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We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics.
Thus the computational task is to estimate a time-evolving density ρ(v, t) given noisy observations of the true
density ρ†; this contrasts with the standard filtering problem based on observations of the state v. The task is
naturally formulated as an infinite-dimensional filtering problem in the space of densities ρ. However, for the
purposes of tractability, we seek algorithms in state space; specifically we introduce a mean-field state-space
model and, using interacting particle system approximations to this model, we propose an ensemble method.
We refer to the resulting methodology as the ensemble Fokker–Planck filter (EnFPF).
Under certain restrictive assumptions we show that the EnFPF approximates the Kalman–Bucy filter for the

Fokker–Planck equation, which is the exact solution of the infinite-dimensional filtering problem. Furthermore,
our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically,
the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to
the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant
densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles
and to turbulence modelling.

Data assimilation (DA) is the process of estimat-10

ing the state of a dynamical system using observa-11

tions. Here, we modify the standard DA setting12

to allow for observations of statistics of a system13

with respect to its time-evolving probability den-14

sity. We propose a mathematical framework, a15

resulting ensemble method, and present numer-16

ical experiments demonstrating accelerated con-17

vergence of a system to its attractor. We propose18

further applications to problems in climate and19

turbulence modelling.20

I. INTRODUCTION21

The goal of this paper is to introduce a filtering22

methodology that incorporates statistical information23

into a (possibly stochastic) dynamical system. In the24

next three subsections, we present, respectively, a high-25

level overview of the problem, discuss the motivation and26

previous literature, and outline the paper structure and27

our contributions.28

A. Assimilating Statistical Observations29

We start by presenting a high-level overview of the30

problem of incorporating statistical information into a31

a)Electronic mail: eviatarbach@protonmail.com

dynamical system; a detailed problem statement follows32

in section IIA.33

Data assimilation (DA) is overviewed in a number of34

books, including1–4. The problem is to estimate the state35

of a dynamical system by combining noisy, partial obser-36

vations with a model for the system. In the continuous-37

time DA problem, we have a stochastic differential equa-38

tion (SDE)39

dv† = f(v†, t) dt+
√
Σ(t) dW, (I.1)

v†(0) = v†0, (I.2)

with solution v† ∈ Rd, and observations given by40

dz† = h(v†(t), t) dt+
√

Γ(t) dB, (I.3)

with z† ∈ Rp. The equations for v† and z† are driven by41

independent standard Wiener processesW and B. These42

SDEs, as with all the SDEs in the paper, are to be inter-43

preted in the Itô sense. Filtering is then the problem of44

obtaining the best possible estimate of the posterior den-45

sity on v†(t) given the past observations {z†(s)}s∈[0,t].46

Throughout the paper, we use the † superscript to indi-47

cate the true quantities, and omit it for filtered quanti-48

ties.49

Instead of observing a specific trajectory of a dynami-50

cal system, as {z†(t)} given by Eq. (I.3) does, one can also51

consider observations of the system’s statistical behavior,52

that is, observations of functionals of the probability den-53

sity ρ†(v, t) over trajectories. This density reflects the54

randomness from the initial conditions for v and/or from55

the Brownian forcing. For a deterministic dynamical sys-56

tem (Σ ≡ 0), if the initial conditions are random, then57
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ρ†(v, t) will reflect the changing density over time un-58

der the action of the system’s dynamics, governed by59

the Liouville equation.1 If noise is present, the changing60

density is also affected by the Brownian noise W and is61

governed by the Fokker–Planck equation, a diffusively-62

regularized Liouville equation. In this paper we focus63

on observations of ρ†(v, t) defined by replacing Eq. (I.3)64

with65

dz† =

(∫
h(v, t)ρ†(v, t) dv

)
dt+

√
Γ(t) dB. (I.4)

Here h(v, t) defines the observed statistics of v, B is a66

Wiener process, and z† ∈ Rp. The filtering problem is67

to estimate a density ρ(v, t) given all the past observa-68

tions {z†(s)}s∈[0,t]. As in the observation equation (I.3),69

the observations are finite-dimensional, noisy, and par-70

tial. However, since the observations are now of ρ†(v, t)71

instead of v†(t), we must specify the dynamics of ρ†(v, t).72

This is given by the Fokker–Planck (FP) or Kolmogorov73

forward equation:74

∂ρ†

∂t
= L∗(t)ρ†, (I.5a)

L∗(t)ψ = −∇ · (ψf) + 1

2
∇ ·

(
∇ · (ψΣ)

)
, (I.5b)

where L∗ is the adjoint of the generator of Eq. (I.1).2. For75

a deterministic system, with Σ ≡ 0, the Fokker–Planck76

equation reduces to the Liouville equation.77

An important question is how one would obtain obser-78

vations of a system’s statistics for problems of practical79

relevance. We discuss this in detail in I Ba. For now we80

proceed on the assumption that z† solving Eq. (I.4) is81

given.82

Now, Eqs. (I.5) and (I.4) define a filtering problem for83

ρ(v, t). This is an infinite-dimensional filtering problem,84

in contrast to the finite-dimensional filtering problem for85

v(t) defined by Eqs. (I.1) and (I.3). We refer to the filter-86

ing problem defined by Eqs. (I.5) and (I.4) as the Fokker–87

Planck filtering problem. Note that both Eqs. (I.5) and88

(I.4) are linear in ρ†, meaning that the solution of the89

problem can be written using the infinite-dimensional90

Kalman–Bucy (KB) filter; see subsection IVA for more91

details.92

Despite the existence of an exact solution to the filter-93

ing problem, through the infinite-dimensional Kalman–94

Bucy (KB) filter, approximating the Gaussian condi-95

tional density ρ is in most setting computationally in-96

tractable since the mean is a probability density function97

1 Here we use the term Liouville equation for the equation govern-
ing evolution of the density of any ordinary differential equation,
not just in the Hamiltonian setting.

