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BLOWUP IN A PARTIAL DIFFERENTIAL EQUATION WITH
CONSERVED FIRST INTEGRAL*

CHRIS BUDDY, BILL DOLD, AND ANDREW STUART:

Abstract. A reaction-diffusion equation with a nonlocal term is studied. The nonlocal term acts to

conserve the spatial integral of the unknown function as time evolves. Such equations give insight into

biological and chemical problems where conservation properties predominate. The aim of the paper is to
understand how the conservation property affects the nature of blowup.

The equation studied has a trivial steady solution that is proved to be stable. Existence of nontrivial
steady solutions is proved, and their instability established numerically. Blowup is proved for sufficiently
large initial data by using a comparison principle in Fourier space. The nature of the blowup is investigated
by a combination of asymptotic and numerical calculations.
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1. Introduction. It is well known that, for certain initial and boundary data,
solutions of nonlinear parabolic equations of the form

(1.1) u,=Uxx+f(u)

may blow up in a finite time. Examples of such behaviour when the function u(x, t)
satisfies Dirichlet boundary conditions are given in [3], [8], [13], [17], and [18], and
examples with Neumann boundary conditions are studied in [5].

In many evolutionary problems, the function u(x, t) must satisfy additional con-
straints, and an example of such is that the integral of u(x, t) is conserved throughout
its evolution. This condition occurs naturally in problems arising in chemistry and
mathematical biology in which the total mass of a chemical or an organism is conserved.
Examples of such systems are the chemotaxis equations discussed in [20], [6], and
[7]. Similar constraints occur for the Cahn-Hilliard equations of the phase density for
a binary alloy 10], and other examples of nonlocal problems are given in 12] and 19].

In this paper, we consider the question of whether the addition of a constraint
on the first integral of u(x, t) affects the nature of its blowup behaviour. In a subsequent
paper, we also consider the effect of including convective behaviour in (1.1), as well
as the constraint on the first integral, to obtain a system of equations resulting from
a similarity reduction of the Navier-Stokes equations.

Here we study the following problem defined on the interval [0, 1]:

(1.2) ut=Ux+u2-K2(t),

together with the Neumann boundary conditions

(1.3)

and the integral constraint

ux(O)=u()=o

(1.4) u(x, t) dx O.
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We assume that for 0

(1.5) u(x,O)=uo(x),

where Uo(X) satisfies the integral constraint.
The solutions we consider are those that are sufficiently smooth to lie in the spaces

u(x, t) H’(f) C1(0, T), K: C’(0, T).

This problem has two boundary conditions and an integral constraint. To com-
pensate for this, the function K (t) is an unknown and must be determined as part of
the solution. Indeed, a simple calculation shows that

(1.6) K2(t) u2(x, t) dx.

Following [5], we may apply the theory of semigroups [15] to deduce that, for
sufficiently smooth initial data Uo(X), problem (1.2)-(1.4) has a solution u(x, t) local
in time [9]. For the remainder of this paper, we always assume that Uo(X) is smooth
enough for this to occur, and we study the resulting evolution of the solution. In
particular, we examine solutions that blow up (both in the L and L norms) at some
finite time T.

Problems of the form (1.1) are typically found to have a blowup set of zero
measure. However, the existence of the global term K(t) in problem (1.2) leads to a
nonlocal form of blowup, so that lu(x, t)[ tends to infinity as t-> T at all points on the
interval [0, 1]. We refer to this as nonuniform global blowup although u(x, t) blows
up everywhere in the domain. There are points in the interval where the rate of blowup
is more rapid than elsewhere in the domain. (We reserve the term uniform global
blowup for systems in which u(x, t)-> at a similar rate for all points of the domain.
We consider systems that behave in this manner in a subsequent paper.) Other examples
of nonlocal blowup are given in [2] and [16].

In this paper, we establish the following results on the asymptotic behaviour of
the function u(x, t) satisfying (1.2)-(1.4).

THEOREM 1.1. (i) The problem has a zero steady state and, for each positive integer
m, has precisely two nonzero steady-state solutions with m zeros on the interval [0, 1 ].

(ii) There is a constant C such that, if Uollc < C, then both

Ilu(x, t)ll.,0 and Ilu(x, t)ll0 as tc.

(iii) If 1o Uo(X) COS(nTrx) dx>O for all n>0 and if o Uo(X) cos(rx) dx>
1o Uo(X) cos (2.rrx) dx, then, if

UO(X) COS (2rx) >dx 4r

or if

then

Uo(X) cos (7rx) dx > 4x/ r2

u(O, t) and Ilu(x,t)ll 
both tend to infinity at a finite time T.

Thus, for small initial data, u(x, t)-> O, whereas, for suitable larger data, it blows
up in a finite time. We show by numerical examples, that the above sufficient conditions
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on blowup are by no means tight. In addition, if we presume that a blowing up solution
has a single peak at x 0, then we may establish the following asymptotic description
of its behaviour as t--> T.

PROPOSITION 1.2. (i) As t--> T, then, if
0<= x < O(( T- t)/2J log T- t)l’/),

then

(1.7)
1 (u(x, t)

T-t+ 1+

where

(1.8)

5 log ()) x

4 -+O((T-t)-)’

a og T- -> o as t--> T-,
and a is a constant determined both by the initial conditions and the effects of the integral
constraint.

(ii) Away from the point of blowup at x =0, u(x, t) takes on the following basic
asymptotic structure:

u(x, t)’-" T-t+ 1+- + O(x)
4

(1.9) x/Tr [ 5 log Ilog (T-t)l] +O((T_t)_l/2)-(T- i/ Ilog (T- t)l 1 - ilog (T_ t)l
where A ce -log (x/8). Thus u(x, t) exhibits nonuniform global blowup over the interval
[0, 1 and is nearly constant in space for much of this interval.

