Filtering Dynamical Systems Using Observations of Statistics

Eviatar Bach, ${ }^{1,2, ~ a) ~ T i m ~ C o l o n i u s, ~}{ }^{3}$ Isabel Scherl, ${ }^{3}$ and Andrew Stuart ${ }^{2}$
${ }^{1)}$ Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91125, USA
${ }^{2)}$ Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, USA
${ }^{3)}$ Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, USA
(Dated: 19 January 2024)
We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus the computational task is to estimate a time-evolving density $\rho(v, t)$ given noisy observations of the true density ρ^{\dagger}; this contrasts with the standard filtering problem based on observations of the state v. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities ρ. However, for the purposes of tractability, we seek algorithms in state space; specifically we introduce a mean-field state-space model and, using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as the ensemble Fokker-Planck filter (EnFPF).

Under certain restrictive assumptions we show that the EnFPF approximates the Kalman-Bucy filter for the Fokker-Planck equation, which is the exact solution of the infinite-dimensional filtering problem. Furthermore, our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically, the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to turbulence modelling.
oData assimilation (DA) is the process of estimat-
${ }_{1}$ ing the state of a dynamical system using observa-
1_{2} tions. Here, we modify the standard DA setting
${ }_{3}$ to allow for observations of statistics of a system ${ }_{4}$ with respect to its time-evolving probability den-
${ }_{55}$ sity. We propose a mathematical framework, a
${ }_{6}$ resulting ensemble method, and present numer${ }_{7}$ ical experiments demonstrating accelerated cons vergence of a system to its attractor. We propose , further applications to problems in climate and 20 turbulence modelling.

I. INTRODUCTION

${ }_{22}$ The goal of this paper is to introduce a filtering ${ }_{23}$ methodology that incorporates statistical information ${ }_{24}$ into a (possibly stochastic) dynamical system. In the ${ }_{5}$ next three subsections, we present, respectively, a high${ }_{26}$ level overview of the problem, discuss the motivation and ${ }_{27}$ previous literature, and outline the paper structure and ${ }_{28}$ our contributions.

A. Assimilating Statistical Observations

${ }^{30}$ We start by presenting a high-level overview of the ${ }^{1}$ problem of incorporating statistical information into a

[^0]${ }_{32}$ dynamical system; a detailed problem statement follows 33 in section II A.

Data assimilation (DA) is overviewed in a number of ${ }_{35}$ books, including ${ }^{1144}$. The problem is to estimate the state 36 of a dynamical system by combining noisy, partial obser${ }_{37}$ vations with a model for the system. In the continuous${ }_{38}$ time DA problem, we have a stochastic differential equa${ }_{39}$ tion (SDE)

$$
\begin{align*}
d v^{\dagger} & =f\left(v^{\dagger}, t\right) d t+\sqrt{\Sigma(t)} d W \tag{I.1}\\
v^{\dagger}(0) & =v_{0}^{\dagger} \tag{I.2}
\end{align*}
$$

40 with solution $v^{\dagger} \in \mathbb{R}^{d}$, and observations given by

$$
\begin{equation*}
d z^{\dagger}=h\left(v^{\dagger}(t), t\right) d t+\sqrt{\Gamma(t)} d B \tag{I.3}
\end{equation*}
$$

${ }_{41}$ with $z^{\dagger} \in \mathbb{R}^{p}$. The equations for v^{\dagger} and z^{\dagger} are driven by ${ }_{42}$ independent standard Wiener processes W and B. These ${ }_{43}$ SDEs, as with all the SDEs in the paper, are to be inter${ }_{44}$ preted in the Itô sense. Filtering is then the problem of ${ }_{45}$ obtaining the best possible estimate of the posterior den${ }_{46}$ sity on $v^{\dagger}(t)$ given the past observations $\left\{z^{\dagger}(s)\right\}_{s \in[0, t]}$. ${ }_{47}$ Throughout the paper, we use the \dagger superscript to indi${ }_{48}$ cate the true quantities, and omit it for filtered quanti49 ties.
50 Instead of observing a specific trajectory of a dynami${ }_{51}$ cal system, as $\left\{z^{\dagger}(t)\right\}$ given by Eq. (I.3) does, one can also 52 consider observations of the system's statistical behavior, ${ }_{53}$ that is, observations of functionals of the probability den${ }_{54}$ sity $\rho^{\dagger}(v, t)$ over trajectories. This density reflects the ${ }_{55}$ randomness from the initial conditions for v and/or from ${ }_{56}$ the Brownian forcing. For a deterministic dynamical sys${ }_{57}$ tem $(\Sigma \equiv 0)$, if the initial conditions are random, then
${ }_{58} \rho^{\dagger}(v, t)$ will reflect the changing density over time un${ }_{59}$ der the action of the system's dynamics, governed by ${ }_{60}$ the Liouville equation If noise is present, the changing ${ }_{61}$ density is also affected by the Brownian noise W and is ${ }_{62}$ governed by the Fokker-Planck equation, a diffusively${ }_{63}$ regularized Liouville equation. In this paper we focus ${ }_{64}$ on observations of $\rho^{\dagger}(v, t)$ defined by replacing Eq. (I.3) ${ }_{65}$ with

$$
\begin{equation*}
d z^{\dagger}=\left(\int \mathfrak{h}(v, t) \rho^{\dagger}(v, t) d v\right) d t+\sqrt{\Gamma(t)} d B . \tag{I.4}
\end{equation*}
$$

${ }_{66}$ Here $\mathfrak{h}(v, t)$ defines the observed statistics of v, B is a ${ }_{67}$ Wiener process, and $z^{\dagger} \in \mathbb{R}^{p}$. The filtering problem is ${ }_{68}$ to estimate a density $\rho(v, t)$ given all the past observa${ }_{69}$ tions $\left\{z^{\dagger}(s)\right\}_{s \in[0, t]}$. As in the observation equation (I.3), 70 the observations are finite-dimensional, noisy, and par${ }_{71}$ tial. However, since the observations are now of $\rho^{\dagger}(v, t)$ ${ }_{72}$ instead of $v^{\dagger}(t)$, we must specify the dynamics of $\rho^{\dagger}(v, t)$.
${ }_{73}$ This is given by the Fokker-Planck (FP) or Kolmogorov
74 forward equation:

$$
\begin{align*}
\frac{\partial \rho^{\dagger}}{\partial t} & =\mathcal{L}^{*}(t) \rho^{\dagger}, \tag{I.5a}\\
\mathcal{L}^{*}(t) \psi & =-\nabla \cdot(\psi f)+\frac{1}{2} \nabla \cdot(\nabla \cdot(\psi \Sigma)), \tag{I.5b}
\end{align*}
$$

${ }_{75}$ where \mathcal{L}^{*} is the adjoint of the generator of Eq. (I.1). ${ }^{2}$ For ${ }_{76}$ a deterministic system, with $\Sigma \equiv 0$, the Fokker-Planck ${ }_{77}$ equation reduces to the Liouville equation.
${ }_{78}$ An important question is how one would obtain obser-
79 vations of a system's statistics for problems of practical
${ }_{80}$ relevance. We discuss this in detail in IBa. For now we
${ }_{81}$ proceed on the assumption that z^{\dagger} solving Eq. (I.4) is ${ }_{82}$ given.
${ }_{83}$ Now, Eqs. (I.5) and (I.4) define a filtering problem for ${ }_{84} \rho(v, t)$. This is an infinite-dimensional filtering problem, ${ }_{85}$ in contrast to the finite-dimensional filtering problem for ${ }_{86} v(t)$ defined by Eqs. (I.1) and (I.3). We refer to the filter-
${ }_{87}$ ing problem defined by Eqs. (I.5) and (I.4) as the Fokker-
${ }_{88}$ Planck filtering problem. Note that both Eqs. (I.5) and
${ }_{89}$ (I.4) are linear in ρ^{\dagger}, meaning that the solution of the
${ }_{90}$ problem can be written using the infinite-dimensional
${ }_{91}$ Kalman-Bucy (KB) filter; see subsection IV A for more ${ }_{92}$ details.
${ }_{93}$ Despite the existence of an exact solution to the filter${ }_{94}$ ing problem, through the infinite-dimensional Kalman-
${ }_{95}$ Bucy (KB) filter, approximating the Gaussian condi-
${ }_{96}$ tional density ρ is in most setting computationally in-
${ }_{97}$ tractable since the mean is a probability density function

[^1]

FIG. 1: The density of an Ornstein-Uhlenbeck process evolving in time (top panel). At regular intervals, we make observations of this density and use them to inform the evolution of an ensemble (bottom panel).
and the covariance is an operator. Thus we seek inspiration from the success of ensemble Kalman filtering ${ }^{7}$: we work in state space and seek an ensemble that evolves in time a number of states whose empirical density approximates the filtered ρ. We note that the particle filter similarly substitutes the problem of evolving a probability density with that of evolving a number of particles and weights ${ }^{[8}$. Furthermore, derivation of ensemble Kalman methods via a mean-field limit provides a systematic methodology for the derivation of equal-weight approximate filters ${ }^{9}$. We call the resulting method the ensemble Fokker-Planck filter (EnFPF).

Figure 1 shows a schematic of such an ensemble ${ }_{11}$ method. In the top panel is the true time-varying proba12 bility density, in this case of an Ornstein-Uhlenbeck pro${ }_{113}$ cess. In the bottom panel is an ensemble of states. At regular intervals, we observe expectations over the den${ }_{115}$ sity in the top panel. Using these observations and our ${ }_{116}$ model of the system, we evolve the ensemble over the 7 time interval between the current and next observations.

