis of variable step-size codes which are not algebraically stable in a fixed step 
implementation. Section 10 contains the conclusions and several open problems. 

In summary we find the following important role played by the matrices M and B in 
numerical stability theory; the precise meaning of stability in each case can be found by 
reference to the appropriate section. The symbol ) in the context of matrices means positive 
semidefinite. 

* Contractive problems (?3); 

M 0 O, B ? 0 stability. 

* Dissipative gradient problems (??4 and 5); 

M 0, B O= stability. 

* Dissipative problems (?5); 

M 0, B O= stability. 

* Conservative problems (?6); 

M 0 = stability. 

* Orthonormality preserving matrix equations (?6); 

M 0 X stability. 

* Hamiltonian problems (?7); 

M 0 X stability. 

It should be emphasized that some numerical methods not covered by these stability 
theories may behave well in practice. Thus the results should be viewed with some caution. 
Nonetheless we believe that it is valuable to provide some firm theoretical basis for the analysis 
of qualatative properties of integration techniques. In addition, such a basis helps to identify 
questions of interest in the future development and analysis of numerical methods. 
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230 A. M. STUART AND A. R. HUMPHRIES 

Note that the simplest method with M ) 0, B ) 0 is the backward Euler scheme 

Un+1 = Un + Atf(Un+,) 

while the simplest method with M 0_ is the implicit midpoint rule 

(1.6) Un+1 = Un + Atf(-[U,+1 + U]). 
2 

Much of the analysis described here can also be developed for the study of time integration 
methods for partial differential equations; indeed some of it was initially developed in that 
context. Throughout we illustrate the various categories of equations by considering the 
following partial differential equation. 

Example. The Ginzburg-Landau equation for a complex function u(x, t) satisfies 

(1.7) Ut = (a + ib)ux - (c + id)ue2u+u, x E (0, 1), 

(1.8) u(O, t) = u(1, t), ux(O, t) = uLX(1, t). 

Here a, b, c, d, e E R. In this context we introduce the inner product 

I 

(u, v) = Re(uv-)dx 

and corresponding L2 norm 

11u112 = f IuI2dx. 

Provided that a and c are positive this equation has a unique bounded solution for all time 
t ) 0 given arbitrary initial data in L2((0, 1)) [53]. 

Under spatial discretization this equation yields a system of ordinary differential equations 
in the form (1.1). Thus all statements about the complex partial differential equation have 
natural analogues for related systems of ordinary differential equations provided that the 
spatial discretization confers those properties from the infinite dimensional problem to the 
finite dimensional one. This can be achieved in many cases but the precise form of spatial 
discretization will vary depending upon the structural assumption under consideration. For 
simplicity of exposition we shall discuss (1.7), (1.8) directly as an illustrative example and 
ignore the (important) issue of appropriate spatial discretization. O 

2. Linear decay. The analysis of the large-time behavior of numerical methods for initial 
value problems begins with the study of the linear, constant coefficient test problem (1.1) 
together with the assumption of linear decay 

(2.1) f(u) = Xu, Re(X) < O, p = 1, 

where u E C and p is the dimension of the problem. See [14] and [19] and the references cited 
therein. In this section we use the standard norm IIu112 = uui on C. The following solution 
behavior may be easily established. 

RESULT 2.1. Any two solutions u(t), v(t) of (1.1), (2.1) satisfy 

lIu(t) - v(t)11 < llu(O) - v(O)11 
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NUMERICAL STABILITY FOR IVPS 231 

for all t > 0. Furthermore, if the inequality in (2.1) is strict, then 

lim u(t) = 0 
t-)oo 

for any u(O) E C. 
Numerical stability analysis focuses on determining conditions under which the numerical 

method replicates these properties. This is the motivation behind the following definition [7]. 
DEFINITION 2.2. A RKM is said to be A-stable provided that the function 

R(z) = 1 + zbT (I - zA)-11 

satisfies I R(z) I < l for all z: Re(z) < 0. 
It is worth noting that there are also algebraic characterisations of A-stability; see [45]. 

Straightforward analysis shows that, for a RKM applied to (1.1), (2.1), U+l = R(AtX)Un 
and hence (see, for example, [7] and [40]) we obtain the following. 

RESULT 2.3. Any two solution sequences {U,)'}o and {V,)' o of an A-stable RKM 
applied to the problem ( 1.1), (2.1) satisfy 

(2.2) IIUn+1 - Vn+1l U hun - VnII 

for all n > 0. Furthermore, if the inequality in (2.1) is strict, then 

(2.3) lim 1IUnhI = 0 
n-oo 

for all At > Oandany Uo E C. 
Remark. For A-stable RKMs applied to (1.1), (2.1) the unique solvability of the defining 

equations is guaranteed for all At > 0 if I - zA is invertible for any z = XAt in the left-half 
plane. Typically I - zA will be invertible in the left-half plane since, where it is not, poles 
occur in the stability function and A-stability cannot hold. However, cancellation of factors 
in the stability function can lead to methods that are A-stable but not invertible for certain 
isolated values of z = XAt in the left-half plane; the scheme 

71 = Un + Atf('l), 

112 = Un + 2Atf(1l) -Atf(2), 

Un+j = Un + 2Atf(1l) - Atf(172) 

has a linear stability function that is equivalent to backward Euler (which is A-stable) but 
I - zA is noninvertible for z = XAt = -1. 

It is possible to generalize this theory into a conditional theory where the properties of 
Result 2.1 are inherited for sufficiently small At. This leads to the following result (see [7] 
and [40]). 

RESULT 2.4. The region of absolute stability S for a RKM is the open set in the complex 
plane for which z E S *+ IR(z)l < 1. If z = XAt E S, then any two solution sequences 
{Un}n'?O and {Vn }n?O of a RKM applied to the problem (1.1), (2.1) satisfy (2.2) and if z E S, 
then (2.3) holds. 

Remark. Remarks analogous to those following Result 2.3 also apply in this case. O 
There is an important point to raise about Results 2.3 and 2.4 in the context we are consid- 

ering: since the problem is linear, conditions for ensuring this correct large-time behavior are 
independent of the amplitude of initial conditions. As we shall show, in general, dependence 
on initial data is a barrier to complete conditional theories for nonlinear problems. 
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Nonautonomous analogues of (2.1), with X depending on t, are considered in [4]. This 
resulted in the definition of A N-stability; the motivation for this definition is to ensure that the 
numerical solution decays on a step-by-step basis, mimicing the behavior of the differential 
equation. The AN-stable methods are a subset of the A-stable methods. This nonautonomous 
linear stability theory arises natrually in the context of a general class of nonlinear problems- 
see Result 3.4. 

3. Contractive nonlinear problems. Clearly the linear problems of ?2 are very restric- 
tive and naturally attempts were made to study nonlinear problems. The first class of nonlinear 
problems studied in any systematic way in the context of numerical stability were contractive 
problems introduced by Dahlquist [15], [16]. For simplicity of exposition we will consider 
the case where (1.1) is real and f (U) E C1 (RP, RP); the condition for contractivity in an 
inner-product norm is 

(3.1) (f(U)-f(V),U-V) <,O VU,V E IP,U : V. 

A simple example of an equation satisfying (3.1) is the following. 
Example. For p = 1 and f(u) = -u3 we have 

(f() - f(v), u - v) =-(U2 + UV + v2)(U -V)2 

= --[(u+v)2 + U2 + V2](U - V)2 <o 2 

Example. Consider (1.7) and (1.8) with b = d = e = 0 and a =c = 1 and u(x, t) E R. 
This gives the scalar reaction-diffusion equation 

Ut = Ux - U3 

together with periodic boundary conditions on the unit interval. Then, taking the right-hand 
side of this equation as f(u) we can show that (3.1) holds, using integration by parts: 

(Ux-u3 -VXx + v3, u-V) =j {(u-v)(u-v)Xx-(u3-v3)(U-v)}dx 

=-j{(Ux- Vx)2 + 2[(U + V)2 + u2 + v2](U - v)2}dx < 0. 

Thus the problem is contractive and satisfies an infinite-dimensional analog of (3.1). a 
The following notation will be useful: ? denotes the set of equilibrium points of (1.1) 

and Ezt denotes the set of fixed points of the RKM. Throughout we will use the following 
definition for the distance between a point x E RP and a set B C RP: 

dist(x, B) = inf llx - yll. 
yEB 

For problems satisfying (3.1) the following result holds, which, in the case of strict contrac- 
tivity, shows the existence of a unique globally attracting equilibrium point. 