(iii) The function u(x, t) has a zero x, such that

2x/
x, (T- t)/llog (T- t)l/

(1.10)

[71ogllog(T_t)]+O(1)l1- ilog(T_t)l log(T-t)

We schematically illustrate the form of u(x, t) close to blowup in Fig. 1.1.
It is interesting to compare the conclusions of Theorem 1.1 and Proposition 1.2

with results on the chemotaxis equations presented in [6] and [7]. This system describes
the evolution of a collection of cells in a fixed domain for which a change in the

u(x)

FIG. 1.1. Schematic of the shape of the function u(x, t) close to blowup.
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chemical concentration of the medium containing the cells can result in cell clustering.
It is observed experimentally that the cells can form aggregates of high density in a
process called chemotactic collapse. This process can be modelled by a system of two
parabolic partial differential equations (PDEs) describing the cell and chemical con-
centrations, with Neumann boundary conditions and a quadratic nonlinearity. In this
system, the cell density becomes infinite (blows up) in a finite time, although the
integral of the cell density over space (the total cell mass) is conserved. By using
asymptotic techniques, it is demonstrated in [6] that blowup occurs if the total mass
of cells exceeds a critical value and that the initial density profile is sufficiently
concentrated. These results are similar to the conclusions of this paper and indicate
that blowup can occur in many systems with conserved quantities.

We present some numerical calculations that support the asymptotic formulae in
Proposition 1.2 and show that the asymptotic behaviour close to blowup is independent
of the initial conditions. In contrast, the blowup time T depends critically upon Uo(X),
and, for large values of Uo(0), we may estimate it roughly from (1.7) to be T--- 1/Uo(0),
as for the ordinary differential equation (ODE) du/dt u2.

We may compare the formulae in Proposition 1.2 with expressions derived by
Dold [8] and Galaktionov 13] that describe the blowup of the following unconstrained
system:

(1.11) v, v, + v, v(o) v,( o, v(O, x) Vo(X).

It is shown in [3] and [11] that, for suitable initial conditions as t- S where S is the
blowup time, this system blows up at the single point x =0. Close to x- 0, v(x, t) has
a very similar form to expression (1.7), although it appears, from numerical evidence,
that the corresponding value of a tends to be higher for this unconstrained problem.

In Fig. 1.2, we demonstrate this by presenting a numerical calculation of the form
of u(x, t), v(x, t) for problems (1.2), (1.4), and (1.11), respectively, (the details of the
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FIG. 1.2. Comparison of the profiles of the constrained and unconstrained problems together with two

asymptotic profiles.
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numerical scheme are given in 6). In this calculation, we use the initial data Uo(X)=
100cos(Trx) and Vo(X)= 100cos(Trx). The corresponding blowup times T, S are,
respectively, T--0.0171... and S =0.0111 In the figures, we stop the calculations
at times t, te so that

u(0, t,): V(0, re): 106.

We compare the functions u(x, t), v(x, te) with plots of two of the functions described
by formulae (1.7), (1.8) labelled asyu(x) and asyv(x) in which we take c =-9 and
c ---0. We find that the value c 0 gives a good fit for v(x, t) and that a lower value
is required to accurately model u(x, t).

These figures demonstrate that, as well as causing the function u(x, t) to exhibit
nonuniform global blowup, the effect of the integral constraint is to sharpen the shape
of its peak in comparison to the peak of v(x, t) and to increase the blowup time.

The layout of this paper is as follows. In 2 we study the nonzero steady solutions
of problem (1.2), (1.4) and characterise these in terms of their number of zeros. In 3
we show that the zero steady solution is stable and, by numerically computing the
normal mode growth rates of the nonzero steady states, show that these are unstable.
The resulting evolution of u(x, t) is then calculated numerically. In 4 we establish
that, for suitable Uo(X), u(x, t) does blow up in a finite time T. In 5 we examine the
asymptotic structure of u(x, t) close to the blowup time and establish the formulae in
Proposition 1.2. Finally, in 6 we present some numerical calculations supporting
Proposition 1.2. It is well known [3] that such numerical calculations are difficult,
because the asymptotic structure described in (1.7) only becomes apparent when
[log T- t)[ is large, and, for these values of t, u(x, t) is very large indeed. Consequently,
the numerical calculation is prone to errors. We overcome this by using a systematic
remeshing of the interval [0, 1] as t- T. Our numerical approach is similar in spirit
to the algorithm described in [3], but uses much less a priori information about the
solution and hence is applicable to a wider class of problems. The close agreement
we find between the asymptotic formulae and the numerical calculations serves to
justify both our asymptotic and numerical approaches.

2. The existence of steady-state solutions. In this section, we prove the existence
of infinitely many nonzero steady-state solutions ofproblem (1.2), (1.4). These solutions
satisfy the ODE

io(2.1) u + u K 0, ux(O) Ux(1) O, u(x) dx O.

LEMMA 2.1. For each integer m > 0, problem (2.1) hasprecisely two nonzero solutions
u,,(x) and v,(x) such that Urn(O)>0> Vm(O), and both u, and Vn haveprecisely m zeros
in the interval (0, 1).

Moreover, if x < 1/m, then Urn(X)= meul(mx) and v,,(x)= m2vl(mx).
Proof To establish the existence of these solutions, we use rescaling and phase-

plane arguments similar to those used in [21].
Suppose that the function w(s) is a solution of the following differential equation

problem:

(2.2) w.L + we- 1 0,

(2.3) w(O)=w(K/2)=O,
K/2

(2.4) w(s) ds =0.
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By setting

(2.5) u(x) Kw(K/2x),
a simple calculation shows that u(x) is a solution of problem (2.1). We may exactly
integrate (2.2) to deduce that any solution of (2.2) satisfies the following identity:

(2.6) -ws+- -w= C

Here C is a constant. From this identity, we can see that (2.2) has a series of bounded,
periodic solutions parameterised by C. Indeed, in the phase plane (w, ws), these
solutions lie on a series of closed curves. These curves enclose the stable centre
(w, ws)=(1, 0) for which C =0 and are bounded by a homoclinic orbit F, which
includes the unstable saddle point (-1, 0) so that C 4/3. It is easy to show that F
intersects the line w =0 at the point (2, 0), and a further calculation shows that it
corresponds to the exact solution WH(S)--2--3 tanh2 (s/,v/) of problem (2.2). We
illustrate the form of the phase plane in Fig. 2.1.

FIG. 2.1. Phase plane trajectories satisfied by solutions of the steady-state equation.

