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SIAM J. NUMER. ANAL. (D) 1993 Society for Industrial and Applied Mathematics 
Vol. 30, No. 6, pp. 1622-1663, December 1993 005 

THE GLOBAL DYNAMICS OF DISCRETE 
SEMILINEAR PARABOLIC EQUATIONS* 

C. M. ELLIOTTt AND A. M. STUARTt 

Abstract. A class of scalar semilinear parabolic equations possessing absorbing sets, a Lyapunov 
functional, and a global attractor are considered. The gradient structure of the problem implies 
that, provided all steady states are isolated, solutions approach a steady state as t -* oo. The 
dynamical properties of various finite difference and finite element schemes for the equations are 
analysed. The existence of absorbing sets, bounded independently of the mesh size, is proved for the 
numerical methods. Discrete Lyapunov functions are constructed to show that, under appropriate 
conditions on the mesh parameters, numerical orbits approach steady state solutions as discrete 
time increases. However, it is shown that insufficient spatial resolution can introduce deceptively 
smooth spurious steady solutions and cause the stability properties of the true steady solutions to 
be incorrectly represented. Furthermore, it is also shown that the explicit Euler scheme introduces 
spurious solutions with period 2 in the timestep. As a result, the absorbing set is destroyed and 
there is initial data leading to blow up of the scheme, however small the mesh parameters are taken. 
To obtain stabilization to a steady state for this scheme, it is necessary to restrict the timestep in 
terms of the initial data and the space step. Implicit schemes are constructed for which absorbing 
sets and Lyapunov functions exist under restrictions on the timestep that are independent of initial 
data and of the space step; both one-step and multistep (BDF) methods are studied. 

Key words. attractors, absorbing sets, Lyapunov functions, spurious solutions 

AMS subject classifications. 65M99, 35K57 

1. Introduction. In this paper we consider the following semilinear parabolic 
initial value problem: 

(1.1) Ut = AU - f (u), x E Q, t > 0, 

(1.2) u = 0, x E OQ t> O, 

(1.3) u(x, 0) = uO(x)7 x E Q. 

Here Q is a bounded domain in Rd (d < 3) with a Lipschitz boundary aQ and -y > 0. 
We shall assume that the initial data u0 E Ki, i = 1 or 2 where K1 = {r1 E L2(Q)} 
and K2 = {r E L2(Q): JJ7JJloo ? M}. The assumptions on the nonlinear function f(u) 
are: 

(Fl) f(.) E C2(IR,IR) and f(O) = 0. 
(F2) There exists u- > 0 such that f(r)/r > 0 for any r: Irl > u. 

(F3) F"(u) > -CF, where 

(1.4) F(u) = J f(u)du. 
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DISCRETE PARABOLIC EQUATIONS 1623 

Assumptions (Fl), (F2), and (F3) are made throughout the paper unless otherwise 
stated. Under these assumptions the following global existence result may be proved. 
For initial data in K1 this result requires an additional growth assumption such as 

(Gl) If(r)l < coIrI2P-1 + cl 

(see [26]), whereas for initial data in K2 the result utilises the theory of invariant 
regions (see [28]). 

(Ri) For each uo E Ki there exists a unique solution of (1.1)-(1.3) which satisfies, 
for all T > 0, 

u E L 2(07 T; Ho' (Q)) n C[o, T; L 2(Q)] 

and the mapping uo -- u(t) is continuous for each t > 0. Hence the family of solution 
operators {S(t)}t>o defined by S(t)uo -u(t) forms a continuous semigroup on L2(Q). 
In addition, if uo E Ho' (Q) n Ki then for all T > 0 

u E C([O, T); Ho'(Q)) n L2(0, T; H2(Q)). 

It is possible to show the following results about the semigroup S(t) (see [11], [8], 
[19], [27], [26]): 

(R2) There exist balls B, = {v E L2(Q): lVI < pi} and B2 = {v E Hol(Q) 
liViI < P2}, which are absorbing sets for the semigroup {S(t)}t>o; that is there exist 
t, and t2 depending on {luol, pi} and {luol, P2}, respectively, such that S(t)uo E Bi 
for all t > ti (i = 1, 2). Here I* I and 11 * 11 denote the standard L2 and Ho' norms, 
respectively. 

(R3) There exists a global attractor A C L2(Q) for the semigroup {S(t)}t>o; that 
is, A attracts the bounded sets of L2(Q), and A is bounded in Ho' (Q) U L? (Q) and 
compact and connected in L2(Q). 

(R4) The functional 

(1.5) I(v) I= [iVV(X)i12 + F(v(x))]dx, 

where F(u) is defined by (1.4), is a Lyapunov functional for {S(t)}t>o, that is, 
I(i) There exists cl such that I(v) > cl for all v E Ho (Q), and for every c there 

exists p = p(c) such that the diameter of {v : I(v) < c} is bounded by p. 
I(ii) I(S(t)v) < I(S(t')v) and for all t > t' > 0 and for all v E Hol(Q). 
I(iii) If I(S(t)v) = I(v) for all t > 0 then v E ? where ? is the set of equilibrium 

points v satisfying 

(1.6) - -yAv + f(v) = 0, x E, v =0, xE aQ. 

Furthermore, for any uo E L2 (Q) the w-limit set 

(1.7) w(uo) = {v E L2(Q) : 3t1_ - 0 : lim S(t11)uo = v} 
n-+oo 

is contained in the set of equilibrium solutions (1.6), denoted 6, and, if the equilibria 
are isolated, then 

A= U Wu(v), 
vEE 
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1624 C. M. ELLIOTT AND A. M. STUART 

where Wu(v) denotes the unstable manifold of v. [1 
It is our purpose in this paper to consider discrete dynamical systems generated by 

temporal and spatial discretisation of (1.1). We study the existence of absorbing sets, 
Lyapunov functions and attractors for the approximations and, in addition, describe 
various spurious features introduced by both spatial and temporal discretisation. We 
suppose that semidiscretisation in space yields a J-dimensional system of ordinary 
differential equations in time of the form 

(1.8) M dt + yAU+Mf(U) = O, t > O 

(1.9) U(O) = Uo. 

Here U = (Ui, ... , Uj)T and {f(U)}i = f(Ui). We use the notation that, for any q: 
1R-, 1R 

fo(u)}i = (Ui). 

M is a diagonal matrix with positive entries and A is a symmetric positive definite 
matrix. 

If Q = (0, 1)d then such a system arises from finite difference approximations on a 
uniform grid {(ih, jh, kh): i, j, k E [O, N], h = 1/N} with the elements of M being hd 
and l/hdA being the matrix arising from a central difference approximation to -A. 
The system also arises from a finite element approximation based on piecewise linear 
functions on a triangulation of Q. Denoting by {fV }NNv the set of piecewise linear basis 
functions associated with the internal vertices of the elements, then 

Mii = (Li, 1)h, Aij = (V?), Vhj) h, 

where (.,.)h denotes a discrete L2 inner product defined by lumped mass integration. 
Section 2 contains various general results on dissipative dynamical systems which 

will be required throughout the paper. In ?3 we analyse the semidiscrete problem 
(1.8)-(1.9). Semidiscrete analogues of (R1)-(R4) are proved. However, it is also 
shown that insufficient spatial resolution can lead to the existence of deceptively 
smooth spurious steady solutions and also to incorrect stability properties for the true 
steady states-there exist many more discrete stable steady states than true stable 
steady states. In ?4 we study the spurious dynamics of the explicit Euler scheme. 
It is shown that the method can produce period 2 solutions in n, the timestep, for 
arbitrarily small A\t. Furthermore it is shown that, however small At and Ax are 
taken, the scheme blows up with appropriate choice of initial data. Thus a global 
attractor cannot exist for the Euler method considered as a dynamical system on the 
whole of 1RJ. We derive a restriction on the timestep in terms of both the spatial grid 
and the magnitude of the initial data, under which discrete analogues of (R1)-(R4) 
hold. In ?5, various implicit schemes are considered. Discrete analogues of (R1)-(R4) 
are proved under far less restrictive conditions on the timestep than for the explicit 
Euler scheme; in particular schemes are constructed for which the timestep restriction 
is independent of initial data and of h. Section 6 is concerned with multistep backward 
differentiation formulae and similar results to those in ?5 are proved. Finally, in ?7, 
numerical results are presented to illustrate the theory. 

Similar questions to those addressed in this paper have been discussed for spec- 
tral approximations of (1.1) in [22] and for finite difference approximations to the 
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DISCRETE PARABOLIC EQUATIONS 1625 

Kuramoto-Sivashinsky equation in [6]. For Runge-Kutta methods applied to ordi- 
nary differential equations, see [14]. The question of convergence of attractors and of 
attracting sets for semilinear evolution equations is discussed in, for example, [9], [10], 
and [16]. The question of spurious steady states for such problems has been simul- 
taneously studied in [1]. The treatment of discrete Lyapunov functionals, which are 
used extensively in this paper, is motivated by studies of the Cahn-Hilliard equation 

[5]. 

2. Dissipative dynamical systems. In this section we review the theory of 
dissipative dynamical systems sufficient for our needs. It is convenient to consider 
discrete and continuous dynamical systems simultaneously. Let H be a complete 
metric space and t be a real parameter taking values in IR or Z. Let {S(t)}t>o be a 
family of operators from H into itself satisfying the semigroup properties 

S(t + s) = S(t)S(s) V s, t > 0, 

S(O) = I 

and S(t): IR+ xH -* H is continuous. In the case of a discrete dynamical system 
then t E Z and S(t) St where S: H -- H is a continuous operator so that the 
semigroup properties are automatic. 

For each v E H we denote the positive orbit 

u S(t)v 
t>o 

by 7y+(v) and by w(v) the w-limit set defined by 

w(v) = n US(t)v 
s>0 t>s 

which is equivalent to definition (1.7) with L2(Q) replaced by the general metric space 
H. For a set B E H we define the w-limit set w(B) by 

w(B)= n US(t)B 
s>O t>s 

which is equivalent to 

{w E H: 3tj -x oc and Vj e B: w = lim S(tj)vj}. 

A set B is said to be invariant if S(t)B = B, for all t > O. A set A is said to attract 
a set B under S if, for any e > 0 there exists to = to(e, B, A) such that, for t > to 
S(t)B c N6(A), an e-neighbourhood of A. A set B c U, where U is an open set, 
is said to be absorbing in U under S if for any bounded set Bo C U there exists 
to = to(Bo) such that S(t)Bo C B for t > to. A set A is said to be a global attractor 
for an open set U C H under S if 

(a) A is a compact invariant set; 
(b) every compact invariant set of S belongs to A; 
(c) A attracts every bounded set B c U under S. 
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1626 C. M. ELLIOTT AND A. M. STUART 

We say that v is an equilibrium point of S if S(t)v = v for all t > 0. The set of 
all equilibria is denoted by E. A continuous functional I: H - IJR is said to be a 
Lyapunov functional on U under S if the following conditions apply. 

