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Abstract. Bayesian inversion is central to the quantification of uncertainty within problems
arising from numerous applications in science and engineering. To formulate the approach, four
ingredients are required: a forward model mapping the unknown parameter to an element of a
solution space, often the solution space for a differential equation; an observation operator mapping
an element of the solution space to the data space; a noise model describing how noise pollutes
the observations; and a prior model describing knowledge about the unknown parameter before the
data is acquired. This paper is concerned with learning the prior model from data, in particular,
learning the prior from multiple realizations of indirect data obtained through the noisy observation
process. The prior is represented, using a generative model, as the pushforward of a Gaussian in
a latent space; the pushforward map is learned by minimizing an appropriate loss function. A
metric that is well-defined under empirical approximation is used to define the loss function for the
pushforward map to make an implementable methodology. Furthermore, an efficient residual-based
neural operator approximation of the forward model is proposed and it is shown that this may
be learned concurrently with the pushforward map, using a bilevel optimization formulation of the
problem; this use of neural operator approximation has the potential to make prior learning from
indirect data more computationally efficient, especially when the observation process is expensive,
nonsmooth, or not known. The ideas are illustrated with the Darcy flow inverse problem of finding
permeability from piezometric head measurements.

Key words. inverse problems, generative models, prior learning, operator learning, differential
equations
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1. Introduction.

1.1. Setup. This paper is concerned with learning a generative model for unob-
served \{ z(n)\} Nn=1 from indirect and noisy data \{ y(n)\} Nn=1 given by

y(n) = \scrG (z(n)) + \varepsilon (n)\eta ,(1.1)
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C933

where the noise \varepsilon 
(n)
\eta \sim \eta i.i.d. The setting where \scrG (\cdot ) is the identity and the noise

is zero is the standard problem of generative modeling and is well studied; in the
context of this paper, Bayesian inversion, such a generative model may be used to
construct a prior measure from prior samples \{ z(n)\} Nn=1. However, in many science
and engineering applications the prior samples \{ z(n)\} Nn=1 are not directly observed,
but the \{ y(n)\} Nn=1, arising from (1.1) with choice \scrG = g \circ F \dagger originating from multiple
instantiations of physical systems, are available. Thus, we are interested in the setting
where

y(n) = g \circ F \dagger (z(n)) + \varepsilon (n)\eta .(1.2)

Here, F \dagger :Z \mapsto \rightarrow U maps between function spaces Z,U , representing a PDE parameter-
to-solution operator, and g : U \mapsto \rightarrow \BbbR dy is a solution-to-data map. From the resulting
finite-dimensional data we wish to construct a generative model for a prior measure
on a function space, giving rise to the unobserved prior samples \{ z(n)\} Nn=1.

To overview our approach to this problem we first describe it at a population loss
level. Let \nu denote the law of the y(n) and \mu the desired law of the z(n). Letting
\ast denote convolution of measures and \# denote pushforward, introducing divergence
\sansd 1 between probability measures in data space and \scrH (\cdot ) the regularization term on
measures in the input space, we define population loss

\sansJ 1(\mu ) = \sansd 1
\Bigl( 
\nu , \eta \ast (g \circ F \dagger )\#\mu 

\Bigr) 
+\scrH (\mu ).(Functional 1)

To develop algorithms to find \mu we will represent \mu as pushforward under map T\alpha of
Gaussian measure \mu 0 on a latent space.1 Here \alpha \in \BbbR d\alpha represents a finite-dimensional
parameterization of the pushforward from \mu 0 to \mu . We replace the regularization term
\scrH (\cdot ) on measure \mu by regularization term h : \BbbR d\alpha \rightarrow \BbbR on \alpha . We then consider the
modified population loss

\sansJ 2(\alpha ) = \sansd 1
\Bigl( 
\nu , \eta \ast (g \circ F \dagger \circ T\alpha )\#\mu 0

\Bigr) 
+ h(\alpha ).(Functional 2)

We also observe that F \dagger may be expensive to compute and it may be desirable to
replace it by a neural operator F\phi whose parameters \phi \in \BbbR d\phi need to be learned so
that F\phi \approx F \dagger in sets of high probability under \mu . But we do not know \mu , indeed we
are trying to find it; thus the optimal parameters \phi will depend on \alpha and be defined
by \phi = \phi \ast (\alpha ). We thus introduce loss function

\sansJ 3(\alpha ) = \sansd 1
\Bigl( 
\nu , \eta \ast (g \circ F\phi \ast (\alpha ) \circ T\alpha )\#\mu 0

\Bigr) 
+ h(\alpha ).(Functional 3)

At the heart of all these loss functions is a matching of distributions. In practice both
\nu and the pushforward of \mu 0 will only be available empirically and so it is necessary
that the divergence \sansd 1 can be readily evaluated on empirical measures. Empiricalized
versions of the functionals \sansJ 2,\sansJ 3 will form the basis of the computational methodology
proposed in this paper. The mapping \phi \ast (\alpha ) will also be learned using minimization
of a loss function, involving matching of distributions and evaluated empirically. The
functional \sansJ 1 provides a theoretical underpinning of our approach and in the case
N = 1 will be linked, in the empirical setting, to Bayes' theorem. The efficiency

1Other generative models replacing the Gaussian with different, but also straightforward to
sample, measures can easily be accommodated; we choose a Gaussian in the latent space to make
the presentation explicit.
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C934 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

of the proposed methodology is due to the following: (i) the replacement of costly
PDE simulations with evaluations of a concurrently learned surrogate model trained
through readily computable PDE residuals; (ii) as will be mentioned in Remark 3.3,
the proposed method scales more favorably than alternative Bayesian approaches due
to the challenges of high dimensional posterior sampling.

Subsection 1.2, which follows, summarizes our contributions and outlines the
paper. In subsection 1.3 we review relevant literature in the area and in subsection 1.4
we overview the notation and model problem (Darcy) used in the paper.

1.2. Contributions and outline. The proposed novel methodology allows the
construction of a calibrated measure over the parameters underlying a PDE model,
given data from a collection of physical systems. Furthermore, the methodology may
be combined with a novel concurrent neural operator approximation of the PDE.
Together these ideas hold the potential to improve the accuracy and efficiency of
Bayesian inversion and of generative modeling for physical systems. The work can be
broken down into five primary contributions:

1. We introduce a suitable choice for divergence \sansd 1 based on sliced-Wasserstein-2
distance and demonstrate that it leads to computationally feasible objective
\sansJ 2 (Functional 2).

2. We introduce a residual-based probabilistic loss function to define choice of
parameters \phi \ast (\alpha ) in the neural operator approximation.

3. With this definition of \phi \ast (\alpha ) we demonstrate a computationally feasible ob-
jective \sansJ 3 (Functional 3).

4. We show that, with our choice of \sansd 1, minimization of Functional 1 may be
linked to the Bayes' theorem when N = 1.

5. In order to be concrete we describe our methodology in the context of the
Darcy flow model of porous medium flow which may be viewed as a mapping
from the permeability field (z) to linear functionals of the piezometric head
(y). Numerical experiments with Darcy flow, for two different choices of
pushforward families T\alpha , are used to demonstrate feasibility and consistency
of the proposed methodology.

In Section 2 we describe the efficient residual-based approach to operator learning
that we adopt in this paper, addressing contribution 2. Section 3 introduces specific
divergences for definition of Functionals 1--3 and, for the residual-based learning,
addressing contributions 1 and 3; we also address contribution 4 in Theorem 3.4.
Section 4 discusses algorithmic details, giving further detail on contributions 1 and 3,
while Section 5 implements the algorithms on the Darcy flow problem, contribution
5. We conclude and discuss future works in Section 6.

1.3. Literature review. We overview relevant literature. First, we discuss the
learning of priors from data. Second, we describe the surrogate modeling literature.
And finally, we discuss related transport-based inference methods.

1.3.1. Learning priors. The task of selecting a best prior has received much
attention in the Bayesian statistics community, with many objectives and ideals in
mind [34]. Certain efforts concentrate on the careful formulation of uninformative
priors [35, 5, 6]. Others focus on mathematical tractability through conjugacy [56]
or eliciting priors from domain experts [53]. Some see the prior as an opportunity
to share information from observations with possibly different underlying parame-
ters, that are assumed to be drawn from the same distribution. Taking this point
of view are methods related to hierarchical Bayes [29], empirical Bayes [59, 60], and
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C935

parametric empirical Bayes [15, 49]. In many ways, the idea of using a set of data to
explicitly target an unconditional distribution is the basis of many modern generative
modeling methods in the field of machine learning (ML). These include score-based
models [69], diffusion models [67, 31], variational autoencoders [38], energy-based
models [68, 72], normalizing flows [54], gradient flows [10], and more. Data-based
unconditional distributions like these have been shown to be not only expressive gen-
erative models, but also powerful priors for Bayesian inversion [26, 11]. These ideas
appear in a number of recent papers focused on inverse problems [55, 3, 2]. A key
difference in our work and the basis for our contribution is that while the above works
focus on learning (and using) priors from which unconditional samples are available,
our methodology here extends this idea to learn priors from indirect data. This idea
of indirect knowledge of priors and data is exploited in [20] and also in [28] for linear
operators where the set of Bayesian inverse problems defined individually by (1.1), for
each n, is solved in the case where \scrG (\cdot ) =A\cdot for some linear operator A; the collection
of inverse problems is used to both learn prior information and learn the dependence
of each individual posterior on data.