118 B. Motivation and Literature Review

120 (KB) filtering in infinite-dimensional spaces is studied ${ }_{121}$ in the control theory literatur ${ }^{10}$. We emphasize that, 122 although we sketch out the basic mathematical founda${ }_{123}$ tions of the Fokker-Planck filtering problem in section ${ }_{124}$ IV, many interesting mathematical problems in analysis 25 and probability remain open in this area. To the best of ${ }_{126}$ our knowledge, the methodology proposed here is the first ${ }_{127}$ general method for assimilating observations of statis${ }_{128}$ tics directly into a state-space formulation of dynamical ${ }_{129}$ systems. Our methodology is built on the conceptual ap${ }_{130}$ proach introduced in the feedback particle filter ${ }^{[11122}$, and ${ }_{131}$ earlier related work ${ }^{13]}$, seeking a mean-field model which ${ }_{132}$ achieves the goal of filtering and can be approximated by ${ }_{133}$ particle methods ${ }^{14}$; in particular we seek particle approx134 i

${ }_{135}$ K

${ }_{136}$ The problem of recovering a probability density from ${ }_{137}$ a finite number of known moments is called a moment ${ }_{138}$ problem. When \mathfrak{h} in Eq. (I.4) consists of monomials in v, ${ }_{139}$ the problem of reconstructing ρ is similar to a moment ${ }_{140}$ problem, with the major difference that ρ evolves in time ${ }_{141}$ according to a dynamical system. Moment problems are ${ }_{142}$ typically regularized by a maximum entropy approach ${ }^{155}$; ${ }_{143}$ in the Fokker-Planck filtering problem, regularization is ${ }_{144}$ provided by the system's dynamics.
145 Our motivation comes from a number of applications ${ }_{146}$ around which we organize the remainder of our literature ${ }_{147}$ review, after first discussing the general question of how ${ }_{148}$ to obtain observations of statistics.

155 tems we have that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathfrak{h}\left(v^{\dagger}(t)\right) d t=\int \mathfrak{h}(v) \rho^{\dagger}(v) d v, \tag{I.6}
\end{equation*}
$$

156 where ρ^{\dagger} is the invariant density, and thus an approxi${ }_{157}$ mation of the statistics of the invariant measure can be 158 obtained from a long observed or simulated trajectory of 159 the dynamical system.
160 For nonautonomous systems, due to lack of ergodic161 ity, observations of the statistics cannot be made using 162 long time averages. If the nonstationary forcing is slow 163 enough, however, an adiabatic approximation, in which 164

165 v

 166 f
168 b

 169 169 over multiple periods. 170 For certain systems, invariant statistics may be ac${ }_{171}$ quired analytically, or by numerically solving a differ-For a stochastic differential equation with an invari3 ant measure, under conditions described in Goldys and Maslowski (2005) ${ }^{299}$, the convergence to this invariant measure is exponential with an exponent related to the spectral gap of the corresponding generator.

In this paper we show that this convergence can be accelerated using the ensemble Fokker-Planck filter, and this is the primary application we test in the numerical experiments. In particular, if some statistics of the invariant measure are known, these statistics can be assimilated into the ensemble, obtaining an ensemble whose ${ }_{23}$ empirical density is closer to the invariant measure.

To our knowledge, existing methods of accelerating convergence of model trajectories to the invariant measure have been problem-dependent, as in Bryan (1984) ${ }^{21}$. Isik (2013) ${ }^{30}$ and Isik, Takhirov, and Zheng (2017) ${ }^{31}$ studied a relaxation-based method of accelerating the 9 convergence to equilibrium of the Navier-Stokes equa210 tions, which bears some resemblance to our approach.

Non-autonomous (also referred to as non-stationary) 12 and random dynamical systems can have time-dependent 213 attractors, known as pullback attractors, to which the ${ }^{4}$ evolution converges ${ }^{322}$. A pullback attractor is the set 5 that the dynamical system approaches when evolved in ${ }_{6} 6$ time from the infinite past to a fixed time (say time ${ }_{217} 0$ without loss of generality). We refer to the probability measure associated with these attractors as timedependent invariant measures, following Chekroun, Simonnet, and Ghil $(2011)^{33}$. These objects are of considerable interest for climate ${ }^{[22 \mid 33] 34}$. The EnFPF can also 22 accelerate convergence to these invariant measures.

The problem of accelerating convergence to the invari24 ant measure is related to the problem of controlling the Fokker-Planck equation, where a density is controlled in ${ }^{6}$ order to reach to a specified target distribution ${ }^{355}$, and ${ }_{227}$ to statistical control, wherein one aims to return a per228 turbed system to its equilibrium statistic ${ }^{36}$.

Furthermore, the EnFPF could be tested for accel-

230 erating the convergence of sampling algorithms such as 285 problem. In sections II B-IID we introduce a mean-field 231 Langevin sampling and Markov chain Monte Carlo, when 286 algorithm and its particle and discrete-time approxima-

287 tions, culminating in the ensemble Fokker-Planck filter
288 (EnFPF). In section IIF we discuss implementation de-
289 tails, including the approximation of the score function 290 and a square-root ensemble formulation with reduced 291 computational effort.

In section III we carry out numerical experiments with 293 several chaotic dynamical systems, both autonomous and 294 non-autonomous, and based on the Lorenz63, Lorenz96, 295 and Kuramoto-Sivashinsky models. In particular, we 296 demonstrate that the EnFPF can accelerate the conver${ }_{297}$ gence of these systems to their invariant densities, using 298 information about the moments of these densities.

In section IV we provide a justification of our algo${ }_{300}$ rithm. We first formulate the KB filter for densities 301 (section IV A), which provides a solution to the Fokker302 Planck filtering problem in function space, and analyze ${ }_{303}$ some of its properties in Appendix A. We then propose 304 an ansatz amenable to a mean-field model (section IV B), 305 and show its equivalence to the KB filter for densities un306 der some assumptions (Theorem 1 in Appendix B). We 307 then show how this ansatz can be approximated by a 308 mean-field model (section IV C, providing further details ${ }_{309}$ in Appendix C).

Finally, in section V we give conclusions and outlook ${ }_{311}$ for future work.
tics, enabling their use in the EnFPF.

C. Contributions and Paper Outline

273 t

$$
274 \mathrm{i}
$$

275

276

277

277

279 280 S 282
${ }_{283}$ In section II A we outline the Fokker-Planck filtering ${ }_{284}$ problem and distinguish it from the standard filtering

The primary contributions of this work are: (i) to establish a framework for the filtering of stochastic dynamical systems, or dynamical systems with random initial data, given only observations of statistics; (ii) to introduce ensemble-based state-space methods for this filtering problem via a mean field perspective; and (iii) to demonstrate numerically that the proposed methods are effective at guiding dynamical systems towards observed statistics. (i) is covered in section II A and section IV; (ii) is covered in sections II B-II F; and (iii) is covered in

Statistical properties have previously been used to learn closure models for the Navier-Stokes equation using a 3DVar-like scheme ${ }^{46}$. Assimilation of time-averaged observations In 314 mulation of the standard filtering problem, and then coneoclimate, proxy records often represent time averages instead of instantaneous measurements. Methods have been developed for making use of time-averaged observations for state estimation in the paleoclimate data

312 II. PROBLEM AND ALGORITHM

313 In subsection II A we introduce the probabilistic for315 trast it with the Fokker-Planck filtering problem, where ${ }_{316}$ data is in the form of statistics. Subsection II B demon${ }_{317}$ strates an approach to this problem using a mean-field 318 model. In subsection II C we introduce a particle ap${ }_{319}$ proximation of the mean-field algorithm, which forms the 320 basis of the proposed EnFPF.

${ }_{321}$ A. Problem Statement

322 1. The Standard Filtering Problem

In the standard filtering problem, we are given state 324 observations $z^{\dagger}(t)$ of $v^{\dagger}(t)$, defined by Eq. (I.3), and the ${ }_{325}$ dynamics of $v^{\dagger}(t)$ are given by Eq. (I.1). The problem is 326 then to find an equation for the conditional distribution ${ }^{327}$ of $v \mid Z^{\dagger}(t)$, where $Z^{\dagger}(t)=\left\{z^{\dagger}(s)\right\}_{s \in[0, t]}$ are the observa${ }_{328}$ tions accumulated up to time t under a fixed realization 329 of B. The solution to the filtering problem is given by 330 the Kushner-Stratonovich equation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\mathcal{L}^{*}(t) \rho+\left\langle h(v, t)-\mathbb{E} h, \frac{d z^{\dagger}}{d t}-\mathbb{E} h\right\rangle_{\Gamma(t)} \rho \tag{II.1}
\end{equation*}
$$

${ }_{331}$ where $\langle\cdot, \cdot\rangle_{A} \equiv\left\langle A^{-1 / 2} \cdot, A^{-1 / 2} \cdot\right\rangle$ is the weighted Eu332 clidean inner product. Treatments of the standard fil-
${ }_{333}$ tering problem can be found in, e.g., Jazwinski $(1970)^{11}$ 33 and Bain and Crisan (2009) 4 .

2. The Fokker-Planck Filtering Problem

In this paper we consider instead noisy observations of 3 $\rho^{\dagger}(v, t)$: the observation process $z^{\dagger}(\cdot)$ is given by

$$
\begin{equation*}
d z^{\dagger}=H(t)\left(\rho^{\dagger}(\cdot, t)\right) d t+\sqrt{\Gamma(t)} d B \tag{II.2}
\end{equation*}
$$

Here $H(t)$ is a linear operator mapping the space of probability densities into a finite-dimensional Euclidean space, and the dynamics of ρ^{\dagger} are given by the FokkerPlanck equation (I.5). That is, we make observations of statistics of the dynamical system. We refer to the problem of finding the conditional density of $v \mid Z^{\dagger}(t)$, where $Z^{\dagger}(t)=\left\{z^{\dagger}(s)\right\}_{s \in[0, t]}$ is given by Eq. (II.2), as the
Fokker-Planck filtering problem. In the following subsec6 tion, we propose an approximation to the solution of this ${ }_{347}$ problem in state space.

B. Mean-Field Equation

49 Although in section IV A we treat the Fokker-Planck ${ }_{350}$ filtering problem for more general H, in the rest of what 351 follows we focus on the setting where

$$
\begin{equation*}
H(t) \rho=\mathbb{E}[\mathfrak{h}(v, t)]=\int \mathfrak{h}(v, t) \rho(v, t) d v \tag{II.3}
\end{equation*}
$$

2 for some \mathfrak{h}. With this assumption on H, Eq. (II.2) re${ }_{3}$ duces to Eq. (I.4). In particular, if \mathfrak{h} is a monomial in ${ }_{4} v$, e.g., $\mathfrak{h}(v)=v$ or $\mathfrak{h}(v)=\operatorname{vec}(v \otimes v)$, then $H \rho$ will cor${ }_{5}$ respond to moments of ρ. We will henceforth use \mathbb{E} to 6 denote expectation under ρ, unless otherwise indicated.

