
IMA Journal of Mathematics Applied in Medicine & Biology (1993) 10, 149-168

A model mechanism for the chemotactic response of endotheliai cells
to tumour angiogenesis factor

M. A. J. CHAPLAIN AND A. M. STUART!

School of Mathematical Sciences, University of Bath,
Claverton Down, Bath BA2 7A Y, UK

[Received 5 August 1992 and in revised form 12 June 1993]

In order to accomplish the transition from avascular to vascular growth, solid
tumours secrete a diffusible substance known as tumour angiogenesis factor (TAF)
into the surrounding tissue. Endotheliai cells which form the lining of neighbouring
blood vessels respond to this chemotactic stimulus in a well-ordered sequence of
events consisting, at minimum, of a degradation of their basement membrane,
migration, and proliferation. A model mechanism is presented which includes the
diffusion of the TAF into the surrounding host tissue and the response of the
endotheliai cells to the chemotactic stimulus. The model accounts for the main
observed events associated with the endotheliai cells during the process of angio-
genesis (i.e. cell migration and proliferation); the numerical results compare very well
with experimental observations. The situation where the tumour (i.e. the source of
TAF) is removed and the vessels recede is also considered.
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1. Introduction

Unless furnished with an adequate blood supply and a means of disposing of waste
products by a mechanism other than diffusion, a solid tumour cannot grow beyond
a few millimetres in diameter and remains in an avascular state. Avascuar nodules
can be cultivated in the laboratory (Folkman, 1976) or can be found in vivo
(carcinomas in situ being a good example) and typically consist of a central necrotic
core surrounded by a thin outer layer of live proliferating cells. Mathematical models
describing this avascular growth can be found in, for example, Greenspan (1976),
Chaplain (1990), and Adam & Maggelakis (1990), and references therein.

Transition from this dormant avascular state to the vascular state, wherein the
tumour possesses the ability to invade surrounding tissue and metastasize to distant
parts of the body, depends upon its ability to induce new blood vessels from the
surrounding tissue to sprout towards and then gradually penetrate the tumour, thus
providing it with an adequate blood supply and microcirculation. In order to
accomplish this neovascularization, it is now a well-established fact that tumours
secrete a diffusible chemical compound known as tumour angiogenesis factor (TAF)
into the surrounding tissue and extracellular matrix. Much work has been carried
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150 M. A. J. CHAPLAIN AND A. M. STUART

out into the nature of TAF and its effect on endothelial cells since initial research
began in the early 1970s with Folkman, culminating quite recently in the purification
of several angiogenic factors, the determination of their amino acid sequences and
the cloning of their genes (Strydom et al, 1985; Folkman & Klagsbrun, 1987;
Deshpande & Shetna, 1989). The extensive current literature on the subject is
testimony to its importance in our understanding of the mechanisms by which solid
tumours develop and grow (see e.g. the reviews of Folkman & Klagsbrun, 1987, and
Paweletz & Knierim, 1989).

Several experimental techniques have been developed and employed for studying
the various events involved during angiogenesis (see the references in Chaplain &
Stuart, 1991) and it is well documented that there are three main events concerning
the endothelial cells which go to make up the process of angiogenesis after the release
of TAF by the tumour cells, namely:

(1) degradation of the basement membrane by enzymes secreted by the cells;

(2) migration of the endothelial cells;

(3) proliferation of the endothelial cells.

(A comprehensive description of the above events can be found in the extensive review
of Paweletz & Knierim, 1989.)

It should be noted that the second and third of these stages—endothelial cell
migration and endothelial cell proliferation—are not linked together. They are
distinct events and different types of stimuli are necessary for each of them. Indeed,
the first steps of angiogenesis can be performed without any cell division at
all (Sholley et al., 1984), and it is well known that mitotic figures can only be
found once the sprouts have already started to grow. Thus cell division is a
sine qua non event for the successful completion of angiogenesis. Endothelial cell
migration together with endothelial cell proliferation are crucial to neovascularization.
Angiogenic factors must therefore induce all of the above three events in a
well-ordered sequence.