1.3.2. Surrogate modeling and operator learning. In many engineering
applications related to design optimization, parameter inversion, and forward uncer-
tainty quantification tasks, it is necessary to evaluate numerical models many times.
When using a classical numerical scheme, there is no information carryover from
one numerical solve operation to the next. Hence, there is room for improvement
in the form of somehow interpolating information from the one numerical solution
to the next. The idea of replacing computer code with a cheap-to-evaluate statis-
tical interpolation model is well explored [61, 36]. Such methods have found their
place as viable model order reduction techniques for multiquery problems. Modern
advances have now begun to pose the task of surrogate modeling directly in func-
tion space, resulting in the field of operator learning [8, 47, 40, 44]. These methods
are based on gathering input-output datasets of PDE parameters and PDE solutions
obtain via classical numerical schemes, such as finite element models (FEMs) and
spectral methods. Physics-informed surrogate modeling attempts to directly incorpo-
rate PDE information into the learning task [58, 78, 45]. The methods may then be
dataless or semi-data-informed. Like physics-informed neural operators (PINO) [45]
our optimization objective balances a data-driven loss with a PDE-enforcing regular-
izer. Unlike PINO, however, our data-driven loss is not related to operator learning;
operator learning is introduced purely through the PDE-enforcing regularizer. Also,
unlike PINO, which adds the loss and the regularizer, we adopt a bilevel optimization
strategy because of issues related to balancing the two terms. Finally we use the
variational form of the PDE to define the regularizer, demonstrating that the Fourier
neural operator (FNO) interacts well with FEM-interpolation to enable derivative-
based optimization. Certain classes of methods also pose prior distributions over
PDE parameters and attempt to learn a surrogate trained on random draws from
that prior [73, 74].

1.3.3. Pushforwards and Wasserstein losses. Minimization of regularized
loss functions over the space of probability measures, as exemplified by Functional 1,
is central to modern computational statistics and ML: it lies at the heart of variational
inference [76] and in many other emerging inference problems for probability measures
[18, 46, 43, 41, 42]. In statistical inference and ML, there are many learning objective
functions to make use of. A well-known method is maximizing the marginal likelihood.
However, the task we are interested in for this work is distributional learning. Hence,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C936 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

we must use a statistical divergence between measures. A common choice is the
Kullback--Leibler (KL) divergence. However, this is not useful when both measures
being compared are empirical, due to the nonoverlapping support of sampled Diracs,
as is the case in this paper (the DKL is either 0 or \infty ).

Noting this restriction on suitable divergences we proceed to identify appropriate
choices. The maximum mean divergence [66, 24] and (closely related) energy distances
[70, 64] are one possible class of metrics that could be used. In this work, we focus on
the use of computationally tractable optimal transport-based metrics on the space of
measures; in particular we use the sliced-Wasserstein metric [9]. Many other works
have explored the use of these optimal transport based metrics for ML inference tasks
[39, 22, 50, 52, 46]. There is also work on combining pushforward measures and
Bayesian inference in [14, 13, 48, 25]. Solving inverse problems with Wasserstein loss
is also a partially explored topic in [1] and conditional flow matching [17]. Some
works have also looked at Wasserstein metrics between pushforward measures [62].
Wasserstein and sliced-Wasserstein metrics have found use in approximate Bayesian
computation [71, 4, 51] where the recovered measures have been shown to converge
to the Bayesian posterior. Parameter estimation with Wasserstein metrics in a purer
form is explored in [7]. In discussing an optimal transport based learning objective,
it is important to mention entropy regularization, as in the Sinkhorn algorithm [19].
In these works, entropy regularization is put on the finite-dimensional observational
space. We will see that entropy regularization comes up differently in our proposed
methodology.

1.4. Notation. Let D\subset \BbbR d be bounded and open. We denote the boundary of
the set D by \partial D. We use the Lp(D) classes of pth power Lebesgue integrable func-
tions, 1 \leq p <\infty , extending to p =\infty in the usual way via the essential supremum.
We denote by C\infty (D) the set of infinitely differentiable functions and by H1

0 (D) the
Sobolev space of functions with one square-integrable weak derivative and homoge-
neous Dirichlet boundary conditions; we denote by H - 1(D) the dual of H1

0 (D) with
respect to the canonical pairing through Lebesgue integration over D.

Let \scrP (X) denote the space of probability measures on measurable space X. Di-
vergences on the space of probability measures are denoted by \sansd , sometimes with
subscript i \in \{ 1,2\} . We denote by f\#\mu the pushforward measure given by f\#\mu (A) =
\mu (f - 1(A)) for all \mu measurable sets A. We denote indexing over different instances
of variables in a collection (such as a dataset or set of randomly sampled variables)
with superscript in parentheses, accessing elements of a vector are done through sub-
script in parentheses, and incrementing (such as in summations) is done with plain
subscript. We denote by \langle \cdot , \cdot \rangle A = \langle \cdot ,A - 1\cdot \rangle the covariance weighted inner-product, for
any positive self-adjoint A, with induced norm \| \cdot \| A.

Consider (1.2) and assume that z(n) \sim \mu \dagger \in \scrP (Z) where Z \subset L\infty (D) is separable.
Let F \dagger :Z\rightarrow H1

0 (D) and let g :H1
0 (D)\rightarrow \BbbR dy denote a set of functionals. If we assume

that \varepsilon 
(n)
\eta \sim \eta for n = 1, . . . ,N are i.i.d. noise variables, then y(n) \sim \eta \ast (g \circ F \dagger )\#\mu 

\dagger .
The problem of interest is to recover from the observations \{ y(n)\} Nn=1 the law \mu \dagger of
the parameter field.

To be concrete we will work with inverse problems defined by the Darcy equation

\nabla \cdot (z\nabla u) + f = 0 \forall x\in D,(1.3a)

u= 0 \forall x\in \partial D.(1.3b)

Here z denotes permeability and u the piezometric head. The mapping z \mapsto \rightarrow u may be
viewed as mapping F \dagger : Z \rightarrow H1

0 (D) for appropriately defined Z. To be concrete we
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C937

will focus on this setting and the problem of determining a prior on z from noisy linear

functionals of u defined by mapping g :H1
0 (D)\rightarrow \BbbR dy \sim =

\bigl( 
H - 1(D)

\bigr) dy
. The reader will

readily see that the ideas in the paper apply more generally, and that consideration
of the Darcy problem is simply for expository purposes.

2. Residual-based neural operator. This section is devoted to defining \phi \ast (\alpha ),
which appears in Functional 3. Recall that \phi are the parameters of the neural network
surrogate PDE model and that their optimization depends on the underlying input
measure on which the surrogate needs to be accurate; for this reason they depend
on \alpha , i.e., the set of parameters characterizing the prior we want to learn. To define
function \phi \ast (\alpha ) we proceed as follows. Let F\phi : Z \rightarrow H1

0 (D) be a parametric family
of maps approximating F \dagger . Now define residual operator R : Z \times H1

0 (D)\rightarrow H - 1(D).
Intuitively, we can express our PDE as R(z,u) = 0. In the case of the Darcy equation
(1.3) we may write

R(z,u) =\nabla \cdot (z\nabla u) + f,

and we have u \in H1
0 (D), z \in Z \subset L\infty (D), and f \in L2(D). Note next that we can

write u= F \dagger (z) by the definition of forward map, hence we have R(z,F \dagger (z)) = 0 for
all z \in Z. In order to incorporate this information into our loss functional, we define
R\phi :Z\rightarrow H - 1(D) as

R\phi (z) =R(z,F\phi (z)),(2.1)

where F\phi is the parametric family of maps. In order to obtain a computable loss, we
introduce a discretization operator \scrO :H - 1(D)\rightarrow \BbbR do , where do is the dimension of
the output of \scrO . In particular, given a set of basis functions \{ vi\} do

i=1 for H1
0 (D), we

can write2

\scrO (R)i = \langle vi,R\rangle =
\int 
D

viR(z,u)(x)dx,(2.2)

for i = 1, . . . , do, for any given vi \in H1
0 (D), noting that integration by parts may

be used to show well-definedness in the given function space setting. To compactly
represent the discretization process with our emulator F\phi , we define \scrO \phi :X\rightarrow \BbbR do as