A solution of problem (2.2), which satisfies the boundary conditions (2.3), corres-
ponds to a trajectory in the phase plane that intersects the w’= 0 axis. To satisfy the
integral constraint (2.4), such a trajectory must also intersect the line w =0. It also
follows that, from the symmetry of the differential equation (2.2), such a trajectory is
symmetric about the line w’=0. Let a solution of (2.2), (2.3) correspond to a trajectory
that intersects the line w’=0 at the point A (3, 0), 1 < 3’ <2, when s =0, and then
intersects the line w’= 0 again at a first point B (-6, 0), 0 < 6 < 1 when s K /2. That
is, we consider a solution of (2.2), (2.3) involving only a single transition from A to
B on an orbit in the negative half plane w’-< 0. The function w(s) is then a continuous
function of 3’. Hence, both K and the integral

1(3,)= w(s, 3,) ds
0

are also continuous functions of 3,. If 3, is close to 1, then w(s) is a small perturbation
of the steady solution w-- 1 so that

w(s) 1+(3,- 1) cos s.

Thus, K/2-Tr/,,/ and I(3,)=zr/x/>0. Similarly, if 3, is close to 2, then w(s) is
"close" to w,(s) in the sense that, on any compact interval, w(s) wn(s) as 3, 2.
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We may deduce that, as y- 2, then KI- and I(y)--. It follows that there is at
least one value of 3/such that 1 < ),<2 for which 1(3/)=0. It is shown further in [22]
that y is unique. For this value of % the function w(s) satisfies all the conditions
(2.2)-(2.4). Furthermore, w(0) > 0 and w(s) has precisely one zero in the interval [0, 1].
We may similarly construct another solution with one zero by taking the portion of
the trajectory that lies between B and A in the upper half plane for which w’(s)> O.
We denote these two solutions as w+(s) and w-(s), respectively. It is clear from the
symmetry of the system that w+(s) w-(K /2_ s). We now rescale the solutions so that

u(x)= Kw+(K/2x) and v(x)= Kw-(K/2x).
Further solutions may be constructed from these two basic solutions by reflecting and
rescaling. We may set K mZK1, and, for example,

uz(x) 4u(2x) if 0 <_- x <_- 1/2, u2(x) 4v,(Z(x -1/2)) if1/2-< x _-< 1,

v(x)=4v(2x) if0 <x <-
=2, v2(x)=4u(Z(x-1/2)) if1/2 <x <1,

with similar constructions for u,,(x) and v,,(x).
The proof of this result leads to a numerical algorithm for calculating the functions

u(x) and v(x), which gives the following values for the above constants:

KI/2=4.2483679, w/(0)=1.9988307, w-(0)=’0.94032.

The resulting functions have the form illustrated in Fig. 2.2.

3. The stability of the zero steady state and the evolution of the solution from the
nonzero steady states. We have now shown that problem (1.2), (1.4) has a sequence
of nonzero steady-state solutions as well as a zero steady state, in this section, we
prove that the zero steady .state is stable to small perturbations. We also demonstrate
by numerically computing their unstable eigenmodes that the nonzero steady-state
solutions are unstable. We determine numerically the resulting evolution of the solution
as it blows up in a finite time. Finally, we also consider the evolution of the function
u(x, t) from a variety of initial data and determine a threshold for blowup to occur.

The stability ofthe zero solution ofthe unconstrained problem (1.1) orthe existence
of solutions that blow up in finite time is often proved by using the maximum principle
in the following form: If u(x, t) is a solution of problem (1.1) with initial data Uo(X)
and if v(x, t) is another solution with initial data Vo(X), then, if Uo(X)< Vo(X) for all
x (0, 1), then u(x, t) < v(x, t)for all x (0, 1) and for all such that u(x, t) and v(x, t)
exist as bounded functions. The stability (or finite-time blowup) of a positive solution
may then be proved by bounding it above (or below) by a known stable (or unstable)
solution.

This form of the maximum principle cannot be applied easily to the constrained
problem (1.2), (1.4) because, if Uo(X)< Vo(X), then, when we consider their integral,
it follows that

0= Uo(X) dx < Vo(X) dx =0,

which is a contradiction. Thus, Uo(X) and Vo(X) must intersect at one point at least.
Instead of using the maximum principle, we prove the stability of the zero solution of
(1.2), (1.4) by using an energy argument.

LEMMA 3.1. (i) Suppose that u(x, t) is a solution ofproblem (1.2), (1.4) such that
u(x, t) HI(O, 1); then there is a constant C>0 such that, if ]]Uo][ < C, then [[u[[t-> 0
as t->.
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ul(x)

0.18

U2(X)

v2(x)

FIG. 2.2. Forms of the steady-state solutions (a) u(x), (b) u2(x), and (c) v2(x).
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(ii) If, furthermore, u(x, t) H2(O, 1), then Ilulln,O as t-->oo, and hence
as t- x3.

Proof If we multiply (1.2) by u and integrate with respect to x, it follows that

Io’ Io’2atllull= UUx dx + u dx u dx u= dx.
o

We may integrate this by pas to deduce that

1 d Io Io2
U

2 dt Ilull=- ux dx+ dx.

It follows from HSlders inequality that

Io’ (Io3 dg< U
2 dg 4 dx Ilullllull4.

As o u dx 0, we may deduce from the form of the Sobolev imbedding theorem quoted
in [4] that

1 fo’
where C > 0 is a constant. Combining these inequalities, we have

2d1111< xdx - C

Moreover, the Poincar inequality combined with the condition Ilo u dx 0 again implies
that there is a constant A > 0 such that

Combining these inequalities, we may deduce that, if ]lu < G then

1 d -1

2 at Ilull=< (c-[lull)llull 2
L

Thus, u 0 as . This proves (i).
To prove (ii), we first differentiate (1.2) with respect to x to give

xt Uxxx + 2Ux.