Remark 1. Note that if $\rho^{\dagger}(v, 0)=\delta\left(v-v_{0}^{\dagger}\right)$ for some v_{0}^{\dagger}, and $\Sigma=0$, then the Fokker-Planck filtering problem is equivalent to the standard filtering problem with $v^{\dagger}(0)=$ so v_{0}^{\dagger}, observation operator \mathfrak{h}, and $\Sigma=0$.
361 Our proposed methodology is to introduce a mean-field 362 model for variable v, depending on its own probability density function $\rho(v, t)$. The mean-field model is chosen 364 to drive the system towards the observed statistical infor365 mation. Algorithms are then based on particle approxi366 mation of this model, leading to ensemble Kalman-type ${ }_{367}$ methods. The mean-field model considered is

$$
\begin{align*}
d v & =f(v, t) d t+\sqrt{\Sigma(t)} d W+K(t)\left(d z^{\dagger}-d \hat{z}\right) \tag{II.4a}\\
d \hat{z} & =(\mathbb{E} \mathfrak{h})(t) d t+\sqrt{\Gamma(t)} d B \tag{II.4b}\\
K(t) & =C^{v \mathfrak{h}}(t) \Gamma(t)^{-1} \tag{II.4c}\\
C^{v \mathfrak{h}}(t) & =\mathbb{E}\left[(v(t)-\mathbb{E} v(t))(\mathfrak{h}(v, t)-(\mathbb{E} \mathfrak{h})(t))^{T}\right] \tag{II.4d}
\end{align*}
$$

${ }_{368}$ The terms in the mean-field model can be understood in369 t 9 tuitively as follows. The first two terms on the right-hand

370 side of Eq. (II.4a) are simply the dynamics of the sys${ }_{371}$ tem (I.1). The third term resembles the standard nudg372 ing observer term from control theory, with an ensemble ${ }_{373}$ Kalman-inspired gain, and the use of noisy simulated 374 data, as in the stochastic ensemble Kalman filter.

In some problems we find that it is beneficial to include ${ }_{376}$ an additional score-based term in the model, replacing ${ }_{377}$ Eq. (II.4a) by

$$
\begin{align*}
d v=f(v, t) d t+\sqrt{\Sigma(t)} & d W+K(t)\left(d z^{\dagger}-d \hat{z}\right) \\
& +K(t) \Gamma(t) K(t)^{T} \nabla \log \rho(v, t) d t . \tag{II.5}
\end{align*}
$$

${ }_{378}$ The additional term induces negative diffusion in the ${ }_{379}$ equation for the density of v, exactly balancing the diffu${ }_{380}$ sion introduced through z^{\dagger} and \hat{z}. We justify equations ${ }_{381}$ (II.4) and (II.5) in detail in section IV by building on the 382 Fokker-Planck picture in density space.

${ }_{383}$ C. Particle Approximation of Mean-Field Equation

In order to tractably implement the mean-field equa385 tions (II.4), we use a particle (or ensemble) approxima${ }_{386}$ tion. That is, given J particles, we consider the following ${ }_{387}$ interacting particle system for $\left\{v^{(j)}\right\}_{j=1}^{J}$:

$$
\begin{align*}
d v^{(j)} & =f\left(v^{(j)}, t\right) d t+\sqrt{\Sigma(t)} d W^{(j)}+K(t)\left(d z^{\dagger}-d \hat{z}^{(j)}\right), \tag{II.6a}\\
d \hat{z}^{(j)} & =\left(\mathbb{E}^{J} \mathfrak{h}\right)(t) d t+\sqrt{\Gamma(t)} d B^{(j)}, \tag{II.6b}\\
K(t) & =\left(C^{v \mathfrak{h}}(t)\right)^{J} \Gamma(t)^{-1} . \tag{II.6c}
\end{align*}
$$

388 Here \mathbb{E}^{J} denotes expectation with respect to the empirical measure formed by equally weighting Dirac measures at 390 the particles $\left\{v^{(j)}\right\}_{j=1}^{\mathrm{J}} ;\left(C^{v \mathfrak{h}}\right)^{\mathrm{J}}$ denotes the sample cross391 covariance computed using this empirical measure:

$$
C^{v \mathfrak{h}}(t)=\mathbb{E}^{J}\left[(v(t)-\mathbb{E} v(t))(\mathfrak{h}(v, t)-(\mathbb{E} \mathfrak{h})(t))^{T}\right] .
$$

Note that, unlike the ensemble Kalman filter, 394 the predicted observation for each ensemble member, ${ }^{395}$ Eq. (II.6b), involves the expectation of \mathfrak{h} over the en396 semble, instead of the observation operator applied to 397 that ensemble member.

D. Discrete-Time Approximation of Mean-Field Equation

399 A discrete-time analogue of Eqs. (II.6) is given by

$$
\begin{align*}
\hat{v}_{i+1}^{(j)} & =\Psi_{i}\left(v_{i}^{(j)}\right)+\xi_{i}^{(j)} \tag{II.7a}\\
v_{i+1}^{(j)} & =\hat{v}_{i+1}^{(j)}+K_{i+1}\left(y_{i+1}^{\dagger}-\hat{y}_{i+1}^{(j)}\right) \tag{II.7b}\\
\hat{y}_{i+1}^{(j)} & =\mathbb{E}^{J}\left[\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)\right]+\eta_{i+1}^{(j)} \tag{II.7c}\\
K_{i+1} & =\left(\hat{C}_{i+1}^{v \mathfrak{h}}\right)^{J}\left(\left(\hat{C}_{i+1}^{\mathfrak{h h}}\right)^{J}+\left(\Gamma_{d}\right)_{i+1}\right)^{-1} \tag{II.7d}
\end{align*}
$$

${ }_{400}$ where $\xi_{i}^{(j)} \sim \mathcal{N}\left(0,\left(\Sigma_{d}\right)_{i}\right), \eta_{i}^{(j)} \sim \mathcal{N}\left(0,\left(\Gamma_{d}\right)_{i}\right), \mathfrak{h}_{i}(v)={ }_{434} \mathbf{F}$. Implementation ${ }_{401} \mathfrak{h}(v, t)$, and

$$
\begin{gather*}
\left(\hat{C}_{i+1}^{v \mathfrak{h}}\right)^{J}=\mathbb{E}^{J}\left[\left(\hat{v}_{i+1}-\mathbb{E}^{J} \hat{v}_{i+1}\right)\right. \tag{II.8}\\
\left.\quad \otimes\left(\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)-\mathbb{E}^{J}\left[\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)\right]\right)\right] \\
\left(\hat{C}_{i+1}^{\mathfrak{h h}}\right)^{J}=\mathbb{E}^{J}\left[\left(\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)-\mathbb{E}^{J}\left[\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)\right]\right)\right. \tag{II.9}\\
\left.\quad \otimes\left(\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)-\mathbb{E}^{J}\left[\mathfrak{h}_{i+1}\left(\hat{v}_{i+1}\right)\right]\right)\right]
\end{gather*}
$$

402 Furthermore, we introduce the following rescalings 403 adopted in Law, Stuart, and Zygalakis $(2015)^{3}$:

$$
\begin{align*}
& f(\cdot, t)=\left(\Psi_{i}(\cdot)-I \cdot\right) / \tau, \quad z_{i+1}^{\dagger}-z_{i}^{\dagger}=\tau y_{i+1}^{\dagger} \tag{II.10}\\
& \Sigma(i \tau)=\left(\Sigma_{d}\right)_{i} / \tau \quad \Gamma(i \tau)=\tau\left(\Gamma_{d}\right)_{i}, \quad i=t / \tau
\end{align*}
$$

404 Then Eqs. (II.7) can be seen to be a discretization of ${ }_{405}$ Eqs. (II.6) with time-step τ. More justification is given 406 for these rescalings in Salgado, Middleton, and Goodwin ${ }_{407}(1988)^{48}$ and Simon $(2006)^{49}$. Note that both $K_{i+1}=$ ${ }_{408}\left(\hat{C}_{i+1}^{v \mathfrak{h}}\right)^{\mathrm{J}}\left(\Gamma_{d}\right)_{i+1}^{-1}$ and Eq. (II.7d) are consistent with the 409 continuous-time gain as $\tau \rightarrow 0$. We use the latter, similar ${ }_{410}$ to the discrete-time Kalman filter.

E. Score Function Term

We now discuss further computational issues that arise ${ }_{413}$ when Eq. (II.4a) is replaced by (II.5). This term involves 414 the score function, defined as $\nabla \log \rho$, but with an ad${ }_{415}$ ditional preconditioning. If this term is added to the ${ }_{416}$ discrete-time particle version of the filter, Eq. (II.7b) be${ }_{417}$ comes

$$
\begin{aligned}
v_{i+1}^{(j)}=\hat{v}_{i+1}^{(j)}+ & K_{i+1}\left(y_{i+1}^{\dagger}-\hat{y}_{i+1}^{(j)}\right) \\
& +K_{i+1}\left(\Gamma_{d}\right)_{i+1} K_{i+1}^{T}\left(\nabla \log \rho_{i+1}\right)^{J}\left(\hat{v}_{i+1}^{(j)}\right)
\end{aligned}
$$

418 where $\left(\nabla \log \rho_{i+1}\right)^{\mathrm{J}}$ denotes particle-based approxima419 tion of the score function using the $\left\{\hat{v}_{i+1}^{(j)}\right\}_{j=1}^{J}$. If we ${ }_{420}$ make the assumption that the density is Gaussian with ${ }_{421}$ mean $\mathbb{E} v$ and covariance $C^{v v}$, the score function takes on ${ }_{422}$ a simple form,

$$
\begin{equation*}
\nabla \log \rho=-\left(C^{v v}\right)^{-1}(v-\mathbb{E} v) \tag{II.12}
\end{equation*}
$$

${ }_{423}$ A natural particle approximation $(\nabla \log \rho)^{\mathrm{J}}$ follows by re424 placing the mean and covariance with the corresponding ${ }_{425}$ quantities computed under the empirical measure of the 426 set of particles.
${ }_{427}$ More general kernel-based nonparametric estimators ${ }_{428}$ for the score function have been developed, such as those ${ }_{429}$ defined in Zhou, Shi, and Zhu $(2020)^{50}$ and implemented ${ }_{430}$ in the kscore package. In the numerical experiments ${ }_{431}$ reported in this paper, we either omit the score term 432 completely, or use it and employ only the Gaussian ap${ }_{433}$ proximation.