\scrO \phi (z) =\scrO (R\phi (z)).(2.3)

We are now in a position to define our final loss functional using the constructions
above. To learn the optimal parameter \phi as \alpha varies, we define the following coupled
loss functional and associated minimization problem:

\sansJ 4(\phi ;\alpha ) = \sansd 2
\bigl( 
\delta 0, (\scrO \phi \circ T\alpha )\#\mu 0)

\bigr) 
,(Functional 4)

\phi  \star (\alpha ) = argmin
\phi 

\sansJ 4(\phi ;\alpha );

here \sansd 2 is a divergence term between probability measures on \BbbR do and \delta 0 is the
Dirac measure at zero. Minimizing \sansJ 4(\cdot ;\alpha ) for given \alpha determines a residual-based
approximation of F \dagger , accurate with respect to (T\alpha )\#\mu 0. Using this expression shows
that Functional 3 and Functional 4 define a bilevel optimization scheme [65, 32].
This scheme is the heart of our proposed methodology. Using the bilevel approach

2Here \langle \cdot , \cdot \rangle denotes the duality pairing between H1
0 (D) and H - 1(D).
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C938 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

avoids balancing the contributions of Functional 3 and Functional 4 that arise from
an additive approach. A similar bilevel optimization scheme is employed in [77], for
similar reasons, to solve a different problem. In the next section we provide specific
examples \sansd 1 and \sansd 2 and discuss some of their properties.

3. Choice of divergences. In order to instantiate the bilevel optimization
scheme defined by Functional 3 and Functional 4 to obtain an implementable algo-
rithm, we now define specific choices of the divergence terms \sansd 1 and \sansd 2 (subsection 3.1)
and discuss empirical approximation of the input measures (subsection 3.2) required
to evaluate these divergences in practice. And, to further establish a context for our
work on learning priors, we make a connection to Bayesian inversion in the setting of
(1.1) when N = 1 (subsection 3.3.)

3.1. Divergences. In this work, to effectively and efficiently compare empirical
measures, we will use the sliced-Wasserstein distance to define the divergence term for
\sansd 1 and Wasserstein distance for \sansd 2. To define precisely what we do, we first introduce
the weighted Wasserstein distance,

\sansW 2
2,B(\nu ,\mu ) = inf

\gamma \in \Pi (\nu ,\mu )

\int 
\BbbR d\times \BbbR d

\| x - y\| 2Bd\gamma (x, y),(3.1)

where coupling \Pi (\nu ,\mu ) is the set of all joint probability measures on \BbbR d \times \BbbR d with
marginals \nu and \mu , and B is positive and self-adjoint. We let \sansW 2 := \sansW 2,I. The
following lemma shows that the weighted squared Wasserstein-2 distance can be seen
as the squared Wasserstein-2 distance of pushforwards of the original measures.

Lemma 3.1. For PB(\cdot ) = B - 1/2 \cdot it follows that

\sansW 2
2,B(\nu ,\mu ) =\sansW 2

2(PB\#\nu ,PB\#\mu ).(3.2)

Proof. See Appendix A.1.

We now define the weighted and sliced-Wasserstein distance by

\sansS \sansW 2
2,B(\nu ,\mu ) =

\int 
\BbbS d - 1

\sansW 2
2(P

\theta 
B\#\nu ,P

\theta 
B\#\mu )d\theta ,(3.3)

where P \theta 
B(\cdot ) = \langle B - 1

2 \cdot , \theta \rangle . The sliced-Wasserstein distance leads to a computationally
efficient alternative to the Wasserstein distance because it may be implemented by
Monte Carlo approximation of integration over \theta and then each slice, resulting from
a randomly chosen \theta , involves only evaluation of a Wasserstein distance between
probabilities in \BbbR .

Assuming that \eta = \scrN (0,\Gamma ) we then consider the losses Functional 3 and Func-
tional 4 with \sansd 1(\cdot , \cdot ) = dy

2 \sansS \sansW 2
2,\Gamma (\cdot , \cdot ) and \sansd 2(\cdot , \cdot ) =\sansW 2

2(\cdot , \cdot ), so that

\sansJ 3(\alpha ) =
dy
2
\sansS \sansW 2

2,\Gamma 

\Bigl( 
\nu , \eta \ast (g \circ F\phi \ast (\alpha ) \circ T\alpha )\#\mu 0

\Bigr) 
+ h(\alpha ),(3.4a)

\sansJ 4(\phi ;\alpha ) =\sansW 2
2

\Bigl( 
\delta 0, (\scrO \phi \circ T\alpha )\#\mu 0

\Bigr) 
,(3.4b)

\phi  \star (\alpha ) = argmin
\phi 

\sansJ 4(\phi ;\alpha ).(3.4c)

Remark 3.2. We highlight that using the squared Wasserstein-2 metric between
a Dirac at zero and an abitrary measure reduces to computing an expected squared

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
25

 to
 1

31
.2

15
.1

01
.1

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C939

2-norm of the samples drawn from that measure (Lemma 3.6). Hence, (3.4b) reduces
to computing

\sansJ 4(\phi ;\alpha ) =\BbbE z\sim (T\alpha )\#\mu 0
\| \scrO \phi (z)\| 22.

Framing (3.4b) this way gives a different interpretation to the commonly used physics-
informed ML loss function.

3.2. Empiricalization. The optimization problem in (3.4) forms the basis of
our computational methodology in this paper. However, to implement it, we need to
use empirical approximations of the two input measures that define the loss function
\sansJ 3. There are two ways in which evaluation of \sansJ 3 defined by (3.4) must be empiricalized
to make a tractable algorithm:

\bullet measure \nu is replaced by measure

\nu N =
1

N

N\sum 
n=1

\delta y(n) ,

reflecting the fact that working with \nu is not computationally tractable, but
samples from \nu are available;

\bullet measures \nu N and (g \circ F\phi \ast (\alpha ) \circ T\alpha )\#\mu 0 are replaced by their empirical ap-
proximations using, in each case, Ns independent samples, reflecting the fact
that working with (g \circ F\phi \ast (\alpha ) \circ T\alpha )\#\mu 0 is not computationally tractable, to-
gether with the computational simplicity arising from using the same number
of samples in each argument of the divergence;

\bullet measure (\scrO \phi \circ T\alpha )\#\mu 0 is empiricalized using Nr independent samples from
\mu 0.

Remark 3.3. In contrast to empirical/hierarchical Bayesian approaches for similar
problems, the proposed methodology side-steps the sampling of a challenging poste-
rior distribution with dimension that grows like O(NM), where N is the number
of physical systems from which we have data, and M is the dimensionality of the
parameters, z(n), of the individual physical systems. Instead, this is replaced with
the straightforward empiricalization of a pushforward measure with Ns samples of
dimension M .

In the numerical examples explored in Section 5, for one-dimensional (1D) Darcy
M = 20 and for 2D Darcy M = 400, these will be the number of bases parametrizing
the permeability field in the two setups, respectively.

3.3. Connection to Bayes' theorem. Consider the inverse problem defined
by (1.1) in setting N = 1:

y= \scrG (z) + \varepsilon ,(3.5)

where \varepsilon \sim \eta := \scrN (0,\Gamma ) and \scrG : Z \rightarrow \BbbR d. Consider Functional 1 with \nu = \delta y, \scrG (\cdot )
replacing (g \circ F \dagger )(\cdot )3 and choice of \sansd 1 as in subsection 3.1:

\sansJ (\mu ) =
d

2
\sansS \sansW 2

2,\Gamma 

\Bigl( 
\delta y, \eta \ast (\scrG )\#\mu 

\Bigr) 
+\scrH (\mu ).(3.6)

3There is nothing intrinsic to the factorization \scrG = g\circ F \dagger in this subsection; results are expressed
purely in terms of \scrG .
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C940 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

Thus we have returned to the population loss description of the problem in the
setting where optimization to determine the prior is over all probability measures, not
the parameterized family that we will use for computation. Thus the regularization is
on the space of probability measures. The message of the following theorem is that,
with this problem formulation on the space of measures, in the case N = 1 and with
appropriate choice of regularization, Bayes' theorem is recovered.

