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THE NUMERICAL COMPUTATION OF HETEROCLINIC
CONNECTIONS IN SYSTEMS OF GRADIENT PARTIAL

DIFFERENTIAL EQUATIONS*

FENGSHAN BAIt, ALASTAIR SPENCEr, AND ANDREW M. STUART

Abstract. The numerical computation of heteroclinic connections in partial differential equa-
tions (PDEs) with a gradient structure, such as those arising in the modeling of phase transitions, is
considered. Initially, a scalar reaction diffusion equation is studied; structural assumptions are made
on the problem to ensure the existence of absorbing sets and, consequently, a global attractor. As a
result of the gradient structure, it is known that, if all equilibria are hyperbolic, the global attractor
comprises the set of equilibria and heteroclinic orbits connecting equilibria to one another. Thus it
is natural to consider direct approximation of the set of equilibria and the connecting orbits.

Results are proved about the Fourier spanning basis for branches of equilibria and also for certain
heteroclinic connections; these results exploit the oddness of the nonlinearity. The reaction-diffusion
equation is then approximated by a Galerkin spectral discretization to produce a system of ordinary
differential equations (ODEs). Analogous results to those holding for the PDE are proved for the
ODEs--in particular, the existence and structure of the global attractor and appropriate spanning
bases for the equilibria and certain heteroclinic connections, are studied. Heteroclinic connections
in the system of ODEs are then computed using a generalization of known methods to cope with
the gradient structure. Suitable parameterizations of the attractor are introduced and numerical
continuation used to find families of connections on the attractor. Special connections, which are
stable in certain Fourier spanning bases, are used as starting points for the computations.

The methods used allow the calculation of connecting orbits that are unstable as solutions of
the initial value problem, and thus provide a computational tool for understanding the dynamics of
dissipative problems in a manner that could not be achieved by use of standard initial value methods.
Numerical results are given for the Chafee-Infante problem and for the Cahn-Hilliard equation. A
one-parameter family of PDEs connecting these two problems is introduced, and it is demonstrated
numerically that the global attractor for the Chafee-Infante problem can be continuously deformed
into that for the Cahn-Hilliard equation.

Key words, infinite-dimensional dynamical systems, global attractor, heteroclinic connections,
gradient systems, reaction-diffusion equations, Galerkin spectral method, invariant subspaces, con-
tinuation
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1. Introduction. The large time dynamics of certain classes of dissipative, in-
finite-dimensional, dynamical systems are captured in the global attractor [26], [23],
[17], [18]. This is an invariant set that comprises all the complete orbits of the dy-
namical system, which are defined backward and forward in time-that is, heteroclinic
or homoclinic orbits connecting a and limit sets. It is thus natural to consider di-
rect approximation of these connecting orbits as a means to understanding the large
time dynamics of a system; in particular, it is of interest to find connections that are
unstable as solutions of the initial value problem but that play an important role in
determining the long time dynamics. In this paper, we consider the particular case
of dissipative partial differential equations (PDEs) that have a gradient structure; it
is then known that, provided that the equilibria are hyperbolic, the global attractor
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comprises the union of equilibrium points together with heteroclinic orbits connecting
them to one another (see [17], [26]).

Gradient systems arise in many areas of application where there is a dynamic en-
ergy minimization process together with multiple competing equilibria. One particular
example is the field of phase transitions where the Cahn-Hilliard [4] and phase-field
[3] models have been very successful and have stimulated a great deal of practical and
theoretical interest. In these problems, the nondimensional transient timescales are
frequently very long, due to the fact that the timescale for penalization of interracial
energy between two phases is long relative to the chemical relaxation timescale; see [5]
for an example. Hence, for these problems, there may be considerable advantage in
direct approximation of the global attractor, thus avoiding some of the long timescales
associated with the transient behaviour. For gradient systems, this is equivalent to
the approximation of heteroclinic orbits, provided that all equilibria are hyperbolic.
Hale and Raugel [19] recently proved some results about the convergence of attractors
for gradient systems under various approximation schemes.

Numerical methods for heteroclinic and homoclinic connections in ordinary dif-
ferential equations (ODEs) are considered by Beyn in [1] and [2], and also by Doedel
and Friedman in [14] and [10]. The basis of the approach in [1] is to consider the
connecting orbit problem as a boundary value problem (BVP) on an infinite time do-
main, which is then approximated by appropriate truncation to a finite time domain.
The truncation is determined by projecting the solution onto the stable manifold of
the a limit set and onto the unstable manifold of the a limit set. Beyn’s approach was

designed specifically for systems in which heteroclinic orbits: occur for certain isolated
parameter values.

In gradient systems, heteroclinic orbits do not occur at isolated parameter values
but are generic for all parameter values. Furthermore, the connections often form a
manifold of dimension greater than 1. It is our aim to extend the method in [1] to cope
with this situation and also to design methods effective for the large systems that arise
from discretization of PDEs. Initially, we concentrate on a scalar reaction-diffusion
equation (a generalisation of the Chafee-Infante problem) for which the geometric
theory has been studied in detail [20], [21], [17]. This enables us to validate our
method against theoretical properties of the connections. Our numerical techniques
are easily generalized to other gradient systems, and we present numerical results
for heteroclinic connections in the Cahn-Hilliard equation. In fact, we introduce
a one-parameter family of PDEs connecting the Chafee-Infante and Cahn-Hilliard
equations, and we demonstrate numerically that the attractor for the first of these
equations can be continuously deformed into that of the second.

The plan of this paper is as follows. In 2 we describe the scalar reaction-diffusion
equation, which we use as a model to develop our techniques. We describe various
known results about the dynamics of the problem (Theorems 2.1, 2.2, 2.9, and 2.10)
and, in addition, describe some new results about the Fourier spanning bases of the
equilibrium solutions and certain heteroclinic connections (Theorems 2.6 and 2.7 and
Proposition 2.8). In 3 we discretize the reaction diffusion equation by a Galerkin
spectral method to obtain a system of ODEs for which we prove discrete analogues
of the results for the underlying PDE. In particular, we establish that the system
of ODEs forms a dissipative dynamical system with a gradient structure (Theorems
3.2 and 3.3), and we also show that the results about Fourier spanning bases have
discrete counterparts. In 4 we extend the method of [1] to the system of ODEs.
We introduce a continuation technique to study families of connections on the global
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attractor; starting points are found for this continuation technique by restricting the
equation to certain invariant subspaces that result from the Fourier spanning bases.
In these invariant subspaces, heteroclinic connections may be computed as solutions
of initial value problems (see Remark 3.5). In 5 we present numerical results for the
Chafee-lnfante problem [6], and in 6 for the Cahn-Hilliard equation [4], [12].