Multiplying by Ux and integrating with respect to x gives

f Io fo2 dt uxdx=- uxdx+2 uudx,

where we have made use of the assumption that u is suciently smooth for the above
integrals to exist. It follows from H61ders inequality and the Sobolev imbedding
theorems that there is a constant D such that

1 d 2

2 dt [[Uxl2-llxxil=+ 2illlllullL -II ull=+ Ilulllluxll L

Thus

We now suppose that

2 at Ilull2=-Iluxxlt2= 1- ttutl 

Ilu[[L2< min --e--, C
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for some fixed e > 0. It then follows from the Poincar6 inequality that there is a further
constant E > 0 such that

1 d
2 dt

Thus Ilu ll =- 0 as tc, and hence Ilull-0. This proves (ii). 151
Having proved that the zero steady solution of (1.2), (14) is stable to small

perturbations, we now demonstrate that the nonzero steady states are unstable. To do
this, we consider a small time-dependent perturbation to the steady solutions u,,(x)
and v,,(x), which takes the form e e’2’d/(x) for e<< 1. Similarly, we consider a
perturbation of the form em2 eX"2’J to the constant K2. To leading order, q and J
satisfy the following ODE:

(3.1) q,,, + 2w(x)q m2j Am2, x(O) qx(1) O, q(x) dx O,
o

where w(x) represents either u,,(x) or v,,(x). It is immediate that

(3.2) mJ 2w(x)q(x) dx.

Without loss of generality, we set

(3.3) q,(0) 1.

We observe that, if n is large, then (3.1) has the following approximate solution:

if(x) cos (n’rrx), m2A --nZTr2+0(1),

and J-0 as n-.
These solutions correspond to stable time-dependent perturbations ofthe functions

UK(X) and VK(X). For smaller values of n, the behaviour is more subtle and depends
upon the value of rn. As further analysis is difficult, we present the results of some
numerical calculations of A and q for u, v, u2, and v2.

(i) u
16.82

15.32

-44.5 -92.15

(ii) v
16.82

-50.0

-44.5

-5.12

-92.15

1.1

(iii) u2
45.1 16.82

15.32

(iv) v2
16.82 0.05

J -50.0 0
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When m 1, the eigensolutions for u(x) and v(x) are related by the transformation
x- 1-x followed by a simple rescaling of p(x). We see that there is precisely one
unstable eigenmode, which we denote by @(x), for the function u(x). Numerical
computations demonstrate that, if we take initial data Uo(X)= u(x)-e@(x) where
e >0, then the corresponding solution of (1.2), (1.4) satisfies lu(x, t)lO as t-c.

Conversely, if we take initial data Uo(X)= ul(x)+ eq(x), then there is a finite time T
such that ]u(x, t)l o as t T.

In Fig. 3.1, we present some numerical computations of the form of this solution
when e 0.01. Our figure gives the form of u(x, t) for values of T. It is clear from
this that the function u(x, t) develops a pronounced positive spike at the point x =0,
which is similar in form to the solution of problem (1.1). Furthermore, u (1, t) < 0 and
u(1, t)-o, but at a much slower rate than u(0, t). In 5 we study the asymptotic
form of this blowing-up solution.

u(x,t)

FIG. 3.1. Blowup in which the steady state u(x) is perturbed by the most unstable eigenfunction.

When rn 2, we observe different behaviour for the two steady states U2(X and
Vz(X). There are two unstable eigensolutions qz(X) and qa(X) for uz(x) with correspond-
ing eigenvalues ha > hz > 0. The function qz(X) is symmetric about the point x 1/2 and
is a rescaled form of q(x) such that, if x <1/2, 4(x)= q(2x) and, if x>1/2, qz(X)=
q(2(1-x)). In contrast, the function qa(x) is antisymmetric about x=1/2 such that
qa(x) =-qa(1- x). As ha > h2, we observe that, if we take arbitrary initial data close
to uz(x), then u(x, t) tends to evolve in an antisymmetric manner. We demonstrate
this numerically by taking an initial condition

Uo(X) uz(x) + 0.01 cos (zrx).
The resulting evolution of the function u(x, t) is presented in Fig. 3.2. We can see
from these figures that u(x, t) rapidly loses its symmetry about x= and, in its
subsequent evolution, develops a positive spike at x 0 just as in the case when rn 1.

In contrast, when we study the steady state Vz(X), we see that there are again two
unstable eigensolutions q4(x) and q5(x) so that 4> 5> 0. In this case, the function
q4(x) is symmetric about x=1/2 so that t4(X)’-q(1-2x) if x< and q4(x)= t4(1 X ).
Similarly, the function q5(x) is antisymmetric. Thus, we expect that, if we take arbitrary
initial data close to vz(x), then u(x, t) tends to evolve in a symmetric manner. We
demonstrate this by taking an initial condition

Uo(X) v2(x) +0.01 cos (zrx).
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u(x,t)

FIG. 3.2. Blowup in which a symmetric initial state with peaks at x 0 and x loses symmetry.

The resulting evolution is presented in Fig. 3.3. It is clear from this figure that the
solution stays symmetric about x 1/2 and blows up at x 1/2. For higher values of m,
we conjecture that both u,,(x) and Vm(X) have m-dimensional unstable manifolds.

We conclude this section by studying the evolution of u(x, t) for initial data,
which takes the form

Uo(X) y cos (x), e > 0.

We find numerically that there exists a constant y* 29.9 such that
(i) If 3’ < Y*, then Ilu(x, t)ll- 0 as t--> ,
(ii) If 3’ > Y*, then there exists a time T(T) such that

Ilu(x, t)llo as t-> T(3’).

In Fig. 3.4, we present a graph of the function T(3/). Thus, 3’* is a critical value
dividing the blowing-up and the stable behaviour. (This value is not far from the
maximum value of ui(x), which is 36.07.) If we take initial data

Uo(X cos (7rx) + 200 cos (27rx ),

u(x,t)

/’\

V
/ !/-

./

-200

0.2 0.4

FIG. 3.3. Blowup in which a symmetric initial state with a single peak at x 1/2 remains symmetric.
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Gamma

FIG. 3.4. Plot of the blowup time T compared to the magnitude y of the initial data.

which has positive maxima at x =0.1, we observe that the solution u(x, t) rapidly
evolves to have a single spike at the point x- 0. In contrast, if we take

Uo(X) cos 7rx 200 cos 27rx,

which has a positive maximum close to x 1/2, we observe that u(x, t) blows up at the
point x 1/2. Thus, the location of the blowup point and the form of the blowup depends
crucially upon the nature of the initial data. It also appears that arbitrary initial data
(of a sufficiently large amplitude for blowup to occur) tends to evolve into a blowup
with a single positive peak either at a boundary or at an interior point.