I(i) There exists cl such that I(v) > cl for all v E U, and for every c there exists 
p = p(c) such that the diameter of {v: I(v) < c} is bounded by p. 

I(ii) I(S(t)v) < I(S(t')v) for all t > t' > 0 and for all v E U. 
I(iii) If I(S(t)v) = I(v) for all t > 0 then v E E. 
S is said to be point dissipative on an open set U C H if there exists a bounded 

set B C U which attracts each point of U. S is said to be uniformly compact on an 
open set U C H if for each bounded set B C U there exists to = to (B) such that 

U S(t)B 
t>to 

is relatively compact. 
LEMMA 2.1. Let H be finite dimensional and U C H be open. Then for either of 

the properties 
(i) there exists a bounded set B which is absorbing in U under S, or 

(ii) there exists a Lyapunov functional, I, on U under S 
imply that S is uniformly compact on U. 

Proof. Since H is finite dimensional it is sufficient to show that there exists 
to = to(B) such that, for each bounded set Bo C U, Ut>to S(t)Bo is bounded. If (i) 
holds then this is immediate since Ut>to S(t)Bo C B is a bounded set. 

If (ii) holds, by I(iii), we have that for each v e Bo, I(S(t)v) < I(v) < M(Bo) for 
all t > 0 and by I(i) it holds that S(t)Bo is bounded for all t > 0. U 

LEMMA 2.2. [26, p. 28]. Let B C H be nonempty and Ut>t? S(t)B be relatively 
compact for some to. Then w(B) is nonempty, compact, and invariant. O 

PROPOSITION 2.3. [26, p. 23]. Let there exist an open set U C H and a bounded 
set B C U such that B is absorbing in U under S. Suppose that S is uniformly 
compact on U. Then A = w(B) is a global attractor for U under S. Furthermore, if 
H is a Banach space and U is convex and connected, then A is connected. O 

PROPOSITION 2.4. Suppose that -y+(uo) is relatively compact for each uo E U 
and that there exists a Lyapunov functional I on U under S. Then w(uo) C S for each 
uo E U. Furthermore, if g is bounded then S is point dissipative on U. U 

Proof. By I(i) and I(iii), I(S(t)uo) is a bounded decreasing continuous functional 
for t E (0, ox) (or sequence for t E Z) and so has a unique limit 

e = lim I(S(t)uo). 
t o00 

Because -y+(uo) is relatively compact there exists a cluster point v E w(uo) = 

limk,o, S(tk)uo and, because I is continuous, I(v) = limk O, I(S(tk)uo) = e. Thus 
I(v) = e for all v E w(uo). The invariance of w(uo) (Lemma 2.2) implies that for 
v E w(uo) S(t)v E w(uo) for all t > 0. Therefore, I(S(t)v) = e = I(v) for all t > 0 
and, by I(iii) it follows that v E E. 

We have for each uo E U that 

lim I(S(t)uo) = e7 
t-400 

which implies that for t > to = to(uo), I(S(t)uo) < e + 1. Therefore, by I(i) there 
exists a bounded set B such that S(t)uo E B for all t > to(uo). Thus S is point 
dissipative. U 

PROPOSITION 2.5. Suppose that 
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(i) S has a Lyapunov functional I on U. 
(ii) S is uniformly compact on U. 

(iii) 9 is bounded. 
Then there exists a global attractor A for U under S. Furthermore, if H is a 

Banach space and U is convex and connected, then A is connected. 
Proof. It follows from Proposition 2.4 that S is point dissipative on U. Further- 

more, by I(ii) and I(iii) the orbits of bounded sets are bounded. The existence of a 
connected global attractor is then a consequence of [8, p. 39, Thm. 3.4.6]. D 

3. The semidiscrete approximation: spurious steady solutions. In this 
section we study the ordinary differential equations (1.8)-(1.9). We start by intro- 
ducing some notation and making explicit some assumptions about the structure of 
the spatial discretization. We introduce a discrete L2 inner product 

(U, V) = UTMV 

and a discrete Dirichlet inner product 

(U, V)A = UTAV, 

together with the associated norms 

2 
|u| = (U,U)2, l|Ull = (U,U)A. 

It is convenient to let Lh be the normed vector space {1RJ, I * l}. We assume that the 
eigenvalue problem 

A=i = AiM0b 

has eigenvalues Ai satisfying 

C2 < Ai < Coh 

Under this assumption it is possible to show (see Appendix 1) that the following 
Poincare and inverse inequalities hold for all U E IRJ, where Cp and Co are indepen- 
dent of h, 

(3.1) iUi < CPIIUII, 

(3.2) IIUI12 < CO IU12, 

(3.3) IhUlI < Cp4M-'AUI, 

and 

(3.4) IM-'AU12 < CO IIUI12. 

We set 

L = M-1A, E = (1,1, ... .,1)T 
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1628 C. M. ELLIOTT AND A. M. STUART 

and we assume that 

(3.5) 0 < Li C21 Lij < 07 j =A i, 

where C, is independent of h. In addition, we assume that 

(3.6) {AE}i > 0 for i = 1,...,J. 

The assumptions (3.5) and (3.6) imply that 

(3.7) AO (U, OMU) A >- ||+(U)11|2 

[20] for monotone X with Lipschitz constant AX, satisfying X(O) = 0. 
The assumptions that we make about the matrices M and A are reasonable 

and will be satisfied by standard second order finite difference approximations and 
piecewise linear finite element discretisations on "acute triangulations" of Q. 

3.1. Equilibrium problem and steady solutions. We say that U* E L2(Q) 
is an equilibrium of (1.8) provided 

(3.8) -yAU* + Mf(U*) = 0, 

and we let gh denote the set of all solutions to (3.8). Clearly 0 E so that gh iS 
nonempty. Furthermore, if U* E gh then U* is a critical point of the functional 

(3.9) Ih(V) = 2(V, V)A + (F(V), E). 2 

By (F2) there exists, for each E > 0 a C, > 0 such that 

(3.10) F(r) >-Er2 _ C Vr 

(see [8]) and hence it follows that 

(3.11) Ih(V)> 2(V V)A-e1V12-CeC(Q)> 4 -0? V V E L2, 

where C(Q) is an h-independent upper bound for JEl2. Therefore, since (Fl) implies 
that jh(.) is continuous, classical arguments show that there exists at least one U* E 
gh such that 

Ih(U*) = inf lh(V). 
VE Lh Ve2 

LEMMA 3.1. The set gh is uniformly bounded, independent of h, in the discrete 
Ho and in the maximum norm. 

Proof. Taking the inner product of (3.8) and U* gives 

-x11U*112 + (U*,f(U*)) = 0 

and, since by (F1),(F2) 

(3.12) f (r)r > min f (r)r =-Cf, 
Ir <21 
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DISCRETE PARABOLIC EQUATIONS 1629 

it follows that gh is bounded in the discrete Ho norm, viz 

IIU *II <? V(CfC(Q)/y) VU E gh 

Furthermore, taking the inner product of (3.8) with (U* - E)+, where the + denotes 
positive part, and using (3.7), it follows that 

II(U* -E)+11 = 0 

since 

f(r)(r - U)+> 0 Vr. 

Similarly, using - to denote the negative part, we have that 

jj(U* + uE)_ || = 0 

and hence we have that ih is uniformly bounded in the maximum norm 

IU*Ioo < u VU e gh . 

Our next result concerns the number of steady solutions (equilibria) of (1.8)-(1.9). 
We make an additional assumption on f(u), namely (F4). 

(F4) f(-1) = f(0) = f(1) = 0 and f'(-1), f'(l) > 0 and f'(O) = -1. 
The canonical example of a function with such properties is f(u) = U- u. With 

this choice of f equation (1.1) is sometimes known as the Ginzburg-Landau or Allen- 
Cahn equation. Similar results can be proved if the number of zeros of f is different, 
with the obvious modification. In the case f(u) = U2 u U [15] has numerical examples 
which illustrate an analogous result. Simultaneously, a result similar to Theorem 
3.2 has been proved by [1]. Their proof of existence is identical, but their proof of 
stability is different, relying on the structure of the discrete Laplacian, leading to 
explicit estimates for oyo(h). A similar method was also used by [23] to study the 
existence of spurious solutions of the viscous Burgers's equation when the dissipation 
is small. 

In the following, a steady state U* is said to be asymptotically stable if it is stable 
in the sense of Lyapunov and, in addition, U(t) - U* as t -- oo for all U(0) in a 
neighbourhood of U*. 

THEOREM 3.2. Under conditions (Fl) and (F4) there exists yo(h) > 0 such 
that, for -y E [0, yo(h)) (1.8) has at least 3J steady solutions and 2J of these are 
asymptotically stable. 

Proof. Let W be one of the 3J solutions of (3.8) with a = 0 which are generated 
by choosing 

Wj = +1, -1, or 0. 

To show that each W generates an equilibrium solution for -y sufficiently small, we 
employ the implicit function theorem. Set 

G(-y, U) := 7yAU + Mf(U). 

Since f'(Wj) $ 0 and since M has positive elements we deduce that the Jacobian 
DUG evaluated at (0, W) is a diagonal matrix with nonzero diagonal entries and 
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1630 C. M. ELLIOTT AND A. M. STUART 

so is nonsingular. Hence, by the implicit function theorem, we generate a family of 
solutions U*(-y) parameterised by -y for -y E [0, -yo) with U*(0) = W. 

The stability of these steady solutions is governed by the eigenvalues of DUG(-y, U). 
Now consider the 2J steady solutions of (1.8) generated by the choice U *(O) = +1. It 
follows from (F4) that DUG(O, W) is a diagonal matrix with strictly positive entries 
defining its eigenvalues. By the implicit function theorem U(-y) is C', and so the 
eigenvalues of DUG(-y, U(-y)) depend continuously on -y and thus are positive for y 
sufficiently small. This demonstrates that 2J solutions are stable. O 

Many of these steady states constructed for -y < 1 are spurious and the stability 
properties of approximations of genuine steady solutions are often incorrect; for ex- 
ample the Ginzburg-Landau equation has only two stable steady states (for y small) 
whereas the numerical approximation has 2J for y sufficiently small. This issue is 
discussed in detail in ?7, where numerical results are presented. 

However, as h -O 0 for fixed -y the structure of the discrete steady solution set 
converges to that of the continuous steady solution set; we refer to [4] for an account 
of the numerical solution of bifurcation problems. In Appendix 3 we show that when 
(1.1)-(1.3) has N isolated solutions then the same is also true of (3.8) for h sufficiently 
small. See also [17]. 