RESULT 3.1. Any two solutions u(t), v(t) of (1.1), (3.1) satisfy 

IIu(t) - v(t)II < IIu(0) - v(0)II 

for all t ?, 0. Furthermore, ? is a closed convex set and, if the inequality (3.1) is strict for 
all u, v: v E 6, u V 6, then 

lim dist(u(t), E) - 0. 
t00 
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Finally, if the inequality in (3.1) is strict and 3u: f (u-) = 0 then ut is a unique equilibrium 
point and 

lim u(t) = u. 
t--oo 

Proof. A calculation shows that 

(3.2) --IIu-v12 =(u-v,f(u)-f(v)) 0. 2 dt 

Thus the first result follows. 
To prove that the steady states of the system define a convex set it is sufficient to show that 

any convex combination of zeros of f is also a zero of f. Let z = Xx + (1 -AX)y where f (x) = 
f (y) = 0, X E (0, 1) and define z' = z + 5f (z), S > 0. Then z'-x = Sf(z) + (X- 1)(x-y). 
Now (3.1) implies that 

(f(z'), z' - x) < 0, 

and hence 

(f(z), 3f(Z)) < (1 - X)(f(z), x - y). 

Similarly 

((z'), z' - y) <0 

implies that 

(f (z), Sf(Z)) ?-X(f (Z), x - y). 

Notice that, since (1 - X) and -X have opposite signs, we have (f (z'), 5f (z)) < 0, which is 
equivalent to (f (z + Sf (z)), f(z)) < 0 since 5 > 0; letting 8 -* 0 and using the continuity 
of f, we obtain I f(z) 12 < 0, and thus f (z) = 0. Convexity follows. Let ui u* be such 
that f (ui) = 0 for each i. By the continuity of f (.) it also follows that f(u*) = 0 and hence 
that ? is closed. 

Now assume that (3.1) is strict for v E ? and u ? ?. Define the set U by 

U = {u E RP: r ? dist(u, E) ? R). 

Then, if u(0) E U it follows that there exists ut E ? for which 

II u(0) - uiII<,R. 

Thus it follows that, for all t ? 0, 

(3.3) dist(u(t), ?) <? IIu(t) - z11 < IIu(O) - 171 < R. 

Now assume, for the purposes of contradiction, that dist(u(t), ?) > r for all t ? 0. Let 

u =uf {U E RP :Ilu -i1 < R) 

and then define 

E E(r, R) = inf (f(u), u-- u). 
UEC 
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Note that U is compact since it is formed as the intersection of a compact set with a closed set. 
Clearly E > 0 since U is compact, and since strict inequality holds in (3.1) as ut E 6, u ? E. 
Thus, by assumption and by (3.3) we have u(t) E U for all t ? 0, and hence 

dllu-ull2?-E tt 0. 

Hence, as t -+ oo, 

IIu -112 _+ _)o 

a contradiction. Thus there exists a time t*(r, R) for which dist(u(t), E) < r. Replacing R 
by r we deduce from (3.3) that dist(u(t), E) < r for all t ) t*(r, R). Since r is arbitrary the 
result follows. 

For the case of strict inequality for all u, v: u : v, uniqueness of ut follows automatically 
since otherwise we have a contradiction. Thus C = {iu} and the preceding argument establishes 
that 

lim u(t) = u 
t-)oo 

as required. 0 
The original motivation for the study of these problems was to generalize the notion of 

contractivity from linear to nonlinear problems since this notion is fundamental in understand- 
ing certain kinds of error propagation for numerical methods when applied to stiff systems. 
However, as a result, the large-time behavior of (1.1), (3.1) is very closely related to that of 
the model linear problem (1. 1), (2.1) (compare Results 2.1 and 3.1 )-essentially all solutions 
are attracted to the unique fixed point or set of fixed points. Runge-Kutta methods for (1.1), 
(3.1) were studied in [6], [4]. These studies resulted in the following definitions. 

DEFNITION 3.2. An RKM is said to be algebraically stable if the matrices B and M 
defined by (1.4), (1.5) are positive semidefinite. An RKM is said to be B-stable if, when 
applied to (1.1), (3.1), any two solution sequences {U,, = { V, }I=o satisfy 

IIUn+1 - Vn 1 Un - Vn1 

for any Uo, Vo E RP and any At > 0. 
Remark. (i) All algebraically stable RKMs are equivalent to an algebraically stable RKM 

with B strictly positive definite. If bi = 0 for some 1, then the equation for rl decouples 
from the other ri and is redundant. In technical jargon all algebraically stable RKMs are DJ- 
redicible to a method with B strictly positive definite-see [29]. Thus for the purposes of this 
article, in all proofs concerning algebraically stable methods, we will assume that bi > 0 for 
all i. The case when b1 = 0 for some I can be dealt with simply by using the aforementioned 
equivalence. 

(ii) There exist arbitrarily high-order schemes that are algebraically stable, but all of them 
are implicit, that is, they involve the solution of nonlinear equations at each step. a 

Once again, numerical stability is the requirement that a certain qualitative property of 
the differential equation is inherited by the numerical method. The next result shows that the 
purely algebraic criterion of Definition 3.2 is important in this context; it is a discrete analogue 
of Result 3.1 and, for strictly contractive problems yields the existence of a unqiue globally at- 
tracting equilibrium for a suitable class of RKMs. The implication between algebraic stability 
and B-stability was proved in [4]. 

RESULT 3.3. Any two solution sequences {Un },? and {Vn, }=O of an algebraically stable 
RKM applied to the problem (1.1), (3.1) satisfy 

IIUn+i - Vn+i <( IUn -Vn 
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for all n > 0. Hence 
algebraic stability =t B-stability. 

Furthermore, if the inequality (3.1) is strictfor all u, v: v E 8, u V 8 then SAt, _ ? and 

lim dist(U, 8) -? 0. 
n-*o 

Finally, if the inequality in (3.1) is strict and there exists u : f(u-) = 0 then ui is a unique 
equilibrium point of the RKM and 

lim Un = u 
nf-*0o 

for all At > 0 and any Uo E RP. 
Proof. Let the sequence Vn satisfy 

k 

ti=Vn+ At aij f (t) 1i =1...,Ik, 
j=1 
k 

Vn+I = Vn +At > bi f (i), UO= uo. 
i=l 

We also define 

D= Ul- Vn, Ei =?i) -, Fi =f(r/i)-f(i). 

Then 

k 

Dn+I =Dn+At>JbjFj 
j=1 

and 

k 
Ei= D + At aijFj, 

j=1 

and it follows that 

k s 

IIDn+l 112 = IIDn 112 + 2At bj(Dn, Fj) + At2 E bibj(Fi, Fj). 
j=1 i,j=l 

k 

= II Dn112 +AtLbj (Dn, Ij) 
]=1 

k s 
+AtEb,(Dn, Fj) + At2 E bibj(Fi, Fj). 

i=1 i y= 

Using the fact that 

k 

(Dn, F,) = (Ei, F,) - At aij(Fi, Fj) 
]=1 
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and that 

(Dn, Fj) = (Ej, Fj) -AtZaji (Fi, Fj) 
1=1 

we obtain, since the scheme is algebraically stable, 

k k 

IIDn+1i12 = IIDnII2 +2tLbj (Ej, F1)-At2 E m11(Fj, F1) 
j=1 Q,1=l 

< Dj Dj 112 + 2At I bj (Ej, Fj). 