4. Sufficient conditions for finite-time blowup. We have demonstrated in 3 that
there exist solutions of problem (1.2), (1.4) that blow up in a finite time. In this section,
we obtain some sufficient conditions on Uo(X) that ensure that blow up occurs.

We are unable to prove blowup by using the eigenfunction approach described
in [17], since the first nonzero eigenfunction b(x) of the differential operator -d2/dx2,
which also satisfies the Neumann boundary conditions, is the constant function, and,
from the integral constraint (1.4), it is clear that 1o qb(x)u(x)dx does not blow up.
Similarly, the energy method described by Ball [1] is severely limited by the integral
constraint, and we are only able to prove exponential growth in the L2 norm (see the
Appendix). The underlying reason for the inadequacy of both methods is the lack of
a comparison principle for the evolution of the problem in the function space C[0, 1].
To overcome such difficulties in a different system, Palais 18] introduced a method
to prove blowup in Fourier space. We now extend the Palais method to prove that
system (1.2), (1.4) blows up in finite time.

LEMMA 4.1. We suppose that u(x, t) is a solution ofproblem (1.2), (1.4) and that
Uo(X) satisfies the following conditions:

(4.2a)

(4.2b) Io
ot
UO(X) cos (n’n’x) dx > 0 Vn,

uo(x) cos (x) dx C1 and uo(x) cos (2’x) dx C,
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with C1 > C2, and either

(4.3) C2 > 47r or C1 > 4x/ r.
Then, u(x, t) blows up in a finite time T such that, as t- T,

u O, o and

Note. The numerical studies presented in 3 show that blowup occurs if, for
example, C 0 and C1 > 3,*/2 14.9. Indeed, by a simple numerical estimate, we may
extend the proof given here to show that blowup must occur if C1 > 23.60731. Thus
the sufficient conditions (4.3) may be substantially relaxed.

Proof. Because the function u(x, t) satisfies Neumann boundary conditions, it can
be expanded as a Fourier series of the form

(4.4) u(x, t)-- E Cn(t) einrx,

where Cn(t)= C_n(t) for all t. The integral constraint (1.4) implies that C0(t) =0 for
all t. Substituting this expression into (1.2) and equating coefficients, we find that for
n0

d
(4.5)

dt
C, -nTr2C, + E CmC,

m=-oo

for all times such that a solution exists.
LEMMA 3.2. IfC(O) > O for all n, then, for all subsequent times (such that a solution

exists),

(4.6) C,(t) > 0.

Proof. Suppose that C, is the first coefficient to violate (4.6) at a time t, such that
Cn(t,) 0. It follows from (4.5) that

d
d--t (e"C(t))= e’E CmC-. --f(t),

where f(t) > 0 for 0 -< < t*. Thus

Cn(t*)=e-" C,(0)+ f(t) dt >0,

which is a contradiction.
We now consider the evolution of the two components Cl(t) and C(t). We may

deduce from (4.6) that, if conditions (4.1), (4.2) are satisfied, then C1 and C satisfy
the following differential inequality:

(4.7) dC1 > --7/"2C1 + C1 C2 and dC> -47r C2 + C.dt dt

It is easy to show that since C,(t) > O, then, if p and q satisfy the system of differential
equations

(4.8)
dp 2p dq
dt

7r + Pq’
dt

47rq + p2,

and if CI(O --p(O) and C(O)= q(O), then

Cl(t)>p(t) and C2(t)>q(t) Vt>O.
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Thus, to study the blowup of C1 and Ce, we need only study the solutions of (4.8).
This system has an attracting node at the point (p, q)= (0, 0) and a saddle point $ at
the point S (p, q) (2zre, 7re). The point S has an unstable manifold Wu and a stable
manifold Ws such that Ws {(p, q): q Ws(p)}. Numerical computations imply that
Ws intersects the p-axis at the point (23.60731, 0), and, if q(0)> W(p(0)), then the
consequent solution of (4.8) blows up in a finite time. This behaviour is illustrated in
Fig. 4.1. To obtain rigorous estimates on blowup, we note that, if p q, then dp/dt--
p(p-Tr2) and dq/dt=p(p-47re). Thus, if p> ere, then dq/dp< 1. Hence, if at =0,
p > q, then p(t) > q(t) for all > 0, provided that p(t) > r2.

Suppose now that p > q > 4re; then

(4.9)
dq e> -47r:q + q q(q -4ere).
dt

Thus dq/dt > 0; hence p(t) > q(t) > 4zre for all > 0. Moreover, a simple integration
of the differential inequality (4.9) shows that

4"rr2 [ 4zr2 1 e42’. -q-65>

Thus, q(t) blows up in a finite time T such that

T <-1/4rr2 log (1 4rre/q(0)).

We conclude that both Cl(t) and Ce(t) blow up in a finite time if

C,(0) > Ce(0) > 4rre.
To extend this estimate further, we note that as pq > 0, then p(t)> p(0) e-’’. Thus

dq
> -4rr2q + p(O)2 e-22t

dt

so that

q(t) >
P(0)2 --2"rr2’ ( --4"n’2

2zre
e + q(0) P(0)e]

27r2 ]e

q

Blowup

P

FIG. 4.1. Phase plane of the solution trajectories for the two-mode truncation of the blowup equations.
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Either q(0)> p(0)2/2 or, if q(0)< p(0)2/2, we may maximise this expression over all
times to conclude that there is a time t* such that

1 p(0)4 p(0)2

q(t*)> 2/
>’

167r4 (p(0) (2"n"2) q(0))

Thus, without loss of generality, we may assume that, at some time t*

p(0)
q(t*) >----T87r

Thus, if p(0)> q(0), then, from the previous result, p(t)> q(t) for all t> 0, and, if
p(0) > 4,/ 7r

2 then, at a time t, q(t*) > 4r2. Hence, blowup occurs in this case as well.
As Cn(t) > 0 for all < T, it follows immediately that u(0, t) > u(x, t) for all < T.

Thus, if u(0, t) is finite, then so is u(x, t) for all x. However, as u(O, t) > C(t)+ C2(t),
it follows that a solution of (1.2), (1.4) blows up at the origin in a finite time. (Indeed
it blows up at all points in the interval [0, 1].)