2. Properties of the reaction-diffusion equation. In this section, we con-
sider the PDE

Ou Oeu
(2.1) 0- Ox-- Af(u), x e (0, 1), t > 0,

(2.2) u(0, t) u(1, t) 0, t > 0,

(2.3) u(x, O) no(x), x E [0, 1],

where it is assumed that

p

(2.4) f(s) E bjs2J+l’ b > O, bo -1.
j=0

Consequently, f satisfies the following properties:
(F1) f e C(R, R);
(F2) There exists such that f(u)/u > 0, for any u with u I> ;
(F3) There exist a, b > 0 such that f’ (u) >_ au2p b for any u R.

The canonical example is the Chafee-Infante equation [6], where f(u) (u3 u).
In the following, we use Lp and H to denote the Sobolev spaces LP(O, 1) and

H (0, 1), and the L, L2, and H0 norms are denoted by

/o j(01u l, I1 ,11
x6(0,1)

respectively.
Equations (2.1)-(2.4)have the following important properties, which we wish to

capture in any numerical approximation. The results may be found in [17] and [26].
THEOREM 2.1. We have the following conditions:
(P1) Given uo L2, there exists a unique solution u of (2.1)-(2.4) that satisfies

u e L2 (0, T; H) N L2p+2 (0, T; L2p+2)
u C(R+; L2).

for any T > 0,

The mapping uo -- u(t) is continuous in L2, so that a semigroup S(t) may be defined
a8

S(t) uo e L2 - u(t) e L2;

(P2) Given uo L2, there exist absorbing sets in L2 and H. That is, there exist

constants po, pl, and times to, t depending only on po, pl, such that

[u[<_po Vt>_to,
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(P3) The semigroup S(t) possesses a maximal attractor J[ that is bounded in H
and compact and connected in L2;

(P4) Equations (2.1)-(2.4) have a gradient structure. Specifically, the functional

() := + ,F(v) dx,

where

(2.5) F’(v) f(v)

2is a Lyapunov functional satisfying (i) I(v) >_ 1111 -c0; (ii) [I(u(t))] -lut [2,
t > 0; and (iii) I(S(t)v) I(v) for t E R+ implies that v is contained in the set $ of
equilibrium points of (2.1)-(2.4);

(P5) Let W(v) denote the unstable manifold of an equilibrium v $. If each
member of $ is hyperbolic, then

.4= U ()

We now discuss the properties of the set of equilibria . By an equilibrium point,
we mean a twice continuously differentiable function v satisfying

(2.6) Vxx + Af(v) 0,

(2.7) v(0) v() 0.

THEOREM 2.2. For (2.1)-(2.4), g" is bounded in the H and supremum norms.

Specifically, for any v $,

where

(e.s) C1- max[-Auf(u)].

Proof. Assume that v(x) attains a maximum at a point x* e (0, 1) with v(x*) > .
By (F2), f(v(x*)) > 0, and, since the point is a maximum, vx(x*) (_ O. This
contradicts (2.6), and the supremum bound follows. To establish the H bound, take
the inner product of (2.6) with v to obtain, by (F2) and (2.8),

I111 -<Af(v), v> _< C.

Now we examine the invariance properties of problem (2.6), (2.7). In particular,
we determine Fourier spanning bases for branches of steady solutions. The analysis is

then extended to the time-dependent problem (2.1)-(2.3). The basis of the results is

to show that certain Fourier bases are invariant under f. The following result is well
known and required for the bifurcation analysis.

LEMMA 2.3. The spectrum a(A) of the operator A: Cg[0, 1] --, C0[0, 1] defined
by A -"(x) consists of simple eigenvalues

{72472 n27r2 .}
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with the following as their corresponding eigenfunctions

(2.9) {sin(rx), sin(27rx),..., sin(nTrx),...}.

It is well known that the space of two-periodic, odd, continuous functions is
spanned by (2.9). Thus it is natural to commence the study of (2.6), (2.7) by intro-
ducing the spaces

X C2 N span{sin(jrx) j E N},
Y’- C N span{sin(jTrx) J E N},

where N is the set of natural numbers. Clearly, X c Y. (Note that the Dirichlet
boundary conditions (2.7) are automatically satisfied by functions in X and Y.) For
reasons that will become clear in Lemma 2..5, we consider those functions in X that

lk, (k E N) i.e.have the additional property that they are even about

(2.10) u(x) u(1/k x), k E N.

Odd continuous functions satisfying (2.10) have particularly simple Fourier bases.
LEMMA 2.4. Assume that u is odd, continuous, and satisfies (2.10). Then, for

given k E N, (i) u is odd about I/k; (ii) u has period 2/k (and hence has period 2);
and, (iii) u E span{sin((2j 1)krx)l j E N}.

Proof. (i) By the definition, it is clear that

u(1/k- x) u(x) -u(-x) -u(1/k- (-x)) -u(1/k + x).

(ii) Since

u(x) u(1/k x) -u(1/k + x) u(-1/k x)
u(1/k (-1/k x)) u(2/k + x),

then

2m
+ -%-), mEN,

and taking m k gives u(x) u(x + 2).
(iii) Consider the Fourier series of u over (-l/k, l/k), since u has period 2/k.

Since u is odd about zero, then

2 fl/kan 1/k J-1/k

nTrx
dx O, n= 1,2,...,

and

nTrx fn(z) sin /k dZ 2k
Jo

u(x) sin(nkTrx)dx, n- 1,2,

For n even, say n- 2m, we have

sin(2mkTr(1/k x) sin(2mTr 2rnkrrx) -sin(2rnkTrx).
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k. Thus bn 0 forHence sin(nkrx)is odd about k. However, u(x)is even about
n even, so that the Fourier series for u over (-l/k, l/k) contains only terms of the
form

sin((2j- 1)krx), j E N.

By periodicity, the Fourier series of u over (0, 1) and (-1, 1) also contains only these
terms.