Theorem 3.4. Define \scrH (\mu ) :=DKL(\mu | | \mu prior) for some probability measure \mu prior

\in \scrP (Z). Consider the Bayesian inverse problem defined by (3.5) with z \sim \mu prior inde-
pendent of \varepsilon \sim \eta := \scrN (0,\Gamma ). Then the minimizer of (3.6) over the set of probability
measures \{ \mu \in \scrP (Z) : \BbbE y\prime \sim \eta \ast (\scrG \#)\mu \| y\prime \| 2\Gamma <\infty \} is the Bayesian posterior given by

\mu y(A) =
1

\scrZ 

\int 
A

exp

\biggl( 
 - 1

2
\| y - \scrG (z)\| 2\Gamma 

\biggr) 
d\mu prior(z),(3.7a)

\scrZ =

\int 
Z

exp

\biggl( 
 - 1

2
\| y - \scrG (z)\| 2\Gamma 

\biggr) 
d\mu prior(z).(3.7b)

Remark 3.5. As discussed in the introduction to this paper, our method learns
a data-informed probability measure---a generative model---for z, which may be used
as a prior for downstream inference tasks. The theorem shows that, in the special
case of N = 1, the learned prior actually coincides with the Bayesian posterior for
the inverse problem defined by (1.1) if regularizer \scrH is chosen appropriately. This is
entirely consistent with our broader agenda when N > 1 as the posterior distribution
is the natural prior for downstream tasks in Bayesian inference.

To prove this theorem we establish a sequence of lemmas. The first shows that
the weighted Wasserstein-2 distance may be simplified when one of its argument is a
Dirac.

Lemma 3.6. For any y \in \BbbR d and \mu \in \scrP (\BbbR d)

\sansW 2
2,\Gamma (\delta y, \mu ) =\BbbE x\sim \mu \| y - x\| 2\Gamma .(3.8)

Proof. See Appendix A.2.

Using the definition of pushforward, it follows from Lemma 3.6 that

\sansW 2
2,\Gamma (\delta y, (\scrG )\#\mu ) =\BbbE z\sim \mu \| y - \scrG (z)\| 2\Gamma =

\int 
\BbbR d

\| y - \scrG (z)\| 2\Gamma d\mu (z).(3.9)

The following lemma shows that the sliced-Wasserstein metric also simplifies when
one of its argument is a Dirac.

Lemma 3.7. Let y \in \BbbR d and \mu \in \scrP (\BbbR d), and assume \BbbE z\sim \mu \| z\| 2\Gamma <\infty . Then

\sansS \sansW 2
2,\Gamma (\delta y, \mu ) =

1

d
\sansW 2

2,\Gamma (\delta y, \mu ).(3.10)

Proof. See Appendix A.3.

The final lemma concerns convolution.

Lemma 3.8. Let \sansI :\scrP (Z)\rightarrow \BbbR be defined by \sansI (\cdot ) =\sansW 2
2,\Gamma (\delta y, \cdot ). Let \eta be a centered

random variable and finite second moment. Then

\sansI (\eta \ast \mu ) = \sansI (\mu ) +\BbbE \varepsilon \sim \eta \| \varepsilon \| 2\Gamma .
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C941

Proof. See Appendix A.4.

Proof of Theorem 3.4. By (3.9) and Lemmas 3.7 and 3.8 it follows that the loss
function (3.6) can be written as

\sansJ (\mu ) =
1

2
\BbbE z\sim \mu \| y - \scrG (z)\| 2\Gamma +\scrH (\mu ) +C1,(3.11)

where C1 is independent of \mu . With the choice \scrH (\mu ) := DKL(\mu | | \mu prior) we see that
\sansJ (\mu ) =DKL(\mu | | \mu y) +C2, where C2 is independent of \mu , and is determined by C1 and
\scrZ . The result follows since DKL(\cdot | | \mu y) is minimized at \mu y.

Remark 3.9. In order to use Lemmas 3.7 and 3.8 in the proof of Theorem 3.4,
we assume the pushforward measure \eta \ast (\scrG \#\mu ) has \| \cdot \| 2\Gamma -moment finite as stated in
Theorem 3.4. This will follow from second moments of \scrG \#\mu . Such results can often
be established using the Fernique theorem; see, for example, [16, 21].

Remark 3.10. Now consider functional \sansJ (\cdot ) given by (3.6), replacing \scrG by the
specific choice g \circ F \dagger arising from the inverse problem defined by (1.2) in the case
where N = 1. If we now parameterize target measure \mu by \mu = T\alpha 

\#\mu 0, make the choice

of KL divergence for \scrH , and view \sansJ (\cdot ) as parameterized by \alpha \in \BbbR d\alpha rather than by
\mu \in \BbbP (Z), we obtain

\sansJ (\alpha ) =
d

2
\sansS \sansW 2

2,\Gamma 

\Bigl( 
\delta y, \eta \ast (g \circ F \dagger \circ T\alpha )\#\mu 0

\Bigr) 
+DKL((T

\alpha )\#\mu 0| | \mu prior).

By the same reasoning used in the proof of Theorem 3.4 we may rewrite this as

\sansJ (\alpha ) =
1

2
\BbbE z\sim (T\alpha )\#\mu 0

\| y - (g \circ F \dagger )(z)\| 2\Gamma +DKL((T
\alpha )\#\mu 0| | \mu prior).

From this form it is clear that minimizing \sansJ (\alpha ) over \alpha \in \BbbR d\alpha is simply the variational
Bayes methodology applied to approximate the Bayesian posterior \mu y given by (3.7).
Furthermore, this provides motivation for the consideration of Functional 2 to deter-
mine the prior on z, in the case where N > 1, noting that it reduces to variational
Bayes when N = 1 with appropriate choices of \sansd 1(\cdot , \cdot ) and h(\cdot ).

4. Algorithms. In this section we discuss practical aspects pertaining to the im-
plementation of the proposed methodologies. First, although Remark 3.10 suggests a
specific choice for regularization h(\alpha ) in Functional 2 or Functional 3, in practice it
is not computationally straightforward to work with this choice and simpler choices
are made. Second, the evaluation of the objective functions is carried out using the
empiricalization described in subsection 3.2. Third, the physics-based residual can be
evaluated using Lemma 3.6 and the considerations of subsection 3.2. Fourth, once
loss functions are evaluated we obtain gradients with respect to prior (and opera-
tor) parameters through back-propagation with standard ML library tools, such as
JAX [12].

In Algorithm 4.1 we show how to implement the proposed inference methodol-
ogy of Functional 2 for the task of prior calibration given a forward model F \dagger . In
Algorithm 4.2 we show how to implement Functional 3 for joint prior calibration
and operator learning. We note that to correctly implement the bilevel optimization
scheme proposed to minimize Functional 3 we must differentiate through the lower-
level optimization steps given by Functional 4 to take into account the dependence
of \phi  \star (\alpha ) on \alpha . This incurs additional computational costs; efficient approximation
methods for this task will be explored in future works.
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C942 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

Algorithm 4.1. Prior calibration.

1: Initialize \alpha 0 , T (number of iterations), Ns (number of samples for \sansJ 2 ), F
\dagger 

(forward model)
2: for t= 1, . . . , T do
3: for i= 1, . . . ,Ns do

4: Sample \varepsilon 
(i)
0 \sim \mu 0

5: Sample z(i) \sim T\alpha t - 1(\varepsilon 
(i)
0 )

6: Sample \varepsilon 
(i)
\eta \sim \eta 

7: Compute y\prime 
(i)

= g \circ F \dagger (z(i)) + \varepsilon 
(i)
\eta 

8: Sample y(i) \sim \nu N

9: end for

10: Compute \sansJ 2(\alpha t - 1) from the Ns samples \{ y(i), y\prime (i)\} Ns
i=1.

11: \alpha t =OPTIMISER(\alpha t - 1,\sansJ 2(\alpha t - 1))
12: end for
13: return \alpha  \star \leftarrow \alpha T .

We note that only the outermost parameter update loops must be computed
sequentially. All other loops can be efficiently computed in parallel in a GPU-efficient
manner. In all experiments we make use of the Adam optimizer [37]. The sliced-
Wasserstein implementation is based on that of [27]. If one is interested in applying
this methodology to nonlinear PDEs, computing Functional 2 requires the solution
of Ns nonlinear systems of equations at every parameter update step. However, this
is not the case for the method using Functional 3 and Functional 4 as we only need
to compute Nr residuals, which is done in the same manner for linear or nonlinear
PDEs. (See also subsection 3.2 for definitions of Ns,Nr.)