The main aim of this paper is to develop and extend the mathematical model of
Chaplain & Stuart (1991), where the model for the process of angiogenesis was
formulated in terms of a free boundary problem for the concentration of TAF. By
introducing a sink term into the diffusion equation to represent the action of the
proliferating endothelial cells at the capillary sprout tips, the boundary of the TAF
receded and hence the position and subsequent movement of the sprout tips was
indirectly followed. Given the relative simplicity of the model, the results obtained
showed a good qualitative agreement with the experimental evidence available.
However, there were a few shortcomings of the model, notably the lack of an equation
modelling the endothelial cell density (this was accounted for indirectly in the sink
term) and, as a result, the breakdown of the model when considering the removal of
the tumor (i.e. the source of the TAF). In this paper we address both of the above
problems by incorporating a population balance equation for the endothelial cells
coupled with the diffusion equation for the TAF. In this way the progress of the
endothelial cells can be monitored directly as they move from their source, e.g. the
limbal vessels (cf. Gimbrone et al., 1974; Muthukkaruppan et al., 1982), and migrate
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CHEMOTAXIS MODEL 151

across the extracellular matrix to the angiogenic source, e.g. the tumour implant.
This approach will also permit direct tracking of the cells when the tumour implant
is removed. In the following section we describe the new model mechanism, and
in Section 3 we present the results of the numerical simulation of the model and
discuss these in the light of the experimental data. In section 4 various concluding
remarks are made.

2. The mathematical model

In this section, we present a model mechanism for the diffusion of TAF into the
surrounding tissue and its effect on the endothelial cells of the neighbouring blood
vessels. We attempt to incorporate in it two of the three main events associated with
angiogenesis described in the introduction, i.e. endothelial cell migration and
proliferation. Therefore, throughout the paper, attention is principally focused on the
endothelial cells, since they play the major role in the sequence of events described
in the previous section and are always in the focus of action (cf. Paweletz & Knierim,
1989). The main function of endothelial cells is in the lining of the different types of
vessels such as venules and veins, arterioles and arteries, small lymphatic vessels, and
the thoracic duct. They form a single layer of flattened and extended cells and the
intercellular contacts are very tight. Large intercellular spaces are not visible and
any easy penetration of the established layer of cells is impossible. Special processes
must take place for the intra- and extravasation of different cellular elements of the
blood or the lymphatic fluids and tumour cells. Even intravascular tumour cells have
to induce the formation of gaps in the single layer of endothelial cells in order to
leave the respective vessels (Paweletz & Knierim, 1989).

As stated in the introduction, this paper develops and extends the model of
Chaplain & Stuart (1991), where attention was focused on the concentration profile
of TAF and the extent to which it had diffused into the external tissue after it was
secreted by the tumour. It also develops the model of Balding & McElwain (1985),
where the modelling of the formation and growth of the capillaries was undertaken
based on the fungal growth model of Edelstein (1982).

We assume that the tumour implant has been placed sufficiently close to the vessels
of, for example, the corneal limbus (cf. Gimbrone et al, 1974; Muthukkaruppan et
al, 1982) so as to be within the critical threshold distance observed by Gimbrone et
al, (1974) (in these experiments it was found that no vascularization of the tumour
occurred, or that the time for vascularization was substantially increased, when the
tumour implant was placed at a distance of more than 2.5 mm from the limbal
vessels). Once the endothelial cells have begun to migrate towards the tumour, at a
certain point they begin to proliferate. Ausprunk & Folkman (1974) hypothesized
that the reason for this was that the cells at the tips of the capillary sprouts were acting
as sinks for the TAF. In order to account for this behaviour, Chaplain & Stuart
(1991) included an extra sink term in their equation to model the uptake of TAF by
the proliferating endothelial cells. The model equation used was

7T = D f"2 - m - ( »
dt dx2
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152 M. A. J. CHAPLAIN AND A. M. STUART

together with the boundary conditions

dc
c = cb on x = 0, c = — = 0 on s(t), (2.2)

dx

and the initial conditions

c(x, 0) = co(x), s(0) = s0 = L. (2.3)
The sink function in (2.1) is composed of two terms, p(c) representing a normalized
rate or removal of TAF and q(x/s) representing the spatial dependence of this removal
rate. The function q was taken to be a continuous approximation to the delta-function
and was also introduced to serve as a measure of the proliferating endothelial cell
density at the sprout tips. By assuming that the proliferating cells were confined to
the capillary sprout tips, following the development of the free boundary in effect
meant following (indirectly) the endothelial cells as they made their way across the
extracellular matrix towards the tumour. However, this formulation breaks down
when the source of TAF (i.e. the tumour) is removed.

The results of Chaplain & Stuart (1991) were encouraging enough to warrant
improving them by formulating the problem explicitly in terms of the endothelial cell
density. To this end, the mathematical model here consists of two conservation
equations, one for the concentration c of the TAF and the other for the density n per
unit area (of capillary sprout) of the endothelial cells. We now derive the two
conservation equations and justify the terms in each.