Thus, for k E N, we may introduce the subspaces Xk, Yk of X, Y, which are
given by

Xk C2 N span{sin((2j 1)krx),j E N},
Yk C g)span{sin((2j- 1)kx),j E N}, k 1,2,

k, and satisfyClearly, Xk C Yk. Functions in Yk are odd, 2/k periodic, even about g
(2.7). We introduce the operator H(v, A): X x R -. Y defined by

(2.11) H(v, ,k) := Vxx f(v),

where f(u) is given by (2.4). The following "invariance" lemma makes clear the reason
for the introduction of property (2.10) and the subspaces X, Yk.

LEMMA 2.5. Suppose that H is defined as (2.11); then (a) f Xk --* Xk; (b)
H(v,): Xk R-Y.

Proof. It holds that (b):follows if (a) is true. The proof of (a) follows from the
fact that, if u is odd, continuous, and satisfies (2.10), then any odd power of u is also
odd, continuous, and satisfies (2.10). Hence, by the Lemma 2.4, any odd power of u
maps Xk into itself. So f, which is defined by (2.4), also does.

The bifurcation analysis of H(v, ) (and hence (2.6), (2.7)) can no" be carried
out in the subspaces Xk, Yk. Clearly, H(0,,X) 0. The solution of Hv(0,/) 0
reduces to finding b, shown below:

" + 0, X.

By Lemma 2:3, we know that the only possible bifurcation points giving rise to solu-
tions in Xk are at Ak(2j-1) k2(2j- 1)2r2, j E N where the one-dimensional null
spaces are spanned by Ck(2j-) sin(2j- 1)krx, k 1, 2, Since, for
and/k A(2j-1), Hv,x(0,/) =-, the nondegeneracy condition

Hv(0, A) Range{H(0, A)}

holds at the bifurcation points, and so bifurcation does occur (see, for example, Chow
and Hale [8]). In addition, if we introduce the reflectional symmetry o, defined on X
and Y by

z, # z,

then clearly H satisfies the equivariance condition

H(av, A) all(v, ), vEX.

The symmetric solutions (av v) are the trivial solution, and so the bifurcations at
(0, /k(2j_)) are symmetry-breaking and hence pitchfork. Thus we have proved the
following theorem.
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THEOREM 2.6. For any k E N, consider H(v, ) Xk x R Yk as defined by
(2.11). The points (0, Ak(2j-1)), J E N are symmetry-breaking pitchfo’rk bifurcation
points on the trivial solution branch. Hence there are two bifurcating branches in

Xa\{0} that are conjugate in the sense that, if (v,A) is a solution of H(v,)) O,
then so is (-v, ). Finally, if 51 0 in (2.4), then

HvvvCk(2j_l)gk(2j_l)k(2j_l)

_
Range{H(0,/k(2j-1))},

and the bifurcation is quadratic pitchfork.
If we now consider the bifurcation problem for H(v, ) 0 in the whole space,

that is, consider H(v, )) X R Y, then it is natural to ask if any additional
solutions arise that are not in Xa for any k N. However, ([k(2j- 1)]27r2, Ca(2j-1))
is a simple eigenpair of Hv(0, A) 0 in X, and so the pitchfork bifurcation gives
rise to a unique pair of conjugate solutions in X as well as in Xk. Furthermore,
{[k(2j- 1)]27r2}a,jN {Tr2, 47r2, 97r2, .}, and so, by varying k N, Theorem 2.6
covers all the possible bifurcation points in X.

It is possible now to consider (2.1)-(2.3) as a differential equation defined on

appropriate spaces that admit only steady solutions in Xa. In [17] it is proved that
(2.1)-(2.3) defines a dynamical system on H. A straightforward modification of that
result shows that the evolution equation (2.1)-(2.3) also defines a dynamical system
on Za defined by

(2.12) Z H 3 span{sin((2j 1)kTrx)]j N},

where N is the set of natural numbers. This gives the following theorem.
THEOREM 2.7. Given Uo Zk there exists a unique solution u of (2.1)-(2.3) with

u E Zk. The mapping uo --* u(t) is C on Zk so that a C semigroup S(t) may be

defined as

e e

It is important to realize that the steady and time-dependent solutions predicted
by Theorems 2.6 and 2.7 follow from the invariance of the space

Sk span{sin((2j- 1)kTrx),j e N}

under f(u). As such, their existence can be predicted by a simple rescaling argument:
consider any solution u(x, t) of (2.1)-(2.4) with u(x, t) Sl for each t > 0. Extend this
function from a solution defined on [0, 1] to a solution defined on [0, k], for any integer
k > 2, by odd reflection of unit intervals about x- 1, 2,..., k- 1. This function can
then be mapped back onto [0, 1], and satisfies the original problem with - Ak2 and
t k-2t. The newly constructed solution lies in Sk.

This argument suggests the following proposition, which is useful for the con-
struction of starting points for the computation of heteroclinic connections that are
dynamically unstable.

PROPOSITION 2.8. If, for given ), a steady solution u(x; )) Xl is stable (in
a given topology) as a solution of (2.1)-(2.4), then the solution u(x/k;k2)) e Xk,
found by the extension described above, is stable (in the same topology) as a solution

of (2.1)-(2.4) restricted to initial data uo Zk.
We now describe in detail the structure of solutions to the generalized Chafee-

Infante problem defined by (2.1)-(2.4) with the additional structural assumption, as
follows"
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FIG. 2.1. Steady-state solutions of the Chafee-Infante problem. The solid line (--) denotes
stable branches, and the dashed line denotes unstable branches.

(F4) uf" (u) > 0 for all # 0.
This example is used as both an illustration and as a test of our numerical meth-

ods, so it is important to understand its solution behaviour. The structure and
stability of the set of equilibria is captured in the following theorem from [6]. In
this theorem, stability is defined in terms of the usual supremum norm for C1([0, 1])
functions.

THEOREM 2.9. Assume that f(u) defined by (2.4) satisfies (F4). For each integer
n >_ 1, let An n2r2. Then, for any n >_ 1 and A E [An, +oc), (2.1)-(2.4) have two
equilibrium points un (1) such that (i) u(An) 0;

(ii) For any (An, +oc), u(A) has exactly n + 1 zeros in [0, 1]. Furthermore,
for any [0, +oc), (2.1), (2.2) have no equilibrium points other than u 0 and
those elements u(A), n >_ 1, for which An <_ A;

(iii) For each A [0, A1], the solution u-0 is asymptotically stable, and for each
A (A1, +oc) u-0 is unstable;

(iv) For each n >_ 1 and any A (A, +oc), the equilibrium point U+l (A) is asymp-
totically stable, and, for any A [An, +oc), n > 1, the equilibrium point u(A) is
unstable.