435 1. Ensemble Square-Root Formulation

436In order to make the method scale well to high dimen${ }^{437}$ sions, an ensemble square-root formulation ${ }^{51}$ of Eq. (II.7) ${ }_{438}$ can be used, although we do not use it in the numerical ${ }_{439}$ experiments reported here. The advantage of this for440 mulation is that the most expensive linear algebra op${ }_{441}$ erations are rewritten in the ensemble space, resulting 442 in favorable computational complexity when J is much ${ }_{443}$ smaller than the state-space dimension d or observation444 space dimension $p 3^{3}$

To implement this method we write $\left(C^{v v}\right)^{\lrcorner}=V V^{T}$, ${ }_{446}\left(C^{v \mathfrak{h}}\right)^{J}=V Y^{T}$, and $\left(C^{\mathfrak{h h}}\right)^{J}=Y Y^{T}$, where the j th col${ }_{4} 47 \mathrm{umn}$ of V and the j th column of Y are given by

$$
\begin{align*}
V^{(j)} & =\left(v^{(j)}-\mathbb{E}^{J} v\right) / \sqrt{J-1} \\
Y^{(j)} & =\left(\mathfrak{h}\left(v^{(j)}\right)-\mathbb{E}^{J} \mathfrak{h}\right) / \sqrt{J-1} \tag{II.13}
\end{align*}
$$

448 respectively. Then, K can be written as

$$
\begin{equation*}
K=V Y^{T} W \tag{II.14}
\end{equation*}
$$

449 where $W=\left(\Gamma_{d}^{-1}-\Gamma_{d}^{-1} Y\left(I+Y^{T} \Gamma_{d}^{-1} Y\right)^{-1} Y^{T} \Gamma_{d}^{-1}\right)$ by the ${ }_{450}$ Woodbury identity.

We assume that Γ_{d}^{-1} is provided and can be applied cheaply, for example if it is diagonal. This is a standard assumption ${ }^{51}$. With this expression, K can be computed in $\mathcal{O}\left(J^{3}+J^{2} p+J p^{2}+d J p\right)$

Note that the Gaussian score function approximation 456 Eq. (II.12) cannot be applied in cases when $J<d$, since ${ }_{457}\left(C^{v v}\right)^{J}$ will be singular. We do not consider the score ${ }_{458}$ function term in the complexity analysis.

The complexity is thus a quadratic polynomial in d 0 and p, whereas various ensemble square-root filters can be implemented to be linear in p and d. The latter rely on the fact that the in the standard Kalman filter the up3 dated covariance can be written as $(I-K H) C^{v v}$, where ${ }_{464} H$ is the observation operator. The EnFPF cannot be 465 written in this way. Whether the EnFPF can be refor466 mulated to be linear in p and d by another approach is a topic for future research.

468 2. Code

The open-source Julia code for the EnFPF is available at https://github.com/eviatarbach/EnFPF In 471 the numerical experiments that follow, we compute the Wasserstein distance (explained in section III) using 473 the Python Optimal Transport library ${ }^{52}$. We used the 474 parasweep library to facilitate parallel experiments ${ }^{53}$.

[^2]
3. Numerical Methods for the Test Models

476
477
with the Lorenz63, Lorenz96, and Kuramoto-Sivashinsky ${ }_{478}$ models. We integrate the Lorenz63 and Lorenz96 mod479 els using the fourth-order Runge-Kutta method, with a 480 time step of 0.05 for both. We integrate the Kuramoto481 Sivashinsky equation in Fourier space using the ex${ }_{482}$ ponential time differencing fourth-order Runge-Kutta 483 method ${ }^{54}$ with 64 Fourier modes and a time step of 0.25 .
${ }_{529}$ density using an ensemble integrated for a sufficiently
530 long time. We employ the W_{1} Wasserstein metric which 531 allows us to compute distances between empirical distri532 butions. The code for computing this distance is readily ${ }_{533}$ available (see II F 2).

534 A. Lorenz63 Model

For the experiments in this subsection, we use the ${ }_{536}$ Lorenz (1963) $\sqrt{56}$ model

$$
\begin{align*}
& \frac{d x}{d t}=\sigma(y-x) \\
& \frac{d y}{d t}=x(r-z)-y \tag{III.1}\\
& \frac{d z}{d t}=x y-\beta z
\end{align*}
$$

${ }_{537}$ with the standard parameter values $\sigma=10, r=28$, and ${ }_{538} \beta=8 / 3$.

539 1. Assimilating Time-Varying Means and Second 540 Moments

We first verify the ability of the EnFPF to force an 542 ensemble to adopt time-varying statistics. We do this 543 by applying the EnFPF to a 10 -member ensemble, with 544 noisy statistical observations of the means and uncen545 tered second moments of the three variables coming from 546 a 100-member ensemble being evolved concurrently. The 547 difference between the statistics computed over the $10-$ 548 and 100-member ensembles arise due to both sampling 549 errors and different initial conditions. The $100-$ member 550 ensemble (despite having its own sampling error) better 551 approximates the true statistics of the system, and we 552 view these 100 -member ensemble statistics as the truth, 553 based on which we may compute errors in the statistics of 554 10-member ensembles. We assimilate observations every ${ }_{555} 0.2$ time units, with an observation error covariance set 556 to 20% of the time variability of each statistic computed ${ }_{557}$ over the 100 -member ensemble.

Figure 2 shows the resulting error in the means and 559 second moments of the 10 -member ensemble, compared 560 with the errors arising from an unfiltered run of the 10561 member ensemble; in both cases the errors are computed 562 by comparison with the 100 -member ensemble. After 563 several cycles, the filter appears to reach an asymptotic 564 error on the order of the observation error, and this error 565 is significantly lower than that arising in the unfiltered 566 case.

Table I shows the impact of the observation error co568 variance magnitude on the filtering performance. The 569 set-up is otherwise the same as that described above. As 570 expected, the error increases as Γ is increased, although ${ }_{571}$ still outperforming the unfiltered ensemble.

FIG. 2: The impact of filtering on the root-mean-square error (RMSE) in the mean and second moment in the Lorenz63 model.

FIG. 3: The estimated Wasserstein distance to the invariant density in Lorenz63, in unfiltered and filtered cases. For the filtered case, the first and second moments are assimilated. Each curve is averaged over 10 different initializations.

572 2. Accelerating Convergence to the Invariant Density

3 We now test the ability of the EnFPF to accelerate 4 convergence to the invariant density. We assimilate ob55 servations of fixed statistics of the invariant density, the 6 means and second moments of the three variables, into a 100 -member ensemble. We use the same assimilation fre78 quency and observation error as in subsubsection III A 1. apply the EnFPF for the first 30 cycles (indicated by the pink rectangle), and then let the ensemble evolve under ${ }_{583}$ the regular Lorenz63 dynamics. We see that the EnFPF

Means Observation error	Filtered RMSE
$10 \%(0.088)$	0.11
$35 \%(0.31)$	0.40
$60 \%(0.53)$	0.69
$85 \%(0.75)$	0.97
Second moments	
Observation error	Filtered RMSE
$10 \% ~(2.8)$	20
$35 \%(9.9)$	23
$60 \%(17)$	29
$85 \%(24)$	35

TABLE I: The impact of the observation error covariance on filtering performance. In the first column are the percentages of the standard deviation of the time variability of each statistic taken to be the observation error, and in parentheses the square root of the total variance of the observation error in the statistic. With no filtering, the RMSE is 2.5 in the unfiltered means and 73 in the second moments. The RMSE is averaged over 1400 cycles after 100 transient cycles.

584 leads to a more rapid convergence: by the end of the fil585 tering period, the distance is close to the asymptotic one, 586 while it takes at least 100 cycles for the unfiltered case ${ }_{587}$ to reach the same. Figure 4 visualizes in state space this ${ }_{588}$ rapid convergence toward the invariant density via the 589 EnFPF.

590 3. Impact of Higher-Order Moments

Figure 5 shows the convergence to the invariant mea592 sure of Lorenz63 with different assimilated moments of ${ }_{593} x$ and y, namely the first, first and second, and first, 594 second, and third marginal moments. Assimilating the 595 first-order moments accelerates the convergence to the in596 variant measure compared to the unfiltered case. Adding ${ }_{597}$ the second and third order moments appears to result 598 in the most rapid initial rate of convergence, and after 599 about 50 cycles assimilating the first two and the first 600 three moments leads to a similar asymptotic distance to 601 the invariant measure.

B. Lorenz96 Model

We now test the convergence to the invariant density 604 of the Lorenz $(1996)^{57}$ model

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=-x_{i-1}\left(x_{i-2}+x_{i+1}\right)-x_{i}+F \tag{III.2}
\end{equation*}
$$

FIG. 4: Top panel: an ensemble evolving in time from left to right, superimposed on the invariant density of Lorenz63 in the $x-z$ plane. Orange corresponds to higher probability density and blue to lower. Bottom panel: the same, but with the EnFPF applied.

FIG. 5: The estimated Wasserstein distance to the invariant density in Lorenz63, in unfiltered and filtered cases when different moments are assimilated. The curves are averaged over 25 initial conditions, and the shaded areas correspond to \pm the standard error over the initializations. Here, for the filtered cases, the EnFPF is applied at every cycle.

FIG. 6: The estimated Wasserstein distance to the invariant density in Lorenz96, in unfiltered and filtered cases. For the filtered case, the first and second moments are assimilated. Here, we show the mean of the Wasserstein distances corresponding to the marginal density for each variable.