5. Numerical results for Darcy flow. We now illustrate the performance of
our methodology to learn generative models for priors, based on indirect observations.
All our numerical examples are in the setting of (1.3). The presented PDE is to be
interpreted in the weak sense; see Appendix B for a short discussion on the weak
form and approximate computational methods exploiting GPU-efficient array shifting
operations. We consider two classes of coefficient function z: the first is a class of
piecewise constant functions with discontinuity sets defined as level sets of a smooth
field, in subsection 5.1; the second is a class of functions defined as the pointwise
exponential of a smooth field, in subsection 5.2. In both cases we will write the
prior as the pushforward of a Gaussian measure, on the underlying smooth field,
under a parameter-dependent map T\alpha ; we refer to the first class as level set priors
and the second as lognormal priors. We attempt to learn the parameters \alpha through
minimization of either Functional 2 (using a numerical PDE solver) or Functional 3
(using residual-based operator learning); in all cases we use the framework of Section 3.
We denote the true measure which we wish to recover by \mu \dagger .

For simple problems regularization may not be needed. For more challenging
problems, regularization on \alpha may help with numerical stability, particulariliy when
the surrogate model F\phi  \star (\alpha ) is concurrently learned. Hence, for the 1D Darcy problems
we omit the regularizer, and for the 2D Darcy examples we use regularization of the
form h(\alpha ) = 1/(2\sigma 2

h)\| log(\alpha ) - mh\| 22 in which the log is applied componentwise; we
refer to \sigma h and mh as the standard deviation and mean of the regularizer term. We
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C943

Algorithm 4.2. Prior calibration and operator learning.

1: Initialize \alpha 0, \phi 0, T (number of outer-loop \alpha updates), L (number of inner-loop \phi 
updates), Ns (number of samples for \sansJ 3), Nr (number of samples for \sansJ 4)

2: for t= 1, . . . , T do
3: for l= 1, . . . ,L do
4: for j = 1, . . . ,Nr do

5: Sample \varepsilon 
(j)
0 \sim \mu 0

6: Sample z(j) \sim T\alpha t - 1(\varepsilon 
(i)
0 )

7: Compute r(j) =\scrO \phi l - 1(\alpha t - 1)(z(j))
8: end for

9: Compute \sansJ 4(\alpha t - 1, \phi l - 1(\alpha t - 1)) from the Nr samples \{ r(j)\} Nr
j=1.

10: \phi l(\alpha t - 1) =OPTIMISER(\phi l - 1(\alpha t - 1),\sansJ 4(\alpha t - 1, \phi l - 1(\alpha t - 1))
11: end for
12: \phi  \star (\alpha t - 1)\leftarrow \phi L(\alpha t - 1)
13: for i= 1, . . . ,Ns do

14: Sample \varepsilon 
(i)
0 \sim \mu 0

15: Sample z(i) \sim T\alpha t - 1(\varepsilon 
(i)
0 )

16: Sample \varepsilon 
(i)
\eta \sim \eta 

17: Compute y\prime 
(i)

= g \circ F\phi  \star (\alpha t - 1)(z(i)) + \varepsilon 
(i)
\eta 

18: Sample y(i) \sim \nu N

19: end for

20: Compute \sansJ 3(\alpha t - 1, \phi 
 \star (\alpha t - 1)) from the Ns samples \{ y(i), y\prime (i)\} Ns

i=1.
21: \alpha t =OPTIMISER(\alpha t - 1,\sansJ 3(\alpha t - 1, \phi 

 \star (\alpha t - 1)))
22: end for
23: return \{ \alpha  \star \leftarrow \alpha T , \phi 

 \star (\alpha  \star )\leftarrow \phi  \star (\alpha T )\} .

have not found it necessary to regularize the neural operator parameters as we are
not interested in recovering a specific value for \phi  \star (\alpha ); rather any value which achieves
a small error when evaluating the PDE residual of the output is sought.

For all experiments, we use 1000 slicing directions, \theta , to evaluate the sliced-
Wasserstein term, and we minimize the relevant loss functions using Adam [37] with
a learning rate of 10 - 2 decayed by half four times on the parameters \alpha , other than
where explicitly stated. All experiments are run on a 24 GB NVIDIA RTX 4090 GPU.

The numerical results we present substantiate the following conclusions:
\bullet The proposed methodology using Functional 2 can effectively recover the true

parameters of a level set prior and a lognormal prior.
\bullet The proposed methodology using Functional 2 can effectively recover the true

parameters of a level set prior despite using a smoothening of the level set
formulation, so that there is prior misspecification.

\bullet We highlight the impact of dataset size (N), and the number of samples used
to estimate the loss (Ns), on the quality of the prior parameter estimation;
this demonstrates the strength of distributional inference for prior calibration.

\bullet The proposed methodology using Functional 3 and Functional 4 can achieve
comparable parameter estimation accuracy to that under Functional 2; thus
jointly estimating the operator approximation and the parameters of the prior
both is feasible and, for reasons of efficiency, will be desirable in settings where
F \dagger is expensive to evaluate, is not differentiable, or is not available.
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C944 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

\bullet We show how, under certain circumstances, prior parameters may be uniden-
tifiable, and we show limitations of the proposed methodology in this setting.

5.1. Level set priors. Prior construction here is based on the methodology
introduced in [23, 33]. We define \alpha = \{ \kappa  - , \kappa +, \lambda \} where \kappa \pm \in (0,\infty ) and \lambda > 0.
We now define a function z : C\infty (D)\times \BbbR 2 \rightarrow L\infty (D) which will take a \lambda -dependent
function in C\infty (D) and the two values \kappa \pm \in \BbbR 2 to create a function in L\infty (D). We
introduce parameterized family of measures (T\alpha )\#\mu 0 on L\infty (D) by pushing forward
a Gaussian measure on a \in C\infty (D) under map T\alpha to define a measure on z. To this
end we define z by

z(x) = \kappa  - 1D - (a)(x) + \kappa +1D+(a)(x),(5.1)

D - (a) = \{ x\in D| a(x)< 0\} , D+(a) = \{ x\in D| a(x)\geq 0\} .(5.2)

To complete the description of T\alpha we construct a as a \lambda -dependent Gaussian random
field (GRF). To do this we fix a scalar \beta > 0. The construction of a differs in details
between dimensions one and two. For a 1D physical domain D, we define the \lambda -
dependent Gaussian measure on a through the Karhunen--Lo\`eve expansion

a(x;\lambda ,\beta ) =

J\sum 
j=1

\Bigl( 
j2\pi 2 + \lambda 2

\Bigr)  - \beta /2

\varepsilon j\varphi j(x), \varepsilon j \sim \scrN (0,1) i.i.d.,

where \varphi j(x) = cos(j\pi x). In dimension two we generalize to obtain

a(x;\lambda ,\beta ) =

J,K\sum 
j=1,k=1

\Bigl( 
(j2 + k2)\pi 2 + \lambda 2

\Bigr)  - \beta /2

\varepsilon j,k\varphi j,k(x), \varepsilon j,k \sim \scrN (0,1) i.i.d.,

with \varphi jk(x) = cos(j\pi x(1)) cos(k\pi x(2)). For all experiments, we fix \beta = 4.
Note that, for J = \infty in dimension one (resp., (J,K) = \infty in dimension two)

a\sim \scrN (0,C\lambda ,\beta ) where

C - 1
\lambda ,\beta =

\bigl( 
 - \Delta + \lambda 2I

\bigr) \beta 
,(5.3)

and  - \Delta is the Laplacian equipped with homogeneous Neumann boundary conditions.
Draws from this measure have H\"older regularity up to exponent \beta  - d/2 where d is
dimension of domain d. This statement about the probability measure from which a
is drawn is approximate when J is (resp., (J,K) are) finite. Because of the countable
nature of the construction of the level set prior, it lies in a separable subspace Z
of L\infty (D). The derivative of the objective functional with respect to \lambda is not well
behaved for the sharp level set setup as \partial az is zero almost everywhere. Hence we
introduce a smoothened level set parametrization of z(\alpha ) as

\~z(x; \tau ) =
1

2
tanh(\tau \=a)(\kappa +  - \kappa  - ) +

1

2
(\kappa +  - \kappa  - ) + \kappa  - ,(5.4)

\=a= a/\| a\| L2(D),(5.5)

where the parameter \tau controls the sharpness of transition from \kappa  - to \kappa +. In Fig-
ure 1(a) we show the spectrum decay of the GRF generated from the covariance
operator (5.3) in dimension one. Figure 1(b) shows the smoothing of the sharp level
set function z and its spatial derivative. In Figure 2 we show 10 sampled random fields
\=a and the associated PDE solutions for the 1D Darcy problem. We only show one
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(a) Normalized Spectrum, \beta = 4
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(b) Smoothed level set function

Fig. 1. (a) Spectrum decay of the square root of the eigenvalues for the covariance operator
(5.3) (which corresponds to the standard deviation of the basis expansion coefficient of each mode
\varphi j(x)) for \beta = 4 and different choices of length-scale parameter \lambda . As \lambda increases, more modes play
a significant role. (b) A comparison of smooth level set function \~z and sharp level set function z
transitioning at x= 0.5 for \tau = 100.
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Fig. 2. (a)--(c) Data generated from sharp prior \mu \dagger , which are the PDE solution fields with the
observational data at points, the normalized GRF \=a samples, and one example of a level set function
resulting from one of the \=a fields. (d) The same diffusivity field \~z as in (c), but smoothed with (5.4)
and \tau = 10.

diffusion field z for clarity. We note that there is a symmetry in inference between \kappa +

and \kappa  - , so after convergence we sort the \kappa \pm to associate \kappa + with the larger value and
vice versa for \kappa  - . The number of physical systems from which we have data, N , is
set to 1000 for the subsequent examples as this is shown to give very accurate results
while highlighting the main benefit of the methodology---to efficiently and accurately
estimate underlying distributional parameters from large amounts of data.