Thus we have 

k 

(3.4) IIUn+1-Vn+l 12 % hun n 112 + 2At ,bj(rY1j- t, f (rj) -f (4)) 
j=1 

Using (3.1) it follows that 

||Un+1 - Vn+l1 1 1Un -Vn 

and B-stability is established. 
Now we assume that (3.1) holds with strict inequality for v E ? and u ? E. To obtain a 

contradiction assume that there exists w- V S, which is a fixed point of the Runge-Kutta method, 
and let ut E E. Since f(ut) = 0 the Runge-Kutta equations have a solution 17i = u7, i = 1, . .. , k 
and ut is also a fixed point of the Runge-Kutta method; see [38]. Thus from (3.4), setting 
Un = u and Vn = w-, 

k 

(3-5) -j2 u- + 2At E bj (ui - t, f (u)-f (-j)). 
j=1 

In addition it is not possible for all the tj to be contained in ? for, if they were, then f (w) = 
f (i) = 0, which implies that wi E & and this is not possible. Hence there exists j such that 

(u - tj, f (u) - PO#j) < O 

and furthermore it is known that for algebraically stable Runge-Kutta methods we may assume 
that bi > 0 for all i (see the Remark following Definition 3.2). Thus, from (3.1) and (3.5) we 
have that 

11 - 11 l2 < 11U - _ 12, 

a contradiction, and hence such a w7v cannot exist. 
We now prove that ? is attracting; the same notation is employed as for the proof of Result 

3.1. Let Uo E U. Then, by (3.1) and (3.4) it follows that there exists ut E ? such that 

dist(Un, C) <, 1Un - u- 11 ?, Uo - ujll- R. 

Assume for the purposes of contradiction that Un E U for all n ) 0. Now notice that, if 
Un V C, then there exists j: Tbj V C since otherwise Un = ?7i E C. Thus 

E(r, R) = inf max (f(i7j), U-t7 - j) > 0 
uEij 1?<j1k 
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and 

bmin = min bj > 0. I<jsk 

From (3.4) we have that 

IIUn+ _ Vn+1 112 < IIUn - Vn2 -2Atbmin max (u - rbj, f('9)). 

so that, since ui E U, 

jjUn+1-iI2 _ jIUn u - 2Atbmin6(r, R) En ? 0. 

Letting n -+ oo gives a contradiction and hence we deduce that there exists n* (r, R) for which 
dist(Un, C) < r. Since r is arbitrary the result follows as for Result 31L 

Finally, assume that (3.1) holds with strict inequality for all u :A v and that f(ui) = 0. 
In Result 3.1 we established that ut is the unique fixed point of (1.1), (3.1) and hence that 
C = iu. Applying the previous part of this result to the case where the inequality (3. 1) is strict 
for all u, v: v E C, u E C proves that ut is the unique fixed point of the RKM. Since C = u 
the convergence result from the previous case can also be applied to show that Un -+ ui as 
n-*oo. a 

Remark. (i) The role of algebraic stability in the proof is to enable a certain quadratic 
form, which is defined by the matrix M, to be bounded above when manipulating inequalities 
and yielding (3.4). This basic idea, and variants on it, will recur throughout the paper. 

(ii) In Result 3.3 we have not considered the solvability of the implicit Runge-Kutta 
equations. The existence of unique solutions under (3.1), for any Un and any At > 0, has 
been established for many classes of algebraically stable methods including those based on 
Gauss-Legendre quadrature, for which M 0, the Radau IA, IIA and Lobatto IIIC methods; 
see [19] and [29]. 

(iii) In [38] it was observed that E C CA, for RKMs. The class of methods for which 
E C_ t for all At > 0 and all autonomous problems (1.1) was termed regular; various order 

barriers for stable regular methods are proved in [28] ruling out high order, regular, stable 
methods. However, Result 3.3 shows that if a contractive structure is imposed on f, there 
exist stable methods of arbitrarily high order satisfying =_ C EC,. O 

Butcher [6] took B-stability as a basic definition and it was only later that the significance 
of algebraic stability was discovered in [4]. This was achieved through the study of AN- 
stability as defined in ?2. It is clear from Results 2.1 and 3.1 that the problems (1.1), (2.1) 
and (1.1), (3.1) are very closely related and this is reflected in the close relationship between 
the stability theories. The following remarkable result proved in [37] is an extension of results 
proved in [4] and [13]; recall the concept of AN-stability described in ?2. 

RESULT 3.4. For S-irreducible RKMs 

algebraic stability X AN-stability X B-stability =X A-stability. 

Remark. S-irreducibility is a technical property defined in [29]. We will not reproduce 
the definition here, but restrict ourselves to noting that these methods are widely occurring in 
practice. O 

This is only a brief overview of the theories for linear decay and contractive nonlinear 
problems; for further details see [19] and [29]. The theory of nonlinear contractive problems 
has been extended to contraction in norms other than those induced by an inner product [47], 
[48] and a very clear account can be found in [39]. 

In contrast to the linear decay problem, any conditional theory of numerical contractivity 
(a generalization of the concept of region of absolute stability) will involve dependence of the 
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allowable time-step on the initial data and is hence much harder to develop. However, explicit 
methods operating with error control are frequently oberserved to overcome such difficulties 
automatically. Indeed in some cases it is possible to prove that error control confers desirable 
stability properties for a range of the tolerance r that is independent of initial data; see ?9 and 
[52]. 

To make progress with a conditional theory for nonlinear problems it is necessary to 
impose still further restrictions on the class of problems. Much of the generalized theory of 
contractivity reviewed in [39] employs the circle condition [17] 

(3.6) 3p > 0: lif(u) - f(v) + p(u - v)ii ? pliu - vll Vu, v E REP. 

This condition can only be satisfied by globally Lipschitz functions which limit somewhat the 
range of direct applications. The motivation behind (3.6) is to combine it with some a priori 
bounds on the underlying numerical approximations which enables the vector field defining 
the differential equation to be replaced by a globally Lipschitz one satisfying (3.6). However 
this important step is rarely addressed in the literature. In ??4 and 5 we describe conditions 
under which such global a priori bounds on numerical solutions may be found independently 
of initial data. 

RESULT 3.5. A function f (a) satisfying (3.6) is necessarily globally Lipschitz. 
Proof. Assume to the contrary. Then, for any K > 0, there exist u, v E RP with u $0 v 

such that 

lif(u) - f(v) + p(u - v)ii > lif(u) - f(v)ii - pilu - vil > (K - p)iiu - vil. 

Now choosing K > 2p contradicts (3.6). This completes the proof. Ol 
It is worth noting that the circle condition (3.6) is implied by the assumption 

3ot > 0: (f(u) - f(v), u - v) S -_aIIf(u) - f(v) 12 Vu, v E RP, u :$ v. 

The circle condition (3.6) then holds with p = 1/a. In this sense it can be seen that (3.6) is a 
very special case of the contractivity condition (3.1). 

We now go on to show that the numerical stability theory developed for contractive 
problems forms a natural bridge for the study of a wide variety of other nonlinear problems. 

4. Gradient systems. As in ?3, for simplicity of exposition we will consider the case 
where (1.1) is real and f(u) E C' (RP, ]RP). It is clear from ??2 and 3 that linear decay and 
contractivity are such strong conditions that they rule out complicated dynamics, and hence 
it is natural to relax the notion of contractivity to allow some expansion of trajectories. The 
function f is said to satisfy a one-sided Lipschitz condition if there exists a constant c > 0 
such that 

(4.1) (SU CII _() u-v cl -V112 Vu, v E R{P. 

This allows exponential separation of trajectories and specifically it is straightforward to prove 
the following. 

RESULT 4.1. Any two solutions u(t), v(t) of (1.1), (4.1) satisfy 

Ilu(t) - v(t)ii < ectllu(0) - v(0)ii 

for all t ) 0. 
Numerical counterparts of Result 4.1 have been studied and these are useful in establishing 

continuity of the numerical solution with respect to initial data-see Butcher [7] and [29]. 
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Solvability of the Runge-Kutta equations in this context is discussed in [19]. The importance 
of continuity with respect to initial data will become apparent in Result 4.4. 

Since exponential separation of trajectories allows the possibility of exponential growth 
of the solutions themselves, (4.1) alone is far too broad a class of problems to work with and 
make substantial progress; for this reason it is sensible to add further structure to the problem. 
Both linear decay and strictly contractive nonlinear problems are characterised by the property 
that u(t) approaches a unique equilibrium as time increases. This can be relaxed to the notion 
that u(t) approaches an equilibrium as time increases but that it is not necessarily unique. This 
leads naturally to the class of gradient systems for which there exists F E C2(RP, IR) such 
that 

f (u) = -VF(u) Yu E RP 
(4.2) F(u) > O Yu E RP, 

F(u) -- oo as lull oo. 

For gradient systems it follows that 

(4.3) d (F(u)) = (VF(u), ut =-(f(u),u, =ut IUt 112. 