${ }_{617}$ C. Kuramoto-Sivashinsky Model

${ }_{605}$ where the indices i range from 1 to D and are cyclical. ${ }^{618}$ We now carry out experiments with the Kuramoto${ }_{606}$ We use $F=8$ and $D=40$ variables. This is a model of 619 Sivashinsky model, a chaotic partial differential equation 607 an atmospheric latitude circle that is commonly used in 620 in one spatial dimension:
${ }_{608}$ data assimilation experiments.
We assimilate the means and second moments of the

$$
\begin{equation*}
u_{t}+u_{x x x x}+u_{x x}+u u_{x}=0, \quad x \in[0, L] . \tag{III.3}
\end{equation*}
$$

${ }_{610} 40$ variables on the invariant density, with an observation 621 We use $L=22$ and periodic boundary conditions, dis${ }_{611}$ error covariance of 20% of the temporal variability of the ${ }_{622}$ cretized using 64 Fourier modes (see IIF 3 for details on ${ }_{612}$ statistics computed over a 100 -member ensemble. We 623 the numerical method).
${ }_{613}$ assimilate every 0.05 time units into a 100 -member en- ${ }^{624}$ We assimilate the means and second moments of the ${ }_{614}$ semble for 40 cycles. Figure 6 shows that the convergence 625 invariant density of the 64 variables in physical space, ${ }_{615}$ towards the invariant density is thereby significantly ac616 celerated.
${ }_{626}$ every 2.0 time units. We assimilate for 30 cycles using ${ }_{627}$ a 100-member ensemble, and again use an observational

FIG. 7: The estimated Wasserstein distance to the invariant density in the Kuramoto-Sivashinsky equation, in unfiltered and filtered cases. For the filtered case, the first and second moments are assimilated. Here, we show the mean of the Wasserstein distances corresponding to the marginal density for each variable.

28 error covariance of 20% of the temporal variability. Figure 7 shows the results with and without the score term included. In both cases, there is an acceleration compared to the unfiltered case; inclusion of the score term considerably accelerates convergence.

D. Time-Dependent Invariant Measures

We now use the Lorenz63 model (Eq. (III.1)), but with 55 the r parameter subject to quasiperiodic forcing, as in 6 Daron and Stainforth $(2015)^{22!}$.

$$
\begin{equation*}
r(t)=28+\sin (2 \pi t)+\sin (\sqrt{3} t)+\sin (\sqrt{17} t) . \tag{III.4}
\end{equation*}
$$

Since this system is non-autonomous, it possesses for 8 each time t a pullback attractor with a corresponding time-dependent invariant measure, as discussed in sec$=0$ tion IB. The measure at time t can be approximated by a_{1} the empirical density at time t of an ensemble initialized 22 sufficiently far back in time, at $t-T$ for some large T. ${ }_{3}$ Here, we evolve a 100 -member ensemble using $T=500$ time units to approximate the invariant measures at time . Then, we evolve the ensemble for the additional time 66 period of t to $t+20$ to obtain approximations to the ${ }_{9}$ invariant measures in this period.

We evolve two separate 100 -member ensembles for the as same time period t to $t+20$, but with $T=0$ (no spin-up). \therefore We apply the EnFPF to one of these ensembles and not 1 the other. For the EnFPF, we assimilate every 0.05 time 2 units with an observation error covariance of 20% of the temporal variability. We then measure the distance between the empirical densities of these two ensembles and 55 the one approximating the invariant measure described 56 in the previous paragraph.

Figure 8 shows that the convergence to the time58 dependent invariant measures is indeed accelerated by 99 the EnFPF, reaching a comparable asymptotic distance σ_{0} to the invariant measure in less than half the time.

FIG. 8: The estimated Wasserstein distance to the invariant density in the non-autonomous Lorenz63 model, in unfiltered and filtered cases. For the filtered case, $\mathbb{E}\left[x^{i}\right], \mathbb{E}\left[y^{i}\right]$, and $\mathbb{E}\left[z^{i}\right]$ for $i=1,2,3$ are assimilated.

${ }_{661}$ IV. JUSTIFICATION OF ALGORITHM

A. Kalman-Bucy (KB) Filter for Densities

Since both the Fokker-Planck equation (I.5) and the ${ }_{664}$ observation equation (II.2) are linear, and since all noise ${ }_{665}$ is additive Gaussian, the conditional probability measure ${ }_{666}$ over densities, $\rho \mid Z^{\dagger}(t)$, is a Gaussian. This filtering prob${ }_{667}$ lem can be solved using a Kalman-Bucy filter in Hilbert ${ }_{668}$ space, posing significant challenges because it involves ${ }_{699}$ finding a sequence of probability measures on an infinite${ }_{670}$ dimensional space of functions (densities).

We start by defining the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ 672 with inner product

$$
\begin{equation*}
\langle a, b\rangle_{\mathcal{H}} \equiv \int a b d v \tag{IV.1}
\end{equation*}
$$

${ }_{673}$ We consider density functions $\rho \in \mathcal{H}$, and we require that $\rho(v, t) \rightarrow 0$ as $v \rightarrow \infty$. Note that we will sometimes use this inner product in situations where one of the arguments is only locally square integrable; in particular we will need to use the constant function $\mathbb{1}(v)=1$. To distinguish them from the Hilbert space inner product, we denote the standard Euclidean inner product in ${ }_{680} \mathbb{R}^{p}$ as $\langle\cdot, \cdot\rangle_{\mathbb{R}^{p}}$ and the weighted Euclidean inner product, defined for any strictly positive-definite and symmetric $A \in \mathbb{R}^{p \times p}$, as $\langle\cdot, \cdot\rangle_{A} \equiv\left\langle A^{-1 / 2} \cdot, A^{-1 / 2} \cdot\right\rangle_{\mathbb{R}^{p}}$.
Recall definition Eq. ((I.5)b) of the adjoint of the gen${ }_{68}$ erator \mathcal{L}. We are given the dynamics and observation ${ }_{685}$ equations (I.5) and (II.2):

$$
\begin{align*}
d \rho^{\dagger}(v, t) & =\mathcal{L}^{*}(t) \rho^{\dagger}(v, t) d t \tag{IV.2}\\
d z^{\dagger}(t) & =H(t) \rho^{\dagger}(v, t) d t+\sqrt{\Gamma(t)} d B \tag{IV.3}
\end{align*}
$$

${ }_{686}$ Then, given all observations up to time $t, Z^{\dagger}(t)=$ ${ }_{687}\left\{z^{\dagger}(s)\right\}_{s \in[0, t]}$, the filtering distribution is given by

$$
\begin{equation*}
\rho(\cdot, t) \mid Z^{\dagger}(t) \sim \mu(t) \equiv \mathcal{N}(m(t), C(t)), \tag{IV.4}
\end{equation*}
$$

${ }_{688}$ where \mathcal{N} is a Gaussian measure on \mathcal{H} with mean $m(t)$ and ${ }_{689}$ covariance operator $C(t)$. For notational simplicity, we
have dropped the explicit dependence of $m(t), C(t)$, and $\rho(t)$ on v. Here $C \in L(\mathcal{H}, \mathcal{H})$ is necessarily self-adjoin 2 and trace class ${ }^{588}$; that is, $\operatorname{tr}(C)<\infty$. In what follows the ${ }_{3}$ expectation \mathbb{E}_{μ} is defined with respect to the measure μ 4 on the space of L^{2} densities ρ.
${ }_{695}$ Using Theorem 7.10 in Falb (1967) $\sqrt{59}$, the KB filter for

$$
\begin{align*}
& d m(t)=\mathcal{L}^{*}(t) m(t) d t \\
& +C(t) H^{*}(t) \Gamma(t)^{-1}\left(d z^{\dagger}(t)-H(t) m\right. \\
& d C(t)=\mathcal{L}^{*}(t) C(t) d t+C(t) \mathcal{L}(t) d t \\
& -C(t) H^{*}(t) \Gamma(t)^{-1} H(t) C(t) d t, \\
& m(0)=m_{0}, C(0)=C_{0}, \tag{IV.5c}
\end{align*}
$$

697 where

$$
\begin{equation*}
C(t)=\operatorname{cov}(\rho(t)-m(t), \rho(t)-m(t)) \tag{IV.6}
\end{equation*}
$$

${ }_{69}$ and

$$
\begin{equation*}
\operatorname{cov}(x, y) \equiv \mathbb{E}_{\mu}[x \otimes y]-\mathbb{E}_{\mu}[x] \otimes \mathbb{E}_{\mu}[y] . \tag{IV.7}
\end{equation*}
$$

The outer-product $x_{1} \otimes y_{1}$ is defined by the identity

$$
\begin{equation*}
\left(x_{1} \otimes y_{1}\right) x=x_{1}\left\langle y_{1}, x\right\rangle_{\mathcal{H}} \tag{IV.8}
\end{equation*}
$$

holding for all $x \in \mathcal{H}$. Note that Falb $(1967)^{599}$ requires boundedness of \mathcal{L}^{*}, but the results have been extended to 2 unbounded operators ${ }^{60}$. However, we still require boundπ_{3} edness of H. For the rest of the paper, we will assume 04 that H takes the form in Eq. (II.3).
${ }_{5}$ The adjoint operator H^{*} is then given by

$$
\begin{equation*}
H^{*}(t) u=\langle\mathfrak{h}(v, t), u\rangle_{\mathbb{R}^{p}} \tag{IV.9}
\end{equation*}
$$

for $u \in \mathbb{R}^{p}$. Note that, formally, $H^{*}(t) u$ is to be viewed 0_{7} as a function of v, in the space \mathcal{H}.
In general the solution of Eq. (IV.5a), $m(t)$, will not be normalized. However, in Appendix A we show that normalization is preserved under certain conditions on the initializations m_{0} and C_{0} from Eq. (IV.5c). However, $m(t)$ is not guaranteed to be non-negative for all v and t, and thus cannot be a proper probability density. Nonetheless, we can still consider integrals against it.