To prove that I]u]lL2 also blows up in a finite time, we assume that, in contrast,
u I1,= < L for all t=< T. It then follows directly from the definition of Cn that

d
d-t Cn <= -n27r2Cn + L2.

Integrating this inequality, we have

Cn(t)<= Cn(O) e-"2=t-t-L
2

n27r2"

Thus, summing the resulting series, we deduce that

L2

u(0, t) L C,(t) _-< u(0, 0) e-"’ +--.
6

However, this contradicts the fact that u(x, t) blows up at the origin. We conclude
that L cannot be finite, and hence nil

5. An asymptotic description of the blowup of u(x, t). In this section, we obtain
an asymptotic description of the function u(x, t) close to the blowup time T on the
assumption that the blowup is most pronounced at the point x 0.

Our numerical studies, described in 3, showed that, for certain forms of initial
data (for example, Uo(X)=y cos 7rx), the solution develops a pronounced positive
spike at the point x 0 away from which it is approximately constant in space and
takes a negative value. The spike grows in magnitude and becomes narrower as t--> T,
such that, if x* is the first point so that u(x*, t)= 0, then x*--> 0 as t-> T. The solution
also exhibits nonuniform global blowup such that

]u(x, t)]- as t- T Vx6[O, 1],

but the rate of blowup is most pronounced close to x O.
We now construct an asymptotic description of the blowup profile by rescaling

the solution inside the spike. We first consider the unconstrained problem (1.11),
together with the boundary conditions

(5.1) vx(O) =0.

As we have demonstrated numerically, the solutions of this problem can blow up at
the origin in finite time. When this occurs, v(0, t)-(T-t)-, and the function u(x, t)
develops a spike at the origin of width O[(T- t) /2] apart from a relatively weak factor
of Ilog T- t)] /2. Following the approach to this problem described in [3], we introduce
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similarity variables motivated by these observations to study problem (1.2). Accord-
ingly, we set

X
(5.2) sr =x/(T- t)’

s -log (T- t), and W(, S) (T- t)u(x, t),

where T is the blowup time and s oo as T. Then the function u(x, t) is a solution
of (1.2), (1.4) if the function W(sr, s) is a solution of the system

eS/2

W2 -s/2 W2(5.3) w-w+ w+w- +e a=0.
o

If we make a similar substitution of variables into (1.1), we obtain, in contrast, the
system without an integral term

" W(5.4) Ws Wcc+ Wc + W- 0.

It is well known [3], [8] that problem (5.4) has a solution W(L S) such that

(5.5) W(sr, s) 0
1 + ,2/s

as s oo.

Thus e-S/2o (W(, s))2 d’= O(e-/2/)0 as soo. We conclude that, for large s,
the solution W(sr, s) of (5.4) is also an approximate solution of (5.3). Moreover, the
nonlocal forcing term that makes the difference between (5.3) and (5.4) is uniform in
the interval [0, 1].

Accordingly, we propose the ansatz

(5.6) u(x, t)= v(x, t)-p(t)+ q(x, t),

where the function v(x, t) is a suitable solution of the equation with only local nonlinear
forcing

(5.7) v,=v+v,
which blows up at the point x 0 at the time T. We anticipate that p(t) will capture
all of the spatially uniform nonlocal aspects of the blowup of u, so that p(t) satisfies
the differential equation

(5.8) dp+p= (v_p+ q) dx"
dt

We also anticipate that, while v and p both become very large (in different regions)
as T, the remainder" q will stay comparatively small. In particular, the contribution
of the integral q in the equation

(5.9) (p- v) dx q dx,

(which is simply a variant of the integral constraint (1.4)) can be neglected, so that
an estimate of p can be made from this integral relation alone. This is slightly simpler
than solving (5.8), and, provided that the contribution of q can indeed be shown to
be negligible, it is, in fact, equivalent. The development of the asymptotic investigation
of v, p, and q is therefore concluded with an examination of q, which serves to confirm
a self-consistent overall picture.

The local asymptotic behaviour of v(x, t) near the point of blowup is already well
understood [3], [8], [13]. Its structure falls into distinct, but matching, asymptotic
forms depending upon whether x2_-< O[(T- t)s], (T- t)s <- O(x2), or x O(1) as t-+ T
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and/or x--) 0. Thus, following [8],

-=(r- - +o
(5.10)

X
2

+8- [ 1 + sc-l(- log (:) + log (1 +8-)) ]
as a + s for x2 O[(T- t)s], and

v-l=(T-t) 1
4
h

(5.11)

+8Ax-- [ 1 + A-’ 1 + O _A)
as A c-log (x2/8)o for (T-t)s= O(x2). The constant a is a free parameter of
the asymptotic structure that is related to the initial and boundary conditions and, for
our nonlocal problem, to the integral constraint.

Away from the point of blowup x 0, the function v remains bounded; that is,
for x 0,

(5.12) v=(x)+O(T-t),

where, in the limit as x 0, (x) must be consistent with (5.11) with T-t set to zero,
but is otherwise arbitrary. In this, it may be noted that formulae (5.11) and (5.12) offer
asymptotic descriptions of the behaviour of v even at the blowup time T when
formula (5.10) is inapplicable at any x 0. The suitability of these asymptotic solutions
in describing both v and u was demonstrated by the numerical calculations presented
in Fig. 1.2. We now examine the asymptotic behaviour of p(t) and q(x, t) as blowup
proceeds.