Note that by Theorem 2.6, the branch of solutions u+k(2j-1) (A) for some pair

k,j N lies in Xk. Figure 2.1 shows the steady solutions in the case where f(u)
u3 u, and the appropriate spanning bases are marked.

We now describe the structure of heteroclinic orbits; see [21] and [17] for details.
Define the stable and unstable manifolds of an equilibrium of (2.1), (2.2) as follows,
where H := H(0, 1) for some -32 < r < 2"

W() {u0 H)lS(t)uo exists for all t >_ 0 and tends to

W"() {u0 HI there is a solution S(t)uo of (2.1), (2.2) on

-oc < t _< 0, S(t)uo, and S(t)uo tends to as t

Consider any equilibria and of (2.1), (2.2); if the set WU()[ WS() is not
empty, then it contains all connections from the equilibrium at -oc to at +oc. It
is possible to determine whether a connection exists and to determine its dimension by
studying the index(C) of steady states, which is defined to be the number of positive
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eigenvalues of the Frechet derivative of H defined by (2.11) at E $. The following
result is proved in [21].

THEOREM 2.10. Consider (2.1)-(2.4) and, in addition, assume that f(u) satisfies
(F4). Let A > 0, A {r2, 4r2, 9r,...} and let , be any two equilibria. Then

WU() [ WS() 7 empty,

(there exist connections from to. ) if and only if either (in which case, the
trivial connection is the equilibrium dp itself) or index(C) > index(). Furthermore,

(2.13) dim[WU() N WS()] index(C) index().

Specifically, for any nTr < A < (n + 1)r2, the equilibria of the Chafee-Infante
equation are denoted by u,u2,...,u, and zero, which are the first, second,...,
nth, and trivial steady-state branches, respectively. Then

index(0) n, index(u) i- 1, (i 1,2,...,n).

Hence the dimension of the set of connections between any pair of solutions ui and uj

can be explicitly written as

(2.14) dim[W(u NW(u:)] j, (i > j),

(2.15) dim[W(O) N W(u?)] n- i+ 1, (1 <i < n).

3. Properties of the semi-discrete system. In this section, we describe the
Galerkin spectral method, which we use to derive a finite-dimensional system of ODEs
from the PDE (2.1)-(2.4). This system of ODEs is then used as the basis for our
numerical computation of connecting orbits. For this reason, it is important to show
that the system of ODEs inherits the underlying structure of the PDE. First, we

prove that Theorems 2.1 and 2.2 have appropriate discrete analogues for the spectral
method, giving a sound theoretical underpinning to our computational technique.
Second, we note that the theorems on the Fourier spanning basis properties of (2.1)-
(2.4) have appropriate discrete analogues, and this is then exploited in 4 to construct
an eitqcient numerical algorithm.

We seek an approximation to (2.1)-(2.4) by means of a Galerkin spectral method,
using the eigenfunctions {sin(jrcx)}= as a basis. Specifically, we set

(3.1)
N

UN(X, t) E aj(t) sin(jrx).
j=l

Let A (a(t), a(t),..., a(t))T e RN. We introduce the norms

1
N

1
N

IAI= Ea, IA]--Ek2a,
k=l k=l

to denote discrete L2 and H norms and the standard maximum norm in RN. Note
that

(3.2)
A I <[ A 10< [A I1

(3.3) A I1 N-IA
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We denote the normed vector space (RN, I" 10) by L.
Applying the Galerkin spectral technique gives

Ou Ou )ot af(), sin(krx) 0, k 1, 2,..., N,

where (., .) denotes the usual L2 inner product on [0, 1], defined by

(f(x), g(x)}- 1 f(x) g(x)dx.

This then yields the following system of ODEs:

(3.4) dak(t) _ak(t)r.k 2 f(uN(x, t)) sin(krx)dx
dt

o foak(0) ak u0(z) sin(krz)dz, k 1, 2,..., N.

We formally rewrite the system (3.4), (3.5) as

(3.6) dA(t) G(A(t) ) A(O) Ao,
dt

where

0)T.Ao (a, a, aN

The following a priori estimates are needed.
LEMMA 3.1. Solutions A(t) of (3.4) satisfy

ld
(3.7) (i) A Ig +1 A I1 < el,

2 dt
ld

(3.8) (ii)
2 dt

]d I +{f’(uN)(UN)x, (u)x} <_ 0,

d IN dA
(3.9) (iii) - (d) =-I-d-- I,

where

(3.10) IN(A) A I +(;F(uN), 1},

and F is defined by (2.5).
Proof. (i) Multiplying (3.4) by ak, summing, and using (2.8) gives

1 d f012 dt
A I +1A I< - f(u(x,t))u(x,t)dx C1.

(ii) Multiplying (3.4) by k2rak, summing, and integrating by parts gives the
result.

(iii) Multiplying (3.4) by dak/dt and summing gives the result.
We now prove a discrete analogue of Theorem 2.1. Similar results may be found

for fully discrete Galerkin methods in Shen [25] and for fully discrete finite difference
methods in Elliott and Stuart [13]. Note that for result (PD2), below, the absorbing
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set in the I" I1 norm is N-independent, although no such uniform bound is assumed
on the ]1 norm of the initial data--in this sense, (PD2) generalizes (P2).

THEOREM 3.2. We have the following conditions:
(PD1) Given Ao LN, there exists a unique solution A of (3.4), (3.5), which

satisfies

A CI(O,T;L2N) VT > O.

The mapping Ao ---, A(t) is continuous in L2N so that a continuous sernigroup SN (t)
may be defined by

SN(t)" AoL2NA(t) L2N;

(PD2) Given Ao LN, then there exist absorbing sets in the Io and I1
norms. That is, there exist constants Po,pl, and times to,t1 independent of N, and
depending only on Ao, po, and p such that

(3.11) A(t) Ig < Po Vt k to,

(3.12) A(t) I < pl Vt > tl;

(PD3) The sernigroup SN (t) possesses a maximal attractor AN, which is bounded
independent of N in the I1 norm and compact and connected in L2N;

(PD4) Equations (3.4), (3.5) have a gradient structure. Specifically, the functional
IN(A(t)) defined by (3.10) satisfies (i)IN(A)>_ -dllA[[- C2; (ii)d/dt[IN(A(t))]

dA(t)/dt ], t > 0; (iii) IN(sN(t)A) IN(A) fort >_ 0 implies that A is contained
in the set gN of equilibrium points of (3..4).

