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Inverse Problems and Uncertainty Quantification
By Marco Iglesias 
and Andrew M. Stuart

Quantifying uncertainty in the solution 
of inverse problems is an exciting area of 
research in the mathematical sciences, one 
that raises significant challenges at the 
interfaces between analysis, computation, 
probability, and statistics. The reach in 
terms of applicability is enormous, with 
diverse problems arising in the physical, 
biological, and social sciences, such as 
weather prediction, epidemiology, and traf-
fic flow.

Loosely speaking, inverse problems con-
front mathematical models with data so 
that we can deduce the inputs needed to 
run the models; knowledge of these inputs 
can then be used to make predictions, and 
even to devise control strategies based 
on the predictions. Both the models and 
the data are typically uncertain, as are the 
resulting deductions and predictions; as 
a consequence, any decisions or control 
strategies based on the predictions will be 
greatly improved if the uncertainty is made 
quantitative.

Bayesian Approach  
to Inverse Problems

A mathematical model of an experi-
ment is a set of equations relating inputs 
u to outputs y. Inputs represent physical 
variables that can be adjusted before the 
experiment takes place; outputs represent 
quantities that can be measured as a result 
of the experiment. For the forward prob-
lem the mathematical model G is used to 
predict the outputs y of an experiment from 
given inputs u. For the inverse problem 
the mathematical model is used to make 
inferences about inputs u that would result 
in given measured outputs y [6,10]; in 
practice, many inverse problems are ill-
posed in the sense of Hadamard: They fail 
to satisfy at least one of the criteria for 
well-posedness—existence, uniqueness, 
and continuous dependence of the solution 
on data. When the measured data is subject 
to noise, and/or when the mathematical 
model is imperfect, it is important to quanti-
fy the uncertainty inherent in any inferences 
and predictions made as part of the solu-
tion to the inverse problem. The Bayesian 
approach to inverse problems allows us to 
undertake this task in a principled fashion. 
When properly applied, this formulation of 
inverse problems can simultaneously regu-
larize any ill-posedness present.

In the Bayesian approach the pair (u,y) 
is considered a random variable, and the 
solution of the inverse problem is the condi-
tional probability distribution of the random 
variable u given y, denoted u|y. A formula 
for this conditional probability distribution 
is given by Bayes’ rule, which states that 

(u|y) µ (y|u) (u).

In words: The posterior (u|y), which is 
what we know about the unknown u given 
the data y, is proportional to the likelihood 
(y |u), which measures how likely the 
observed data is for given inputs u, mul-
tiplied by the prior (u), which describes 
our knowledge of the unknown prior to the 
acquisition of data. We describe a concrete 
application below, and the reader may wish 
to revisit our overarching mathematical 
presentation with that example in mind.

Bayes’ rule, and its application, are 
illustrated schematically in Figure 1. The 
prior is denoted by the black dotted curve 
in the input space, with model G defining 
its likelihood; data y is then used to obtain 
the posterior, denoted by the red curve in 
the  input space.

What does this update in probability 
distributions, from the prior to the poste-
rior, do for us? Our answer is found in the 
predictions of uncertainty in the quantity 
of interest q: Without data (under the  
prior), we make the prediction denoted 

by the black dotted curve; with data (under 
the posterior), we can make a more refined 
prediction, denoted by the red curve.

Notice that all predictions are equipped 
with uncertainty. Furthermore, in this illus-
tration, the Bayesian approach to the inverse 
problem has reduced the uncertainty, as 
manifest in the spread of the posterior prob-
ability distribution for the quantity of inter-
est, reflecting the extra information obtained 
from the data. The reader will immediately 
see the benefits of this reduced uncertainty 
in any number of applications, including the 
examples of weather prediction, epidemiol-
ogy, and traffic flow mentioned earlier, as 
well as in the increasingly vast number of 
application domains in which quantitative 
models and noisy data are available.

Practical Problem:  
CO2 Capture and Storage

What, then, are the challenges for applied 
mathematics? To get some insight into 
where the challenges emerge, we consider 
the use of carbon capture and storage to 
facilitate global mitigation of the green-
house effect [3]. Suppose, for example, 
that we are interested in assessing the eco-
nomic viability and environmental impact 
of injecting CO2 into the subsurface.

A typical CO2 storage site could be a 
depleted oil/gas field or a deep saline aqui-
fer (see Figure 2). The mathematical model 
in this case consists of the partial differen-
tial equations that describe the plume of 
injected CO2 in the subsurface. Important 
inputs to the model are the permeabil-
ity of the storage site, along with other 
geologic features, such as existing faults 
and fractures. Natural outputs comprise 
the measurements of bottom-hole pressure 
from the injection well and, possibly, of 
surface deformation from satellite data and 
GPS devices. Because the subsurface is not 
directly observable, the problem of infer-
ring its properties (inputs) from measure-
ments (outputs) is particularly important: 
With accurate inference, decisions can be 
made on the basis of a variety of quantities 
of interest, concerning both the safety and 
the financial feasibility of the storage site; 
for example, one might wish to assess the 

potential groundwater contamination due to 
leakage of CO2.