With this experimental setup established, we can test the proposed methodology.
Subsections 5.1.1 and 5.1.2 concern the setting where we use a PDE solve for the
forward model, and hence minimize Functional 2; we consider dimensions d = 1 and
d = 2, respectively. In subsections 5.1.3 and 5.1.4 we combine learning of \alpha with
operator learning to replace the PDE solve, and hence minimize Functional 3; we
again consider dimensions d= 1 and d= 2, respectively.

5.1.1. Prior calibration: 1D Darcy. In this section we focus our attention on
using Functional 2 to infer parameters of a prior (T\alpha )\#\mu 0 given an empirical measure
\nu N and a forward operator F \dagger . We useN = 1000 data y each of dy = 50 noisy pointwise
observations of the solution with \Gamma = 0.012I observational noise covariance. The prior
KL expansion is truncated at 20 terms. We use Ns = 1000 samples to evaluate
Functional 2. The true parameters for data generation are \lambda = 8, \kappa + = 2, \kappa  - = 1
and we set the level set smoothing parameter \tau = 10. We use a finite element mesh
of 100 nodes with a weak form residual computed through array shifting and solved
with conjugate gradients and the forcing function f is set to a constant value of 10
for all examples. No regularizer h(\alpha ) is used for the 1D example. We minimize using
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Fig. 3. Comparison of convergence of \alpha = \{ \kappa \pm , \lambda \} for data generated from the physically re-
alistic sharp \mu \dagger and the smoothed \~\mu \dagger for 1D Darcy with Functional 2. We plot in (a) and (c) the
convergence of the parameters themselves, and in (b) and (d) the loss function values.

the smoothed model without sharp interfaces but we derive data both with the sharp
and smoothed interfaces. In both cases we are able to accurately recover all three
hyperparameters in \alpha ; see Figure 3. The runtime for these experiments is 41 s for the
full 1k iterations. The relative error of the predicted parameters for the smoothed
level set prior are 0.56\%, 0.28\%, and 0.96\% for \kappa +, \kappa  - , and \lambda , respectively. We
observe that the misspecification between \mu \dagger (draws are discontinuous) and (T\alpha )\#\mu 0

(draws are smooth) is reflected in a small inference bias, as would be expected. In
Figure 4 we plot the prior parameter estimation mean and standard deviations for 100
random initializations, varying the number of samples Ns used for estimating the loss
functions and the size of the dataset (N). The \alpha parameters are initialized from log\lambda \sim 
Unif(log 0.5, log 4), log\kappa  - \sim Unif(log 0.5, log 4), and log\kappa  - \sim Unif(log 6, log 10). We
observe that the mean of the recovered parameters roughly converges for this problem
setup after a dataset size N = 100 and number of samples Ns = 100.

5.1.2. Prior calibration: 2D Darcy. In this section we generalize the setting
of the previous section to the 2D domain D= [0,1]\times [0,1]. As in the 1D example, we
use N = 1000 data y each of dy = 50 noisy pointwise observations of the solution with
\Gamma = 0.012I observational noise covariance. The prior KL expansion is truncated at 20
terms in each dimension, for a total of 400 terms. We use Ns = 100 samples to evaluate
Functional 2. The true parameters for data generation are \lambda = 5, \kappa + = 2, \kappa  - = 1 and
we set the level set smoothing parameter \tau = 5. We use a finite element mesh of
100 \times 100 nodes. The regularizer h(\alpha ) in Functional 2 has means mh,\lambda = log(10)
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Fig. 4. Converged parameter estimation for \lambda ,\kappa +, \kappa  - individually, for different dataset sizes
N , and number of samples Ns for Functional 2 on the 1D Darcy problem.

(a) z field (b) Smoothed z field (c) u and 50 observations

Fig. 5. Plots of a sharp permeability field and the smoothed field and PDE solutions with obser-
vation locations in the dataset for the 2D Darcy problems. We note that the solutions are computed
from the sharp level sets for the dataset, whereas (T\alpha )\#\mu 0 in the loss function uses the smoothed
level sets to make use of gradient-based optimization.

and mh,\kappa \pm = log(3), with standard deviations \sigma h = 2. In Figure 5, two permeability
fields associated with their sets of observations from the dataset are shown. Figure 6
shows the convergence plots for prior parameter calibration. Inference time was 1.52
minutes for the 2k iterations. The relative error of the predicted parameters is 0.39\%,
0.03\%, and 1.96\% for \kappa +, \kappa  - , and \lambda , respectively.

5.1.3. Prior calibration and operator learning: 1D Darcy. We now turn
our attention to the task of using Functional 3 and Functional 4 to jointly estimate
(T\alpha )\#\mu 0 and learn a parametrized operator F\phi . We choose this operator to be a
four-layer Fourier neural operator [44] with 64-dimensional channel space and eight
Fourier modes and Silu activation functions [30] (\sigma (x) = x sigmoid(x)). The last layer
performs a pointwise multiplication with a function that is zero on the boundary
(sin(\pi x)). Functional 4 is evaluated with Nr = 20 samples and Functional 3 is evalu-
ated with Ns = 1000 samples. We perform 10 update steps on \phi per \alpha update in the
lower-level optimization routine. We use the same data setup, prior, and regularizer
as in subsection 5.1.1. In Figure 7 we show that we are able to jointly learn the
neural operator approximation of the forward model and the unknown parameters.
The runtime is 2.44 minutes. The relative error for the FNO predictions against the
solver for the data samples z \sim \mu \dagger from the true sharp level set prior is 0.40\%. The
relative error of the predicted parameters is 1.13\%, 0.71\%, and 4.18\% for \kappa +, \kappa  - , and
\lambda , respectively.

5.1.4. Prior calibration and operator learning: 2D Darcy. We now apply
the joint prior-operator learning methodology to the 2D setting, keeping the same
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Fig. 6. Convergence of prior parameters \alpha for 2D Darcy trained with Functional 2.
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Fig. 7. Convergence of prior parameters \alpha , with learned operator F\phi on 1D Darcy with Func-
tional 3 and Functional 4. We take 10 parameter updates steps on \phi in the lower objective of the
bilevel optimization for every step on \alpha .
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(a) \alpha convergence with \phi  \star (\alpha )
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Fig. 8. Convergence of prior parameters \alpha for the level set prior on the 2D Darcy problem with
jointly learned operator F\phi . For every step of prior update \alpha , 10 parameter updates are performed
on \phi .

FNO parameters as in the 1D case (subsection 5.1.3) but for 2D input fields. The
last layer of the FNO is now sin(\pi x(1)) sin(\pi x(2)). We use the same data setup,
prior, and regularizer as in subsection 5.1.2 and Nr = 20, Ns = 100. Figure 8 shows
the convergence for the learning of both (T\alpha )\#\mu 0 and F\phi . The model converged
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EFFICIENT PRIOR CALIBRATION FROM INDIRECT DATA C949

accurately after a runtime of 56.46 minutes. The relative error for the FNO predictions
against the solver for the data samples z \sim \mu \dagger from the true sharp level set prior is of
0.73\%. The relative error of the predicted parameters are 0.10\%, 0.98\%, and 3.19\%
for \kappa +, \kappa  - , and \lambda , respectively.