(PDb) Let WU(A) denote the unstable manifold of an equilibrium A gN. If
each member of $N is hyperbolic, then

U w (A)
Agg

Proof. (PD1) Local existence and uniqueness follows from the standard theory of
ODEs, since f C(R,R) by (F1). We now establish an a priori bound on
By (3.7), (3.2), we have

Integrating, we obtain

ld
2 dt

A{g+[A{g_<

(3.13) A(t) I< e
C1 2rt ]-

Thus IA(t)I is uniformly bounded for all t > 0. Hence, by (3.2), the same is true

fort A(t) I. Global existence and uniqueness follows from this bound. Continuity
with respect to initial data also follows directly.

(PD2) The first result follows from (3.13), with any p0 > C1/7r. To establish the
second result, apply (F3) to (3.8) to give

ld f01(3.14)
2 dt

A(t) < [b a(u)P](u)2xdx < b lA 12
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Now, by (3.7),

1 1 t"t+- A(t + O)I -- A(t) I) +
0

A(t) I1 dt < ClO;

thus

t+o 1
A(t) [dt<ClO+-po Vt>to.

Thus, applying the uniform Gronwall lemma [26] to (3.14), we obtain for t sufficiently
large,

A(i--0) I (C1-[- 0) e2bO"

Fixing 0 > 0, we see that, for t sufficiently large, we have an absorbing set in the " I1
norm by setting

PO ) 2bO
fll > C1 + e

(PD3) From the absorbing set property (PD2), we deduce that the operators
SN (t) are uniformly compact for sufficiently large t. Applying [26, Thm. 1.1, p. 23], we
deduce the existence of a connected compact global attractor, defined by A- w(Bi)
for either 0 or 1, where

Bi {A E LN IAI <_ p}.

The uniform bound in the I" I1 norm follows taking 1.
(PD4) By [17, p. 76], we deduce that

F(u) >_ -u C

for some C > O. Hence

{F(Un), 1} >_ f0 [euv(x) + C]dx

_
-elAl C k --IAI C.

Thus IN (A) defined by (3.10)satisfies

IN(A) > [[AII1 C2,

by choosing e 7r2/4/. This establishes property (i). Property (ii) follows from (3.9).
Finally, if IN(sN(t)A) IN(A) for t > 0, then

diN sN
dt

(t)A) O.

Hence, it holds that

d
I(SN(t)A)I 0

by (3.9). Thus A is an equilibrium point, and (iii) follows.
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(PD5) The system of equations is in gradient form. Furthermore, it is shown in
Theorem 3.3 (below) that the set of equilibria N is bounded in the I" I1 norm and
hence, by (3.2), in the supremum norm. Applying [17, Thm. 3.8.5] the result follows.

Let N denote the set of equilibria of (3.4). Then by (3.7) we trivially obtain the
following theorem.

THEOREM 3.3. N is bounded in the I1 norm. Specifically, for any A E N,

We now consider an algebraic property of the semidiscrete system, which is useful
in the construction of the numerical methods for computing connections described in
the next section.

PROPOSITION 3.4. The steady-state solution of (3.6) is a system of nonlinear
equations with real and symmetric Jacobian matrix.

Proof. We use the integral form of the steady state of (3.6), defined in (3.4). Thus

G(A, A) (gl(A, ,), g2(A, A), gN(A, ,))T,

where

g(A, ) -akT2k2 A-/at 2ATt, k= 1,2,...,N,

in which the Tk is the nonlinear term given by

j01 ( )Tk Tk(al, a2, aN) bm aj sin(jTrx)
m=l j=l

2rn+l

sin kTrx dx

k 1,2,...,N.

Hence the Jacobian matrix of (3.4) is real, and

(3.15) GA(A,,) A- 2,M,

where

(3.16) A diag(A- 7r2, .X- 2271-2, /- 327r2, A- N27r2)

and M (rnij)NxN. Here

(3.17)

0
(T)mi.j
Oaj

f,_ E b,(2rn + 1) alsin(lrx) sin(jrrx)sin(irx)dx,
m=l /=1

i, j=I,2,...,N.

Clearly, rnij mj, and hence the matrix M is symmetric. From (3.15), (3.16), it
follows that GA(A, ) is symmetric.

In 2 we showed that the differential equation (2.1)-(2.4) has invariant subspaces
defined by intersection of standard function spaces with certain Fourier spanning
bases. Because of the nature of the spectral method, these invariant subspaces have
natural discrete analogues. It is possible to exploit this property in the numerical
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calculation of steady solutions and also in the computation of some connections--
specifically, to compute the branch of steady solutions of (2.1)-(2.4) bifurcating from
k (krc) 2 or a time-dependent solution to (2.1)-(2.4) with initial data in Zk (see
Theorems 2.6 and 2.7). To do this, we modify (3.1) and seek

(3.18)
N

u(x, t) E aj(t) sin((2j 1)krx),
j=l

for given appropriate integer k. The use of this reduced spectral method is important
for two main reasons.

Remark 3.5. (i) For steady solutions, the use of the Galerkin method based on

(3.18) reduces computer time considerably since the dimension of the problems solved
is far smaller.

(ii) For the computation of time-dependent problems, the use of (3.18) has the
more important consequence that certain heteroclinic connections may be calculated
purely by solving an initial value problem in an appropriate invariant subspace. We
illustrate this by considering the Chafee-Infante problem. It is straightforward to
calculate connections to stable limit sets at t +oc, since they can be found by solving
initial value problems--whereas, general connections require the solution of boundary
value problems (BVPs) in time. It is known (see Theorem 2.9) that for > r2,
the only stable solutions are u(A), and hence that only heteroclinic connections with

Ul (A) as the limit set at t oc will be stable and computable as solutions of an initial
value problem. However, if we work with initial data in the subspace Zk, Proposition

+ () are stable. Hence, by working with2.8 shows that the branches of solutions u
a Galerkin method based on (3.18), we can compute certain connections that are
unstable as a solution of (3.6) purely by solving an initial value problem. These form a

starting point for the numerical continuation techniques described in the next section.