Using v to denote the "inner" asymptotic solution (5.10) and v to denote the
"outer" solution (5.11) and noting that

(5.13) A -log (2/8),
the difference between the two asymptotic solutions can be shown to satisfy

V()--v(i)__--218[+log (2/8)]
-2 log (ffz/8)

V
(i) 1 + 2/8

o(C og ()/)
(5.14) +

1 + 2/8-og (C2/8),
the latter limit applying when 2>> . With this, we can estimate the integral

Io’ Iot (’-210ge(2/8,d)V dx vi dx + 0
1 + 2/8

a/(r- + og (
1- 4

(5.15)
u

+ O(-3/2 log2 (),)4T"t
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Evaluating these integrals and neglecting the contribution of q in (5.9), we obtain the
following asymptotic estimate for p:

(5.16)
p(t)=x/2/(T-t) r[1--1( log ()+-+ log (2))

+ O(-2 log2 ())]

at large values of .
To justify this asymptotic estimate, we must now consider the remainder term q,

which satisfies the equation

q, qxx-2pv+ 2(v-p)q +

In estimating the behaviour of q, we can make use of leading-order estimates of the
"forcing" terms pv and v-p, which, from (5.10), (5.11), and (5.16), become

v/2sc/(r- t) rr(T- q- X2/8)- for x2 o[(r- t)sc],
(5.18) PV[x/2/(T-t) frO(x) forx2>>(T-t)

and

(5.19)
1

-x/2/(T-t) 7r forx2=O[(T-t)],
v-p T-t+x2/8

(x)-x/2/(T- t) r for x2>>(T- t),

where

(5.20) e(x)
8 log (8/x2)

X
2

to leading order as x 0.
For values of x not close to zero, the following leading-order asymptotic behaviour

for q can be deduced:

(5.21) q t](x)+ x/2sc(T-t) 4r(5(x)+ 4(x)),

where t](x) is the value of q at T for x 0. To justify (5.16), we must consider the
behaviour of q in the range x2= O[(T-t)sc]. In this range, v >>p, and so p can be
neglected in comparison to v. Also, anticipating (as will be shown) that q=
O(v/:/(T- t)) in the region of positive blowup, it can be seen that the nonlinear term
of (5.17) should also be negligible to leading order. Defining

(5.22) q= g/v/T- t,

(5.17) becomes

" 2
(5.23) g+g+g= gc+ (g rrv/) + h.o.t.

+ r2/85c

(where h.o.t, means higher-order terms), which has the leading-order asymptotic
solution

(5.24)
4 1 -+- 3’2/

g - 7rx/ 1 + 2/8)
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It may be noted that any component of g that is a solution of the homogeneous part
of (5.23) can (and should) be absorbed into the leading-order blowup function v. Thus,
only the inhomogeneous part of g is retained in (5.24), and the function v is rightly
used to represent all of the local aspects of the positive blowup of u that are consistent
with (5.7).

We can now evaluate the integral of q (to leading order). In the same way that
the inner solution vi) determines the integral of v in (5.15), we have

Iot 167r:fo’ 1+3u2 16
2,.(5.25) q dx -- (1 + v2)----5 dv =-- 7r

This serves to confirm that the contribution of q in the integral (5.9) can be neglected
in comparison to p and v, justifying the asymptotic estimate for p.

By using (5.13), we can also use result (5.24) to deduce the leading-order asymptotic
behaviour of q for values of x close, but not equal, to zero at times in the range
(T- t) O(x2). That is,

4
(5.26) q 7rx/X T-t+3x2/8A

(T_ + x2/8A)
x/T- t"

This result shows that q actually tends to zero as t- T for x 0. Thus, for (5.20) to
be consistent with this result, q(x) must be such that

(5.27) lim q(x) 0,

so that the local blowup of q in the range X2-- O[(T-t)], given by (5.21) and (5.23),
is more closely connected with the time-dependent term than with the leading-order
term of (5.21).

If we now combine formulae (5.6), (5.11), and (5.16) with our estimates for q, we
may deduce that, if x is not small, then

u(x, t)’- -( T- t) ’/2
]log (T- t)[ ’/2

[ 51gllg(T-t)l+O(+e-/:)]1- ]log (T-t)]

where the unknown constant a is now included as part of the error term.
Moreover, we may also estimate the location of the zero x* of u by determining

the value x* for which p(t) v(x* t)+ q(x*,t). A simple but tedious calculation then
shows that x* satisfies the following asymptotic, relation:

(5.29) (x*)
2x/

(T t)l/s/(1 71g s ())7r 8 s

So, to leading order, we have

x 7r
Ilog (T- t)] 1/,

2x/
(5.30) u(l’ t)"-(T- t) /2 (x*)2"(T-t)/2llg(T-t)l/2"Tr

In these calculations, we have not determined the value of a, which depends upon
the initial conditions.

6. Numerical calculations for blowing up solutions. To verify the asymptotic for-
mulae obtained in the previous section and, in particular, to test formulae (5.28),



738 CHRIS BUDD, BILL DOLD, AND ANDREW STUART

(5.29), we have made some careful numerical calculations of the solutions of (1.2),
(1.4) for a variety of initial data. In particular, we have studied the following examples
of initial data:

(i) Uo(X) 30 cos (Trx),
(ii) Uo(X)= 100 cos (Trx),
(iii) Uo(X)= 100 (cos (Trx)+cos (2rx)).

This data is chosen so that the solution u(x, t) blows up most rapidly at x =0.
For each of cases (i), (ii), and (iii), we record the value of the blowup time T

and the evolution of u(1, t) and the zero location x*(t).
Formulae (5.28), (5.29) imply that close to the blowup time the following

asymptotic identities should relate u(1, t) and x*(t) to 0 -= log (u(0, t)):

(6.1) a(O)___e_o/2u(lt)v/_ x/ 7r1,(51og(0)__8--00())
and

(6.2) b(O) -(x*)2-2x/ 1 t-0
r 8 0

Accordingly, in Figs. 6.1 and 6.2, we present numerically computed graphs of
a(0) and b(0) as functions of 1! 0 for 0.035 < 1/0. In these figures, the last data point
is marked with a circle and the graphs are linearly extrapolated back to the line 1/0 0.

It is very clear from these figures that there is close agreement between the
numerical calculations and the leading-order form of the asymptotic formulae (6.1),
(6.2). In particular, the constants x/ r and 2x//Tr are accurately predicted by the

0 0.05 0.1 0.15

Uo(X) 0o cos(rx)

x) 30 cos(a-x)

Uo(X) 100 (,’os(x) cos(2x))

0.2 0.25 0.3 0.35

FIG. 6.1. Graph of a(O) given by (6.1), as a function of 1/O for various forms of the initial data.
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b()
1.2

r \\
0.8 ’\

0.6

0.4

0.2

0
0

Uo(X) lO0 cos(x)

’\

u,,(x) 30 cos(rx)

cos(2xxl

0.05 O. O. 15 0.2 0.25 0.3 0.35

FIG. 6.2. Graph of b(O) given by (6.2), as a function of 1for various forms of the initial data.

numerics. It is also clear from the figures that, for the range of values considered, the
dominant error from the leading order takes the form y/O. Here y appears to be
independent of the initial conditions. The terms of the form y/0 dominate the terms
of the form (log (0))/0 for all but very large values of 0 -1.