Hence, arguing loosely, we see that u will be driven to the critical points of F, which are the 
equilibria of ( 1.1). If F is convex so that 

(VF(u) - VF(v), u-v) > O Yu, v E RP. 

then (4.2) is a contractive problem and the analysis of ?2 applies; in particular, the set of 
equilibria define a convex set. However, for nonconvex F equation (1.1), (4.2) may have 
multiple isolated equilibria. A simple example is the following. 

Example. Consider equation (1.1) in dimension p = 1 with f(u) = u - u3. This is in 
gradient form with 

F(u) = l(U2 - 1)2. 
4 

Notice the three equilibria 0, 1, -1. O 
Example. Consider equation (1.7), (1.8) with b = d = 0 and a = y, c = e= 1 and 

u(x, t) E IR. Then, defining 

F(u) = f Y + 4(U2 1)2dx, 

the equation may be written as 

u = -VF(u), 

where V is now interpreted as the variational derivative of F(u) with respect to changes in u, 
confined to an appropriate function space satisfying the boundary conditions. O 

Gradient systems arise in a variety of applications; in particular, many phenomenolog- 
ical models of phase transitions such as the solid/solid Cahn-Hilliard equation [22] and the 
super/normal conducting Ginzburg-Landau equations [9] are in gradient form. Furthermore, 
gradient systems have been fundamental in the development of many important concepts in 
the theory of dynamical systems and are important for this reason alone; see [30] and the 
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references therein. As suggested by (4.3) gradient systems are characterised by the following 
behavior proved, for example, in [33]. 

RESULT 4.2. For any solution u(t) of (1.1), (4.2) and any sequence ti -+ oo for which 
the t-limit point 

(4.4) x := lim u(ti) i-.00 

exists, itfollows that x E 8, the set ofzeros off. Furthermore, if all members of 8 are isolated 
then, for each u(O) there exists tu: - (u(O)) E 8 such that 

lim u(t) = u. 

Proof. Given u(O) E RP let w(u(O)) be the union of points such that (4.4) is defined for 
some sequence ti. Then co (u(0)) is known as the co-limit set and is a closed, invariant (under 
forward evolution of the differential equation) set which is connected if compact [2]. 

Let x, y E c(u(O)). Then F(y) = F(x) for otherwise we obtain a contradiction to (4.3). 
Now consider the solution u(t) of (1.1), (4.2) with u(O) = x E to(u(O)); since the co-limit set 
is invariant it follows that u(t) E co(u(O)) and hence that F(u(t)) = F(u(O)) for all t > 0. 
By (4.3) this implies that ut _ 0 for all t 0 0 and hence that u(O) = x E E. 

Finally, note that since 0 < F(u(t)) ? F(u(O)) it follows from (4.2) that all trajectories 
are uniformly bounded as t -+ oo. Thus wto(u(0)) is compact since it is closed and we deduce 
that it is also connected. Since the equilibria are isolated it follows that the co-limit set must 
be a single point ui E E. Since the closure of the trajectory is compact it follows that 

lim u(t) = u 

as required. O 
For gradient systems it is natural to ask that a numerical approximation replicates the 

property (4.3) that there is a Lyapunov function which drives the solution to equilibrium. Even 
if the additional constraint (4.1) is imposed it is unlikely to be possible to find a stability theory 
which holds for arbitrary At, since the problems under consideration admit both contractive 
and divergent behavior. However, it is both feasible and desirable to find restrictions which 
are independent of initial data. This motivates the following definition. 

DEFINITION 4.3. A RKM is said to be gradient stable if, when applied to (1.1), (4.1), 
(4.2z there eyidsts &t > 0 and a function FL( (): RP -- R such that, for all At E (0, AtJ) 

(i) FAt(U) Ofor all U E RP; 
(ii) FA, (U) oo as (U(( -- oo. 
(iii) FAt (Un+1) < FAt (Un) for all Un E IRP; 
(iv) if FAt (Un)- Ft (Uo) for all n ) 0 then Uo E 8, the set of equilibrium points for 

(1.1), (4.2). 
Such a definition was implicit in the work of Elliott [22] where discrete gradient systems 

were used in the analysis of numerical approximations of the Cahn-Hilliard equation. A 
theorem closely related to the following result is proved in [25]. 

RESULT 4.4. Assume that, given initial data in RP, the RKM generates a unique C1 map 
from RP into itself Then, for any solution of a gradient stable RKM applied to (1. 1), (4.2) 
with At E (0, Ate) and any sequence ni oo for which the co-limit point 

x lim U,i 
i -oo 

exists, itfollows that x E 8, the set of zeros of f. Furthermore, if all members of 8 are isolated 
then, for each u(0) there exists a := u(u(O)) E 8 such that 

lim Un = u. n-+oo 
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Proof. Since the map defining the RKM is Cl it is Lipschitz continuous with respect to 
initial data. As for the differential equation, the co-limit set c (u (0)) is defined as the union of 
all possible limit points corresponding to given initial data. A similar argument to that in the 
Result 4.2 shows that U, is uniformly bounded in n. From Lemma 2.1.2 in [30] it follows that, 
since the RKM defines a unique sequence, continuously dependent upon initial data, cv (Uo) 
is nonempty, compact and invariant and an argument identical to that in the proof of Result 
4.2showsthatx E8. 

However, for dynamical systems defined by mappings it does not follow that co(Uo) 
is connected if compact, and a different argument is needed for the last part of the result. 
Now assume that the members of & are isolated. Since the solution sequence is bounded it 
is contained in a compact set B and this implies that there are a finite number of possible 
equilibria contained in w(Uo), say xj, j = 1, . . ., J, in E. Let Bj = B(xj, 3) := {u E RP: 
ilu - xj cII 8, B+ = U1=J__j Bj and B- = B\B+; note that B- is closed by construction. 
Assume that 8 is sufficiently small that dist(x, Bk) > A > 0 for all x E Bj, j 0 k. Note that 
co(Uo) is nonempty. Assume for the purposes of contradiction that xI E co(U0) and that it is 
not the unique member of co(Uo). Then for all 3 > 0 there exists a sequence n i -o X such that 
U,, E B1 and U,,, -* xi as ni -* oo. Since xl is not the unique limit point there is an infinite 
sequence of integers mj such that Urnj E B1 and Umj+l ? Bl. Since the mapping defined by 
the RKM is C", it is Lipschitz with constant L on B, and since xl is a fixed point, we deduce 
that 

IIUmj+l -X i L 11 Umij-xi - x LS. 

Hence, if LS < A we deduce that Umj+l E B- for each j. But B- is compact and hence the 
infinite sequence Umj+l must have a limit point; such a limit point cannot be contained in ? 
by definition of B- and this contradicts the first part of the result. This completes the proof, 
since the sequence is bounded. 0 

Remark. The assumption that the RKM generates a unique continuously dependent solu- 
tion sequence is often made; in some cases this can be a rather strong assumption. However, 
it is not an unreasonable assumption to make for a system that satisfies (4.1): the one-sided 
Lipschitz condition implies unique solvability of the Runge-Kutta equations for many classes 
of implicit methods, if At is sufficiently small (but independent of initial data), including 
those based on Gauss-Legendre quadrature, the Radau IA, IIA and Lobatto IIIA, IIB and 
IIIC methods; see [19] and [29]. Continuous dependence on initial data can be similarly 
established. 0 

Further studies of gradient stability may found in [20] where one-step methods for the 
Cahn-Hilliard equation are examined. Here we present a proof that the theta method 

(4.5) U,+i = Un + At[(l - 9)f(Un) + Of(U,,+0J 

is gradient stable for 0 E [2, 1]. This illustrates some of the issues involved in establishing 
gradient stability. Note that the condition on 0 is equivalent to the condition that the method 
be A-stable. 