4. Numerical methods for connections. Heteroclinic connections for the
reaction-diffusion problem (2.1), (2.2) are given by solutions to the problem

Ou
kAf(u)=O, xe(0,1), te(-oc,Ot Ox

n(0, t) n(1, t) 0,

lim u(x, t) 05,

lim u(x, t) b,

where , b E g the set of equilibria. This is a BVP defined on an infinite interval.
Note that the phase is free, and this must be set to obtain a well-posed BVP. Applying
the Galerkin method, we obtain the following system of ODEs:

dA(t) G(A(t) ) O,(4.1)
dt

(4.2) lim A(t) A_ lim A(t) A+,
t--+--cx

where G RN x R ---, RN is defined by (3.4)-(3.6), and A_ and A+ are steady-
state solutions of system (4.1) belonging to gN and are approximations to the steady
solutions qS, . We solve problem (4.1), (4.2) by truncating it to a problem that



HETEROCLINIC CONNECTIONS FOR GRADIENT PDES 757

is defined on a finite interval, as in [1], [22], [24]. For the purpose of obtaining a

well-defined BVP, we add a phase-fixing condition, and sometimes add what we call
determining conditions. The determining conditions are needed when the dimension
of the manifold of heteroclinic connections between two equilibria is greater than 1

(see Theorem 2.10); they are used to parameterize the family of connections so that
numerical continuation may be used within the family.

Let the truncated interval be 7"=IT_, T+]. Define a projection operator L+ E
RNxN (respectively, L-s RNxN) whose rows generate the subspace spanned by
the eigenvectors corresponding to the positive eigenvalues of Ga at the steady solution

A+ (respectively, to the negative eigenvalues of Ga at A_). Here N (respectively,
Ns) is the number of positive eigenvalues of Ga at the point A+ (respectively, the
negative ones at A_). Then the truncated problem defined on the interval 7" is

(4.3) dA(t) G(A(t) ),) t 7",
dt

(4.4) L+(A(T+) A+) O,
(4.5) L_(A(T_) A_) O,

(4.6) P(A) 0.

The boundary conditions (4.4), (4.5) in the above system are called projected boundary
conditions. Condition (4.4) is a projection onto the stable manifold when t
while (4.5) is a projection onto the unstable manifold of A+ when t + -. Such
a system was introduced by Beyn in [1] and [2] for the purpose of computing con-

nections for ODEs following their introduction in a broader context by [22] and [24]
and, more recently by [15] and [16]. Similar methods were discussed for connecting
orbit problems by Doedel and colleagues in, for example, [9], [41, [11], and [10]. (A)
denotes the phase-fixing condition, together with any determining conditions (if nec-

essary). The determining conditions are not required in [1] and [2], since those papers
are concerned with the computation of isolated connections. We detail our choices for
these extra conditions below.

A suitable choice for the truncation interval T IT_, T+] is not easy to determine,
in general, except as part of some continuation process. However, in some special
cases, we can obtain reasonable estimates for it, as we now describe. For any fixed
parameter A A0, A_ and A+ are on particular steady-state branches of (4.1).. From
the results of Proposition 3.4, we know that the eigenvalues of GA(A+,)o) are real
and that there is a negative eigenvalue #+ of smallest magnitude. Similarly, there is
a positive eigenvalue of GA(A_, A0) of smallest magnitude, denoted #-. Suppose that
A(t) is a solution of the system of (4.a), and that it approaches A+ when t --+ +cx,
where A+ is a steady solution of (4.a). Linearizing about A+, we obtain

(4.7) d(A(t) A+) GA(A+,Ao)(A(t) A+).
dt

If the tolerance we are using in the numerical computation is e, then, arguing from the
slowest decay rates, we require that e+T+ < e, and thus we obtain the lower bound

(4.8) T+ > -log(e)/#+.

Similarly, we can obtain the following result for T_

(4.9) T_ < log(e)/#-.
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The estimates given by (4.8) and (4.9) give a lower bound for an appropriate
truncated interval. When considering connections that approach other equilibria be-
tween the c and a limit sets or that exhibit metastability [5], these estimates are not
suitable, and longer time intervals are required.

Before describing specific computational cases, we now discuss the determining
conditions. For (4.3)-(4.6), to define a well-posed BVP, we require N boundary
conditions. For sufficiently accurate spectral approximation (sufficiently large N),
Nu index(), since the largest eigenvMues of the Frechet derivative of (2.11) con-

verge under spectral approximation [7]. Similarly, for large N, Ns N- index(q),
Thus, together with the phase condition from (4.6), conditions (4.4), and (4.5) yield

(4.10) N + 1 + index(4)) -index()

boundary conditions. From Theorem 2.10, however, the dimension of the manifold of
heteroclinic connections is given by (2.13). Hence (4.10) gives

(4.11) N + 1 dim[WU() C WS()]

boundary conditions. Thus, if the connections have dimension 1 (i.e., a unique con-

nection, up to phase shifts), no extra boundary conditions are required. However, if
the connections have dimension rn (i.e., an rn- 1 parameter family of connections in

H, up to phase shifts), then rn- 1 extra boundary conditions are required.
For the Chafee-Infante problem, the value of rn can be determined by formulae

(2.14), (2.15). We now discuss suitable choices for the extra m-1 boundary conditions,
noting that these conditions represent parameterization of the global attractor. We
concentrate on problem (2.1)-(2.4), together with the supplementary condition (F4).

4.1. Connections with c-limit set on the first branch. Since the first
branch u(,k) (see Fig. 2.1, 2) is stable both theoretically (Theorem 2.9) and nu-
merically, we have N 0. Hence the boundary condition (4.4) is redundant. Such
connections are simple computationally, since it is only necessary to solve the initial
value problem (4.3) together with initial data A(t0); see Remark 3.5(ii). For almost
all initial data A(t, 0), the solution A(t) approaches A+, an approximation to u+ (A)
or u-(A) as t -- oc. (For the PDE, the initial data on the stable manifolds of Ul

:k is
dense in H [21].) Hence, for any fixed parameter A A0, we consider the following
initial value problems:

dA(t) a(A(t) o)
dt

N-N
A(to) +

j=l

Here, j, j 1, 2,..., N Ns are orthonormalized eigenvectors of GA (A-,/0) that
correspond to its positive eigenvalues, and ej are real, positive, and small numbers.
We normalize the ej so that

N-N

j=l

Hence we have (N- Ns 1) free parameters to vary, which represent parameterization
of the attractor. These are the determining conditions in this case.
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4.2. Connections inside the invariant subspaces. Using Theorem 2.7, we
restrict initial data to the invariant subspace Zk. In this subspace, the first branch of
bifurcating solutions is uk (A), and, by Proposition 2.8, this solution is stable in Za. If
we apply the restricted Galerkin expansion given by (3.18), then the same arguments
as in 4.1 may be used to compute those connections with w-limit set on ua (A) E Za,
purely as solutions of initial value problems.