3.2. Existence of absorbing sets, attractors, and stabilization. The ap- 
propriate analogues of (R1)-(R4), which we establish in Theorem 3.4 are stated below; 
note that Bh is an absorbing set in the discrete Ho' norm even though the initial data 
is only bounded uniformly in h in {Lh, * 1}- 

(Rl)h For each Uo E Lh there exists a unique solution of (1.8)-(1.9) U E 

C2([0, T]; Lh) for all T > 0. The mapping Uo -* U(t) is continuous in Lh for each 
t > 0. Hence the family of solution operators {Sh(t)}t>o, defined by Sh(t)Uo _ 

forms a continuous semigroup on L2 . 
(R2)h There exist constants {I-I}? 1 independent of h and J such that the balls 

? h ={V EL h2 IVI < 
- 
17 

B2h = {V E L h|VII < ?12} 

are absorbing sets for the semigroup {Sh(t)}t>o; that is, for each UO E L h there exists 
{ti} 2__ (depending on {Uo, p,} and {Uo, p2}, respectively) such that 

Sh (t)Uo E Bih V t > ti (i = 17 2). 0 

(R3)h There exists a global attractor Ah c Lh for the semigroup {Sh(t)}t>o. 
F'urthermore Ah is connected and there exists a constant PA- independent of h such 
that 

max{lVI, IJV11, JVjK0} < PA V V E Ah. A 

(R4)h The functional defined by (3.9) is a Lyapunov functional for {Sh(t)}t>o. In 
addition, for any UO E L2, the -limit set is contained in gh. o 

We now prove these results. 
LEMMA 3.3. Let m > u. If U(t) solves (1.8)-(1.9) then, for t > to > 0 

(3.13) 1(U(t) - mE)+I < I(U(to) - mE)+I exp(-(t - to)7y/C2), 
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(3.14) I(U(t) + mE) I < I(U(to) + mE) I exp(-(t - to)Y/Cp), 

and 

(3.15) IU(t)Ko < max(ui, IUo KO). 

Proof. Set 

Z(t) = U(t)-mE 

and define Z(t)+ by {Z(t)+}i = Zi(t)+. It follows that 

dZ Z+ + (Z, Z+)A + (f(U), Z+) =-m(E, Z+)A 

Since m > Ui we have 

f(r)(r-m)+> 0 Vr. 

Combining the assumptions (3.6), (3.7) on the matrix A yields 

(3.16) 1 d 12+ _1Z+ 12 < o. 
2 dt 2?yIZII 0 

Inequality (3.13) is an immediate consequence of (3.16) and the Gronwall inequality. 
The proof of (3.14) is very similar. We obtain the maximum norm bound (3.15) by 
taking m = max(ii, IUo I ) and to = 0 in (3.13) and (3.14). 0 

THEOREM 3.4. (Rl)h-(R4)h hold for (1.8)-(1.9). 
Proof. (Rl)h: local existence and uniqueness follows from the standard theory of 

ordinary differential equations, by (Fl). Existence for any T > 0 follows from the a 
priori estimate (3.15). In order to prove continuity with respect to initial data, it is 
sufficient to consider U(t) - V(t) where V(t) solves (1.8) with initial data Vo. Clearly 

dt IU _ V12 + /IIU-V112 + (f (U) -f(V), U-V) = 0 

and the inequality 

IU(t) -V(t) I? C(T, Uo, Vo) lUo -Vo 

follows from the a priori estimate (3.15) in Lemma 3.2 and Gronwall's inequality. 
(R2)h: taking the inner product of (3.8) with U(t) implies that 

1 d IU(t)12 +?7yIUII2 + (U,f(U)) = 0 
2 dt 

and, by (3.12), 

(3.17) dt IuI2 + 2'yIJUjI2 < 2Cf C(Q). 
dt 

Using Poincarxes inequality (3.1), 

d IU12 + 27 2 < 2C0 C(Q). 
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From this we obtain, using Gronwall's inequality, 

IU(t)12 < JUo12 exp(-2yt/C2) + Cf C(Q)Cp2[l - exp(-2yt/CP2)]/y. 

Therefore, 

lim sup IU(t) I < 61, 61 = C 
t-+oo 

and we can take Pi to be any number larger than 61 to define the absorbing set B . 
In order to show that there is an absorbing set uniformly bounded in the discrete 

Ho' norm we premultiply equation (1.8) by M-' and take the (*,*)A inner product 
with U to obtain 

+ ylM-'AU2 + (f(U), U)A = 0, 

so that 

2 dt|U|| + (f(U) + CFU, U)A - (CFU, U)A = 0 

Using the monotonicity of f(U) + CFU implied by (F3) and (3.7) we obtain 

1 d IIUl12 < CF IIUI2. 

Integrating (3.17) we obtain 
t+r d<Cj' C (Q)r 1 

f IU(S)112ds < ( + 2- U(t)12. 

Taking t sufficiently large and using the absorbing set in Lh gives 

t+r ~ ~ C(Q)r - 2 
jt |U(s)112ds < Cf + Pi 

y 2-y 

Thus, applying the uniform Gronwall lemma [26, p. 89] we obtain 

[Cf C(Q2) p] 
11U(t +r)||? [f t + 2<Pr exp(2CFr). 

Since t may be arbitrarily large, this yields the absorbing set in the 11 11 norm. 
(R3)h: We set ourselves in the framework of ?2. Since L h is finite dimensional, 

the existence of a global attractor Ah = wh(B h) is an immediate consequence of 
Proposition 2.3. The existence of PA is an immediate consequence of the bounds 
obtained in the proof of (R2)h and from the following maximum norm bound: since 

I (U(to) -mE)+ I < |U(to) I + mC(Q), 

it follows from (3.13),(3.14) in Lemma 3.3 with m = u- and the previous estimate on 
the absorbing set in the Lh norm that 

lim sup IU(t) loo < U. 
t-+oo 

(R4)h: Taking the inner product of (1.8) with dU/dt yields 

dU2 d 
(3.18) dU + Ih(U) = O. 

dt dt 

Facts I(i)-I(iii) concerning Ih(.) follow immediately from (3.11) and (3.18). Thus 
Proposition 2.3 yields w(Uo) C ?h. o 
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4. The explicit Euler approximation. In this section we consider the Euler 
discretisation of (1.8)-(1.9). Let Un denote the approximation to U(nAt). We obtain, 
for n > 1, 

(4.1) MOUn+1 + -yAUn + Mf(Un) = 0, 

where 

aVn := (Vn- Vn-1)/At. 

The convergence of solutions of (4.1) to solutions of (1.1) on a finite time interval 
as h, At -* 0 is well understood; see [21]. Such results require that At be restricted by 
the square of the space step h. Here we are concerned with the long time dynamics of 
(4.1), that is n -* oo, with fixed At and h. We show that the temporal discretisation 
(4.1) introduces spurious solutions with period 2 in the timestep and that, further- 
more, under certain assumptions on f(u), these periodic solutions can be found for 
At arbitrarily small. We then discuss the effect of these periodic solutions on the 
dynamics of the problem. If At is restricted in terms of the initial data then the effect 
of the periodic solutions is avoided, a gradient structure ensues and the existence of 
absorbing sets and attractors is proved. However, if At is not restricted sufficiently 
in terms of the initial data the scheme may be shown to blow up, indicating that the 
unstable manifolds of the spurious periodic solutions are connected with infinity. 

4.1. Spurious dynamics. Period 2 solutions of (4.1) are pairs {U, V} with 
U 5$ V which satisfy the equations 

(4.2) M(V - U) + AtyAU + AtMf(U) = 0, 

(4.3) M(U - V) + AtyAV + AtMf(V) = 0. 

Existence of period 2 solutions can be established by a local bifurcation argument, 
treating At as a bifurcation parameter. See [7] and [24]. Fixed points (i.e., equilibria 
of (4.1)) are solutions of (4.2)-(4.3) with the symmetry U = V. Genuine period 2 
solutions can by constructed as local bifurcations which break this symmetry as At 
varies. 

Suppose that U* is an equilibrium solution and let df(.) denote the Jacobian of 
f so that 

df(U*) = diag(f'(Ui*)). 

Applying Theorem 4.1 in [24] we obtain the following result. 
LEMMA 4.1. Let U* be an equilibrium point of (4.1) (i.e., a solution of (3.8)) 

such that all the eigenvalues of yL + df(U*) are nonzero. Assume that (F1) holds and 
d = 1. Then the eigenvectors {kk}kJ=1 and distinct eigenvalues {Tk}Ij1 of yL+df(U*) 
generate period 2 solutions of (4.1) with the form 

U(A) := U + fLLk + 0(H12), 

V(8) :=U - fLk + 0(H12), 

Atk(I) = 2/Rk + 0(HA), 
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for 1i sufficiently small, which are C' in m. 0 
Note that most of the lk are positive since the largest eigenvalues of L = M-'A 

scale like h-2. Here 1i parameterises the branches of period 2 solutions locally in 
the neighbourhood of the bifurcation points. Having constructed these branches of 
spurious solutions locally in the neighbourhood of the bifurcation points Atk, it is 
natural to ask what happens to these branches of solutions far from the bifurcation 
points. In particular, it is of interest to know whether such solutions exist for At 
arbitrarily small. For simplicity we consider the case of f(.) being odd. It is then 
possible to seek period 2 solutions with the symmetry U = -V under which (4.2),(4.3) 
become 

(4.4) 2U - Atf(U) - At-yLU = 0. 

Setting -y = 0, equation (4.4) admits solutions W with the form 

(4.5) {W}i = +R(At), 

where R(At) solves 

(4.6) r = Atf (r)/2. 

Suppose that f satisfies (Fl), (F2) and that, in addition, 

(F5) If(r)/r I-oo as r - oo, 

then (4.6) has solutions +R(At) for arbitrarily small At which satisfy 

lim I R(A\t)I = oo. 
At-+O 

These two solutions generate 2J solutions of (4.4), and hence 2J period 2 solutions 
of (4.1) in the case of zero diffusion (-y = 0). These solutions exist for At arbitrarily 
small but, in accordance with the results of [13], they tend to infinity as At - 0. We 
now show that these solutions persist for -y > 0 sufficiently small under appropriate 
conditions on f(u). These conditions allow, for example, arbitrary superlinear poly- 
nomial power growth. In the following theorem the norm I * I on matrices denotes 
that subordinate to the related norm on vectors. 

THEOREM 4.2. Let f satisfy (Fl), (F2), (F5) and be odd. Assume that f satisfies 
the following two growth conditions: there exists At satisfying 0 < At < 1: 

(i) 12 - Atf'(R(At))I > di > 0, for all 0 < At < At, where d1 is independent 
of At and R(At) solves equation (4.6); 

(ii) define 

D = 2Id - Atdf(W), 

where Id is the identity matrix and note that D-1 is defined for 0 < At < At by (i). 
Let 

B:={V: IV-WI P}, 

where 

p = -yLI ID-' I IWI. 