RESULT 4.5. The theta method (4.5) is gradient stable for 0 E [E , 1] with Atc = 1/c, 
where c is the constant in (4.1), and 

F,t(U) = F(U) + - (1-0) 11 f (U) 112. 2 

Proof. In [34] it is shown that, for a gradient system, (4.1) implies that 

F(u) - F(v) < (f(u), v - u) + CiiU - Vi12 
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for any u, V E RP. Applying this with u = U,+i and v = U, we obtain 

F - F(Un) ( (f(Un+1), Un 
-_Un) 

+ cUIUn+1- 

= ( Zv [Un+ l-Un-/\ At(1 -9 ) f (Un )-/\ At9f( Un + l ) ] u Un-n l ) 

+ (fF(UU+F), Un - UU <) + C U1 12 - 

= (c i )||Un+l-Unl2 +(1 -9)(f(Un)-f(Un+0)Un +-Un) 

= (c ) IIUn+1l-UnII2+ 2~ (1-)[IIf(Un)II2 -IIf(Un+1)II2] 

At 

-(1 -)(29 U 1U) f(U) -f(U"+)I2 

Hence, fore nE [, 2 1], 

FAt (Un+) )-FAt (Un) 1 (cI- _ ) _ fn+l -- U l2_ 

Clearly FA is bounded below for 0 S 1 and, since FA2(U) ) F(U) for all U E RP, (ii) 
of Definition 4.3 follows. It is also clear that F -t (U) is nonincreasing for At E (0, 1/c). 
Furthermore, if Ft(Un+1) = FAt(Un) then U,+i = U,A. The fixed points _f for (4.5) 
coincide with ? and so gradient stability has been established. Ol 

A similar method of proof establishes that the one-leg counterpart of the theta method 
(4.5) is also gradient stable; see [34]. 

Remark. As can be seen a complete theory of gradient stability is not yet developed. 
However, it is worth observing that, if the additional assumption (5.3) (a form of dissipativity) 
is appended to (4.2) and the equilibria are isolated, then the conclusion of Result 4.4 follows 
for any algebraically stable RKM-see [36]. 

5. Dissipative systems. As in ??3 and 4, for simplicity of exposition we will consider 
the case where (1.1) is real so that f(u) E C1 ( URP, IP). Even the one-sided Lipschitz con- 
dition which we introduced in the previous section is far too restrictive for many interesting 
applications and so we relax this condition in our study of dissipative problems. Furthermore, 
gradient systems only allow solutions to approach equilibria for large time so that periodic, 
quasi-periodic or chaotic behavior is not admitted; the dissipative problems we study will 
admit such behavior. 

The notion of dissipativity is an important one in many physical applications and naturally 
there is a mathematical abstraction of this idea in the theory of differential equations; see, for 
example, [30] and [53]. Roughly speaking an initial value problem is said to be dissip6tive if 
there is a bounded set, in an appropriate function space for the problem, which all solutions 
enter after a finite time and thereafter remain inside: thus some measure of energy is dissipated 
outside the bounded set. 

To motivate the study of dissipative problems consider first the equation (1.1) under (3.1), 
together with the assumption that f(O) = 0. Taking v = 0 in (3.1) we then deduce that 

(5.1) (f(u), u)0 < u 

It is straightforward to prove from this that 

(5.2) IIu(t) 112 < IIu(0)112 Vt ) 0. 
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This property is often termed monotonicity or weak contractivity. The numerical analogue of 
property (5.2), under the assumption (3.1) together with f(u) = 0, is studied by a number 
of authors including [10] and [49]. A straightforward application of the theory in ?3 shows 
that algebraic stability is sufficient for a numerical analogue of (5.2) to hold for all step-sizes 
At > 0 and all initial data. In fact, a wider class of methods suffices in this context as described 
in [10]. 

The monotonicity induced by (5.1) can be weakened to enforce monotonicity only out- 
side a certain bounded region of phase space. This corresponds to a notion of dissipation 
at sufficiently large amplitude. In this section we will concentrate on a particular class of 
problems where dissipativity is induced by the structural assumption 

(5.3) 3y, to > 0:(() )<y _ COIIU112 VU E RP. 

Under (5.3) monotonicity is induced outside the set B = {u E RPk lull2 ? y/l}. An 
example of a system satisfying (5.3) is the Lorenz equations, after translation of the origin. 
Many other examples exist; in particular, infinite dimensional systems such as the complex 
Ginzburg-Landau equations (see below) and the Navier-Stokes equation (in two dimensions) 
satisfy generalizations of (5.3) (see [53]) and, under appropriate spatial discretization, the 
resulting system of ordinary differential equations satisfy (5.3). (Note that the contractive 
problems of ?3 are sometimes referred to as dissipative in the numerical analysis literature; 
this conflicts with the terminology in the theory of differential equations which we employ 
here.) 

Example. Consider equation (1.7), (1.8) with a = b = c = d = e = 1. Then we obtain 

ut = (1 + i)ux -(1 + i)lU12U + u, x E (0, 1), 

together with periodic boundary conditions (1.8). Taking f(u) as the right-hand side of this 
equation and employing the standard L2-norm and inner-product we obtain 

((1 + i)uXX - (I + i)lU12U + u, u) = I- luxl2dx + f U12 _-lul4dx 

f 1- lU12dx = 1- _1u112. 

Thus an infinite-dimensional analog of (5.3) is satisfied with y = 1, co = 1. 
RESULT 5.1. For (1.1), (5.3), any u(0) E RP and any p > O there exists t* t*(p, u(0)) 

such that 

llU(t) 112 < - + p 
co 

for all t > t*. 
Proof. Taking the inner product of (1.1) with u gives 

IIlUlII2 = (U, ut) y -CIIU112. 

Thus 
d (2cot ll u l2) < 2co2t 
dt 

I lu(t)112 Y + e-2&t [llu( 112 _ . 
co co 

The result follows. O 
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Thus all the information about the asymptotic behavior for (1.1), (5.3) is captured in a 
bounded set; within this set the dynamics may be very complicated, for example, chaotic. It 
is important to note that problems in the class (5.3) do not necessarily satisfy a one-sided 
Lipschitz condition, as the following example shows. 

Example. Consider the two-dimensional problem 

x =-x + xy, 

y= -y-X2 

We will show that this problem is dissipative in the sense of (5.3) but that the system does not 
satisfy a one-sided Lipschitz condition. Let u = (x, y)T and f(u) = (-x + xy, -y - x2)T; 
then 

(f(u), u) =-x2_y 2 

= _lU112. 

Thus (5.3) is satisfied with y = O and co = 1, and Result 5.1 implies that lul - Oas t -o 00. 
Now, to show that a one-sided Lipschitz condition is not satisfied, let v = (x', )I)T so that 

(f (U) -_ (V), U - V) = -(X - X/)2 + (X - X')(Xy - X'y') - (y _ y')2 + (y -_y')(X'2 _ X2) 

Suppose that (4.1) holds and let u = (, al) and v = (a, )T, where the constants a and fB 
are to be specified below. Notice that llu - v112 = 2(p - al)2 and observe that 

(f (u) - f (v), u - V) = -2(f _ a)2 + (p _ a)(p2 _ a2) 

= _(l + p) -]IIU _ V12. 

Choose a + fi > 2(c + 1) to obtain a contradiction. Thus this system does not satisfy a 
one-sided Lipschitz condition for any c > 0, even though this system is dissipative in the 
sense of (5.3) and, in fact, the origin is globally attracting. O 

This is not an isolated example. In [36] it is shown that the Lorenz equations do not 
satisfy a one-sided Lipschitz condition and there are many other examples within the class of 
dissipative systems. Because of this, we will not assume that (4.1) holds for systems in the 
class (1.1), (5.3). 

It is natural to ask for a property analogous to Result 5.1 for the numerical method. 
However, in the light of the example above it perhaps seems too much to ask for a stability 
theory that is independent of initial data for problems satisfying (5.3) since there is not even 
a one-sided Lipschitz constant for these problems. However, this view is overly pessimistic 
as we now show. First we make a definition. 

DEFINITION 5.2. A RKM is said to be dissipative stable if, when applied to (1.1), (5.3), 
there exists Ate, R > 0 both independent of Uo such that for all At E (0, Atj) and any 
Uo E ]RP there exists n* := n*(Uo, At) for which any sequence {Un}l' generated by the 
RKM satisfies 

IIUn 112 R 

for all n n* 
Such a definition is implicit in the work of Foias et al. [24] and similar questions have sub- 

sequently been addressed for a variety of partial differential equations and their discretizations; 
see [35] for a review of the subject. 
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The following result shows a remarkable correspondence between the contractive nonlin- 
ear stability theories and the appropriate theory for problems satisfying (5.3): algebraically 
stable RKMs are again seen to have desirable stability properties. 