2.1 Tumour angiogenesis factor

Tumour angiogenesis factor having concentration c(x, t) is secreted by the solid
tumour and diffuses into the surrounding tissue. Upon reaching neighbouring
endothelial cells situated in, for example, the limbal vessels, the TAF stimulates
the release of enzymes by the endothelial cells which degrade their basement
membrane. As described in the introduction, after degradation of the basement
membrane has taken place, the initial response of the endothelial cells is to begin to
migrate towards the source of angiogenic stimulus. Capillary sprouts are formed and
cells subsequently begin to proliferate at a later stage. Once the capillary sprouts
have formed, mitosis is largely confined to a region a short distance behind the
sprout tips (Ausprunk & Folkman, 1977; Sholley et al., 1984; Paweletz & Knierim,
1989; Stokes & Lauffenburger, 1991). Ausprunk & Folkman (1977) hypothesized
that the reason for this proliferation was that these cells or vessels at the sprout
tips were acting as sinks for the TAF. Balding & McElwain (1985) also suggested
that a sink term could be included in their model of capillary growth. Following
Chaplain & Stuart (1991), we thus incorporate a sink term for the TAF in addition
to a natural decay term for the TAF. The conservation equation for the TAF
concentration is thus given by

rate of increase of TAF = diffusion of TAF — loss due to cells — decay of chemical,
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CHEMOTAXIS MODEL 1 53

which, under the assumption of linear Fickian diffusion, can be written mathe-
matically as

^ = DcV
2c-f(c)g(n)-h(c), (2.4)

dt

where Dc is the TAF diffusion coefficient. We assume that the local rate of uptake of
TAF by the endothelial cells (modelled by the function f(c)) is governed by
Michaelis-Menten kinetics (cf. Lin, 1976; McElwain, 1978; Hiltman & Lory, 1983;
Chaplain & Stuart, 1991) and that it also depends on the cell density, hence the
inclusion of the function g(n), i.e. the greater the density of endothelial cells, the more
TAF will be removed by the cells acting as sinks (cf. Ausprunk & Fulkman, 1977;
Chaplain & Stuart, 1991). In general, the function g(n) can therefore be chosen to
be some strictly increasing function to account for this. For simplicity the actual
function used in the model is given by g(n) = n/n0, a simple linear function. More
complicated choices are also possible, however, and do not affect the model
qualitatively. We also assume that the decay of TAF with time is governed by
first-order kinetics, a standard assumption (cf. Sherratt & Murray, 1990). This leads
to the following equation for the TAF in the external tissue:

* ^ ( 2 5 )D t V c d c

dt (Km + c)n0

The initial condition is

c(x,0) = co(x), (2.6)
where co(x) is a prescribed function chosen to describe qualitatively the profile of
TAF in the external tissue when it reaches the limbal vessels (cf. Chaplain & Stuart,
1991). The TAF is assumed to have a constant value cb on the boundary of the
tumour and to have decayed to zero at the limbus (cf. Chaplain & Stuart, 1991)
giving the boundary conditions as

c(0, t) = cb, c(L, t) = 0. (2.7)

2.2 Endothelial cell population balance equation

The endothelial cells are the principal characters in the drama of angiogenesis and
are always centre stage (cf. Paweletz & Knierim, 1989). It is therefore highly desirable
and logical to include in our model an equation modelling the endothelial cells. The
cascade of events which goes to make up the complex process of angiogenesis is
essentially driven by the endothelial cells. We will thus follow the route of the
endothelial cells from their origin in their parent vessel (e.g. the limbus), their crossing
of the extracellular matrix and other material in the surrounding host tissue, to their
destination within the tumour.

The first events of angiogenesis are rearrangements and migration of endothelial
cells rather than induction of cell division (Paweletz & Knierim, 1989). In response
to the angiogenic stimulus, endothelial cells in the neighbouring normal capillaries
which do not possess a muscular sheath are activated to stimulate proteases and
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154 M. A. J. CHAPLAIN AND A. M. STUART

collagenases. The endothelial cells destroy their own basal lamina and start to migrate
into the extracellular matrix. Small capillary sprouts are formed by accumulation of
endothelial cells which are recruited from the parent vessel. The sprouts grow in
length by migration of the endothelial cells (Cliff, 1963; Schoefl, 1963; Warren, 1966;
Sholley et al., 1984). The experimental evidence of Sholley et al. (1984) demonstrated
that endothelial cells are continually redistributed among sprouts, moving from one
sprout to another. This permits the significant outgrowth of a network of sprouts
even when cell proliferation is prevented (Sholley et al., 1984). At some distance from
the tip of the sprout, the endothelial cells divide and proliferate to contribute to the
number of migrating endothelial cells. The mitotic figures are only observed once
the sprout is already growing out and cell division is largely confined to a region
just behind the sprout tip. Solid strands of endothelial cells are formed in the
extracellular matrix. Lumina develop within these strands and mitosis continues.

Initially the sprouts arising from the parent vessel grow in a more or less parallel
way to each other. They tend to incline toward each other at a definite distance from
the origin when neighbouring sprouts run into one another and fuse to form loops
or anastomoses. Both tip-tip and tip-branch anastomosis occur and the first signs
of circulation can be recognized. From the primary loops, new buds and sprouts
emerge and the process continues until the tumour is eventually penetrated.