5.2. Lognormal priors. In this subsection we focus on learning parameters of
a lognormal prior. We introduce a Mat\'ern-like field a with regularity \nu , amplitude \sigma ,
and length-scale \ell ; to be specific we generate a centered GRF with covariance operator

C\sigma ,\ell ,\nu = \gamma \ell d( - \ell 2\Delta + I) - \nu  - d/2,

setting

\gamma = \sigma 2 2
d\pi d/2\Gamma (\nu + d/2)

\Gamma (\nu )
,

where \Gamma (\cdot ) is the Gamma function (not to be confused with our use of \Gamma as the
observational noise covariance). In practice we truncate a Karhunen--Lo\`eve expansion
in the form

a(x;\sigma , \ell , \nu ) =

J,K\sum 
j=1,k=1

\sqrt{} 
\gamma \ell d (\ell 2(j2 + k2)\pi 2 + 1)

 - \nu  - d/2
\varepsilon j,k\varphi j,k(x), \varepsilon j,k \sim \scrN (0,1) i.i.d.

We then set z = exp(a). Again, because of the countable nature of the construction
of the lognormal prior, it lies in a separable subspace Z of L\infty (D). We focus on
estimating \alpha = \{ \nu , \ell \} which represent the regularity and length-scale of the lognormal
permeability field z. We do not attempt to jointly infer the amplitude \sigma as this induces
a lack of identifiability of parameters at the level of the Karhunen--Lo\`eve expansion
spectrum. We note that as the amplitude parameter does not contain much spatially
dependent information, it can be accurately estimated by other means, hence here it
is set to \sigma = 1. We attempt to jointly learn \alpha = \{ \nu , \ell \} and \phi the parameters of a
residual-based neural operator approximation. Figure 9 shows a randomly sampled
function from this expansion, the corresponding permeability field, and the associated
Darcy flow solution. In subsection 5.2.1 we consider a setting where the regularity and
length-scale parameters are identifiable and show successful joint learning of (\alpha ,\phi ).
However, it is intuitive that the regularity and length-scale may not be separately
identifiable; we show in subsection 5.2.2 that in such situations the entanglement of
jointly learning (\alpha ,\phi ) can cause convergence problems with the proposed methodology.

(a) a (b) z (c) u and 50 observations

Fig. 9. (a) A sampled GRF a, (b) the exponentiated random field z, (c) the solution field
associated to z with the 50 observation locations.
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(c) \alpha convergence with \phi  \star (\alpha )
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Fig. 10. (a)--(b) Convergence and loss for \alpha = \{ \nu , \ell \} on the 2D Darcy problem for the lognormal
prior. (b)--(c) Convergence of combinations of prior parameters \alpha = \{ \nu , \ell \} estimated jointly with \phi 
for 2D Darcy on the lognormal prior with 10 \phi updates in the lower-level optimization for every \alpha 
step.

5.2.1. Identifiable setting. We use N = 1000 data y each of dy = 50 noisy
pointwise observations of the solution with \Gamma = 0.012I observational noise covariance.
The prior KL expansion is truncated at 20 terms in each dimension for a total of
400 expansion terms. We set Ns = 100. The true parameters for data generation are
\nu = 1.5, \ell = 0.5. We use a finite element mesh of 100 \times 100 nodes. The regularizer
h(\alpha ) in Functional 3 has means mh,\nu = log(3.5) and mh,\ell = log(1), with standard
deviations \sigma h = 2. In Figure 10(a), (b) we show the convergence plots for the prior
only learning. The relative error on parameter estimation is 1.26\% and 0.66\% on \nu 
and \ell , respectively. The runtime is 4.26 min.

We then test the joint estimation of \alpha and \phi with Functional 3 and Functional 4.
The data setup, prior, and regularizers are the same as in the \alpha -only case described
in subsection 5.1.2 with Nr = 20, Ns = 100. The operator setup is the same as in
subsection 5.1.4. In Figure 10(c), (d) we show the joint prior learning with operator
learning. The achieved relative error for the learned F\phi on z \sim \mu \dagger is 0.128\%. The
relative error on parameter estimation is 0.44\% and 3.13\% on \nu and \ell , respectively.
The runtime is 112 mins for the 10k iterations.

5.2.2. Unidentifiable setting. For certain parameter values of \alpha , from which
the true data is generated, there can be a lack of identifiability. In the previous sec-
tion, the data was generated from a relatively rough random field with a relatively
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(c) \alpha convergence with \phi  \star (\alpha )
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Fig. 11. (a)--(b) Convergence and loss for \alpha learning. (c)--(d) Convergence and losses for \alpha 
and \phi learning. Both sets of figures are for the 2D Darcy on log normal prior for unidentifiable \alpha 
parameter values.

long length-scale. Hence the smoothness and length-scale parameters each have a
distinct impact on the prior's spectrum. We will now look at a smooth random field
setting \nu = 4, keeping \ell = 0.5. Now, both parameters will have a similar influence
on the spectrum of the prior. Other parameters for the data, solver/operator, and
regularizer are kept the same as in subsection 5.2.1. In Figure 11 we show the con-
vergence of the \alpha parameters for the unidentifiable parameter regime for the \alpha only
learning and the joint \alpha ,\phi prior and operator learning tasks. We can see the lack of
identifiability causes more issues in the operator learning as it struggles to gain any
inferential traction. For these examples, it was necessary to run the learning models
for more iterations (20k) and use a 6-time decaying learning rate on \alpha (as opposed
to the usual 4 in previous examples). Furthermore, due to training instability, the \phi 
parameters had to be trained with AMSGrad [57] (with the same settings) instead of
Adam. As we can see from Figure 11, the proposed methodology applied to this par-
ticular unidentifiable setup does not fail silently, the \alpha only learning has a very long
convergence time, and the \alpha and \phi learning does not reach equilibrium. Practitioners
may also find the method is more sensitive to initializations in such unidentifiable
settings. Other possible avenues to identifying nonuniqueness in prior parameter es-
timation include assessing the sensitivity of the estimated parameters on the choice
of regularizer mean and standard deviation, or the use of hierarchical parametric
priors where a distribution on \alpha is learned. There, a wide (or multimodal) inferred
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C952 AKYILDIZ, GIROLAMI, STUART, AND VADEBONCOEUR

distribution on \alpha could indicate nonidentifiability of the prior parameters as well as
the covariance between entangled prior parameters.

6. Conclusions. In this work we propose a novel methodology for learning a
generative model for a prior on function space, based on indirect and noisy observa-
tions defined through solution of a PDE. The learning scheme is based on the mini-
mization of a loss functional computing divergences at a distributional level. We prove
our methodology recovers the Bayesian posterior when observations originate from a
single physical system (N = 1). We demonstrate the accuracy of our methodology on a
series of examples pertinent for practitioners. These are 1D and 2D steady-state Darcy
flow problems for two different parametric priors, namely, a level set prior and a log-
normal prior. Furthermore, we show how the proposed framework can be augmented
to jointly learn an operator, mapping samples of PDE parameter fields drawn from
the estimated prior, and the solution space of the PDE, through a bilevel optimization
strategy. The operator learning takes place on-the-fly during the optimization of the
prior parameters and is residual-based. Finally, we indicate the possible pitfalls of
unidentifiable priors and show the emergent behavior of the methodology under this
setting. A selection of avenues for future work includes the use of different metrics
on the space of measures, testing on different PDE systems (nonlinear, coupled, time-
evolving, etc.), other choices of parametrized prior measures, studying identifiability
and nonuniqueness of inferred prior parameters, and testing the downstream use of
such learned priors and operators as in Bayesian inversion and generative modeling
of physical systems.

Appendix A. Proofs.

A.1. Proof of Lemma 3.1.

Proof. Let \nu ,\mu denote two probability measures defined on a common measure
space (X,\Sigma ). Let \Pi (\nu ,\mu ) denote the set of all coupling probablity measures \gamma , on the
product space X \times X, such that \gamma (A\times X) = \nu (A), \gamma (X \times A) = \mu (A) for all A \in \Sigma .
Remembering PB(\cdot ) = B - 1/2 \cdot , now recall the definition

\sansW 2
2,B(\nu ,\mu ) = inf

\gamma \in \Pi (\nu ,\mu )

\int 
\BbbR d\times \BbbR d

\| x - y\| 2Bd\gamma (x, y).(A.1)

The set of all \gamma \prime \in \Pi (PB\#\nu ,PB\#\mu ) is equivalent to the set (PB \otimes PB)\#\gamma defined over
all \gamma \in \Pi (\nu ,\mu ). Thus we have

\sansW 2
2(PB\#\nu ,PB\#\mu ) = inf

\gamma \prime \in \Pi (P\mathrm{B}\#\nu ,P\mathrm{B}\#\mu )

\int 
\BbbR d\times \BbbR d

\| x\prime  - y\prime \| 22 d\gamma \prime (x\prime , y\prime )(A.2)

= inf
\gamma \in \Pi (\nu ,\mu )

\int 
\BbbR d\times \BbbR d

\| x - y\| 22 d((PB \otimes PB)\#\gamma (x, y))

= inf
\gamma \in \Pi (\nu ,\mu )

\int 
\BbbR d\times \BbbR d

\| B - 1
2x - B - 1

2 y\| 22 d\gamma (x, y)

= inf
\gamma \in \Pi (\nu ,\mu )

\int 
\BbbR d\times \BbbR d

\| x - y\| 2B d\gamma (x, y)

=\sansW 2
2,B(\nu ,\mu ).(A.3)

A.2. Proof of Lemma 3.6.