RESULT 5.3. Consider an algebraically stable RKM applied to (1.1), (5.3) with any 
At > 0. Then the RKM is dissipative stable for any Atc > 0 and hence 

algebraic stability => dissipative stability. 
Proof. From the definition of the Runge-Kutta method it follows that 

k k 

11IUn+1 112 < 11IUn 112 + 22\t , bj (U n, 
fjZ At2 IU~iII ( IU~I2+ 2At f) +At bibj(fi, fj), 
j=1 i y=l 

where f := f (i). Using the equation for the 7zi we have 
k 

(Un, fi) = (17i, fi) - AtEaij(f, fj) 
j=1 

and this gives 
k k 

1Un+l nU , 
j112 + 2A&tEbj(?j1, f.) 

- 

At2 2 

1=1 i,j=1 
Using algebraic stability and (5.3) we deduce that 

k 

llUn+1 112 < II Un 112 + 2At Ebj[y-cl Ur117j 2]. 
j=1 

Thus we have, for any given E > 0, that either 

(5.4) ~~~~~~IIUn+1 112 < IIU 12-2t (5.4) nln+i 11 |U|-2AtE 

or 
k 

,bj [ycl ry ll 1 172 ,E 
j=1 

In the second case 

(5.5) b j 1 
1=1 t 

because 

(5.6) E bj I 
j=l 

for any convergent RKM. Since the method is algebraically stable it follows that we may 
assume bi > 0 (see the Remark after Definition 3.2) and thus (5.5) implies that 

()112 < Y + 
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However, using the bound (5.7) it is possible to deduce a bound on U +I simply by noting that 

k 

U"+1 = z7i + At -[bj-aij]f(7j). 
j=1 

Squaring both sides of this expression we obtain 

(5.8) jU+1j2 (11 112 + KAt, 

where K is independent of UO and depends only on the bounds (5.7). Performing a sum 
weighted by the bi, and recalling (5.6), we obtain from (5.5), (5.8) 

(5.9) j1Un+1j2 ? Ebi [jiiI12 + KAt] < Y + +KAt. 
j=1 C) 

Thus either (5.4) or (5.9) holds. An induction based on these quantities yields the desired 
result with 

R = Y + KAt. a 

Remark. (i) In [36] it is shown by use of the Brouwer fixed point theorem that under (5.3), 
for a DJ-irreducible algebraically stable method with invertible A, the Runge-Kutta equations 
have a solution for all At ) 0 and any Un E RP. However, uniqueness cannot be established 
under (5.3) alone. 

(ii) Notice that the bound R on Un obtained for sufficiently large n is very close to the 
bound (y/co) + p for the differential equation; thus the set into which the large-time dynamics 
are confined is also closely related to the equivalent set for the differential equation. 

(iii) Notice again the role of algebraic stability: it enables us to determine the sign of the 
quadratic form defined by M, just as in the proof of Result 3.3. a 

6. Conservative systems. We shall start this section, as in ??3, 4, and 5 by considering 
the case where (1.1) is,real so that f(u) E C 1 (RP, RP). We will then go further and look at 
certain complex matrix systems of differential equations. 

In many physical models, no energy-loss mechanism is present and conservative systems 
result. As a simple example of a conservative system, which arises naturally from the limit 
y, co -* 0 of the dissipative systems considered in ?5, we take the structural assumption 

(6.1) (f(U),U) = 0 YU ERP. 

Example. The equations 

x, =-xy2, y, = x2y 

satisfy (6.1). [ 
Example. The nonlinear Schrodinger equation, which is a nondissipative limit of the 

complex Ginzburg-Landau equation, satisfies an infinite-dimensional analogue of (6.1) and 
arises throughout mathematical physics. Specifically we take a' = c = e = 0 and b = d = 1 
in (1.7), (1.8) and we obtain 

(6.2) Ut = jUxx- i JU2U. 
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Note that, using integration by parts, 

I 
(iU _-i Iu 12u, u) = Re{ilu 12 + ijuj4)dx = 0 

and so we have an infinite-dimensional analog of (6.1). a 
By following the proof of Result 5.1 it is straightforward to see the following. 
RESULT 6.1. The solution u (t) of (1 .1), (6.1) satisfies 

11u(t)ll = 11u(0)1 

for all t ) 0. 
Again it is natural to ask for numerical schemes which mimic this property. This approach 

was taken by Cooper [12] and a modification of the classical theory of [4] and the use of ideas 
from the proof of Result 5.3 enables proof of the following result, which shows a remarkable 
correspondence with both the classical theories of ??2 and 3 and the new theory described in 
?5. 

RESULT 6.2. Consider the numerical solution of (1.1), (6.1) by a RKM. If the RKM 
satisfies M 0_ where M is defined by (1.5), then 

||Unh| = 11UOI1 

for all n ) 0. 
Proof. By definition of the RKM we have 

k k 

+1 11 = IUn 112 + 2At bi (Un, f (,ij)) + At2 , bibj (f&(j), f (qj)). 
i=1 i,j=1 

Using the defining equation for the rji gives 

k k 

hiUn+i j2 = 1jU1jj2 + 2At bi (ij, f(ij)) -At2 E m i (f O), f(jO))M. 
i=1 i,j=1 

Using the fact that M 0, and the structural assumption (6.1), the result follows. a 
Remark. (i) Algebraically stable methods of arbitrarily high order which satisfy M 0_ 

do exist: they are those schemes based on Gauss-Legendre quadrature and discussed in [6] 
and [3]. In particular, the implicit midpoint rule (1.6) is algebraically stable and satisfies 
M _ O. 

(ii) Again the role of the matrix M is crucial; in this case not only is a bound on the 
quadratic form important but it is necessary to remove its contribution. Setting M 0 does 
this. 

(iii) The solvability of the RK equations has not been investigated for RKMs under 
(6.1). a 

We now consider a stronger kind of conservation: we consider the matrix system of 
differential equations (with * denoting Hermitian transpose) 

(6.3) Qt = S(Q)Q, Q*(0) Q(0) = I, 

where Q(t) is a time-dependent p x p complex-valued matrix, S(Q) is a skew-Hermitian 
matrix-valued function of Q that satisfies 

(6.4) S*(Q) = -S(Q) VQ E CpXp 
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and I is the p x p identity. Equation (6.3) arises in applications such as the continuous SVD 
and closely related problems arise in the computation of Lyapunov exponents for systems 
of ordinary differential equations. The system is conservative in a very strong sense: the 
orthonormality of the columns of the matrix Q are preserved with time evolution. 

RESULT 6.3. The solution Q(t) of (6.3), (6.4) satisfies 

Q*(t)Q(t) = I 

for all t > 0. 
Proof. Clearly 

d(Q* Q) Q Qt Qt*Q dt 

But 

Q*Qt = Q*S(Q)Q 

and hence, by (6.4), 

d (Q *Q) = Q*[S(Q) + S*(Q)]Q =0. 

Thus Q*(t) Q(t) = Q*(0) Q(0) = I as required. [1 
Applying the standard Runge-Kutta method to the matrix system (6.3) gives, for Q, t 

Q(nAt), 

k 

Qn+l = Qn +AtL bi S(ri) rI, 
j=1 
k 

ri = Qn + A t E aijS(rj) rj, i = 1, . .. I k, 
j=l 

where ri is a complex-valued p x p matrix. We will employ the notation Si := S(I'). 
It is important in some contexts to find numerical methods which will automatically 

enforce the orthonormality of the columns of Q(t) during numerical simulation. This was 
realized in [18], where the following result is proved. 

RESULT 6.4. The solution of (6.3), (6.4) by a RKM with M 0_ where M is defined by 
(1.5) satisfies 

QnQn=I 

for all n ) 0. 
Proof. From the definition of the RKM applied to (6.3) we obtain 

Qn+1 Q"+l =Q + A\tEb, Si*s ] [QN + At?b}S1r'1] 
k k 

= QnQn + Atlbii*Si* Qn + Atl9bjQ*Sjrj 
i=1 J j=1 

k 

+ At2 E bibjri*Si*Sjrj. 
i,j=1 
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Now, from the defining equation for the FI, 

k 

ri*S*Qn = Q i*si* pi - At aijii*SiS Fr, 
j=l 

and 

k 

Qn*S1rF rj*sjrj - AtLajjiFj*Sj sjrj. 
i=l 

Combining these three expressions we find that 

k k 

Q*+i Qn+I = Qn Qn + AtZbiFj*[S7 + Si]lli- At2 mijiS*SiS jrj. 
i=l i,j=1 

Setting M 0_ and employing (6.4) we obtain 

Qn+1 Qn+ 1= Qn Qn 

and the desired result follows. [1 
Remark. (i) The result presented in [18] employs the theory of symplectic integrators as 

outlined in the next section and yields an "if and only if" result. 
(ii) The proof given here once again makes clear the role of the positive-definite quadratic 

form defined by M and its annihilation by the choice M 0_ . Recall again that algebraically 
stable schemes satisfying M 0 exist and so, once again, the importance of algebraic stability 
is apparent. 