We now attempt to account for the above sequence of events using a population
balance equation for the endothelial cells and to interpret the processes described
above by analysing the endothelial cell density profile (cf. Stokes & Lauffenburger,
1991). The main events we model are the migration and the proliferation of the
endothelial cells (the processes of anastomosis and budding will be accounted for
implicitly in the model). We note that the migration and replication of endothelial
cells are not linked together. Different types of stimuli are necessary for these two
processes and we take this important fact into account in our model. We begin then
with a general conservation equation for the endothelial cell density n(x, t) which is
of the form (cf. Maini et al., 1991)

^ + V / F ( n ) G ( c ) H ( « ) , (2.8)
ct

where J is the cell flux, and F(n) and H(n) are functions representing a normalized
growth term and a loss term respectively for the endothelial cells. We assume
that mitosis is governed by logistic type growth and that cell loss is a first order
process (cf. Stokes & Lauffenburger, 1991). Thus

F(n) = m(\ - "), (2.9)
\ "o/

H(n) =-kpn, (2.10)

where r is a positive constant related to the maximum mitotic rate and kp is the
proliferation rate constant which is taken to be the reciprocal of the endothelial cell
doubling time (cf. Sherratt & Murray, 1990; Stokes & Lauffenburger, 1991). We note
that (2.9) contains a second-order loss term while (2.10) is a first-order loss term.
Balding & McElwain (1985) considered cell loss due to anastomosis (both tip-tip
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CHEMOTAXIS MODEL 155

and tip-branch) as essentially a second-order process, while Stokes & Lauffenburger
(1991) modelled endothelial cell loss due to budding as a first-order loss term.
Moreover, they assumed that the probability of budding was uniform in all sprouts
for all positions and all times. Thus these two terms implicitly account for endothelial
cell loss due to anastomosis and budding respectively. Further we assume that the
endothelial cell proliferation is controlled in some way by the TAF (Paweletz &
Knierim, 1989) and this is reflected by the inclusion of the function G(c) which is
assumed to be nondecreasing. As stated previously, the initial response of endothelial
cells to the angiogenic stimulus is one of migration (Paweletz & Knierim, 1989).
Proliferation is a crucial but secondary response. In order to account for this through
the function G(c), we assume that there is a threshold concentration level of TAF
below which proliferation does not occur. Thus, in the present model, we chose G(c)
to be of the form

0 i f c^c* ,

c-c* ., . (2.11)
HC* < C,

where c* ^ cb. We note that a similar approach was used by Sherratt & Murray
(1990) in modelling the chemical control of epithelial cells during wound healing.

There is substantial evidence that the response of the endothelial cells to
the presence of the TAF is a chemotactic one (Ausprunk & Folkman, 1977;
Terranova et al, 1985; Balding & McElwain, 1985; Stokes et al, 1990; Stokes &
Lauffenburger, 1991), and following Balding & McElwain (1985) we assume that
the flux J of endothelial cells consists of two parts, one representing random motion
and the other chemotactic motion of the cells. Thus

•* = •'diffusion + "*chemotaxis • (2 - ' 2)

Once again we assume linear diffusion, so that

•/̂ fusion = ~DnVn, (2.13)

where Dn is the diffusion coefficient of the endothelial cells, and

'ch,mou,i. = "Z(c)Vc, (2.14)

the well-known form for the chemotactic flux (cf. Keller & Segel, 1971; Balding &
McElwain, 1985). Various functional forms have been proposed for #(c) including
a logarithmic law

7.(c) = Zoic,

a receptor kinetic law

and a constant law

X(c) — Xo (a constant).

For mathematical simplicity, throughout this paper we adopt the latter, i.e. we
take z(c) = /„, a constant (cf. Balding & McElwain, 1985; Murray, 1989; Maini
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156 M. A. J. CHAPLAIN AND A. M. STUART

et al., 1991). We note, however, that the present model could easily be adapted
to incorporate either the logarithmic law or the receptor kinetic law. The cell
conservation equation can be written

rate of increase of cell density = cell migration + mitotic generation — cell loss.