Then we assume AtK < d2 for all At < At where K is the Lipschitz constant for df 
on B3. 
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Assume also that y is chosen sufficiently small so that 

d2ID-1 lp +it(l +-lLl ID-' 1) < 1 

and 

2d2 ID-1 lp +AityILI ID-' I < 1. 

Then, for each of the 2J solutions W defined by (4.5),(4.6), there exists a unique 
solution U, V to equations (4.2), (4.3) satisfying V = -U and 

jU-WI <p. 

Proof. Solutions of (4.4) are fixed points of the iteration 

Uk+1 = Uk - D [2Uk - Atf(Uk) - AtLUk]. 

By (i), this map is well-defined and ID-11 is bounded independently of At. 
We first show that the map takes B into itself. Let Uk E B. Clearly, 

W = W -D-1 [2W - Atf(W)]. 

Subtracting and exploiting the diagonal nature of f we obtain 

ek+1 = -AtD [(df (W) - df((k))ek -LUk], 

where ek = Uk - W and Gk E B. Using the Lipschitz constant for df we find that 

ek+1 I< AtID-11KIek 12 + AtylLl ID-' I HWI + AtylLl ID-' I lek I 

< d2ID-1 Ip2 + L\tp(1 + -ylLlIHD-' 1) 
< [d2ID'1 lp + At(1 + ylLl ID-' I)]p 

and hence, by assumption on -y the mapping takes B into itself. 
Now consider a second sequence of iterates Vk satisfying the same iteration 

scheme and assume that UO and VO E B. Defining dk = Uk - Vk we obtain 

dk+l = -AtD-'[(df(W) - df(?7k))dk- -yLdk], 

where lk E B. Thus 

dk+1 I <AtID-11KIdk 12 + At-ylLID-' ldk I 

< [2d2ID-1 lp + At-ylLl ID-' 1] ldkl1 

Hence, by assumption on -y the mapping is a contraction on B. By the contraction 
mapping theorem, the proof is complete. O 

We now consider the effect of these spurious period 2 solutions on the dynamics 
of the Euler scheme. It is clear that, if the scheme is to inherit the gradient structure 
of the underlying PDE, then some restriction will be required on At in terms of 
the magnitude of the initial data-this is because for any At sufficiently small, it is 
possible to choose initial data in the domain of attraction of a period 2 solution which 
precludes stabilisation to the set of equilibria and hence a gradient structure cannot 
hold. Furthermore, we conjecture that the unstable manifolds of the period 2 solutions 
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are connected to infinity. To substantiate this conjecture, we prove that for all At 
sufficiently small there is initial data which blows up under the Euler iteration (4.1). 
This should be contrasted with the underlying partial differential equation and its 
semidiscretisation, for which arbitrarily large initial data is mapped into an absorbing 
set under the evolution semigroup. 

The following relationships are needed in the analysis: 

(4.7) JUI < C(QQ)lUlo V U E 1RJ 

and 

(4.8) U12 > C2hdIU2 V U E R.J 

Here C2 is independent of h, and d is the spatial dimension of the problem. In the 
following set r = At/h2. 

THEOREM 4.3. Consider (4.1) under conditions (Fl), (F2), and (F5) with initial 
data Uo satisfying the property that If(u)I > C31ul for all u: Jul > lUolK, where 
C3, h and r are chosen so that 

AtC3[AtC2hdC3 - 2C(Q)2 - 2rCo-yC(Q)2] 

> C(Q)2(( + k)-(1-2r0Co + At2 2 C2hd 
Cp 

for some k > 0 and 

AtC3[AtC2hdC3 - 2C(Q)2 - 2rCo-yC(Q)2] > 0. 

Then 

Un 100 > (1 + k)n Uo12 

Proof. The proof is by induction. Rearranging (4.1) gives 

MUn+1 = MUn - AtyAUn - AtMf(Un). 

Taking the inner product of each side of this equation with itself yields 

Un1 12 = Un2 - 2At-4llUn12 - 2At(Un, f(Un)) 

+2At2Y(f(Un), Un)A + At2_Y2 JM-AUn 12 + At2 If(Un) 12. 

Using (3.1), (3.2), (3.3), (4.7), and (4.8) we obtain 

lUn+1 1 2 

* 1 - 2r-yCo + At2 I2) Uj 2- 2AtUn I If(Un) I 

-2At2y IlUnlllf(Un)ll + At2 If(Un)2 

* 1 - 2r-yCo + At2 2) JUn12 

-2AtUnl lf(Un)l - 2AtrC0yJUn JJf(Un)J + At2 If(Un)12 
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> (1 -2rCo + At2) Un12 - 2AtC(Q)2 UnIkoIf(Un)IKo 

-2AtrCoyC()2 UnI oo f(U)n Ioo + tC2h If(Un) lo 

=( 1-2r-yCo + At2 2) |Un |2 + At If (Un) I co [AtC2hd|f(Un) 

-2C(Q)2 |Unlco - 2rCo-yC(Q)2 UUnjoo] 

Assume for the purposes of induction that 0Unjoo satisfies 

(4.9) JUnloo > (1+ k)n/2+o loo 

Now 

lf(Uj)oo >_ If (V)li 

where Vj I UnIJ0 and hence 

lf(U) loo > C3lUn lo. 

By assumption on C3 it follows that 

AtC2hdC3 - 2C(Q)2 - 2rCo-yC(Q)2 > 0. 

Thus we have 

Un+112 > 1- 2ryCo + At2-2U 12 

+ AtC3[AtC2hdC3 - 2C(Q)2 - 2rCo-C(Q)2] Un" 

> C2h I - 2ryCo + C4 )UnT0O 

+ AtC3 [AtC2hdC3 - 2C(0)2 - 2rCo7C( U)2]Un . 

By assumption this yields 

lUn+? 12 > C(Q)2(1 + 12 

Hence, 

IUn+1 120 > (1I+ k)IUn 12o 

Thus, since k > 0, (4.9) holds for n = n + 1 and the induction is complete. 0 

The magnitude of the data required to prove blowup in Theorem 4.3 is very large: 

a rough estimate shows that C3 = O(At-1h-d/2). The analysis is very crude since 

it is based in the maximum norm and no attempt is made to determine the most 

unstable spatial structure required for blowup. In the case of one-dimensional finite 

difference schemes, the analysis can be tightened to yield a critical C3 = O(At-1). In 

this case a scheme of the form (4.1) may be written 

(4.10) Un+l = rUjnU1 + (1 -2r)Ujn + rUjn+1 -Atf(Ujn) for j = 1, ... I J, 

together with the boundary conditions 
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Consider initial data U5T satisfying 

(4.12) UU+ < 0 V I=1,...,J-1. 

This choice of initial data is very unstable and is motivated by the most unstable 
mode according to linear theory [21]. Note that the condition we derive for blowup 
may be reformulated as 

(2 + k)h2 
t>2+h2C' 

where C is defined below. This should be contrasted with the bound (4.15) on At in 
Lemma 4.5 which ensures boundedness of the numerical solution as n -* oo. 

THEOREM 4.4. Consider (4.10)-(4.11) under conditions (Fl), (F2), and (F5) 
together with initial data satisfying (4.12). In addition, assume that the initial data 
satisfies the property that f(u)/u > C for all u: IuI > minj I{Uo}3j and where C is 
chosen so that 

2-2r + k 
At 

for some k > 0. Then 

JUnloo > (1 + k)nIlUol.o 

Proof. The proof proceeds by induction. We assume that 

(4.13) U[U+1 < 0 V = 1,.. ., J- 1. 

and that 

(4.14) f(Uj7)/Uj > C for j = 1, ... J. 

Both (4.13) and (4.14) hold by assumption for n = 0. Consider any Ujn > 0. From 
(4.10) and (4.13) we deduce that 

U7 ?+ (1- 2r)Ujn- Atf(Un). 

Hence, by (4.14), 

j +< [1-2r-At Un f ]U 

< [1 - 2r- AtC]Ujn. 

By assumption on C we obtain 

Un+' 
- 
(1 + k)Un. 

Similarly, for Ujn < 0, we obtain 

Un+' ?-(1 + k)Un. 

Thus (4.13)-(4.14) are true for n replaced by n + 1. Furthermore, we have 

jUjn+lI > (1 + k)lUnl 

and the result follows by induction. 0 
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4.2. Existence of absorbing sets, attractors, and stabilization. We now 
set (4.1) in the context of dissipative dynamical systems. For fixed h and At let 
ShA: L2h - Lh be defined by 

Sh (V) = (I - AtyL)V - Atf(V). 

The continuity of Sh follows directly from (F2); the equilibria of Sh? are given by the 
set gh of solutions to (3.8). In order for Sh to yield a dissipative dynamical system 
it is necessary to restrict the initial condition to the set 

K2 ={VeLE : LVK?o < a} 

for any a > u. In the following we set 

K = max{jf'(r)j}. 
Ir?<a 

We derive the following discrete analogues of (R1)-(R4) under appropriate re- 
strictions on the timestep which are dependent upon initial data and h and detailed 
in Theorem 4.10. 

(RE1)h For each Uo E K2h there exists a unique solution of (4.1) U, E Lh for 
all n > 0. The mapping Uo -* Un is continuous in Lh for each n > 0 and hence 
the family of solution operators {(Sh)n}n>o, defined by (Sh)nUo -Un forms a 
continuous semigroup on K2. 0 

(RE2)h There exist constants {I -}>I? independent of h and At such that the balls 

Bh ={V E Lh: IVI < -1}, 

h= {V E Lh: IIVII < -2} 

are absorbing sets for the semigroup {(Sh)n}1n>o0 that is, for each Uo E K2h there 
exists {ni} I?1 (depending on {Uo, pi } and {Uo, P2}, respectively) such that 

(Sh) Uo E Bh Vn>ni (i=1,2). o 

(RE3)h There exists a global attractor Ah C Lh for the semigroup {(Sh)n}n>o. 
Furthermore, Ah is connected and there exists a constant PAi independent of h and J 
such that 

max{lVI, JIVII, lVloo} < VA V V E A 

(RE4)h The functional defined by (3.9) is a Lyapunov functional for {(S )n}t>o. 
In addition, for any Uo E K2h, the w-limit set is contained in gh. 

We proceed by obtaining some estimates of Un = (SA)'Uo. We begin by proving 
a time discrete version of the maximum norm bounds of Lemma 2.1. The first bound 
is a special case of Theorem 3.3 in [12]. 

LEMMA 4.5. If the initial data and mesh parameters satisfy 

UO E K2h 

and 

(4.15) At <? C0 + Kh2' 
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then 

Unloo < a V n > O. 