B. Ansatz and Relation to KB Filter for Densities

Solving the KB filter equations directly is intractable. ${ }_{7}$ We therefore seek an equation which is amenable to a mean-field model, which in turn can be approximated by 9 a particle system. We propose the following ansatz for the density of $v \mid Z^{\dagger}(t)$:

$$
\frac{\partial \rho}{\partial t}=\mathcal{L}^{*}(t) \rho+\left\langle\mathfrak{h}(v, t)-H(t) \rho, \frac{d z^{\dagger}}{d t}-H(t) \rho\right\rangle_{\Gamma(t)} \rho
$$

(IV.10) ${ }_{721}$ Note the similarity to the Kushner-Stratonovich (KS) 768 the assimilation frequency, the score term, and the incor${ }_{722}$ equation (II.1). Although the solutions of this equation 7
${ }_{723}$ do not match the KB filter for densities in general, we ${ }_{724}$ show in Theorem 1 that they coincide in observation ${ }_{725}$ space for linear f and \mathfrak{h}, under additional assumptions ${ }_{726}$ detailed there. The proof sketch is provided in Appendix ${ }_{727} \mathrm{~B}$.

${ }^{728}$ C. Mean-Field Approximation

We would now like to find a mean-field model which ${ }^{730}$ has, as its FP equation, Eq. (IV.10). We postulate the following form:

$$
\begin{aligned}
d v=f & (v, t) d t+\sqrt{\Sigma(t)} d W+a(v, \rho, t) d t \quad \text { (IV. } 11 \\
& +K(v, \rho, t)\left(d z^{\dagger}-H(t) \rho(v, t) d t-\sqrt{\Gamma(t)} d B\right) .
\end{aligned}
$$

${ }_{732}$ Specifically, we aim to choose the pair of functions (a, K) ${ }_{733}$ So that the Fokker-Planck equation for v governed by ${ }_{734}$ this mean-field model coincides with Eq. (IV.10). In Ap${ }_{735}$ pendix C we detail the choices which achieve this and, ${ }_{736}$ after making a further approximation of K, we obtain ${ }^{737}$ equations (II.4) with (II.4a) replaced by (II.5). How${ }_{738}$ ever, as explained there, in many cases use of Eq. (II.4a), ${ }_{739}$ which corresponds to setting $a \equiv 0$ and using a simple ap${ }_{740}$ proximation of K, leads to algorithms which empirically ${ }^{741}$ perform well.

${ }_{742}$ V. CONCLUSIONS

${ }_{743}$ In this paper we introduce the Fokker-Planck filtering 744 problem, which consists of estimating the evolving proba745 bility density of a (possibly stochastic) dynamical system 746 given noisy observations of expectations evaluated with ${ }_{747}$ respect to it. We provide a solution for this problem using ${ }_{748}$ the KB filter in Hilbert space, and introduce an ensemble 749 algorithm, the ensemble Fokker-Planck filter (EnFPF), ${ }_{750}$ that approximates it under conditions on the dynamics ${ }_{751}$ and observables. We also show, through numerical exper${ }_{752}$ iments, that this method can be used to accelerate con${ }_{753}$ vergence to the invariant measure of dynamical systems, ${ }^{754}$ and that this acceleration phenomenon applies beyond ${ }_{755}$ the conditions on the dynamics and observables required ${ }_{756}$ to provably link the KB filter and the mean-field model ${ }_{757}$ underlying our proposed ensemble method.
${ }_{758}$ Future work will test this method on higher${ }_{759}$ dimensional models, such as turbulent channel flows and 760 ocean models. Other future directions, as described in ${ }_{761}$ section IB, include: (i) the testing of this method as an ${ }^{762}$ approach to counteract model error; (ii) use in parameter ${ }_{763}$ estimation; and (iii) use in the acceleration of sampling 764 methods such as Langevin dynamics and Markov chain ${ }_{765}$ Monte Carlo when some statistics of the target density 766 are known. Furthermore, many of the numerical results ${ }^{67}$ require deeper understanding; these include the impact of 769 poration of higher-order moments, or other observables,

770 on the filter performance. Finally, on the theoretical side, 771 there is a considerable need for deeper analysis.

772 ACKNOWLEDGMENTS

773

EB is supported by the the Foster and Coco Stanback Postdoctoral Fellowship. AS is supported by the Office of Naval Research (ONR) through grant N00014-17-1-2079. TC and AS acknowledge recent support through ONR grant N00014-23-1-2654. EB and AS are also grateful for support from the Department of Defense Vannevar Bush Faculty Fellowship held by AS. We thank Tapio Schneider, Dimitris Giannakis, and two anonymous referees for helpful comments.
${ }^{1}$ A. H. Jazwinski, Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering No. 64 (Academic Press, Inc., New York, 1970).
${ }^{2}$ E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, New York, 2002).
${ }^{3}$ K. Law, A. Stuart, and K. Zygalakis, Data Assimilation:
A Mathematical Introduction Texts in Applied Mathematics No. 62 (Springer International Publishing, 2015).
${ }^{4}$ S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation (Cambridge University Press, Cambridge, 2015).
${ }^{5}$ M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, Vol. 158 (Academic Press, 1981).
${ }^{6}$ O. Gonzalez and A. M. Stuart, A First Course in Continuum Mechanics Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2008).
${ }^{7}$ G. Evensen, "Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics," Journal of Geophysical Research: Oceans 99, 1014310162 (1994)
${ }^{\circ}$ D. Crişan, P. Del Moral, and T. J. Lyons, "Interacting Particle Systems Approximations of the Kushner-Stratonovitch Equation," Advances in Applied Probability 31, 819-838 (1999), 1428398
${ }^{9}$ E. Calvello, S. Reich, and A. M. Stuart, "Ensemble Kalman Methods: A Mean Field Perspective," (2022), arxiv:2209.11371 [cs, math]
${ }^{10}$ R. F. Curtain and A. J. Pritchard, eds., Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 8 (Springer-Verlag, Berlin/Heidelberg, 1978). ${ }^{1}$ T. Yang, P. G. Mehta, and S. P. Meyn, "Feedback Particle Filter," IEEE Transactions on Automatic Control 58, 2465-2480 (2013)
${ }^{2}$ S. Reich, "Data assimilation: The Schrödinger perspective," Acta Numerica 28, 635-711 (2019)
${ }^{3}$ D. Crisan and J. Xiong, "Approximate McKean-Vlasov representations for a class of SPDEs," Stochastics 82, 53-68 (2010)
${ }^{14}$ S. Pathiraja, S. Reich, and W. Stannat, "McKean-Vlasov SDEs in Nonlinear Filtering," SIAM Journal on Control and Optimization 59, 4188-4215 (2021)
${ }^{15}$ R. V. Abramov, "The multidimensional maximum entropy moment problem: A review of numerical methods," Communications in Mathematical Sciences 8, 377-392 (2010).
${ }^{16}$ G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization Texts in Applied Mathematics, Vol. 53 (Springer, New York, NY, 2008).
${ }^{17}$ G. Drótos, T. Bódai, and T. Tél, "Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change," Physical Review E 94, 022214 (2016) (he assimilation of time$834 \quad 10.1029 / 2004 \mathrm{GL} 021444$
$835{ }^{19}$ D. Rey, M. Eldridge, U. Morone, H. D. I. Abarbanel, U. Parlitz, and J. Schumann-Bischoff, "Using waveform information
${ }^{0}$ E. Bach, S. Mote, V. Krishnamurthy, A. S. Sharma, M. Ghil, and E. Kalnay, "Ensemble Oscillation Correction (EnOC): Leveraging Oscillatory Modes to Improve Forecasts of Chaotic Systems," Journal of Climate 34, 5673-5686 (2021)
${ }^{21} \mathrm{~K}$. Bryan, "Accelerating the Convergence to Equilibrium of Ocean-Climate Models," Journal of Physical Oceanography 14, 666-673 (1984)
${ }^{22}$ J. D. Daron and D. A. Stainforth, "On quantifying the climate of the nonautonomous Lorenz-63 model," Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 043103 (2015).
${ }^{23}$ G. Drótos, T. Bódai, and T. Tél, "On the importance of the convergence to climate attractors," The European Physical Journal Special Topics 226, 2031-2038 (2017)
${ }^{24}$ C. Deser, F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. DiNezio, A. Fiore, C. Frankignoul, J. C. Fyfe, D. E. Horton, J. E. Kay, R. Knutti, N. S. Lovenduski, J. Marotzke, K. A. McKinnon, S. Minobe, J. Randerson, J. A. Screen, I. R. Simpson, and M. Ting, "Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change 10, 277-286 (2020)
${ }^{25}$ Z. Wang, J. Xin, and Z. Zhang, "DeepParticle: Learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method," Journal of Computational Physics 464, 111309 (2022)
${ }^{26}$ C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu, "Accelerating diffusions," The Annals of Applied Probability 15, 1433-1444 (2005)
${ }^{27}$ A. Abdulle, G. A. Pavliotis, and G. Vilmart, "Accelerated convergence to equilibrium and reduced asymptotic variance for \square Langevin dynamics using Stratonovich perturbations," Comptes Rendus Mathematique 357, 349-354 (2019)
${ }^{28}$ K. S. Nelson and O. B. Fringer, "Reducing spin-up time for sim_ulations of turbulent channel flow," Physics of Fluids 29, 105101 (2017)
${ }^{29}$ B. Goldys and B. Maslowski, "Exponential ergodicity for stochastic reaction-diffusion equations," in Stochastic Partial Differential Equations and Applications - VII, edited by G. D. Prato and L. Tubaro (Chapman and Hall/CRC, 2005).
${ }^{30}$ O. R. Isik, "Spin up problem and accelerating convergence to n steady state," Applied Mathematical Modelling 37, 3242-3253 (2013)
${ }^{31}$ O. R. Isik, A. Takhirov, and H. Zheng, "Second order time relaxation model for accelerating convergence to steady-state equi. 7 librium for Navier-Stokes equations," Applied Numerical Mathematics 119, 67-78 (2017)
${ }^{32}$ L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics (Springer, Berlin, Heidelberg, 1998).
${ }^{33}$ M. D. Chekroun, E. Simonnet, and M. Ghil, "Stochastic climate dynamics: Random attractors and time-dependent invari\square ant measures," Physica D: Nonlinear Phenomena 240, 1685-1700 (2011)
${ }^{34}$ M. Ghil, M. D. Chekroun, and E. Simonnet, "Climate dynamics and fluid mechanics: Natural variability and related uncertainties," Physica D: Nonlinear Phenomena Euler Equations: 250 Years On, 237, 2111-2126 (2008)
$894{ }^{35}$ M. Annunziato and A. Borzì, "A Fokker-Planck control frame895 work for multidimensional stochastic processes," Journal of Computational and Applied Mathematics 237, 487-507 (2013)
${ }^{897}{ }^{30}$ J. Covington, D. Qi, and N. Chen, "Effective Statistical Control Strategies for Complex Turbulent Dynamical Systems," (2023), arxiv:2307.15637 [math-ph]
$900{ }^{37}$ A. Köhl and J. Willebrand, "An adjoint method for the assimila901 tion of statistical characteristics into eddy-resolving ocean mod-