With the above assumptions, we thus have the following population diffusion-
chemotaxis equation for the endothelial cells:

^ = DnV
2« - x0V • (nVc) + rn(\- - W ) - kpn, (2.15)

dt \ noj

where G(c) is given by (2.11). We assume that initially the endothelial cell density at
the limbus is a constant n0 and zero elsewhere, giving initial condition

. n. \n0 ifx = L,
n(x,0) = < ° (2.16)

[0 ifx < L.
We assume that throughout the subsequent motion, the cell density remains constant
at the limbus, and hence the boundary condition here becomes

n(L,t) = n0. (2.17)

As stated previously, the main aim of the model is to monitor the progress
of the endothelial cells (in particular those at the sprout tips) as they cross the
extracellular matrix and eventually reach the tumour. Once they reach the tumour
and penetrate it, interactions with the tumour cells become important (Paweletz &
Knierim, 1989) and the assumptions of the present model no longer hold. The
modelling of this stage of the process is considered by Liotta et al. (1977). Thus,
within the assumptions and limitations of the present model, we consider either of
the following two boundary conditions at x = 0:

« V « = 0 a t * = 0, (2.18)
or

n = 0 atJc = O, (2.19)

where n is the unit outward normal at x = 0. Under the assumptions of the model
these boundary conditions will remain valid for all times such that n (in the case of
(2.18) being imposed) or |Vn| (in the case of (2.19) being imposed) remain very small
at x = 0, i.e. the solution will remain valid with these boundary conditions up to the
time when the endothelial cells at the sprout tips first reach the tumour.

Following Chaplain & Stuart (1991) we normalize the equations using the
following reference variables:

• reference TAF concentration: cb, the value of the TAF concentration at the tumour
boundary;

• reference cell density: n0, the value of the endothelial cell density at the limbus;
• reference length: L, the distance from the tumour boundary to the limbal vessels;
• reference time unit: x = L2/D.
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CHEMOTAXIS MODEL 157

We thus define new variables:

c = c/cb, n = n/n0, x = x/L, t = t/x.

Dropping the tildes and specializing to a one-dimensional geometry (cf. Liotta et al.,
1977; Balding & McElwain, 1985; Sherratt & Murray, 1990; Chaplain & Sleeman,
1990; Chaplain & Stuart, 1991), the equations now become

dc d2c <xnc
— = —- - —— - Xc, (2.20)
dt dx2 y + c

~ = Dp^2 - K^(n^) + nn(l - n)G(c) - fin, (2.21)
dt dx2 dx\ dx)

where

(2.22)

(2.23)

[c — c* ifc* < c,

and

, y , , , ; , X p
Dccb' cb' Dc Dc' DC " D/ Dc

The initial and boundary conditions become respectively

c(x,0) = co(x), (2.24)

\ i{
f
X=]' (2.25)

0 lfx < 1,

c(0, t ) = l , c(l,t) = O, (2.26)

n ( l , 0 = l , (2-27)
— = 0 at x = 0 (2.28)
dx

or
n = 0 a t x = 0. (2.29)

As we have mentioned previously, angiogenic factors must be able to provoke
three main activities of the endothelial cells, namely (1) production and secretion
of enzymes capable of digesting extracellular matrix, (2) the initiation of migration,
and (3) cell proliferation. It is clear from experimental evidence (Sholley et al.,
1977, 1984; Reidy & Schwartz, 1981) that different types of stimuli are necessary
for (2) and (3), and we note that this is accounted for in the model, i.e. migration
is governed by chemotaxis while proliferation is governed by the function G(c),
which essentially only depends on the TAF concentration. As stated previously,
the processes of anastomosis and budding are also (implicitly) accounted for
through the second- and first-order loss terms respectively in (2.21). Moreover, the
form of the function G(c) ensures that the second-order loss term implicitly modelling
anastomosis will only take effect after the sprouts have reached a certain distance
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158 M. A. J. CHAPLAIN AND A. M. STUART

into the extracellular matrix, which is precisely what is observed experimentally (cf.
Paweletz & Knierim, 1989).

2.3 Removal of angiogenic source

When the tumour implant is removed, the TAF diffuses away naturally over a certain
period of time (Balding & McElwain, 1985) and the capillary sprouts regress
(Gimbrone et al., 1974). The main effect of this on the model is to change the
boundary condition for the TAF concentration c at x = 0. Instead of the TAF
concentration here being kept constant, we now adopt the condition that there is no
flux of TAF at x — 0 (cf. Chaplain & Stuart, 1991), since once the tumour has been
removed TAF is no longer produced, i.e. dc/dx = 0 at x = 0. The system to be solved
in this particular case is therefore (2.20, 2.21) with the boundary conditions

— = 0 a t x = 0, c(l,r) = O (2.30)

dx

replacing (2.26). The initial conditions

c(x,0) = co(x), (2.31)

n(x,0) = no(x), (2.32)
(replacing (2.24) and (2.25)) are taken to be the TAF concentration profile and the
cell density profile, respectively, at the instant of removal of the tumour and can be
obtained from the numerical solution to (2.20-2.29).

All of the above equations are solved numerically using a finite-difference scheme
and the results are presented in the following section.

