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The approximation of solutions of reaction-diffusion equations that approach
asymptotically stable, hyperbolic equilibria is considered. Near such equilibria
trajectories of the equation contract and hence it is possible to seek error
estimates that are uniformly valid in time. A technique for the derivation of such
estimates is illustrated in the context of an explicit Euler finite-difference scheme.

1. Introduction

Classical error estimates for time-dependent problems on an interval 0<r<7t
involve an error constant that grows like e*. This reflects the fact that, in general,
trajectories of well-posed initial-value problems may diverge at an exponential
rate in time and the numerical solution can be regarded as a trajectory starting
close to the true trajectory in phase space. When the differential equation has
some structure which forces trajectories to contract, it is sometimes possible to
derive error estimates which are uniformly valid in time. See Stetter (1973),
Chapters 3.5 and 4.6, for applications of this idea to the numerical solution of
ordinary differential equations. See also Dekker and Verwer (1984), Chapters 1
and 2.

In this note we are interested in the derivation of uniform in time error
estimates for approximations to reaction-diffusion problems such as

u,=u, +f(u), 0<x<1, t>0, (1.1)
u(,)=u(1,1)=0, t>0, (1.2)
u(x, 0) = uy(x), 0<x<1, (1.3)

a question first considered by Hoff (1978). In sections 5 and 6 of Hoff (1978)
conditions are enforced which ensure that (1.1-1.3) has a unique equilibrium
within some invariant region S and that trajectories contract within S. Under
these conditions Hoff proves uniform in time error estimates, assuming that the
initial data uy(x) is in S. Hoff’s ideas were used by Galeone (1983) to study the
decay of numerical solutions to spatially homogeneous solutions of (1.1), subject
to homogeneous Neumann boundary conditions.

It is possible to improve considerably upon the results in Hoff (1978): it is
necessary only to assume the existence of an asymptotically stable, hyperbolic
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equilibrium (which need not necessarily be unique). Trajectories then contract
only in some neighbourhood of the equilibrium. However, standard finite time
error estimates can be used to ensure that the numerical solution enters this
neighbourhood, provided that the true solution does; contractivity then takes
over. This idea was used by Larsson (1989) in his study of finite element
approximations of scalar reaction-diffusion equations. See also Heywood and
Rannacher (1986) for an application of this approach to the Navier-Stokes
equations. Khalsa (1977) considers a particular reaction-diffusion equation and
analyses stability properties of a discrete problem by use of the Conley index. It is
an interesting and open question as to whether the important work of Beyn
(1987) on the uniform in time approximation of trajectories near unstable
equilibria (which hinges on the approximation of stable and unstable manifolds)
can be extended from ordinary to partial differential equations.

Our purpose here is to present a simple argument whereby uniform in time
error estimates can be obtained for trajectories approaching a stable equilibrium.
The argument applies to a wide variety of implicit and explicit time-stepping
schemes. In contrast, Khalsa (1987) considers only time-continuous discretisations
and Larsson (1989) analyses only the dissipative backward Euler scheme.

For simplicity, we shall limit our analysis to the forward Euler method with
central differences in space:

Ur|+1 U}l 62

v ’+f(U") j=1...,0=-1, n=0,1,2,..., (L4

o=U7=0, 1,2,..., (1.5)

=ujAx), j=0,...,J, (1.6)

where U} denotes the approximation to u(x;, t,), x;=jAx,j=0,...,J—1 and

t, = n At for positive integer n. The results are readily extended to more general
finite-difference or Galerkin discretisations and more general time-steppings. It is
also possible to treat systems of reaction-diffusion equations in one or more space
dimensions.

2. Definitions, Assumptions and Main Theorem

In the remainder of the paper we use the following notations and norm
conventions:

DEFINITION 2.1
1 3
e, = ([t O dx) s luCe, Olle= sup fute 0 @.1)
0 x€{0,1)
U’_' [U\) AR | Ul—l]T; (2‘2)
J—1 3
W= (2 a<1UP), W= max (U] @3)

If v(x) is a function of 0=<x =<1 then we set v;= v(x,-). Similarly, if v(t) is a
function of ¢ € [0, ) we define v" =v(t,). O
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We assume the following:

@) f(*) e C*((a, b), ®) for some interval (a, b) € R.

(ii) Equations (1.1)-(1.3) have a solution u for which the derivatives u,,,, and
u, exist and are uniformly bounded for 0<sx <1, 0<t<w, a+d=u(x, =<
b-96, Y(x,t)e[0, 1] X [0, ») and § > 0.

(iii) As t—>», u approaches an equilibium. More precisely, |[u(e, )
— #i(*)||l=~— 0, where & satisfies

., +f(@=0, 0<x<1, (2.4)
a(0)y=a(1)=0. (2.5)

(iv) & is an asymptotically stable equilibrium in the sense that

fo [- (6.0 +f(a(x))$7] dx

Amax 1= Max n <.
PeH) f ¢2 dx
0
Note that A, is the largest eigenvalue of the problem
Ap =g +f'(W)p, 0<x<]I, (2.6)
¢(0)=9¢(1)=0. (2.7)

(v) The grids are refined in such a way that (At/Ax?) < pu <4.