902
903
904
905
906
907
908
909
els," Tellus A: Dynamic Meteorology and Oceanography 54, 406425 (2002)
${ }^{38}$ T. Schneider, A. M. Stuart, and J.-L. Wu, "Learning stochastic closures using ensemble Kalman inversion," Transactions of Mathematics and Its Applications 5, tnab003 (2021)
${ }^{39}$ V. Mons, Y. Du, and T. A. Zaki, "Ensemble-variational assimilation of statistical data in large-eddy simulation," Physical Review Fluids 6, 104607 (2021)
${ }^{40}{ }^{40}$ T. Schneider, A. M. Stuart, and J.-L. Wu, "Ensemble Kalman inversion for sparse learning of dynamical systems from timeaveraged data," Journal of Computational Physics 470, 111559 (2022)
$1{ }^{41} \mathrm{M}$. Levine and A. Stuart, "A framework for machine learning of model error in dynamical systems," Communications of the
6 American Mathematical Society 2, 283-344 (2022)
7^{42} E. Bach and M. Ghil, "A Multi-Model Ensemble Kalman Filter for Data Assimilation and Forecasting," Journal of Advances in Modeling Earth Systems 15, e2022MS003123 (2023)
${ }^{43}$ C. M. Danforth and E. Kalnay, "Using Singular Value Decomposition to Parameterize State-Dependent Model Errors," Journal of the Atmospheric Sciences 65, 1467-1478 (2008).
${ }^{44}$ T.-C. Chen, S. G. Penny, J. S. Whitaker, S. Frolov, R. Pincus, and S. Tulich, "Correcting Systematic and State-Dependent Er. rors in the NOAA FV3-GFS Using Neural Networks," Journal of Advances in Modeling Earth Systems 14, e2022MS003309 (2022) ${ }^{45}$ A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet, "Using machine learning to correct model error in data assimilation and forecast applications," Quarterly Journal of the Royal Meteorological Society 147, 3067-3084 (2021)
${ }^{40}$ S. Ephrati, A. Franken, E. Luesink, and B. Geurts, 3 "Data-assimilation closure for large-eddy simulation of quasigeostrophic flow on the sphere," (2023), arxiv:2312.12858 [physics]
${ }^{47}$ A. Bain and D. Crisan, Fundamentals of Stochastic Filtering Stochastic Modelling and Applied Probability (Springer, New York, NY, 2009).
${ }^{48}$ M. Salgado, R. Middleton, and G. C. Goodwin, "Connection between continuous and discrete Riccati equations with applications to Kalman filtering," IEE Proceedings D (Control Theory and Applications) 135, 28-34 (1988)
${ }^{49}$ D. Simon, Optimal State Estimation: Kalman, H_{∞}, and Nonlinear Approaches (John Wiley \& Sons, Ltd, 2006).
${ }^{\text {bu }}$ Y. Zhou, J. Shi, and J. Zhu, "Nonparametric Score Estimators," in Proceedings of the 37th International Conference on Machine Learning (PMLR, 2020) pp. 11513-11522.
${ }^{51}$ M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, "Ensemble Square Root Filters," Monthly Weather Review 131, 1485-1490 (2003)
${ }^{52}$ R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. H. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer, "POT: Python Optimal Transport," Journal of Machine Learning Research 22, 1-8 (2021).
${ }^{53} \mathrm{E}$. Bach, "parasweep: A template-based utility for generating, dispatching, and post-processing of parameter sweeps," SoftwareX 13, 100631 (2021)
${ }^{54}$ A.-K. Kassam and L. N. Trefethen, "Fourth-Order TimeStepping for Stiff PDEs," SIAM Journal on Scientific Computing 26, 1214-1233 (2005)
${ }^{55}$ M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss, "MAP estimators and their consistency in Bayesian nonparametric inverse problems," Inverse Problems 29, 095017 (2013)
${ }^{56} \mathrm{E}$. N. Lorenz, "Deterministic Nonperiodic Flow," Journal of the Atmospheric Sciences 20, 130-141 (1963)
$8{ }^{\text {D/ }}$ E. N. Lorenz, "Predictability: A problem partly solved," in Pro99 ceedings of a Seminar Held at ECMWF on Predictability, 4-8 70 September 1995, Vol. 1 (ECMWF, Shinfield Park, Reading, 1996) 1 pp. 1-18.
${ }_{972}{ }^{58}$ V. I. Bogachev, Gaussian Measures, Mathematical Surveys and 973 Monographs No. 62 (American Mathematical Society, 1998).
$974{ }^{59} \mathrm{P}$. L. Falb, "Infinite-dimensional filtering: The Kalman-Bucy filter in Hilbert space," Information and Control 11, 102-137 976 (1967)
${ }^{977}{ }^{60}$ R. Curtain, "A Survey of Infinite-Dimensional Filtering," SIAM Review 17, 395-411 (1975)

Appendix A: Properties of the KB Filter for Densities

Lemma 1 and Remark 2 below give the conditions un${ }_{981}$ der which $m(t)$ and $\rho(t) \sim \mathcal{N}(m(t), C(t))$ will be nor982 malized. The function $\mathbb{1}$ is defined as $\mathbb{1}(v) \equiv 1$ for all $983 v$.

4 Lemma 1. Assume that $\rho(0) \sim \mu(0)=\mathcal{N}\left(m_{0}, C_{0}\right)$ with

$$
\left\{\begin{array}{l}
\left\langle m_{0}, \mathbb{1}\right\rangle_{\mathcal{H}}=1, \tag{A.1}\\
C_{0} \mathbb{1}=0 .
\end{array}\right.
$$

${ }_{985}$ Then, for $m(t)$ and $C(t)$ satisfying equations (IV.5a)${ }_{986}$ (IV.5c),
(a) $C(t) \mathbb{1}=0$ for all $t \geq 0$, and
(b) $\langle m(t), \mathbb{1}\rangle_{\mathcal{H}}=1$ for all $t \geq 0$.
${ }_{989}$ Proof. (Sketch)
(a) Since $\mathcal{L} \mathbb{1}=0$, we have

$$
\begin{equation*}
\frac{d}{d t}(C \mathbb{1})=\mathcal{L}^{*} C \mathbb{1}-C H^{*} \Gamma^{-1} H C \mathbb{1} . \tag{A.2}
\end{equation*}
$$

Assuming uniqueness of the solution to the equation (IV.5b) for the evolution of $C(t)$, we deduce that $C(t) \mathbb{1}=0$ solves Eq. (A.2).
(b) Applying Itô's lemma to $\langle m, \mathbb{1}\rangle_{\mathcal{H}}$ (the Itô correction does not appear due to linearity of the inner product),

$$
\begin{align*}
\frac{d}{d t}\langle m, \mathbb{1}\rangle_{\mathcal{H}} & =\left\langle\mathcal{L}^{*} m, \mathbb{1}\right\rangle_{\mathcal{H}}+\left\langle C H^{*} \Gamma^{-1}\left(d z^{\dagger}-H m\right), \mathbb{1}\right\rangle_{\mathcal{H}} \\
& =\langle m, \mathcal{L} \mathbb{1}\rangle_{\mathcal{H}}+\left\langle H^{*} \Gamma^{-1}\left(d z^{\dagger}-H m\right), C \mathbb{1}\right\rangle_{\mathcal{H}} \\
& =0, \tag{A.3}
\end{align*}
$$

since $\mathcal{L} \mathbb{1}=0, C$ is self-adjoint by construction, and $C \mathbb{1}=0$ by (a). Now assuming uniqueness of the equation (IV.5a) for $m(t)$ we find that, $\langle m(t), \mathbb{1}\rangle_{\mathcal{H}}=1$ solves Eq. (A.3).
${ }_{102}$ Remark 2. If the conditions in Eq. (A.1) hold then ${ }^{1003}\langle\rho(t), \mathbb{1}\rangle=1$ for $t \geq 0$ almost surely, where $\rho(t) \sim \mu(t)=$ ${ }^{1004} \mathcal{N}(m(t), C(t))$. This is because $\mathbb{1}$ is in the null-space of ${ }^{005}$ both the symmetric operator square-root of $C(t), \sqrt{C(t)}$, 1006 and

$$
\begin{equation*}
\rho(t)=m(t)+\sqrt{C(t)} \xi, \tag{A.4}
\end{equation*}
$$

1007 where $\xi \sim \mathcal{N}(0, \mathbb{I})$. Thus

$$
\begin{align*}
\langle\rho(t), \mathbb{1}\rangle_{\mathcal{H}} & =\langle m(t), \mathbb{1}\rangle_{\mathcal{H}}+\langle\sqrt{C(t)} \xi, \mathbb{1}\rangle_{\mathcal{H}} \\
& =1+\langle\xi, \sqrt{C(t)} \mathbb{1}\rangle_{\mathcal{H}} \tag{A.5}\\
& =1 \tag{B.3a}
\end{align*}
$$

1008 1009

1010

$$
\left\{\begin{array}{l}
\mathrm{Hm}(0)=H m_{0} \tag{}\\
\mathrm{HC}(0) \mathrm{H}^{T}=H C_{0} H^{*}
\end{array}\right.
$$