3. Results

In this section, we present the results from the numerical simulation of (2.20-2.29)
with appropriate boundary and initial conditions. As far as possible, parameter values
are chosen to correspond to available experimental data. Unfortunately, data are
not available for all parameters, in particular those which relate to the concentration
of TAF. However, most of the parameters used in (2.23) can be estimated from
actual experimental data, while, for those which as yet cannot, we choose values
estimated and used in other models (e.g. Stokes & Lauffenburger, 1991; Balding &
McElwain, 1985).

Diffusion coefficient D

For a reference length we choose L = 2 mm, an average distance between a tumour
implant and the limbal vessels, and the value for T is taken to be 14 days, an average
time for neovascularization to occur (cf. Balding & McElwain, 1985; Chaplain &
Stuart, 1991; Stokes & Lauffenburger, 1991). According to the nondimensionalization
in (2.23), this gives a value for Dc of 3.3 x 10"8 cm2 s"1. Sherratt & Murray (1990)
found values of 3.1 x 10~7 and 5.9 x 10~ 6cm 2s~ 1 as estimates for diffusion

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

m
b.oxfordjournals.org/

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


CHEMOTAXIS MODEL 159

coefficients of chemicals. Correspondingly, they estimated the diffusion coefficients
£>„ of the epithelial cells under consideration in their model as 3.5 x 10""10 and
6.9 x 10~ 1 1 cm 2 s" 1 . Using these values, the ratio DJDC thus varies between
1.1 x 10~3andl.2 x 10~5. In accordance with this range, we choose D to be 10~3.

Chemotactic parameter K

Stokes et al. (1990) have measured the value for the chemotaxis coefficient Xo of
endothelial cells migrating in a medium containing unpurified acidic fibroblast
growth factor (aFGF) as 2600 cm2 s"1 M" 1 . As above, the value for Dc is estimated
at 3.3 x 10~8 cm2 s~l. In the numerical simulations carried out, the (nonzero) values
for K varied between 0.3 and 1.0, which from (2.23) gives a value for cb of
approximately 10" n M, which is not unreasonable.

Cell proliferation parameter \i

From equation (2.15), we assume that the parameter r is a positive constant related
to the maximum mitotic rate. Using data based on epidermal wound healing (Winter,
1972), Sherratt & Murray (1990) estimated that the maximum value rmax for this
parameter was 10 times the proliferation rate constant. Based on in vitro experi-
ments on endothelial cell proliferation (Williams, 1987), Stokes & Lauffenburger
(1991) estimated the proliferation rate constant kp of endothelial cells to be 0.056 h " '
under the assumption that all cells proliferate. However, cell mitosis in the sprouts
is mainly confined to a region close to the tips. To compensate for this, in most
of their simulations Stokes & Lauffenburger (1991) reduced the value offep to 0.02 h"1

and assumed that all cells in a sprout may proliferate. Thus, in the following numerical
simulations, we assume a range for rmai of 0.2-0.56 h"1 . Under this assumption,
we obtain a range of values for the cell proliferation parameter n of approxi-
mately 70-190.

Cell loss parameter /?

The parameter kp is the reciprocal of the endothelial cell doubling time (cf. Sherratt
& Murray, 1990). As seen above, Stokes & Lauffenburger (1991) estimated this to
lie within the range 0.02-0.056 h"1 . Also, from experimental data on epidermal cells
(Wright, 1983), Sherratt & Murray (1991) estimated this to be 0.01 h"1 . This gives a
range of values for the cell loss parameter /? of approximately 3-18.

Initial conditions

The initial condition (2.24) was taken to be c(x, 0) = co(x) = cos ]-TIX, which is of
the correct qualitative shape for the TAF profile in the external tissue, i.e. a con-
stant value of 1 at the tumour edge decaying away to 0 at the limbus. Other initial
profiles chosen were, for instance, co(x) = 1 — x2 and co(x) = 1 — x, and once again
the numerical results were very similar to those obtained with the cosine function.
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160 M. A. J. CHAPLAIN AND A. M. STUART

3.1 Numerical simulations of the model

Figure l(a, b) shows the profiles of the TAF concentration and the endothelial cell
density in the external host tissue at various different times. In this simulation, the
boundary condition used at x = 0 is nx = 0. As has been explained in the previous
section, the solution remains valid while the endothelial cells are crossing the
extracellular matrix and have not yet reached the tumour, i.e. so long as n remains
very small at x = 0. As can be seen from Fig. l(b), shortly after t = 0.7 this condition
no longer holds and the model loses its validity since the endothelial cells reach
the tumour and interactions between tumour cells and endothelial cells become
important. Figure l(c) shows the profile of the endothelial cell density in the external
host tissue at various different times with boundary condition n = 0 at x = 0. In this
case the solution remains valid so long as nx remains very small at x = 0, for the
same reason as given above. Once again it can be seen from the figure that this
condition is violated shortly after t = 0.7. As can be seen from Fig. l(b,c), both
boundary conditions give very similar results. The time taken for the endothelial cells
to first reach the tumour corresponds to a real time of approximately 11 days, which
is within the experimentally observed timescale (cf. Balding & McElwain, 1985). By
varying the parameters n and K, the time taken for the endothelial cells (and hence
the capillary sprouts) to reach the tumour can also be varied.