The figures demonstrate that the asymptotic formulae are most accurate when
1/0<0.05, that is, when u(0, t)>4.8x 108. For these values, the width of the main
peak is of order x/U(0, t)<5 x 10-s, which gives an upper bound to the size of the
mesh used by the numerical computation in the neighbourhood of x--0. Thus, to
compute the solutions accurately, we seek to place a reasonable number of mesh points
within the main peak of the function u(x, t) while still using an efficient computational
scheme. Straightforward rescaling algorithms, which attempt to shift the points in a
spatial grid progressively into the region ofpositive blowup 8], 14] are not appropriate
because an adequate resolution of regions where u grows more slowly (and negatively)
must nevertheless also be maintained.

To maintain a "good" spatial resolution of all aspects of the growth of u, two
approaches were developed. These approaches rely on the definition of a weighting
function W(x) defined, numerically, at a set of grid points x x(i), 0,..., N, with
x(0) 0 and x(N)= 1. For a point distribution that is weighted according to a given
function W(x), the points x(i) are distributed such that

W(x(i)) di=--- W(x(i)) di

for each =0,..., N-1, assuming a suitable interpolation. In arriving at the two
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approaches used in maintaining a suitable resolution, we denote the numerically stored
values of u(x(i), t) at any time by u(i).

Assuming that the maximum value of u is u,,, our first approach is obtained by
defining

(6.3) W2(x(i))

for a suitably large value of M. In our calculations, we found that taking M 5 to
M 8 worked well in conjunction with high-order differencing methods for calculating
derivatives and interpolating the weighting function Formula (6.3) represents a
weighting function that distributes the positions of the grid points to resolve both
arc length and curvature. If M 0, then points are distributed with respect to arc length
on a graph of u/u versus x, and, if M, then points are equidistributed with
respect to curvature.

Assuming that there is a single point of positive blowup at x xm, where u u,
a second approach relies upon the assumption that the positively growing peak of u
varies locally in approximate propoion to (1 +((X-Xm)/Xa))-1, where xa(t) rep-
resents the "width" of the peak at any time. It can be seen that this structure is
consistent with the asymptotic structure for the blowup examined in the previous
section. A suitable weighting function that takes advantage of this is obtained by
defining

(6.4) W(x)= l+M/[xa +
sin ((x-x)/2)]x/4

with xa(t) estimated from the solution at any time such that U(Xm+Xa) u/4. The
value of M is chosen to increase or decrease the propoion of points within the region
of the peak, with a value of M 1 proving quite adequate. The sine function used in
this definition for W(x) recognises the periodicity of 2 implied by the Neumann
boundary conditions for u.

The accuracy of time integration was improved by using a directly calculated
Taylor-series approach, truncated at the sixth time derivative. That is, by differentiating
(1.2) and (1.6) five times with respect to time, the resulting formulae were used to
provide numerical estimates for the time derivatives up to 06/0 6

U (X, t) at each timestep.
Timestepping was then performed using a correspondingly truncated Taylor series to
maintain a high accuracy, with timesteps progressively reduced as the blowup proceeds.

Both methods of point redistribution were found to work well in following the
progress of blowup to maximum values of u of the order of 10 using as few as 100
points. About half of these were typically used to resolve the structure of the peak
while the others ensured that the remainder of the evolution of u was adequately
resolved. Differences between the two approaches are indiscernible in Figs. 6.1 and 6.2.

Appendix. Let p > 1 be a positive integer. We consider the problem

(A1) ut Uxx + up up dx
o

with the boundary conditions

(A2)
and initial data satisfying

(A3)

u,(O,t)=Ux(1, t)=O

’
u(x, O) dx=O.

o
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Note that o u(x, t) dx =0 for all subsequent times. We apply energy arguments (see,
for example, [1]) to establish blowup results for this problem. If p is odd, we may
prove blowup in a finite time. If p is even, we establish blowup in, at least, infinite
time. The results for even p are not sharp since we established in 4 that blowup may
occur if p 2. Throughout this appendix, I1" denotes the L2 norm in the spatial
variable x.

THEOREM A1. Consider (A1)-(A3). Define

E u(x,O) /l dx-Ilu(x,0)112
p+l

and consider initial data satisfying (A3) and E > 0. (i) Ifp is even, then

(P+ I)E_z [e(p-1)=2,_ I]"u(x, t)ll2->- Ilu(x, o)11 e(P-’)’+
(p_ 1)zr

(ii) Ifp is odd, then u (x, t)II - as - T <.
Proof Multiplying (A1) by u and integrating over 0< x < 1, we obtain, upon

integration by parts,

(A4)
2 dt

Ilull2=-Iluxll=/ u/l aN.

Multiplying (A1) by u, and integrating over 0< x < 1, we obtain

d d
t"d--(llull)+--J up+’dx.

p+ldt o

Integrating gives

2
(A5) > / U

p+I dx.
p+l Jo

We now observe that E can be made positive by choosing suitably large initial data.
Using (A4) and (A5), we now prove parts (i) and (ii) separately.

For p even, we eliminate the integral of indefinite sign and obtain

d
II.II >- (p 1) Ux = + (p + 1)E.d

Using the Poincar6 inequality for arbitrary functions in the space H(0, 1) witho u dx 0 [4], we obtain

d
Ilull >- (p 1):11 u + (p + 1)E.d--

Integrating this differential inequality yields result (i).
For p odd, we eliminate Ilu,ll and obtain

1 d (p- 1) Io2 dt
>- +’ d+ u.
-(p+l)

Since p is odd, we may apply H61der’s inequality to obtain

d (p-l) p+d-Sllull2-->2(p/l) Ilull /2.
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By standard comparison arguments the solutions of this inequality blow up in a finite
time since p > 1.
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