Proof. To show the desired result we determine a point at which the infimum over
couplings \Pi (\delta y, \mu ) is achieved. It is known from [63, section 1.4] that when one of the
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measures in the argument of a Kantorovich problem (of which Wasserstein metrics
are a special case) is a Dirac, i.e., \delta y for any y \in \BbbR d, then the set of couplings \Pi (\delta y, \mu )
with marginals \delta y, \mu contains a single element, namely \delta y \otimes \mu . It follows that

\sansW 2
2,\Gamma (\delta y, \mu ) = inf

\gamma \in \Pi (\delta y,\mu )

\int 
\BbbR d\times \BbbR d

\| y\prime  - x\| 2\Gamma d\gamma (y\prime , x)(A.4)

=

\int 
\BbbR d\times \BbbR d

\| y\prime  - x\| 2\Gamma (d\delta y(y\prime )\otimes d\mu (x))

=\BbbE x\sim \mu \| y - x\| 2\Gamma .

A.3. Proof of Lemma 3.7.

Proof. We want to show, for y \in \BbbR d and \mu \in \scrP (\BbbR d),

\sansS \sansW 2
2,\Gamma (\delta y, \mu ) =

1

d
\sansW 2

2,\Gamma (\delta y, \mu ).

Thus, we have

\sansS \sansW 2
2,\Gamma (\delta y, \mu ) =

\int 
\BbbS d - 1

\sansW 2
2(P

\theta 
\Gamma \#\delta y, P

\theta 
\Gamma \#\mu )d\theta (A.5a)

=

\int 
\BbbS d - 1

\sansW 2
2(\delta \langle \Gamma  - 1/2y,\theta \rangle , P

\theta 
\Gamma \#\mu )d\theta 

=

\int 
\BbbS d - 1

\BbbE z\sim \mu (\langle \Gamma  - 1/2y, \theta \rangle  - \langle \Gamma  - 1/2z, \theta \rangle )2d\theta 

=\BbbE z\sim \mu 

\int 
\BbbS d - 1

(\langle \Gamma  - 1/2y, \theta \rangle  - \langle \Gamma  - 1/2z, \theta \rangle )2d\theta (A.5b)

=\BbbE z\sim \mu 

\int 
\BbbS d - 1

\bigl( 
\langle \Gamma  - 1/2(y - z), \theta \rangle 

\bigr) 2
d\theta ,

where, in order to move from (A.5a) to (A.5b), we use the fact that \BbbE z\sim \mu \| z\| 2\Gamma <\infty .
Furthermore,

\langle \Gamma  - 1/2a, \theta \rangle \langle \Gamma  - 1/2b, \theta \rangle = (\Gamma  - 1/2a)\top \theta \theta \top (\Gamma  - 1/2b),

and noting, from [75, section 3.3.1], the covariance of the uniform on the sphere,
CovUnif(\BbbS d - 1) =

\int 
\BbbS d - 1 \theta \theta 

\top d\theta = 1
d I. Then\int 

\BbbS d - 1

\langle \Gamma  - 1/2a, \theta \rangle \langle \Gamma  - 1/2b, \theta \rangle d\theta = 1

d
(\Gamma  - 1/2a)\top (\Gamma  - 1/2b)

=
1

d
\langle a, b\rangle \Gamma .

In particular \int 
\BbbS d - 1

\bigl( 
\langle \Gamma  - 1/2(y - z), \theta \rangle 

\bigr) 2
d\theta =

1

d
\| y - z\| 2\Gamma .

And so, from (A.5b) and Lemma 3.6 we obtain

\sansS \sansW 2
2,\Gamma (\delta y, \mu ) =

1

d
\BbbE z\sim \mu \| y - z\| 2\Gamma 

=
1

d
\sansW 2

2,\Gamma (\delta y, \mu ).
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A.4. Proof of Lemma 3.8.

Proof. We have

\sansI (\eta \ast \mu ) =\BbbE x\prime \sim \eta \ast \mu \| y - x\prime \| 2\Gamma ,
\sansI (\mu ) =\BbbE x\sim \mu \| y - x\| 2\Gamma .

Thus

\sansI (\eta \ast \mu ) =\BbbE (x,\varepsilon )\sim \mu \otimes \eta \| y - x - \varepsilon \| 2\Gamma ,

=\BbbE (x,\varepsilon )\sim \mu \otimes \eta 

\Bigl( 
\| y - x\| 2\Gamma  - 2\langle y - x, \varepsilon \rangle \Gamma + \| \varepsilon \| 2\Gamma 

\Bigr) 
,

=\BbbE x\sim \mu \| y - x\| 2\Gamma +\BbbE \varepsilon \sim \eta \| \varepsilon \| 2\Gamma ,
= \sansI (\mu ) +\BbbE \varepsilon \sim \eta \| \varepsilon \| 2\Gamma ,

using that \eta is centered, is independent of \mu , and has finite second moments.

Appendix B. Weak form residuals with array shifting. We now show how
to compute a residual in the weak form for a Darcy problem on domain D, with
homogeneous boundary conditions using array shifting. Taking (1.3) and testing the
domain residual against a set of test functions \{ vi\} do

i=1, we obtain the discretized
variational formulation

\scrO (R(z,u))i = \langle vi,R(z,u)\rangle =
\int 
D

vi(\nabla \cdot (z\nabla u))dx+

\int 
D

vifdx= 0\forall vi \in V.

Through integration by parts we obtain the weak form. Here, we use as shorthand
\sansr i =\scrO (R(z,u))i. In two dimensions,

\sansr i = - 
\int 
D

z\partial x(1)
vi \partial x(1)

udx - 
\int 
D

z\partial x(2)
vi \partial x(2)

udx+

\int 
D

vif dx.(B.1)

Traditional finite element solvers would assemble a system of sparse linear equations
of the form \sansA \sansu = \sansf where \sansA \in \BbbR do\times do is sparse, and \sansu , \sansf \in \BbbR do . The matrix vector
product \sansA \sansu is comprised of the first two terms in (B.1) and \sansf is the third term. To
compute residuals using array shifting in two dimensions we use double indexing,
denoted by jk, to represent the mesh nodes as shown in Figure 12. We denote the set

of indices \{ i\} do
i=1 = \sansr \sansa \sansv \sanse \sansl (\{ j, k\} j,k=

\surd 
do

j,k=1 ). Then

\sansr jk = - \sansr x(1),jk  - \sansr x(2),jk + \sansr f,jk,

where each of the three terms corresponds to the ones in (B.1). Assuming z is given
at the nodes and is piecewise constant from the top left of an element, we have

\sansr x(1),jk =
1

2
((zj - 1,k - 1

+ zj,k - 1
)(uj,k  - uj,k - 1

) - (zj,k + zj - 1,k)(uj,k+1
 - uj,k)),

\sansr x(2),jk =
1

2
((zj,k - 1

+ zj,k)(uj,k  - uj+1,k) - (zj - 1,k + zj - 1,k - 1
)(uj - 1,k  - uj,k)).

We compute the tested inhomogeneous term as
\int 
D
vf dx=

\sum 6
e=1

\int 
De

vf dx integrating
using 1 point Gauss integration at (1/3h,1/3h). Thus

\sansr f,jk =
h2

9

\bigl( 
3fj,k + fj - 1,k - 1

+ fj,k - 1
+ fj+1,k + fj+1,k+1

+ fj,k+1
+ fj - 1,k

\bigr) 
.
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j, k

j, k - 1 j, k+1

j+1, k j+1, k+1

j - 1, k - 1 j - 1, k

1

2

3

4

5

6

Fig. 12. 2D FEM mesh centered at node jk. We assume equal spacing, h, of the nodes.

All operations can be rapidly computed using array shifting. To solve the linear differ-
ential equation we use an iterative linear solver such as conjugate gradient for positive
definite matrices \sansA or GMRES for more general problems. To solve nonlinear differen-
tial equations, one would use Newton's method. The Newton update step can be seen
as solving a linear system with a Jacobian-vector product \sansu \sansn +\sansone = \sansu \sansn  - J\scrO (\sansu \sansn )

 - \sansone \scrO (\sansu \sansn ).
Deep learning libraries are designed to compute Jacobian-vector products with high
efficiency, resulting in a GPU efficient Newton--Krylov method.
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