Figure 2 shows the endothelial cell density profile when the chemotactic response

s

0.1 -

0.9

Distance from tumour
(a)

FIG. 1. (a) Profile of the TAF concentration in the external host tissue at times t = 0, 0.1, 0.3, 0.5, 0.7
showing changing gradient profile.
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FIG. 1. (continued) (b) Profile of the endothelial cell density in the external host tissue at times r = 0.1,0.3,
0.5, 0.7. The boundary condition imposed at x = 0 is nx = 0. Shortly after ( = 0.7 the endothelial cells
reach the tumour and the assumptions of the model no longer hold, (c) Profile of the endothelial cell
density in the external host tissue at times t = 0.1, 0.3, 0.5, 0.7. The boundary condition imposed at x = 0
is n = 0. Shortly after ( = 0.7 the endothelial cells reach the tumour and the assumptions of the model
no longer hold. Parameter values: a = 10, y = 1, /. = 1, D = 0.001, K = 0.75, n = 100, p = 4; c" = 0.2.
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FIG. 2. Profile of the endothelial cell density in the external host tissue at t = 1.0 when the cell chemotaxis
coefficient K is set to zero. The figure clearly shows very little cell, and hence sprout, outgrowth. This
shows that cell migration is vital to the complete process of angiogenesis. Parameter values: a = 10, y = 1,
; . = ! ,£>= 0.001, K = 0.0, ii = 100, 0 = 4, c* = 0.2.

parameter K = 0, and, as can clearly be seen, there is very little cell response indicating
that chemotaxis, and therefore cell migration, plays a major initiating role in the
angiogenic process.

Figure 3 shows the endothelial cell density profile when the cell proliferation
parameter /i = 0, and once again the effect of this is significant. The figure shows
that cell outgrowth, and hence sprout outgrowth, has virtually ceased after t = 0.4,
which corresponds to a real time of 3.5 days. This is in very good agreement both
with experimental evidence (Sholley et a/., 1984) and with the model of Stokes &
Lauffenburger (1991). The previous two figures demonstrate that neither cell
migration (via chemotaxis) nor cell proliferation alone is sufficient for a completion
of angiogenesis, which is in agreement with experimental observations. In order for a
completion of angiogenesis, both events must be included in the model, which is what
is observed experimentally.

Comparing Fig. l(b,c) with Fig. 3 demonstrates a good qualitative agreement with
the available experimental evidence. Both simulations give the same profile of cell
density for times 0 ^ t < 0.4. This shows that the initial response of the endothelial
cells is essentially one of migration with proliferation of the cells occurring at a later
time (cf. Paweletz & Knierim, 1989). The form of the function G(c) ensures that there
is always a region within the sprouts where there is zero cell proliferation and also
that, once cells have started to proliferate, the proliferation is mainly confined to a
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FIG. 3. Profile of the endothelial cell density in the external host tissue at time t = 0.4 and at steady state
(when all outgrowth had stopped completely) when the cell proliferation parameter ft is set to zero. The
figure clearly shows that at t = 0.4 sprout outgrowth has virtually ceased, which is in agreement with the
experimental evidence. This shows that cell proliferation is essential for the completion of angiogenesis.
Parameter values: a = 10, y=\,).= \,D = 0.001, K = 0.6, n = 0.0, /? = 6.0, c* = 0.2.

region a short distance behind the sprout tips. Thus the model distinguishes, as far
as is possible within its limitations, between proliferating cells near the sprout tip
and nonproliferating cells within the rest of the sprout. Also, once the cells have
started to proliferate, the endothelial cell density is greatest (locally) a short distance
behind the sprout tips, which is what is observed experimentally (Ausprunk &
Folkman, 1977; Sholley et ai, 1984; Pawletz & Knierim, 1989). Similar results were
obtained for different functions G(c) which were of the same qualitative form as (2.11).

For all numerical simulations carried out, we took c* = 0.2. Qualitatively similar
results were obtained for various other values of c* between 0.1 and 0.4. We
note that other numerical simulations were carried out with D = 0 and a = 0.
In each case, the profiles of TAF concentration and endothelial cell density remained
almost the same as when these parameters were nonzero. In the former case, this
would seem to confirm the results of the models of Balding & McElwain (1985)
and Stokes & Lauffenburger (1991), where diffusion was also seen to have a
negligible effect on the results.