The challenges inherent in this applica-
tion become apparent when we consider 
what is hidden in the deceptively simple 
Bayes’ law stated above. In this example, 
the likelihood itself is defined through solu-
tion of the forward model, which is a 
coupled set of conservation laws (PDEs) 
describing the physics of multi-phase flow 
in a porous medium. The probability distri-
bution on the input space of permeabilities 
lives on a space of functions; in practice, 
this means that we will be representing 
probabilities on very high-dimensional 
spaces. To probe the posterior probability 
distribution, then, we need to take on the 
challenge of solving complex PDEs over 
an enormous space of input permeabilities. 
Similar daunting challenges emerge in a 
vast range of applications. Nonetheless, the 
last decade has seen considerable advances 
in the Bayesian approach to inverse prob-
lems, and the book [11] has played a major 
role in establishing the viability of the 
approach on today’s computers.

Because our subject is in its infancy, 
with growing numbers of applications and a 
range of methodologies, considerable long-
term challenges remain. A key modelling 
question, which will be very application-
specific, concerns the choice of prior for the 
unknown. A key computational question 
concerns ways to probe the posterior distri-
bution with sufficient accuracy that we can 

compute the posterior probability distribu-
tion on quantities of interest. Furthermore, 
these modelling and computational ques-

tions interact.
The subject is in need of 

sustained input from applied 
mathematicians who can help 
to guide the development of 
algorithms, through analy-
sis of their complexity and 
through computational inno-
vation. This work needs to be 
done in the context of classes 
of application-specific prior 
models. Success in this area 
requires an appreciation for 
analysis (e.g., of PDE-based 
forward models), computation 
(e.g., high-dimensional inte-
gration), probability (e.g., in 
specifying random field pri-

ors), and statistics (e.g., in exploiting data 
in the design of algorithms to explore the 
posterior). In each case the work needs to 
be guided by application-specific modelling 
considerations. 

Returning to the example of CO2 stor-
age, we consider priors for the subsurface 
permeability that deliver different “typi-
cal” functions, as displayed in Figure 3, 
left and centre. On the left, the permeabil-
ity is piecewise-constant, and the unknown 
parameters define the position of the layers 
of different materials that constitute the 
subsurface, together with the position of 
the fault and the permeability values within 
each layer. In the centre image, the perme-
ability is defined through the location of a 
single interface; the considerable variability 
above and below the interface is represented 
by a function, and not just a single value. 
Prior models for which these two differ-
ent permeabilities are “typical” will be 
quite different and will lead to different 
computational considerations; moreover, if 
prior knowledge is scarce, the prior might 
need to incorporate both permeabilities as 
“typical,” possibly along with those of 
other types, such as that displayed in Figure 
3 (right). Details of the mathematical for-
mulation of such problems, and references 
to the engineering literature in which these 
models were originally developed can be 
found in [9]. 

Once the prior and forward model are 
specified, the posterior is defined via Bayes’ 
rule, and we then move on to the computa-
tional task of exploring the posterior and 
computing expectations with respect to it. 
Monte Carlo–Markov Chain, or MCMC, is 
a natural methodology for studying these 
problems, and the last decade has seen con-
siderable progress in the theory and practice 
of these methods in high dimensions [5]. 
Nevertheless, vanilla Monte Carlo-based 
methods, whilst enormously flexible, are 
hampered by their N–1/2 convergence rate 
[2], meaning that computational complexity 
(cost per unit error) can be rather excessive. 
As a consequence, we are likely to see the 
development of multi-level Monte Carlo [8] 
and quasi-Monte Carlo [2] methods in the 
context of inverse problems. In addition, 
the use of generalized polynomial chaos 
methodologies and their relatives [1,4,7,12] 
is likely to be transferred into the context of 
inverse problems, as exemplified in [13]; 
again, these methods hold the possibility 
of improving on the complexity of Monte 

Carlo methods. Interested readers can find 
further details in the articles [14,15] and the 
references therein. 

In this burgeoning field, the numerous 
opportunities for research in applied math-
ematics are driven by both the enormous 
numbers and types of applications, together 
with the wide range of areas in the math-
ematical sciences from which contributions 
are needed. The subject is at a tipping point, 
where computational power is starting to 
allow the exploration of quite complex 
Bayesian models, and the opportunity for 
impact is high. In summary, this is an excel-
lent area for applied mathematicians who 
are looking for new research challenges. 
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Figure 2. Geologic storage of CO2.

Figure 3. Draws from various permeability priors: piecewise-constant layer model with fault 
(left), piecewise-continuous layer model (centre), and piecewise-continuous channel model 
(right).

Figure 1. Uncertainty quantification in Bayesian inversion.
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EQUIP: http://www2.warwick.ac.uk/fac/sci/
maths/research/grants/equip/.
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