If, for some 6 E (0, 2) 

(4.16) At <mi {mirn (2 ' )h} 
-yC + Kh2' (Co-y) 

and a > m > u, then 

- (Un-mE)+ 12 < (1 + Aty6/CP2)-1'(Uo -mE)+ 12 

and 

(Un + mE) 2 <(1 + At-y6/Cp2)-I(Uo + mE)12 

Proof. We write (4.1) componentwise as 

J 

Uin+1-a = Uin-a- At7 Lij(Ujn- a) - \tty(LE)a -a\tf(Uin). 
j=1 

Let us assume that jUnjoo < a. Rewriting, we obtain 

J 

Uin+'-a = [1-At7yLjj-Atf '((zn)] (Ujn-a)-At7y , Lijj(Ujn-a)-At7y(LE)ja-Atf (a) . 
isi 

Since I jnI < a it follows from the fact that f(a) > 0, the assumptions (3.5), (3.6) on 
L and the restriction (4.15) on the timestep that 

Un+1 - a < 0 

and it follows that 

Uin < a 

by induction. Similarly it may be shown that 

Uin >-a. 

For a > m > u, it holds that 

Un+1- m = (1 - AtyLjj)(Un - m) - AtyLij(Ujn - m) - Aty(LE)i m -Atf (Uin) 
j7Ai 

isi 

< (1 - At7Ljj) (Uin - m) - At7 ZLij (Uj7 - m) - Atf (Ufl) 
jis 

< (1- AtyLi - Atf'(En))(Un - m) - At7Lij(Un - m) - Atf(m), 
jii 
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where 1(inj < a. Thus, if Uin < m, then by (4.15) and (3.5) 

Un+1- m < (1 - AtyLij - Atf'(-))(Un_M)+_\t_yELij(Uj -m)+ 
isi 

= (U _-M)+-_t7 E Li (Uj - m)+. 

Alternatively, if Uin > m then f(Uin) > 0 and we again obtain 

Uin' -m?< (Uin-m)+_ At7y E Lij (Uj m)+. 

Multiplying by (Uin+l - m)+ and summing gives 

(Zn+l - Zn, Zn+1) + At-y(Zn Zn+l)A ? O? 

where 

Zn = (Un - mE)+. 

This is the time discrete analogue of (3.16). Rearranging we obtain, by (3.2), 

JZn+1 1- Zn 
2 +1 Zn+ -Zn 

2 + 2AtyllZn+l 112 < 2AtyllZn+l - Znlll|Zn+ll| 

< 2-t 
Co 

1Zn+1-Zn12 +y7At(2 - 6)Zn+112 

and, provided that (4.16) holds, we obtain 

1Z+ (1 + 6yAt/C2) < ZTJ2 

Similarly we estimate (Un + mE)_ and obtain the desired results. O 
Remark. The preceding lemma is also true with the same proof if we set 

a = max{IUoloji}. 

LEMMA 4.6. If, for some 6 E (0,1) 

(4.17) At < min{2(1 - 6)yh2/(yCO2 + hKC )2 h2/(yC, + Kh2)}, 

then 

Cf C(Q)C2 
|Un2 < Uo|2(1 + 2Aty6/Cp2) + 6 [1 - (1 + 2At76/Cp2)]- 

Proof. Taking the inner product of (4.1) with Un+1 yields 

1 1TT2 +At 1 1 jUn+1 -IU+ 2 1 + Hu+HUn 2 + (f(Un+1),Un+1) 

= (f(Un+1) - f(Un), Un+l) + 7(Un+l - Un, Un+l)A 

< KAtjaUn+1 I|Un+1 I + AtCh? 7 JaUn+111JUn+ 111 h 
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1642 C. M. ELLIOTT AND A. M. STUART 

Here we have used Lemma 4.5 and (3.2). Using Poincare's inequality (3.1) and (3.12) 
we find that 

I 
jUn+1 12 + At2 Un+ |1 + YHUn+l 112 

< CfC(Q) + (KAtCp + AtC) JaUn+1iH1Un+ 11 

and completing the square on the left-hand side of this inequality yields 

_ajUn+ + x/2Aty(1-6))aUn+lllUn+1i1 1+ 61JUn+i1 

< Cf C(Q) + (KAtCp + h? ) V Un+11jjUn+1iI- 

Under the timestep restriction (4.17) we have that 

(4.18) ajUn+12 + 2-y6jIUn+1112 < 2Cf C(Q) 

so that 

(1 + 2Aty6/CpU)iUn+12 ? IUn + 2AtCf C(Q) 

and application of the standard discrete Gronwall lemma gives the result. O 
For any e > 0, let 

P= Cf C(Q)Cp/(y6) + E. 

It follows frorn Lemma 4.6 that there exists no depending only on lUol and lUol0 
such that 

JUnj < P1 Vn > no 

provided that (4.17) holds. Thus the following statement about absorbing sets has 
been established. 

PROPOSITION 4.7. There exists a constant p, independent of h and J such that 
the ball 

Bh = {V E Lh: IVI < P1} 

is absorbing in Uh under Sh provided the timestep restriction (4.17) holds. O1 
We now prove the existence of an absorbing set in the 11 * 11 norm. To do this we 

employ a discrete version of the uniform Gronwall lemma, which is stated and proved 
in Appendix 2. 

PROPOSITION 4.8. There exists a constant P2 independent of h such that the ball 

Bh = {V E Lh: ||VII < P2} 

is absorbing in Kh under Sh provided the timestep restriction (4.17) and 

(4.19) At < m { inh 1-6 } 
(yCO2 + KCph)2 2CF 
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holds for some 61 E (0, 1). 
Proof. Taking the (, *)A inner product of M-1 times (4.1) with U,+1 gives 

(Un+l, aUn+1)A +y(M-'AUn, dM-'AUn+1) + (f(Un), Un+l)A = . 

Hence 

1 1 1 2+At 121 -jUn+2 + l9Un+12 + -ylM-'AUn+il2 + (f(Un+i), Un+l)A 2 2 
= yAt(M-'AaUn+l M-'AUn+l) + (f(Un+l)-f(Un)I Un+l)A 

<y7AtlM-'AaUn+1IIM-'AUn+l + KAt|aUn+1 H H11Un+ 11 

Using (3.3),(3.4) and splitting f as the difference of two monotone functions f(u) = 
f(u) + CFU - CFU and applying (3.7) we obtain 

1IITT 2 A 
112 __2 -ajjUn+l + 2 lJ9Un+12 +ylM-'AUn+l2 

? CF0IIUn+112 + At IJjUn+1 1 IM-'AUn+l I + KCp0\AtHUn+1 H lM-'AUn+l I h 

Under restriction (4.19) we obtain 

(4.20) 1 ajjUn+1 112 < CFIIUn 112. 

From equation (4.18) we have that 

N+Ko 

276 E AtIlUn+ 112 < 2CfC(Q)r + IUKO 2 

n=Ko 

where 

N+Ko 

r= , At=(N+1)At. 
n=Ko 

By taking Ko sufficiently large and using Proposition 4.7 we obtain 

N+Ko 

276 E AtllUn+ll2 2CfC(Q)r+pl. 
KO 

Application of the discrete uniform Gronwall lemma to (4.20) (Appendix 2) gives 

IIUN+Ko+l112 < exp(2CFrl/l) [20! C(Q)r +P] 

for all Ko sufficiently large. This completes the proof. O 
PROPOSITION 4.9. Let the mesh parameters satisfy 

h l2 2(1 -6)hi2 (4.21) At < min { C + Kh2 '7CO + Kh2 f 

for some 6 E (0, 1). Then Ih(.) is a Lyapunov functional for Sh on K2h. 
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1644 C. M. ELLIOTT AND A. M. STUART 

Proof. Since 

f (s) (r -s) = F(r) -F(s) - f '(;) (r - s)2 

it follows that, after taking the inner product of (4.1) with aUn+1 and using Lemma 
4.5, 

12 + Ih <IhU) +112iiu+i2 + KAt2 12 AtUn+2 + Ih(Un+l) (Un) + 2 ||aUn+1 2 |aUn+1 

Therefore, using (3.2) and the timestep restriction (4.21) we obtain 

(4.22) 6AtI&Un+1I (Un+l) ? I (Un)) 

Clearly Ih(Un) is nonincreasing in n and if Ih(Un+l) = Ih(Un), then IUan+1I = 0 
by (4.22) which implies that Un+1 = Un and by (4.1) Un = U* E gh. Thus Ih(.) is 
a Lyapunov functional for Sh (.). O 

It follows from Lemma 2.1 and Propositions 2.3, 4.7, 4.8, 4.9 that the following 
result holds, noting that the boundedness of the attractor in 1 o follows from Lemma 
4.5. 

THEOREM 4.10. Setting 

Ah = (Bh) 

(RE1)h-(RE4)h hold under restrictions (4.15), (4.16), (4.17), (4.19), and (4.21). 01 

5. One step implicit approximations: existence of absorbing sets, at- 
tractors and stabilization. Given Un-1 E Lh we consider the following schemes 
to find Un E Lh for n > 1: 

(5.1) (Si) MaUn + yAUn + Mf(Un) = 0, 

(5.2) (S2) MaUn + yAUn + Mf (Un-1) = 0, 

(5.3) (S3) MaUn + 27A(Un + Un-1) + Mf(Un, Un-1) =0 2 

(5.4) (S4) MaUn + yAUn + Mf (Un Un-1) = 0, 

where 

If (U, V)li := f (Ui IVi), 
f(a, b):= (F(a) - F(b))/(a - b) a 5$ b, 
f (a, b):= ff(a) a = b, 

and 

{f(U,V)}i = ,(U) - fi (V), 
f(r) fo(r)-fi(r). 

Under condition (F3) we may choose fo(*) and fi (e) to be monotone increasing; 
for example fo(r) = f(r) + rCF, fi (r) = rCF. We assume that such a choice has been 
made throughout this section. As in ?4, 

K2h={VEL h: lVlKo < a}, 
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where a > ii and we set 

K= maxlf'(r)l. 
Irt?a 

We also set 

K h-Lh 1 =2 

for notational convenience. 
Replacing U,_1 by V and Un by W in each of (5.1)-(5.4) yields systems of 

algebraic equations for W, given V. Provided they have unique solution then we 
write W = Sh(V). Under appropriate restractions (see Theorems 5.6 and 5.10) we 
show below that schemes (Si) and (S2) satisfy (RII)h- (RI4)h with j = 1 for (SI) 
and j = 2 for (S2). We show that schemes (S3) and (S4) satisfy (RI1)h, (RI3*)h and 
(RI4)h with j = 1. 