These computations provide starting points for the continuation methods we now
describe to approximate connections that are not attainable as solutions of initial
value problems.

4.3. General connections. For most connections, it is not possible simply to
solve an initial value problem, and the BVP (4.3)-(4.6) must be tackled directly. For
this, we use the package AUTO [9], [11], and so we rescale the problem onto a unit
time interval as follows"

(4.12)

(4.13)
(4.14)
(4.15)
(4.16)

dA(t)
dt

pG(A(t), ), t e [0, 1],

L+u(A(1)-A+)-0,
L_8(A(O) A_) O,

p(A) =0,

d(A) =0,

where p denotes the time-rescaling parameter and is usually chosen adaptively during
any continuation procedure. Here qp(A) is the phase condition, and q2d(A) defines
the determining condition(s). It is known that the package AUTO is less sensitive to
integral (nonlocal) conditions than to local ones, and so, for the phase condition, we
take

/op(A) (A(t) (t))TG(A(t), )dt,

where A(t) is the solution at the last continuation step solution in that system; such
a choice is recommended in [10].

If the connections form a manifold of dimension rn > 1, we require (rn- 1) extra
determining conditions (as argued above). We then use these extra conditions to
perform continuation on the attractor. A starting point for the numerical continuation
may be obtained from the initial value methods of 4.1 and 4.2, by working in an
appropriate subspace. We describe the particular choices for qd(A) in the 5 where
specific connections are computed. As for the phase condition, we implement d(A)
as an integral condition over time.

Finally, we note that in all the numerical results described in 5 and 6, we took
N 20; that is, we used twenty Fourier basis functions in the Galerkin mthod. This
choice is adequate, and the results are robust to increases in N.

5. Numerical results for the Chafee-Infante problem. Here we concen-
trate on (2.1)--(2.4) with the choice f(u) u3- u. Figure 2.1 shows the steady-state
solutions computed using the restricted Galerkin spectral expansion (3.18) based on
the invariant subspaces Zk defined by (2.12). Throughout the following, we use the
notation uk (A) as detailed in Theorem 2.9 for steady solutions of the problem. In the
heading of the subsections, c and w denote the a and w limit sets of the computed
heteroclinic orbit, respectively.
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FIG. 5.1. A 130, tt 0. The time interval is (a) 0.0 < < 0.3967, (b) 0.3967 <_ <_ 0.4667,
(c) 0.4667 _<

_
0.5967, and (d) 0.5967

_ _
0.9.

5.1. a(u(O)):0, w(u(O)):u(A), A- 130. For A- 130, we have97r2 < A <
167r2. Thus, by Theorem 2.10, the connections between 0 and u() form a manifold
of dimension 2. Then, by (4.11), we require one extra determining condition. For
this, we take

(5.1) d(A) [a3(t)]2dt- #.

Initially setting # 0, we obtain solutions for which an(t) 0 for all t. These
represent solutions of the PDE that lie in the invariant subspace Z. defined by (2.12)
and that may be found by the initial value techniques in. 4.2. Such a solution is
shown in Figs. 5.1 and 5.2. Figure 5.1 shows solution profiles u(x,t) against x at
various times, and the connection from the trivial solution to u2+ (x) is clear. Note the

which follows from working in Z2antisymmetry of the solution profiles about x 5,
t) is plotted as a function ofThis is reflected in Fig. 5.2(c), where the midpoint u(7,

t and clearly seen to be zero. Now we take # as a continuation parameter, and, for
nonzero #, the connections do not lie in an invariant subspace so it is necessary to
solve the BVP to find connections. For large values of #, the connections between the
trivial solution and u+ (x) approach the third solution branch before finally reaching
the second branch at +x. Such a solution is illustrated in Figs. 5.3 and 5.4, for
# 0.8622 10-1. In particular, Fig. 5.3(b) clearly shows that the solution is very
close to the third branch. Figure 5.4(c) shows how the antisymmetry for # 0 is
broken for # # 0.

As # increases, we find that the connection from zero to u+ becomes closer and
closer to the union of a connection from zero to u3

+ and a connection from u3
+ to u+.

It is possible to approximate these two connections directly, and this has been done.
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FIG. 5.2. A 130, tt 0. The argument of u denotes the x variable. (a) indicates the
distribution of mesh points in time, which is uniform here,
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FIG. 5.3. A 130, tt 8.622 10-2 The time interval is (a) 0.0 <: <_ 1.4719, (b)
1.4719 _< <_ 1.6837, (c) 1.6837 <_ _< 1.7324, and (d) 1.7324 _< <_ 3.2279.
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FIG. 5.4. A 130, It 8.622 X 10-2. The argument of u denotes the x variable. (a) indicates
the distribution of mesh points in time at this continuation step.

Throughout the continuation, the time rescaling parameter p is chosen as a func-
tion of # such that p(#) is monotonically increasing with #.

5.2. a(u(O)): 0, re(u(0)): u(l), I- 190. For A 190, we have 16r2 < I <
25r2. Thus, by Theorem 2.10, the connections between 0 and u(l) form a manifold
of dimension 3. Then, by (4.11), we require two extra determining conditions. For
these, we take

/o(5.2) 9(A) [a3(t)]dt- 1,

/o(5.3) 2d(A) [a4(t)]dt- #2.

As before, we compute an initial approximation by working in an invariant subspace
in which u are stable and then solve an initial value problem. The subspace we take
here is

span{sin(2jrx)lj E N}.