(iii) The solvability of the Runge-Kutta equations has not been addressed here. However, 
in [18] an explicit iteration scheme is constructed which, if iterated to convergence, satisfies 
the Runge-Kutta equations but which also retains the orthonormality of the system regardless 
of the number of iterations used. This then corresponds to a linearly implicit numerical method 
which is "stable" in an appropriate sense. 

(iv) A result unifying Results 6.2 and 6.4 may be found in [42]. [1 

7. Hamiltonian systems. The class of conservative systems induced by the inner product 
structure (6.1) is clearly a somewhat restrictive one and it is natural to broaden the scope 
somewhat to include more general schemes with conservation properties. To this end we 
consider the case where (1.1) is a real Hamiltonian system of even dimension with f(u) E 
C1 (RP, RP) and p = 2N. To establish a connection with ?6 we consider first the linear 
problem 

(7.1) ut = JAu, 

where A is positive definite symmetric and where J is a skew-symmetric matrix satisfying 

(7.2) jT = j-1 = _j 

Then we may define a norm based on A by 

lull2 = -u Au. 
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It follows that 
d II21 T +U T +U -tlull2 = 2[U Au +uTAut] = [UAJTA+u TAJAu O = O. 
dt 2t2 

This is equivalent to Result 6.1 and shows conservation of the Hamiltonian 

H(u) := I Au. 

However, for nonlinear Hamiltonian systems this equivalence does not hold. 
Given H E C2(R 2N, R), general Hamiltonian systems are of the form (1.1), where 

(7.3) f(u) = JVH(u) 
and J is a skew-symmetric matrix satisfying (7.2). Thus we shall consider the case where 

J 0 I 
\(-I O) 

and I is the N x N identity. Equation (1.1), (7.3) then takes the familiar form 

Pt = VqH(U), qt =-VpH(u), 

where uT = (pT, qT) for p, q E RN and Vp (respectively, Vq) denotes the gradient with 
respect to the p (respectively, q) variables. 

Example. A simple example is the system 

p=p2q, q =-pq2 

which corresponds to the Hamiltonian Pq U 1 
Example. The nonlinear Schrodinger equation, (6.2), (1.8) is Hamiltonian with con- 

jugation replacing the transpose and i playing the role of the skew symmetric operator J 

where ut -iVF(u), 

F(u) fl uxl2 + lu14dx, 

and V represents the variational derivative with respect to changes in u, confined to an appro- 
priate function space. U 

Two important properties of Hamiltonian systems are described in Result 7.2. In order to 
explain the result we need to define the following. 

DEFINITION 7.1. A mapping G (U) E C(R2N, R2N) is said to be symplectic if 

DG(U)TJDG(U) = J YU E R2N 

Here DG denotes the Jacobian of the mapping G with respect to the variable U. We will 
use an analogous notation for mappings other than G throughout this section. 

RESULT 7.2. Solutions of (1.1), (7.3) satisfy 
(i) H(u(t)) = H(u(O)) for all t ) 0; 
(ii) if the solution operator G(U; t) is defined by u(t) = G(u(O); t) for given initial data 

u(O) then G(-, t) is a symplectic mapping for each t E R+. 
Proof. The first fact follows in a straightforward way since 

d 1 Tt+U -H(u(t)) = 2[VH(u)Tu, + ufVH(u)] dt 2 

= 2[VH(u)TJVH(u) + VH(u)TJTVH(u)] = 0, 
2 

since jT = -J. The result follows. 
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For the second part, let R(t) denote DG (U; t), where D denotes the Jacobian with respect 
to U. Then R(t) satisfies the matrix differential equation 

R, = JA(t)R, R(O) = I 

where A(t) is the Hessian of H(u) evaluated at u = u(t) and is hence symmetric. Now let 
V(t) = RTJR and note that V(O) = J. Clearly 

V = RfTJR + RTJR, = RTAJTJR + RTJJAR. 

Now, using (7.2) we obtain 

Vt = R TAR- RTAR =O 

and hence V (t) = J for all t. By definition of V the result follows. [1 
Clearly (i) is a conservation property; since H is in general not a positive-definite quadratic 

form this property is not equivalent to Result 6.1 except for the linear problem (7.1) with 
positive definite A. Although it is heavily disguised, (ii) is also a conservation property: it 
states that the area of the projection of any set in R2N onto certain distinguished planes in R2 
is preserved under the solution operator G [ 1]. Again it is natural to ask that the conservation 
properties (i) and (ii) are inherited by any numerical approximations. In this context the 
following result of Sanz-Serna [42] and of Lasagni [41] is of interest since it again shows a 
close relationship with the classical theory of ?3 and in particular the role of the matrix M 
from algebraic stability theory in preserving (ii). 

RESULT 7.3. Solutions of (1.1), (7.3) by the RKM with M 0_ , where M is defined by 
(1.5), define a symplectic mapping for each At ) 0. 

Proof. The Runge-Kutta method defines a mapping U -? W determined implicitly by 
the equations 

k 

W = U + &tLbjf (qj), 
j=1 

k 

= U + At ,aij f(i1). 
j=1 

We let R = DW(U) and rj = D7j (U) and denote the Jacobian of f (q) with respect to r 
evaluated at il = ii by Dfi = Df(i1i). Then, differentiating the mapping with respect to U 
gives 

k 

R = I+ /At>9jDfjrj, 
k 

ri = I +AtZaijDfjrIj. 
j=1 

Thus we obtain 

RT JR = [I + AtEbzFiTDfT] 
j [I + AtZbiDfj rj] 

so that 
k 

RT JR = J+ At 'bi ITDJ J 

(7.4) i=1 k 

+ AtEbj jDfjrj + At2 E b1brF,TDfT JDf1Tr. 
j=1 i,j=1 
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Now, from the defining equations for the Ii, 

k 
T DfT J = r TDfTJ - AtZaijFriTDITJDfIFI 

j=1 

and 
k 

JDfjrj = rjTJDfj rj- Ataj,I ri T DTJDfj. 
i=l 

Combining these expression with (7.4) we obtain 

k k 

RTJR = J+ At bi iT[DiTJ+ JDIBF - At2 EmijFrTDIT JDfjrj. 
j=1 i,j=l 

Since the method satisfies M 0 we obtain 

k 

RTJR = Jr+ At ,bsiT[Df1TJ+ JDfilr 
j=l 

Now, Df = JAi where Ai, the Hessian of H evaluated at ri1, is symmetric. Hence, using 
(7.2), 

DfTJ+ JDf = ATJTJ+ JJAi = AT - Ai = 0. 

Thus RT JR = J so that the RKM defines a symplectic mapping for each At ) 0. E 
Remark. (i) Again this result assumes the solvability of the Runge-Kutta equations. This 

matter has not been investigated in detail for Hamiltonian systems. 
(ii) Again the role of the matrix M is clear: a certain quadratic form is annihilated by 

setting M _ 0. Indeed Results 6.2, 6.4, and 7.3 all fall under the umbrella of a general result 
showing that all quadratic first integrals of (1.1) are preserved by Runge-Kutta schemes with 
M 0; see the discussion in [42]. a 

For general nonlinear, nonintegrable Hamiltonian problems it is not possible to enforce 
both properties (i) and (ii) from Result 7.2 onto a numerical scheme since it would then have 
to be exact; see [26]. Thus it is an open and interesting question to determine the relative 
merits of preserving the two properties under discretization; see for example [46] where 
energy-momentum conserving methods are shown to be superior to symplectic momentum 
conserving methods for an application in elasto-dynamics. 