(RI1)h For each UO E K4 there exists a unique solution Un E L h for all n > 0. 
The mapping Uo -* Un is continuous in L h and hence the family of solution operators 
{(Sh )n}n>O, defined by (SU)nUo U,n forms a continuous semigroup on Kg'. U 

(RI2)h There exist constants {I- }I? independent of h and J such that the balls 

Bi = {V EL: L V P}, 

B2 ={V E L2 ||V|<2} 

are absorbing sets for the semigroup {(Sh)n}n>o, that is, for each UO e K4 there 

exists {ni }I? (depending on {Uo, p1 } and {UO, P2}, respectively) such that 

(Sh)n UOEBh Vn>ni (i=1,2). 0l 

(R13)h There exists a global attractor Ah C Lh for the semigroup {(SI )}n>o. 
Furthermore Ah is connected and there exists a constant P7A independent of h and J 
such that 

max{IVI, IIVII, IVj0}< P7A VVEA". U 

(RI3*)h Let Hh be the normed vector space {IRJ, 11 * 11}. Then {(Sh)n }n>o is 
point dissipative on Hh and there exists a connected global attractor A"h c Lh for 
the semigroup {(Sh)n}n>O. U 

(RI4)h The functional defined by (3.9) is a Lyapunov functional for {(S)nj}t>o. 
In addition, for any Uo E K4, the w-limit set is contained in 9h. U 

5.1. Schemes (Si) and (S2). We establish that (Si) and (S2) define dynamical 
systems and prove the existence of absorbing sets, a global attractor and a Lyapunov 
functional. 

LEMMA 5.1. Suppose that the timestep restriction 

(5.5) At < 1/CF 

holds for (Si) and the restriction 

(5.6) At < 1/K 

holds for (S2). Then (Si) and (S2) generate continuous solution operators Sh and 
unique sequences {Un}n>O such that 

(5.7) jUnloo<a Vn>O. 
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1646 C. M. ELLIOTT AND A. M. STUART 

Furthermore, for u- < m < a and any integer k > 1, 

(5.8) I(Un+2k- mE)+I < (1 + 2yAt/Cp)k (Un - mE)+I 

and 

(5.9) I(Un+2k + mE)_ ? (1 + 2yAt/CP)k I(Un + mE)_. 

Proof. First we show that (Si) generates a continuous operator Sh under the re- 
striction (5.5). Existence of a solution follows from a well-known variational argument 
based on minimising the functional 

1 IW-Vv2 + IwIWI + (F(W), E) 

over L2 given V E Lh (cf. [5]). 
Let 

MWi + AtyAW' + AtMf (W') = MV, i =1,2, 

and 

E = Wl-W2 E= Vl-V2. 

It follows that 

JEw12 + At IIEw I12 + At(f(Wl) - f(W2),Ew) = (EV,EW). 

Using 

(f(Wl) _ f(W2), Ew) > -CF EW 12 

and (5.5) we have 

At7IIEw 11 2 < EvIHEwl1 

Hence, under the restriction (5.5) the scheme (SI) generates a unique sequence {Un} 
and defines a continuous solution operator Sh. We now turn to the proof of (5.7)-(5.9) 
for (S1). 

For n > 0 set Zn = Un- mE. It follows that 

(&Zn, (Zn)+) + 7Y(Zn, (Zn)+)A + (f(Un), (Zn)+) = -m(E, (Zn)+)A. 

Noting (F2), (3.6), (3.7) and the inequality 

(b - c)b+ > (lb+ 12 _ Ic+ 12)/2 Vb, c E IR, 

we have 

(5.10) l$l(Zn)+12 + n|Zn)+|2/C ? 0, 

or 

(1 + 2At7/Cp)1(Zn)+I2 ? I(Zn1)+I2 
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and (5.8) is an immediate consequence. Equation (5.9) is proved similarly by con- 
sideration of Zn = Un + mE and then (5.7) is a consequence of (5.8) and (5.9) thus 
completing the proof of the Lemma for (SI). 

Since M + AtA is positive definite the system of equations (5.2) always has a 
unique solution so that (S2) trivially generates a unique sequence {U } and the 
continuity of f implies that Sh is continuous because of the finite dimensionality of 
Lh. Again, introducing Zn = Un - mE it follows from (3.6) that 

(5.11) (OZn, (Zn)+) + -Y(Zn, (Zn)+)A + (f(Un-1), (Zn)+) < 0. 

Either 

Zn-1 = Un-1 - m > 0 

and so 

(-zn-1 + Atf (Un-1))(Un - m)+ > -(Zin1)(Zn)+ =(Zi1)+(Zn)+ 

or 

Zi = Ui- m < 0 

and 

(-Zin1 +Atf (Un1))(U -m)+ 

(-Zin1 +At(f(U7n1) - f(m)))(Un -m) 

(-1 + Atf'(())Zn-1(Zn)+ > 0 =-(Zi )+(Zn)+ 

provided 

(5.12) IIun-111 < a 

since (5.6) holds and f(m) > 0. Thus we have shown that 

At(f(Un-1), (Zn)+) > -((Zn-1)+, (Zn)+) + (Zn- 1 (Zn) +) 

Hence (5.10) follows from (5.11) provided (5.12) holds. By induction we deduce that 
(5.7) holds and then (5.8) and (5.9) by arguments similar to those used for (S1). [ 

Remark. As for the explicit scheme, the preceding lemma is also true (with an 
identical proof ) if a = max I UoI, u }. 

From Lemma 5.1 we have the following. 
PROPOSITION 5.2. For each Uo E Kh (respectively, Kh) there exists a unique 

solution of (5.1) (respectively, (5.2)) Un E Lh provided (5.5) holds (respectively, (5.6)). 
The mapping Uo -* Un is continuous in Lh for each n > 0 and hence the family of 
solution operators {(Sh})n}n>o defined by (Sh)nUo = Un forms a discrete continuous 
semigroup on K{h (respectively, K h). 

LEMMA 5.3. For schemes (S1) and (S2) 

(5.13) |Un|2 ? UoI2(1 ? 2ty 6 n/C< ? C + C)C [1 - (1 + 2Atoy6/Cp )n], 

where 6 = 1 for (Si) and 6 e (0, 1) for (S2), provided that the timestep restriction 

(5.14) At < min{1/K, 2-y(l - 6)/(K2Cp)} 
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holds for (S2). 
Proof. Taking the inner product of (5.1) with Un and using (3.1) yields 

(5.15) la|Un|2 ? lAtIaUn|2 + yIlUnhI2 ? CfC(Q) 
=9 lo iUi12 + 1AtIOUfl2 ? 2IUnI2/C2 < Cf C(Q), 

where we have used (3.12) and Poincare's inequality. The bound (5.13) follows from 
application of Gronwall's inequality. Similarly for (S2) we find, using (5.7), 

(5.16) laIUn12 + 2AtalUnI2 +? YIIUn2 < Cf C(Q) + KAtlaUnIIUn 

so that 

211Unj2 ? lAtlaUnI2 + YIUnI2/Cpj < Cf C(Q) + KAtlaUnIIUnlI 

and under the timestep restriction, completing the square on the left-hand side it 
follows that 

I712 12?I6Cyu 2/CO < CfOC (Q). 

Applying the Gronwall inequality, the proof of the lemma is complete. [1 
We may now prove the following. 
PROPOSITION 5.4. For scheme (Si) (respectively, (S2)) there exist constants 

P1, P2 independent of h such that the balls 

Bh= {V e Lh: IVI < p1}, B2h = {V e Lh: IIVII < p2} 

are absorbing in Kh (respectively, K2h) for Sh provided the timestep restriction 

(5.17) At?< 2 some 6 E (O, 1), 

holds (respectively, 

(5.18) At <mmn ___-_6 2-Y (1- 62) },some 6, ez (01 i)) (5.18) {~~K' 2CF 'K2C2 X5pUSEO1) 

Proof. The absorbing sets in 1 I follow from Lemma 5.3. Taking the (, *)A inner 
product of M1 times (5.1) with aUn yields, using the monotonicity of f(u) + CFU 

IIUn+1 112 - _IUn112 < 2AtCFIIUn+l 112. 

By (5.15) we have 

N+Ko 

2At-y E IIUn+1 112 < 2rCf C(Q) + IUKO 12, 
n=Ko 

where r = (N + 1)At. Hence, for Ko sufficiently large, Lemma 5.3 gives 

N+K0 2 f 0(Q)r p2 
E At|Un 112 < ?+ P 

n=Ko 
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Applying the discrete uniform Gronwall Lemma (Appendix 2) we obtain 

IIUN+Ko+l 112 < exp ( Fr+ Pi 

for arbitrarily large Ko. The statement of the lemma follows for (Si). 
For (S2), a similar analysis as for (Si) yields 

1 12+At 121 
-alIUnII2 ? 2 IIaUnII2 ?yIM1AUnI2 ? (f(Un),Un)A = (f(Un) - f(Un-l),Un)A 

= (f(Un) -f(Un_i), M-1AUn) < KAtaUnJIIM-1AUn1 

< KAtCp 11aUn 11jM lAUn l, 

using inequality (3.3). Using the monotonicity of f(u) + CFU we obtain, under re- 

striction (5.18), 

1 OIUn 112 < CF||Un |2. 

From (5.16) we have 

!IlUn 2 ? 2 IOUnI2 ? y( - ) -Un 12 ? IIlUnII2 < CfC(Q) + KAtIaUniIUnUI 
2 6~~~~C 

Completing the square on the left-hand side under restriction (5.18) we obtain 

18Un2 +1 72|Ul2 < Cf C(Q) 21OlUri ?-y621UnIF ? f0 

and the argument now proceeds as for (Si) to obtain 

/2CFr 0f 0(~~) 21 
IJUNKo+l112 exp- +? Pi U ?e 6 

) Y62 2ry62] 

for arbitrarily large Ko. The statement of the lemma follows for (S2). [ 
PROPOSITION 5.5. Suppose that the timestep restrictions (5.5) (respectively, 

(5.6)) hold for (Si) (respectively, (S2)). Then for (Si) (respectively, (S2)) Ih(.) is 
a Lyapunov functional for Sh on Kh (respectively, K2h). 

Proof. Taking the inner product of (5.1) with aUn yields 

AtlaUn12 + 2 [IUnII2 -_lIUn-112 +? lUn - Un1 112] + (f(Un),Un- = ?0 2 

Note that 

f (r)(r - s) = F(r) -F(s) + 2 (r - s)2. 

Hence for (Si), 

lUn 12 + ty IIOUn 112 + aIh(Un) < CFAt Un 

Under the restriction (5.5) Sh defines a dynamical system and, in addition, 

AIh (Un) < -2 1K U21 
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and the statament of the theorem follows. 
An identical argument holds for (S2) if we note that 

f (r)(r - s) > F(r) -F(s)- (r -S)2 

for IrI, IsI < a. [ 
By Lemma 2.1 and Propositions 2.3, 5.2, and 5.5 we have proved the following. 
THEOREM 5.6. Let A = w(Bh) for (Si) and (S2). Then, under the restrictions 

(5.5), (5.17) for (Si) and (5.6), (5.18) for (S2) (RI1)h-(RI4)h hold with j = 1 for 
(Si) and j = 2 for (S2). 

5.2. Schemes (S3) and (S4). We establish that (S3) and (S4) define dynamical 
systems on Lh and prove the existence of a global attractor by establishing a Lyapunov 
functional structure. We note that the proof of uniqueness can be used to prove 
continuity of Sh as for the scheme (Si). 