${ }_{1037}$ Now, imposing $f(v, t)=\mathrm{L}^{T} v$ and $\mathfrak{h}(v, t)=\mathrm{H} v$ on the ${ }_{1038}$ ansatz (Eq. (IV.10)), the time evolution of ρ can be en1039 tirely characterized by its mean and covariance, and we 1040 obtain the following equations for them:

$$
\begin{align*}
d \mathrm{~m} & =\mathrm{L}^{T} \mathrm{~m} d t+\mathrm{CH}^{T} \Gamma^{-1}\left(d z^{\dagger}-\mathrm{Hm} d t\right), \\
d \mathrm{C} & =\mathrm{L}^{T} \mathrm{C} d t+\mathrm{CL} d t-\mathrm{CH}^{T} \Gamma^{-1} \mathrm{HC} d t, \tag{B.3b}
\end{align*}
$$

${ }_{1041}$ where $\mathrm{m} \equiv \mathbb{E}[v]$ and $\mathrm{C} \equiv \mathbb{E}\left[(v-\mathrm{m})(v-\mathrm{m})^{T}\right]$. A simi1042 lar calculation is made in, e.g., section 7.4 of Jazwinski 1043 (1970) ${ }^{11}$. In observation space, we have that

$$
\begin{equation*}
d(\mathrm{Hm})=\mathrm{HL}^{T} \mathrm{~m} d t+\mathrm{HCH}^{T} \Gamma^{-1}\left(d z^{\dagger}-\mathrm{Hm} d t\right), \tag{B.4a}
\end{equation*}
$$

$$
\begin{align*}
d\left(\mathrm{HCH}^{T}\right)=\mathrm{HL}^{T} \mathrm{CH}^{T} d t & +\mathrm{HCLH}^{T} d t \\
& -\mathrm{HCH}^{T} \Gamma^{-1} \mathrm{HCH}^{T} d t . \tag{B.4b}
\end{align*}
$$

1044 We would now like to show that $\mathrm{Hm}(t)=H m(t)$ and ${ }_{1045} \mathrm{HC}(t) \mathrm{H}^{T}=H C(t) H^{*}$ for all $t \geq 0$. We do this by 1046 showing that the RHS of Eqs. (B.2a) and (B.2b) are 1047 equal to the RHS of Eqs. (B.4a) and (B.4b) at time t^{*} 1048 if $\mathrm{Hm}\left(t^{*}\right)=H m\left(t^{*}\right)$ and $\mathrm{HC}\left(t^{*}\right) \mathbf{H}^{T}=H C\left(t^{*}\right) H^{*}$. To1049 gether with the initial conditions (B.1) and uniqueness, ${ }^{1050}$ this proves the theorem.

It follows immediately that

$$
\begin{align*}
H C\left(t^{*}\right) H^{*} & \Gamma^{-1}\left[\frac{d z^{\dagger}}{d t}-H m\left(t^{*}\right)\right] \\
& =\mathrm{HC}\left(t^{*}\right) \mathrm{H}^{T} \Gamma^{-1}\left[\frac{d z^{\dagger}}{d t}-\operatorname{Hm}\left(t^{*}\right)\right] \tag{B.5}
\end{align*}
$$

1052 and that

$$
\begin{equation*}
H C\left(t^{*}\right) H^{*} \Gamma^{-1} H C\left(t^{*}\right) H^{*}=\mathrm{HC}\left(t^{*}\right) \mathrm{H}^{T} \Gamma^{-1} \mathrm{HC}\left(t^{*}\right) \underset{(\mathrm{B} .6}{\mathrm{H}} . \tag{B.6}
\end{equation*}
$$

Then, under the same noise realization for Z^{\dagger}, 1053 $\mathrm{Hm}(t)=H m(t)$ and $\mathrm{HC}(t) \mathrm{H}^{T}=H C(t) H^{*}$ will hold for $t \geq 0$, where $\mathrm{m}(t)$ and $\mathrm{C}(t)$ are the mean and covariance 4 of $\rho(t)$ obtained from Eq. (IV.10), and $m(t)$ and $C(t)$ are given by the $K B$ filter for densities (IV.5a)-(IV.5c).

Proof. (Sketch)

We give here the outlines of a proof, but a rigorous proof, as well as analysis of whether the equivalence holds in any setting more general than the above restrictive conditions, will require considerably more work.

We consider the evolution of the mean and covariance 105
Note that

$$
\begin{align*}
\operatorname{Hm}\left(t^{*}\right) & =H m\left(t^{*}\right), \\
& =\mathrm{H} \int v m\left(t^{*}\right) d v, \tag{B.7}
\end{align*}
$$

${ }^{1054}$ which implies that

$$
\begin{equation*}
\mathrm{m}\left(t^{*}\right)=\int v m\left(t^{*}\right) d v \tag{B.8}
\end{equation*}
$$

${ }^{1055}$ because H was assumed to be injective.
We proceed with the rest of the terms. For the first of the KB filter for densities (Eqs. (IV.5a) and (IV.5b)) ${ }^{1057}$ term of the RHS of Eq. (B.2a), projected into observation space:

$$
\begin{align*}
& d(H m)=H \mathcal{L}^{*} m d t+H C H^{*} \Gamma^{-1}\left(d z^{\dagger}-H m d t\right), \tag{B.2a}\\
& d\left(H C H^{*}\right)=H \mathcal{L}^{*} C H^{*} d t+H C \mathcal{L} H^{*} d t \\
&-H C H^{*} \Gamma^{-1} H C H^{*} d t,(\mathrm{~B} .2 \mathrm{~b})
\end{align*}
$$

${ }^{1034}$ where $H(t)=H$ is not time-dependent because $\mathfrak{h}(v, t)=$ $\mathfrak{h}(v)=\mathrm{H} v$. These equations now describe the time evolu1036 tion of the finite-dimensional quantities Hm and HCH^{*}.

$$
\begin{aligned}
H \mathcal{L}^{*} m & =\mathrm{H} \int v \mathcal{L}^{*} m d v, \\
& =-\mathrm{H} \int v \nabla \cdot(m f) d v, \\
& =-\mathrm{HL}^{T} \int v \nabla \cdot(m v) d v, \\
& =\mathrm{HL}^{T} \int v m d v, \\
& =\mathrm{HL}^{T} \mathrm{~m},
\end{aligned}
$$

1058 where the fourth line follows from integration by parts, 1075 of Eq. (IV.11) when $f(v, t)=0$ and $\Sigma=0$ is 1059 and the last from Eq. (B.8). Note that the boundary term 1060 in the integration by parts vanishes from assumption 4. 1061 Thus,

$$
\begin{equation*}
H \mathcal{L}^{*} m=\mathrm{HL}^{T} \mathrm{~m} . \tag{B.10}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho(a-K H \rho))-\left\langle\nabla \cdot\left(\rho K^{T}\right), \frac{d z^{\dagger}}{d t}\right\rangle \\
&+\nabla \cdot\left(\nabla \cdot\left(\rho K \Gamma K^{T}\right)\right) \tag{C.1}
\end{align*}
$$

${ }_{1076}$ We now match the terms of Eqs. (C.1) and (IV.10) 1077 to make them equal. By matching the terms involving ${ }_{1062}$ It remains to show that $H \mathcal{L}^{*} C\left(t^{*}\right) H^{*}=\mathrm{HL}^{T} \mathrm{C}\left(t^{*}\right) \mathbf{H}^{T}$. ${ }^{1078} d z^{\dagger} / d t$, we obtain that

1063 We have that for any u,

$$
\begin{equation*}
H C\left(t^{*}\right) H^{*} u=\mathrm{H} \int v C\left(t^{*}\right) H^{*} u d v=\mathrm{HC}\left(t^{*}\right) \mathrm{H}^{T} u \tag{B.11}
\end{equation*}
$$

Since H was assumed to be injective,

$$
\begin{equation*}
\int v C\left(t^{*}\right) H^{*} u d v=\mathrm{C}\left(t^{*}\right) \mathrm{H}^{T} u \tag{B.12}
\end{equation*}
$$

Then, for any w

$$
\begin{aligned}
H \mathcal{L}^{*} C\left(t^{*}\right) H^{*} w & =\mathrm{H} \int v \mathcal{L}^{*} C\left(t^{*}\right) H^{*} w d v \\
& =-\mathrm{H} \int v \nabla \cdot\left(C\left(t^{*}\right) H^{*} w \mathrm{~L}^{T} v\right) d v \\
& =\mathrm{HL}^{T} \int v C\left(t^{*}\right) H^{*} w d v \\
& =\mathrm{HL}^{T} \mathrm{C}\left(t^{*}\right) \mathbf{H}^{T} w
\end{aligned}
$$

(B.13)

1066 where the third line follows from integration by parts
1067 (with the boundary term vanishing by the same argument 1068 as above), and the last line from Eq. (B.12). Taking the 1069 adjoint demonstrates that $H C\left(v, t^{*}\right) \mathcal{L} H^{*}=\mathrm{HC}\left(t^{*}\right) \mathrm{LH}^{T}$, 1070 completing the proof.

Appendix C: Mean-Field Approximation

We omit the function arguments until the end of the 1073 subsection, for brevity. Using Eq. 3.30 from Calvello, 1074 Reich, and Stuart $(2022)^{9}$, we know that the FP equation 1092 which gives Eqs. (II.4), with (II.4a) replaced by (II.5).

[^0]: ${ }^{\text {a) }}$ Electronic mail: eviatarbach@protonmail.com

[^1]: ${ }^{1}$ Here we use the term Liouville equation for the equation governing evolution of the density of any ordinary differential equation, not just in the Hamiltonian setting.
 2 We define the divergence of a matrix as is standard in continuum mechanics; see Gurtin $(1981)^{\sqrt{5}}$ and Gonzalez and Stuart $(2008)^{\sqrt{6}}$. The divergence of a matrix S is defined by the identity $(\nabla \cdot S) \cdot a=$ $\nabla \cdot\left(S^{T} a\right)$ holding for any vector a.

[^2]: ${ }^{3}$ Note, however, that in many applications with a highdimensional state space, the statistics of interest may be relatively low-dimensional, such that the regular version of the algorithm (II.7) will be feasible.