3.2 Removal of TAF

Figure 4(a, b) shows the numerical simulations of the model when the tumour is
removed. Gimbrone et ai (1974) report, as is to be expected, a regression of sprouts
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and vessels. As can be seen from the figures, the TAF concentration decays away to
zero while the cell density initially increases, but then gradually decays to zero
throughout the external tissue. After one time unit (another 14 days), there is zero
cell density everywhere indicating a complete regression of the sprouts.

These results are an improvement upon the previous model of Chaplain & Stuart
(1991) in two ways: (i) the present model permits direct tracking of the endothelial
cells (and hence sprout tips) from their origin in the parent vessel until they reach
the tumour; (ii) the regression of the endothelial cells (and hence sprout tips) can
also be directly monitored when the source of TAF is removed.

4. Conclusions

As is apparent from its brief description in the introduction, the complete process of
angiogenesis is a complicated one, involving several distinct, and not necessarily
related, events. This in turn requires several separate mechanisms which can
stimulate each event, e.g. vasodilation, endothelial cell migration, endothelial cell
proliferation, and loop formation (anastomosis), to name a few. Despite much
research and many advances, many questions still remain unanswered (cf. Paweletz
& Knierim, 1989). To formulate a single mathematical model which would include
all of these processes would be very difficult indeed. In this paper we have chosen
to focus attention principally on the activity of the endothelial cells, since they are
always at the heart of the angiogenic process, as well as on the TAF concentration
profile. We have modelled in a simple but effective manner two of the three main
events concerning the endothelial cells (migration and proliferation), and the results
obtained are in good agreement with both experimental evidence and other models
(Sholley et al., 1984; Paweletz & Knierim, 1989; Stokes & Lauffenburger, 1991)
and represent an improvement upon those obtained by Chaplain & Stuart (1991).
The model reproduces the experimentally observed facts that the initial response
of the endothelial cells is one of migration with proliferation occurring as a
secondary response, which is nevertheless vital for the successful completion of
angiogenesis. Given the above results concerning the endothelial cell density, the
present model could be easily extended to include an extra equation for sprout
tip density, for example. Work on a model of this type, which will also explicitly
model the processes of anastomosis and sprout budding, is currently being carried
out by the authors.

FIG. 4. (a) Profile of the TAF concentration in the external host tissue when tumour implant is removed
showing decrease in TAF concentration at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The TAF concentration at
t = 0.8, 1.0 is virtually zero. The initial profile of the TAF concentration here is taken to be the TAF
concentration profile at t = 0.6 in the simulation of Fig. l(b). (b) Profile of the endothelial cell density in
the external host tissue when tumour implant is removed at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The profile
at t = 1.0 is zero virtually everywhere. The initial profile of the cell density here is taken to be the cell
density profile at i = 0.6 in the simulation of Fig. l(b). The figures illustrate the decay of endothelial cells,
and hence the capillary sprouts, once the tumour implant is removed. Parameter values: a = 10, •/ = 1,
/. = 1, D = 0.001, K = 0.75, n = 100, /? = 4, c" = 0.2.
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The results also confirm previous assumptions and findings that the endothelial
cell migration is almost certainly controlled by some form of taxis rather than
diffusion. However, since endothelial cells are known to exhibit different levels of
motility on different extracellular molecules (Terranova et al, 1985; Ungari et al,
1985; Young & Herman, 1985), it would certainly be possible to modify the model
to account for this variable motility. More specifically, we could assume a more
general form of (2.13), namely

Jdiff..on=-0.(c)Vn. (4.1)

The diffusion, or motility, coefficient of the cells would now be dependent upon the
concentration of the TAF. This means considering a nonlinear diffusion problem.

Although we have chosen to focus on chemotaxis as the underlying driving
mechanism since there is much experimental evidence to support this, there is also
experimental evidence that the interaction between the endothelial cells and the
extracellular matrix, through which they must move to reach the tumour, may also
have a part to play in the angiogenic process. From in vitro experiments, it is known
that the mobilization of endothelial cells can be greatly enhanced by adding
gangliosides to whatever medium they are cultivated upon. It has been shown that
preincubating endothelial cells with trisialogangliosides and then culturing on the
same substratum leads to their binding to fibronectin being greatly enhanced and
their migration is increased fivefold (Ungari et al, 1985; Alessandri et al, 1986;
Paweletz & Knierim, 1989). The structure of the present model permits these adhesive
gradients, i.e. haptotaxis, to be included in the model in a relatively straightforward
way. Analysis of travelling wave solutions for the model is also another area of
possible research (cf. Myerscough & Murray, 1992).

This article is based on a paper read at the Sixth IMA Conference on the
Mathematical Theory of the Dynamics of Biological Systems, held in Oxford,
1-3 July 1992.
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