LEMMA 5.7. There exist unique sequences generated by (S3) and (S4) for any 
Uo E Lh provided, in the case of (S3), that for some 6 E (0, 1), 

(5.19) At <max {8-y(l -6)1 2} 
(CFCP)2 CF 

Proof. We consider (S3) first. The analysis of existence and uniqueness is identical 
to that used by [5] for a similar scheme applied to the Cahn-Hilliard equation. Set 

Wi 

IF (W)}i = f(ui, s)ds + ci, 

where ci is chosen so that {Fn(W)I} > 0. A standard argument in the calculus of 
variations yields a minimiser of the functional 

2Livw u-n 2 ? 7IIwII2 ? 7(Unl,W)A + (E,Fn(W)) 

which satisfies the Euler-Lagrange equations (5.3). F'urthermore, from [5], 

(f (r, s)-f(r,s2))(si-82) = F[si,r, S2](S1 - 82)2 > -CF(S1 - 82)/2, 

where F[sl, r, 82] denotes the second divided difference. Thus, denoting the difference. 
of two solutions to (5.3) by Y for given Un-1 we obtain 

IyI2 + Atay11.112 < AtCFIyI2/2 < AtCFCpIIYIIIYI/2. 

Uniqueness under the condition (5.19) on At follows. 
Because of (F3), fo (e) is monotone increasing and the existence and uniqueness of 

solutions to (5.4) is an immediate consequence of the method of monotonicity. [1 
Thus we have established the following. 
PROPOSITION 5.8. For each Uo E Lh there exists a unique solution of (5.3),(5.4) 

Un e Lh provided (5.19) holds for (S3). The mapping Uo -* Un is continuous in 
Lh for each n > 0 and hence the family of solution operators {(Sh})nln>o defined by 
(Sh )nUo = Un forms a discrete continuous semigroup on L h. 
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PROPOSITION 5.9. Under the restriction (5.19) for scheme (S3) and no restriction 
for (S4), Ih(0) is a Lyapunov functional on Lh for the dynamical systems generated 
by schemes (S3) and (S4). 

Proof. Taking the inner product of (S3) with AtaUn yields 

AtaUn 12 + Ih(Un) _ Ih (Un-1) = 0- 

This is the discrete analogue of (3.18) and the conclusion of the lemma is evident for 
(S3). For (S4) we use the inequality 

(fo(r) - fi(s))(r - s) 

= Fo(r)-Fo(s) + ? (r-S)2 +?Fi(s)-Fi(r) + ? (r-S)2 > F(r)-F(s), 

which holds as a result of (F3) and the monotonicity of fo and fl. Taking the inner 
product of (5.4) with AtaUn, yields 

12 + Ih _ IhyAt2 2< AtIaUnI2 ? Ih(Un) -Ih(Un1) + 2 IIaUnflI ? 0, 

and the conclusion follows for (S4). 0 
Applying Lemmas 2.1 and 2.4 and Propositions 2.5, 5.8, and 5.9 we establish the 

following 
THEOREM 5.10. Then, under the restriction (5.19) for (S3) and no restriction 

for (S4), (RI1)h, (RI3*)h and (RI4)h hold with j = 1. 

6. Multistep backward differentiation methods. In this section we consider 
backward differentiation formulae. Given {Uj e Lh_ j = 0, 1, ... q - 1} we define the 
sequence {Un E Lh} by 

2 

(6.1) M(Z i YUn) + yAUn + Mf (Un) = 0? 

where q > 1 is a given integer and ai is defined recursively by 

av ajVn- aj-1Vn-1 > 

This scheme is the result of applying the q-step backward differentiation formula to 

(1.8). For q E [1, 6] the formula is known to be A(a)-stable [18]. Since in order to 

find Un one solves a system of the form 

(aqM + At-yA)W + AtMf (W) = b 

it is straightforward to apply the proof of Lemma 5.1 to show the following. 

LEMMA 6.1. Suppose that the timestep restriction 

(6.2) At < aqlCF 

holds. Then there exists a unique sequence {Un} satisfying equation (6.1) for given 
f TjT] 1-1 
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Since knowing {OiUn},q- is equivalent to knowing {un-j}q-1 the system (6.1) 
is equivalent to 

(6.3) M (q 1 +t Un) + At-YAUn + AtMf(Un) = M (q j + aUn-1X 

(6.4) AtaUn - lUn = -aYlUn1, j = 1, 2,.. ,q - 1. 

We let V = (V(1),. . . ,V(q)) be an arbitrary element of Lh := (Lh)q and set 

fin :=(Un i AtaUn, . .. * Atq laq- lUn)- 

It follows that, under the conditions of Lemma 6.1, there exists a continuous mapping 
S' : 

L2 )-* L defined by 

W := Si (V) 

where 

(6.5) M ( ) + AtYAW(') + AtMf(W(1)) = M (? W), 

(6.6) WU) - WU-1)= -VU-1) j= 2 ...,q 

and 

(6.7) Un = S(Un-1), n> 1. 

Thus (6.1) defines a discrete dynamical system on Lh via (6.7). We now proceed 
to show the properties of the dynamical system. Clearly a fixed point U* of Sh 
satisfies 

(6.8) -yAU*(l) + Mf(U*(l)) = 0, U*(U) = 0 j = 2,... q. 

It follows that the set of equilibria gh is given by U* = (U*, OO,, . . . , 0) where U* C 6h 
is defined by (3.8). Thus gh is bounded and it follows that, by Proposition 2.5, the 
existence of a Lyapunov functional is sufficient to ensure the existence of a global 
attractor. In the case q = 1 we set 

f()= Ih(. 

For q = 2,3 we set 

(6.9) 12(V) = 1 JV2I2 ? Ih(V(l)) 4At 

and 

(6.10) 13^V) = (3)12 + 5 IV(2)I2 + Ih(V(l)). 
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We introduce the following norms on L2 

V = E I V(i 12; 
\j=l 

and 

q \2 

ii VII = I EIIV(j) 112) 
\j=l 

It is clear that I(i) of ?2 is satisfied. Taking the inner product of (6.1) with AtaUn 
yields 

AP.3 U_ A2 12 + h'\ 
n(iaUn, U ) + ? At||Un ? | (Un) 

(6.11) j=1 

< Ih (Un-) + Cy /\t2 aUn 1 2 FA2 

where we have used the argument of Proposition 5.5. It remains to evaluate the first 
term on the left-hand side of (6.11) which we call Fq/At. We set Zn = Un-Un- 
and consider the cases q = 2 and q = 3 in turn. 

q=2. It may be shown that 

F2 = (Un - Un-1 + (Un - 2Un-1 Un-2) Un - Un-1) 

= (Zn ? 2(Z- - Zn1), Zn) = IZ 12 ? -(IZnI2 _lZn-112 ? IZn Zn- 12). 

Hence (6.11) becomes 

AtIou~2t? ~ At2IIU12 
AtlaUn 12 + /tIa2UflI2 + ?laUn12 + i2(Un) 

(6.12) 
CFAt2 

< i2(Un-1)+ ? 2 IU 12I 

q=3. It is a calculation to show that 

F3 = (Zn + (Zn - Zn-1)+ (Zn - 2Zn-1 Zn-2) Zn) 
| 2 3 (z1-Z_| Z-n1 = Izn12 ? -(IZnI2 _ IZn-1I2 +lZn - Zn-112) 

- Zn 12- IZn-1 2 + IZn - Zn-112)- _Znn12 

- z2 ?1 1z2 - z 12] 
= 5- 

12 + 1f2 _ IZ 12) + IZn- Zn-11 

+ (Izn - Zn i12 - IZn-1 - Zn-212) + '1Zn + Zn2- Zn-1 2. 

[fence (6.11) becomes 

-AtIaUn12 + 
t 
30 Un 12 + 

At 
-/n Ata2Un- 112 + ? aUn|12 

6 4 6IOf 2 
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(6.13) f3(un) < f3(tn-1) + 2 IUnflI. 

Setting &i = a1 = 1, d2 = a2 = 3 and d3 = 5 we have the following proposition. 
THEOREM 6.2. Provided the timestep restriction 

(6.14) At < &q/CF 

holds then, for q = 1, 2, 3 Iq(e) is a Lyapunov function for the dynamical system Sh 
on {L, * 11}. Furthermore, SA is point dissipative on {L 2, * I} and there exists a 
global attractor Ah C Lh for the semigroup Sh. 

Proof. The case q = 1 is considered in Proposition 5.5. Clearly we just need to 
check condition I(iii) of ?2 because I(ii) follows immediately from (6.12) and (6.13). 
We detail the case q = 3 since the other case is treated in an identical fashion. It 
follows from (6.13) and the definition of Sh that, if 

fq Sh V))= fq (V) 
A~ ~~~~i A 

Aq 

then, with W - Sh (V) 

W(2) = W(3) =V(3) = 0. 

Furthermore from (6.6) we have that V(2) - 0 and V1) = W . Hence, by (6.5), it 
holds that 

AW(M)+ Mf(W(1)) = 0, 

and V = Sh(V) E ?h. By Lemma 2.1 the existence of a Lyapunov functional implies 
that Sh is uniformly compact and hence that individual positive orbits are relatively 
compact; thus, by Proposition 2.4, Sh is point dissipative on {Lh,II o * 1}. The existence 
of a global attractor follows from Proposition 2.5. [ 

7. Numerical results. In this section we present numerical results which illus- 
trate the material in ?3. Numerical results illustrating the material in ??4 and 5 may 
be found in [25]. 

We illustrate the spurious steady states and spurious stability properties implied 
by Theorem 3.2. For simplicity we assume, in addition to (Fl) and (F4) on f(u), 
that the equation is posed on the interval Q = (0, 1) and that sgn(f"(u)) = sgn(u). 
(The canonical example is still f(u) = U3-U.) It is proved in [3] that (1.1)-(1.3) has 
2n + 1 steady solutions for -y E [((n + 1)7r)-2, (n7r)-2). Thus the number of steady 
solutions approaches infinity as -y -* 0+. Hence Theorem 2.1 does not seem to be 
worrying, at first glance-the method just resolves as many solutions as possible on 
the grid. However, a closer inspection shows that most of the numerical steady states 
are spurious: the true solutions have zeros which are equidistributed in the interval 
[0, 1] whereas most of the numerical steady states do not share this property. A rough 
calculation based on the number of zeros shows that, for y small, we would expect 
the numerical method to resolve approximately 2J + 1 steady solutions (because of 
the equidistribuited zeros property). This implies the existence of approximately 
3J- 2J - 1 spurious solutions. 