To discuss Hamiltonian systems in detail is well beyond the scope of this review. Here our 
purpose is merely to emphasize connections with other classes of problems. For a complete 
overview of the numerical analysis of Hamiltonian systems see [44]. 

8. Remarks on multistep methods. Throughout the paper we have concentrated on 
Runge-Kutta methods; this has allowed a unified exposition and the theme of algebraic stability 
has run throughout. Nonetheless, much of the theory for RKMs was developed in tandem with 
that for Linear Multistep and One-Leg Methods (LMMs and OLMs) and indeed in the 1960s 
and 1970s the theory for RKMs was often predated by that for multistep methods. Thus it is in 
order to briefly sketch how the theory for LMMs and OLMs fits in to that described here. An 
important point to appreciate is that LMMs and OLMs naturally define a dynamical system 
on a space of higher dimension than the original problem-specifically in Rpk or Cppk for a 
k-step method-and this is a source of some difficulty. 
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For linear decay problems the properties of A-stability and absolute stability have natural 
analogues for multistep methods and indeed this was the starting point for numerical stability 
theory [14]. The importance of contractive problems in numerical analysis was recognized 
by Dahlquist in [15] in the context of multistep methods; the form of G-stability was defined 
for multistep methods applied to (1.1), (3.1) and inheriting a notion of contractivity. Subse- 
quently a remarkable equivalence theorem, analogous to Result 3.4, was proved: G-stability 
is equivalent to A-stability for OLMs [16]. For gradient systems there has been a little work on 
multistep methods; in particular in [23] it is proved that the first three backward differentiation 
formulae are gradient stable, employing a natural generalization of Definition 4.3. The concept 
of dissipative stability is generalized to multistep methods in [32] where the result dissipative 
stability is equivalent to A-stability is proved for LMMs and OLMs, using the equivalence of 
G-stability with A-stability. This result is analogous to Result 5.3 for RKMs. Ideas relating 
to conservation properties and symplectic structure for multistep methods are considered in 
[21]. The preservation of orthonormality properties in matrix differential equations are studied 
in [18]. 

9. The effect of error control. An important question which we briefly discuss here is 
whether the variation of time-step according to local error control will automatically enforce 
some form of numerical stability, even for explicit schemes. Such results are conjectured in 
[27] and [43], based on illuminating studies of particular examples. In our opinion it would 
be valuable to develop further the mathematical theory of the stability of variable step-size 
codes; in particular it would be of interest to identify error-controlled schemes which yield 
the correct long-time qualitative behavior for an interval of the error tolerance r independent 
of initial data. This is the natural generalization of the contractive, gradient and dissipative 
stability theories described in this review for fixed step schemes. 

However, it is not immediately clear why such results concerning error-controlled schemes 
should be true since local error control is an accuracy requirement whilst we are seeking 
stability results. In a notable paper, Hall [31] established a remarkable connection between 
accuracy and stability for error control schemes. We illustrate this with a simple example 
modified from [31] and [27]: consider (1.1) with p = 1 and 

f(u) = -u. 

If we apply the explicit Euler scheme with variable time-step, then we obtain 

Un+i = Un- AtnUn 

where the time-step Atn now varies with n. This is a first-order accurate approximation to the 
true solution; that is the error over one step of length At is proportional to A t2. A second-order 
accurate approximation is formed, with error of O(At3) over one step, by calculating the first 
step of a Trapezoidal rule correction: 

Vn+ = Un- 2 [Un+1 + Us]. 

A simple error estimate for Un+1 is then formed as the difference between Un+i and Vn+i on 
the assumption that At is small. The error per unit step strategy requires that Atn is chosen 
so that 

1 
(9.1) IIUn+1 - Vn+1 - Atnr, 2 

where T << 1 is an error tolerance. (The factor 2 is chosen to simplify (9.5) below; it is simply 
a matter of definition.) Under this local error control we deduce that, since the standard 
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Euclidean norm is * iS equivalent to I * I in dimension p = 1, 

IUn - Un+iI I T 

is required for the step to be acceptable and hence that 

i\ tn <1 I UnI 

is required. If we choose the largest time-step compatible with this error control, then we 
obtain 

(9.2) U = Un I W) Atn = 
I Un I ~lUnli 

Straightforward analysis shows that 

|Un | > - X Un+1 [ < lUn [ 2 

while 

lUni 2 =t IUn+iI r . 

Using this it is possible to show that the local error control forces iterates to enter and remain 
in interval [-r, Tr about the origin; during this process the time-step approaches the linear 
stability limit. In other words the error control acts to force the correct long-time behavior, up 
to an error proportional to the tolerance. 

This kind of desirable behavior can be generalized to the dissipative and gradient systems 
studied in ??4 and 5-see [52] for details. Here we outline the key to that analysis which 
revolves around the fact that certain error control mechanisms force the RKM to behave like 
an algebraically stable RKM even if the underlying method is not algebraically stable in a 
fixed time-step implementation. 

One of the simplest error control strategies for the solution of (1.1) is to take the explicit 
Euler scheme 

(9.3) Un+1 = Un + Atnff(Un) 
and then form the more accurate approximation 

(9.4) Vn+I = Un + - [n(Un) + f(Un+])]. 2 
This generalizes what we did for the linear problem above. Thus the difference of Un+i and 
V,+j is an estimate of the error incurred in (9.3) and the error per unit step strategy then 
requires that Atn is chosen so that (9.1) is satisfied. This implies that 

(9.5) lf (Un) - f(Un+i)ll ? T 

and hence that, under error control, the explicit scheme (9.3) is never far from the backward 
Euler scheme (9.3). Specifically we have that 

Un+1 = Un + tWnf(Un+0) + tWnE, 

where IJElI < Tv by (9.5). The backward Euler scheme is algebraically stable and for this 
reason we might expect that the error control confers desirable stability properties on the 
explicit scheme. This intuition is placed on a firm mathematical foundation in [52] for the 
contractive, gradient, and dissipative problems studied here in sections 3,4 and 5 and a class 
of error control schemes (including (9.3), (9.4), (9.1), and the Fehlberg (2,3) pair). These 
schemes are shown to be stable in the sense that desirable long-time behavior is guaranteed 
for an interval of r independent of initial data. 
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10. Conclusions. It will be clear from reading this article that the numerical stability 
theory for problems in ??4-9 is far from complete. Nonetheless, it should also be clear that 
the classes of problems in ??4-9 all form a natural progression from the simple problems in ??2 
and 3. Furthermore, the problems described in ??2-9 arise in a variety of different application 
areas and admit many interesting and complicated dynamical features such as exponential 
attraction to a unique equilibrium point, multiple competing equilibria, dissipative chaos, 
conservation properties and finally Hamiltonian systems which can exhibit both integrability 
and Hamiltonian chaos. An important point is that there are clear indications of connections 
in the numerical stability theory for all these problems. In particular, algebraic stability plays 
a fundamental role. We make a subjective list of open problems: 

* To further explore the classes of numerical methods which are gradient or dissipative 
stable in the sense of Definition 4.2 and Definition 5.2. Relatedly to determine whether the 
definitions themselves are appropriate or whether they should be modified. 

* To assess the relative merits of Hamiltonian conserving algorithms which preserve 
the property of Result 7.2(i), and symplectic algorithms which inherit the property of Result 
7.2(ii). In particular, it is of interest to determine what can be said about the behavior of the 
Hamiltonian for symplectic schemes. It will probably be beneficial to impose a variety of 
structural assumptions on the Hamiltonian H in an attempt to further assess the relative merits 
of symplectic and conserving algorithms in different contexts. 

* To close the gap between methods deemed to be "good" according to rigorous mathe- 
matical stability theories and the often different and larger class of methods which "work well 
in practice." In this context it is perhaps important to make clear mathematical statements 
about what it means for a code to work well in the context of long-time integration. To this 
end it may be valuable to develop a rigorous mathematical framework for the evaluation of 
the stability of variable time-step codes. 

* To identify other classes of problems motivated either by real applications or by a need 
for theoretical understanding of the differential equations, for which it would be valuable to 
develop numerical stability theories. 

Finally we conclude with a disclaimer: it is not our purpose to completely review the 
subject of numerical stability theory for initial value problems. We have concentrated on the 
mathematical properties of the underlying problems and this has been our unifying theme. For 
this reason there are numerous references to related work in the numerical analysis literature 
that have not been made here. 
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