In this subspace, the trivial solution zero at A 190 has a two-dimensional unstable
manifold spanned by {sin(2rx), sin(4rx), }; by taking initial data that is significantly
larger in sin(4rx), than in sin(2rx), we find an initial approximation that passes
close to one of the fourth branches u before ending up at u+. Such a connection
corresponds to #1 0 and nonzero #2; see Figs. 5.5 and 5.6. Having found this initial
approximation, we perform continuation in the parameter #1 to find solutions which
pass close to both the fourth and third branches of steady solutions before reaching
the a; limit set u2+. Such a connection is shown in Figs. 5.7 and 5.8.
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FIG. 5.5. A 190, /zl 0, /z2 1.85034 10-2. The time interval is (a) 0.0 <_ <_ 0.3967,
(b) 0.3967 <_ _< 0.4667, (c) 0.4667 <_ <_ 0.5967, and (d) 0.5967 _< <_ 1.0.
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FIG. 5.6. A 190, 1 0, /-t2 1.85034 x 10-2 The argument of u denotes the x variable.

(a) indicates the distribution of mesh points in time, which is uniform here.
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FIG. 5.8. A 190, Pl 9.672 x 10-2, #2 1.85034 x 10-2 The argument of u denotes the x
variable. (a) indicates the distribution of mesh points in time at this continuation step.
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FIG. 5.9. ,k 190, it1 9.672 10-2, it2 1.85034 10-2. Three-dimensional view of the
heteroclinic orbit.

Finally, we show a three-dimensional graph of a heteroclinic orbit to emphasise the
fully time-dependent nature of the connections we are computing. Figure 5.9 involves
the same data as Figs. 5.7 and 5.8, but is three-dimensional. Note that "time" in
Fig. 5.9 has been rescaled according to the distribution of meshpoints indicated in
Fig. 8(a).

6. Numerical results for the Cahn-Hilliard equation. In this section, we
describe numerical results for the Cahn-Hilliard equation

(6.1) ut -(Ux. Af(U))xx, x E (0, 1), t > 0,

together with the boundary conditions

(6.2) u(0, t) w(1, t) u(1, t) w(1, t) 0, t > 0,

where w := -U,x + .f(u), and appropriate initial conditions. We assume that f(u)
is given by (2.4).

For Neumann boundary conditions, existence and uniqueness is proved in [12],
and the existence of absorbing sets and attractors is described in [26]. The equation
we consider does not have the physical significance of the equation with Neumann
boundary conditions. However, we study here the interesting mathematical question
of whether the global attractor for the Chafee-Infante problem (2.1)-(2.4) can be
continuously deformed into that for the Cahn-Hilliard equations (6.1), (6.2)--note
that both these problems share the same set of equilibria. To this end, we introduce
the family of PDEs

(6.3) u, -(u.. Af(u)).x + (1 -y)(Uxx Af(u)), x E (0, 1), t>0,

together with the boundary conditions

(6.4) u(0, t) w(1, t) u(1, t) w(1, t) 0, > 0
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and appropriate initial conditions. Note that, for 3‘ 0, we obtain the Chafee-
Infante problem, while, for 3‘ 1, we obtain the Cahn-Hilliard equation; for any
0 _< 3‘ _< 1, the equation has a gradient structure. It is now possible, given an
approximation to the Chafee-Infante problem, to perform numerical continuation in

3‘ to determine whether there is a simple homotopy connecting the global attractors
of the two problems.

Practical aspects of the continuation in 3’ are relatively straightforward, and we
only make two observations about this.

Remark 6.1. (i) To compute connections from the trivial solution to a nontriv-
ial w limit set, we require the eigenvectors spanning the unstable manifold of the
co limit set, and these depend on 3‘. However, numerical computation reveals that
the eigenvectors spanning the unstable manifold are insensitive to 3‘, and so we sim-
plify the computations by approximating the spanning eigenvectors simply by linear
interpolation between the Chafee-Infante and Cahn-Hilliard equations.

(ii) When using AUTO, the BVP defining connections is rescaled onto the unit
interval as in (4.12)-(4.16). This introduces the time rescaling parameter p. A sim-
ple argument based on a one-Fourier component Galerkin method indicates that the
behaviour of p-1 is linear in 3‘, and so we take

p(3‘)
p(CI)p(CH)

x +
where p(CI) and p(CH) denote appropriate values of p for the Chafee-Infante and
Cahn-Hilliard problems, respectively. This choice is successful in all our computa-
tions.

Numerically, we find that continuation in 3‘ leads in a straightforward way from the
global attractor of the Chafee-Infante problem to that of the Cahn-Hilliard equation
and that, geometrically, there is little to distinguish the two attractors. We describe
some specific results for the case where A 190.

6.1. a(u(O)) O, co(u(O)) u(A), A 190. For this value of A, we compute
a solution of the Chafee-Infante problem by the methods described in 5.2, taking
#1 5.4979 x 10-2 and #1 1.8503 x 10-2. We then perform continuation in 3‘,
as described above. As in 5.2, the orbit starts at the trivial solution and then
approaches the fourth and third steady-state branches before reaching the co limit
set on the second branch. Figures 6.1-6.4 show numerical results for the connecting
orbit in the two cases where 3‘ 0.5 and 3‘ 1. Note that the connections are barely
distinguishable in their geometry but that the timescales of the two problems differ
by a factor of about two.

Similar calculations have been performed for the Cahn-Hilliard equations for
other parameter values A; the results are similar and show a continuous deformation
from the Chafee-Infante problem. The study of (6.3) together with homogeneous
Neumann boundary conditions is the subject of current investigations.
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FIG. 6.1. A 190, #1 5.4979 x 10-2, #2 1.8503 x 10-2, 40, 0.5. The time interval is

(a) 0.0 _< <_ 0.0447, (b) 0.0447 < < 0.0466, (c) 0.0466 <_ <_ 0.0536, and (d) 0.0536 < <_ 0.0875.
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FIG. 6.2. A 190, #1 5.4979 x 10-2, #2 1.8503 x 10-2, 0, 0.5. The argument of u
denotes the x variable. (a) indicates the distribution of mesh points in time.
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FIG. 6.3. A 190, it1 5.4979 10-2, #2 1.8503 10-2, / 1.0. The time interval is (a)
0.0 <_ _< 0.0228, (b) 0.0228 <_ <_ 0.0240, (c) 0.0240 <_ <_ 0.0274, and (d) 0.0274 <_ <_ 0.0446.
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FI(;. 6.4. k 190, ttl 5.4979 10-2, tt2 1.8503 x 10-2, "), 1.0. The argument of u
denotes the x variable. (a) indicates the distribution of mesh points in time.
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