At this point it is important to understand the dynamics of the true equation, 
for -y small. On a short time scale diffusion is negligible and the initial data rapidly 
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(a) 0 0 (b) 

0 0.5 1 0 0.5 1 

(c) 0 0 - (d) 

0 0.5 1 0 0.5 1 

FIG. 7.1. u(x, t) versus x for solutions of (1.1)-(1.3). Q = [0, 1],y = 0.0025,uo(x) = sin(77rx). 
For (a) t = 0; (b) t = 20; (c) t = 40; (d) t = 80. Implicit Euler applied to (1.1)-(1.3) with 
At = 0.1, Ax = 0.01. 

evolves towards the stable zeros of f, ?1. Diffusion layers join together regions in which 
u 1 and u -1. Typically, these diffusion layers are not equidistributed and so they 
start to move towards a steady state configuration in which they are equidistributed. 
Furthermore, it is shown in [3] that, for -y < 7r- 2, only two of the steady states 
are stable and that these are one-signed in the interval (0, 1)-one negative and one 
positive. (Note that, in contrast, the numerical method has 2J stable steady states.) 
The analysis of [2] shows that the evolution of interfaces occurs very slowly-on a 
time scale of O(exp(-7y- 2 )). The states which evolve on such a slow time scale are 
known as metastable states. Figures 7.1 and 7.2 show such an evolution starting from 
initial data uo(x) = sin(77rx). The first figure shows the solution at times t = 0, 20,40 
and 80. Notice the devolopment of an interface seperating regions in which u > 0 (to 
the left) and u < 0 (to the right). The interface propagates to the boundary x = 0 
and, at t = 80 the unique negative stable steady solution has been reached. The 
propagation is very slow and this can be seen in Fig. 7.2 where a three-dimensional 
projection of the solution u(x, t) is shown. 

The spurious steady states introduced by the discretisation are close in form to 
the metastable states; they are +1 everywhere except in transition layers. The 
resolution of the numerical method is insufficient to capture the tiny propagation 
speeds for the transition layers and hence these metastable states are stabilised by the 
discretisation and become steady solutions of the numerical method. Figures 7.3 and 
7.4 show the numerical solution of (1.1)-(1.3) posed on the unit interval with the same 
initial data. In both cases the implicit Euler scheme is applied to (1.1)-(1.3). In Figure 
7.3 a value of Ax = 0.05 is taken and the solution approaches a spurious steady state. 
The computed solution is smooth and there is nothing obvious which tells us that it 
is spurious-it is only the fact that we know a priori that genuine steady solutions 
have equidistributed zeros that enables to rule out the computation as spurious. In 
Fig. 7.4 the value of Ax is decreased to 0.01. Notice that the computed solution now 
tends to a true steady solution; however, the density of the profiles indicates that the 
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Solution Profiles 

U(t/)) 
(x 

FIG. 7.2. Solution of (1.1)-(1.3). Q = [0, 1],'y = 0.0025,UO(x) = sin(77rx). 0 < t < 80. Implicit 
Euler applied to (1.1)-(1.3)with At = 0.1, Ax = 0.01. 

Superimposed Solution Profiles 
1.5 

0.5- 

0 

-0.5- 

-1 

-1.5 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

FIG. 7.3. u(x, t) versus x for solutions of (1.1l)-(1.3). Q2 = [O,l1]<y = 0.0025, uo (x) =1, x < 
0.3; uo (x) = - 1 x > 0.3. Implicit Euler applied to (1.1l)-(1.3) with At = 0. 1, Ax = 0.05. Profiles 
at intervals of 10 seconds for 0 < t < 500. 

solution evolves to form a metastable state before finally approaching the negative 
stable steady state. The metastable state is clearly closely related to the spurious 
steady state in Fig. 7.3. 

Figure 7.5 shows a trajectory approaching a steady solution which is unstable 
for the underlying PDE (since it changes sign) but which is artificially stabilised by 
the discretisation. To check that the solution is stable for the discretisation we took 

This content downloaded from 137.205.50.42 on Thu, 12 Sep 2013 05:01:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DISCRETE PARABOLIC EQUATIONS 1657 

Superimposed Solution Profiles 
1.5 

-1.5 

1 .5 - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

FIG. 7.4. Solutions of (1.1)-(1.3). Q = [0, 1], y = 0.0025,UO(x) = 1, x < 0.3; uo(x) =-1, X > 
0.3. Implicit Euler applied to (1.1)-(1.3) with At = 0.1, Ax = 0.01. Profiles at intervals of 10 seconds 
for 0 < t < 500. 

the computed steady state from Fig. 7.5, denoted u5(x) in the caption of Fig. 7.6, 
and perturbed it, taking this as initial data. The results are shown in Fig. 7.6 which 
demonstrates the (spurious) stability of the steady solution. 

Our numerical experiments are purely one dimensional but analogous properties 
hold in dimensions greater than one. 

Appendix 1. Poincare and inverse inequalities. Consider a diagonal matrix 
M with positive diagonal entries and a positive definite symmetric matrix A with 
eigenvectors and eigenvalues {4i, Ai } satisfying 

Aoi = AiMV)ij 

where 

p < Ai < Co/h2. 

Under these assumptions the following inequalities hold for all U E RJ: 

uli < CpllUll, 

fUI12 < Co iui2 

IJUJI < CpIM-1AUI, 

and 

IM-'AUI2 < Co llUI 2 

where Cp and C0o are independent of h and where (o,),J * I and 11* are as defined 
in ?3. 
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Superimposed Solution Profiles 

1.5 

1~~~~~~~~~~~~1 0.5- 

0 0 

-0.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

FIG. 7.5. u(x,t) versus x for solutions of (1.1)-(1.3). Q = [0, 1],-y = 0.000784,uo(x) = 
1, x < 0.3, x > 0.7; uo(x) = -1, 0.3 < x < 0.7. Implicit Euler applied to (1.1)-(1.3) with 
At = 0.5, Ax = 0.02. Profiles at intervals of 50 seconds for 0 < t < 5000. 

Proof. Normalise the eigenvectors so that 

(V)i, j) = bij. 

Then and U e 1RJ may be written as 

U = Z aifb 

i=l 

and 

AU = ZaiAiMvi, 
i=l 

iu2= Ea 
2 

and 

J J 

U12 A Z iaa2 > C2 Za2. 
i=l i=l 

Also, 

lullU2 < Co E 2 
i=1 
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Superimposed Solution Profiles 
1.5 

0.5 

0 

-0.5- 

-1 

-1.51 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

FIG. 7.6. u(x,t) versus x for solutions of (1.1)-(1.3). Q = [0, 1],y = 0.000784,uo(x) = 
Us(x) + 0.2 * sin(77rx). Implicit Euler applied to (1.1)-(1.3) with At 0.2, Ax _ 0.02. Profiles at 
intervals of 0.2 seconds for 0 < t < 10.0 

Hence the first pair of inequalities follow. Furthermore, 

M-1AU= ZaijiA 

and hence 

jM-'AUI2 = a2A 
i=l 

and the second pair of inequalities follow. O 

Appendix 2. A discrete uniform Gronwall lemma. Let Gn, Pn, Yn be three 
positive sequences satisfying, for all n > no and Ko > no 

yn1- y n N+Ko N+K0 
n+t n< Gnyn+l + Pn Atn Gn <a a(r), Atn Pn 

Z? nfl n=K0 n=Ko 

N+Ko 

< a2(r), 1: Atnyn+l < a3(r), 
n=K0 

where 

N+Ko 

S Atn=r 

n=Ko 

If AtnGn < 1 - 6 for all n > no, then 

YN+KO+1 < exp(a1/6) [a + a2] VKO > no. 
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Proof. We have 

(1 -AtnGn)Yn+l - Yn < AtnPn 

Let 

Qn+1 = (1-AtnGn)Qn, n > no, Qno = 

so that 

Qn+lyn+l- QnYn < AtnnQn 

Summing we obtain 

N+Ko N+Ko 

QN+KO+1YN+KO+1 - QMYM < E N+tnPnQn < QM E K tnPn 

n=M n=M 

for M > Ko. Now 

QN+KO+1 = QMIIn-M? (1 - AtnGn). 

Hence 

N+Ko 
YN+KO+1 ? YM + E AtnPn HN=+Ko (1 A-tnGn)<1. 

n=M 

Now 

(1 - x)-1 < exp(x/(l - x)), Ixi < 1 

so that 

(1 - AtnGn)-l < exp(AtnGn/6). 

Hence 

N+Ko 

1n=M -AtnGn) 
< < exp E AtnGn/6) < exp(al/6). 

n=M 

Thus 

YN+KO+1 < (YM + a2) exp(al/6). 

Hence 

E AtM1,YN+Ko+l < exp(al/6) [E Atm+ Ym + a2 NE At+ 1 
+l -M=Ko+l M=Ko+1 

=? r(YN+Ko+1) ? exp(a1/6)[a3 + a2r] 

and division by r gives the result. O 
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Appendix 3. Convergence of the number of discrete solutions. Through- 
out this appendix we use C to denote a constant independent of h. By g we denote 
the Greens' operator for the negative Laplacian with homogeneous boundary data on 
Q and we write the steady state equation for (1.1) as 

(Al) au=gf(u). 

Let Sh c C(Q) denote the finite element space consisting of piecewise linear functions 
on an acute triangulation of Q which vanish on aQ. The finite element approximation 
to (1.1) can be written as 

yuh = ghf (uh) 

rather than the matrix version (3.8). Here gh E ?(C(n), Sh) is defined by 

(Vgh77 V() = (7 ()h 

where (, *)h is the discrete L2 inner product arising from lumped mass integration. 
It is known that (see [4]) 

11( _ gh)7,11 < ChIIT7IIW1,q(Q), q > 2 

and 

IIgh?7I1wP(0) < ClIIh7r, p > 1 

where Ih is the interpolation operator from C(Q) into Sh and we use 11 * 11 and I 1 

for the Ho(Q) and L2(Q) norms. 
We suppose that (Al) has exactly Q solutions {ui} for a given -y and that there 

exists 6 > 0 such that in the balls 

B ={7: 117i-uiI < 6} 

there is only one solution of (Al). Thus, in the closed set 

V6 = Ho'\ (U, ) 

there are no solutions and 

? = ienvf 11777-gf(77) 11 > ?. 
IqEV6 

Hence, if uh e V6 then 

? < I_Uh -_gf(Uh) | = I_YUh _ ghf (uh) + (gh _-)f(Uh) 11 

< 11(h _ g)f(Uh) || < Ch|| f(Uh) IIWl(f2). 

Using the L? and Ho' bounds on uh from Lemma 3.1 we find that 

Ilf(Uh)|Wt1,q(Q) < C 

and so uh e V6 implies that E < Ch. Thus for h < ho = E/C we have that uh belongs 
to one of the balls B6. 

If (-y, uj) is a regular point of (Al) then the analysis in [4, Chap. 3] implies that 
for h sufficiently small there is a unique solution uh in the ball BM6. 
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