MAIN THEOREM Under the assumptions above, there exist constants hy, and C,

depending only upon f, u and u, such that, for Ax <hg the numerical solution

Ur=[U5, ..., U_)" exists for all positive integers n and satisfies the error bound

lu” — U< C(At+ Ax?). O

Note that, even though we are using an explicit scheme, the existence of the

numerical solution is not guaranteed a priori since U] may leave the domain

(a, b) of definition of f. In this connection, Hoff (1978) proved that, if an

invariant region § is known for the problem (1.1)-(1.3), then § is also invariant
for the numerical method under the restriction

sz
Ats————
2+ k Ax?’

where k is the maximum of |f’| in S.

3. Proof of main theorem

Before we start the proof of the main theorem, it is convenient to define the
following:

DEerINITION 3.1 For each positive r we define Bl={U e ®'7': ||U - @ll.<r.}

DerINITION 3.2 Let e} = uj — U} denote the error in the numerical method. We let
T} denote the local truncation error for the method:
un+l _ u;l 6214

' o f(yn
. At Ax2 f(u])' (31)

n+l __
T =
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The essence of the proof lies in the following proposition, which shows that,
near the equilibrium # the discretisation behaves contractively.

ProposimioN 3.3 Under assumptions (i)—(v) above, there exist positive constants
ho, R and B independent of At and Ax such that, for Ax < h,, the following is true.
Whenever U™ exists and U” and y" belong to B, then U™*' is defined and

lle" =< (1 - B An) lig"lla+ At IT* 2. O (3-2)

Proof. We first choose R > 0 sufficiently small (independently of Ax) so that the
condition " € B; implies that each element of U" lies in the domain of f.
Subtracting (1.4) from (3.1) we obtain

et =e¢f + — 62e, + At[f(u]) — f(UD] + AT} 3.3)
We apply the mean value theorem twice to obtain, for 0} € B
At
7+1 = 87 + F 6287 + Atf’(ﬁ,)e}'

+ A" ()1 = ¥))( — &) + v} (UF — 3)) + AT7™. (3.4)

Here y} €(0, 1) and n} = (1 —s})&; +s/[uj — yjej] for s} € (0, 1). Taking norms
we obtain

lle" N2 < |1 + AtAll; lle" () + 2Ky R At |lg" (12 + AL | Tl (3.3)

Here K, is a bound for |f”| in the closed R-neighbourhood of i#(x):0<x <1 and
A is the matrix

[ 1 ]
0, R 0
1 1
— 6, — 0
A P A (3.6)
0 U
1
0 SR 6,-,

where 0;=(—2/Ax?) +f'(#}). Now we observe that, according to standard
results, as Ax— 0 the largest eigenvalue of A converges to the eigenvalue A,
defined in assumption (iv)}—see, for example, Kreiss (1972). Furthermore, the
smallest eigenvalue can be bounded by
4

At=— v K,
where K, = max{f'(ii(x)) : 0 <x <1}. Since A is symmetric ||/ + AtA||, coincides
with the spectral radius of [+ AtA. Hence, by (v), we have for At and Ax
sufficiently small

M + AtAl,<1 - o At (3.7)
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FiG. 1.

for some a>0. Hence (3.5) leads to the required result, perhaps after further
reducing R.

Proof of Main Theorem

The idea of the proof is illustrated in Fig. 1; it is similar to the method
introduced by Larsson (1989). (Note that our proof involves linearisation about
the equilibrium solution whereas Larsson uses linearisation about the true
time-dependent trajectory.) The true trajectory is a solid curve and the numerical
trajectory a dotted curve. The ball BR (resp. Bz) is a ball of radius R (resp.
R/2) about the equilibrium & in the supremum norm. (The value of R is given by
Proposition 3.3.) Let T be a time such that, for t=T, u(e, ) lies in Bgp.
Standard error estimates show that the conclusions of the Main Theorem hold for
0<n At<T. In particular, if N =[T/At] for Ax sufficiently small, U" will lie in
B% and Proposition 3.3 applies. We now show that [J” does not leave B} for
n = N. Let M be the largest integer for which /" € B} for N<n<M — 1. For Ax
sufficiently small we obtain a contradiction. In fact, by iterating Proposition 3.3,
we have

llg™ ll2 = e7PAMRY 1N ]|, + [1 + e~ PAM=N)] (3-8)

T
ﬁ b
where T is a uniform bound for ||T")| with n=N (cf. assumption (ii)). The
right-hand side is O(At + Ax?) and, since ™ € B, and R is independent of Ax,
we conclude that U™ € Bk, by using an inverse inequality between ||¢||, and ||*||
and noting that At = 0(Ax?). This gives the required contradiction. The error
estimate now follows by iterating Proposition 3.3 for all n = N.
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