2 We define the divergence of a matrix as is standard in continuum
mechanics; see Gurtin (1981)5 and Gonzalez and Stuart (2008)6.
The divergence of a matrix S is defined by the identity (∇·S)·a =
∇ · (ST a) holding for any vector a.

FIG. 1: The density of an Ornstein–Uhlenbeck process
evolving in time (top panel). At regular intervals, we
make observations of this density and use them to
inform the evolution of an ensemble (bottom panel).

and the covariance is an operator. Thus we seek inspira-98

tion from the success of ensemble Kalman filtering7: we99

work in state space and seek an ensemble that evolves100

in time a number of states whose empirical density ap-101

proximates the filtered ρ. We note that the particle filter102

similarly substitutes the problem of evolving a proba-103

bility density with that of evolving a number of parti-104

cles and weights8. Furthermore, derivation of ensemble105

Kalman methods via a mean-field limit provides a sys-106

tematic methodology for the derivation of equal-weight107

approximate filters9. We call the resulting method the108

ensemble Fokker–Planck filter (EnFPF).109

Figure 1 shows a schematic of such an ensemble110

method. In the top panel is the true time-varying proba-111

bility density, in this case of an Ornstein–Uhlenbeck pro-112

cess. In the bottom panel is an ensemble of states. At113

regular intervals, we observe expectations over the den-114

sity in the top panel. Using these observations and our115

model of the system, we evolve the ensemble over the116

time interval between the current and next observations.117
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B. Motivation and Literature Review118

The subject of Kalman filtering and Kalman–Bucy119

(KB) filtering in infinite-dimensional spaces is studied120

in the control theory literature10. We emphasize that,121

although we sketch out the basic mathematical founda-122

tions of the Fokker–Planck filtering problem in section123

IV, many interesting mathematical problems in analysis124

and probability remain open in this area. To the best of125

our knowledge, the methodology proposed here is the first126

general method for assimilating observations of statis-127

tics directly into a state-space formulation of dynamical128

systems. Our methodology is built on the conceptual ap-129

proach introduced in the feedback particle filter11,12, and130

earlier related work13, seeking a mean-field model which131

achieves the goal of filtering and can be approximated by132

particle methods14; in particular we seek particle approx-133

imations of the mean-field model inspired by ensemble134

Kalman methods9.135

The problem of recovering a probability density from136

a finite number of known moments is called a moment137

problem. When h in Eq. (I.4) consists of monomials in v,138

the problem of reconstructing ρ is similar to a moment139

problem, with the major difference that ρ evolves in time140

according to a dynamical system. Moment problems are141

typically regularized by a maximum entropy approach15;142

in the Fokker–Planck filtering problem, regularization is143

provided by the system’s dynamics.144

Our motivation comes from a number of applications145

around which we organize the remainder of our literature146

review, after first discussing the general question of how147

to obtain observations of statistics.148

a. Obtaining observations of statistics In typical ap-149

plications one can only observe a single trajectory of a150

dynamical system, and thus the statistics of the density151

will not be directly available. If we are interested in the152

statistics of the invariant measure, as we are for several153

of the applications discussed below, then for ergodic sys-154

tems we have that155

lim
T→∞

1

T

∫ T

0

h(v†(t)) dt =

∫
h(v)ρ†(v) dv, (I.6)

where ρ† is the invariant density, and thus an approxi-156

mation of the statistics of the invariant measure can be157

obtained from a long observed or simulated trajectory of158

the dynamical system.159

For nonautonomous systems, due to lack of ergodic-160

ity, observations of the statistics cannot be made using161

long time averages. If the nonstationary forcing is slow162

enough, however, an adiabatic approximation, in which163

the fast scales are considered to be ergodic with an in-164

variant measure parameterized by the value of the slow165

forcing, may be justified16,17. If the forcing is periodic,166

then observations of the phase-dependent statistics could167

be obtained by averaging the observables at a given phase168

over multiple periods.169

For certain systems, invariant statistics may be ac-170

quired analytically, or by numerically solving a differ-171

ent set of equations. For example, for the Navier–Stokes172

equations, the Reynolds-averaged Navier–Stokes (RANS)173

equations can be used to approximate the stationary174

statistics.175

It may be possible to instead formulate a filtering prob-176

lem using an observation operator that involves aver-177

aging over a finite time window; we leave this for fu-178

ture work. This problem was considered in18, but only179

a heuristic solution was proposed. We note that other180

works have made use of observation operators with time-181

delayed observations19,20, albeit for different purposes.182

In the next four subsections we review the possible183

applications of the ensemble Fokker–Planck filter.184

b. Acceleration of convergence to a (possibly time-185

dependent) invariant measure Acceleration of the time186

to convergence of dynamical models to their invariant187

measure (often referred to as the “spin-up” period, or188

the transient) is of importance in many fields, includ-189

ing climate21–24 and other fluids problems25, Langevin190

sampling26,27, and turbulence simulation28.191

For a stochastic differential equation with an invari-192

ant measure, under conditions described in Goldys and193

Maslowski (2005)29, the convergence to this invariant194

measure is exponential with an exponent related to the195

spectral gap of the corresponding generator.196

In this paper we show that this convergence can be197

accelerated using the ensemble Fokker–Planck filter, and198

this is the primary application we test in the numeri-199

cal experiments. In particular, if some statistics of the200

invariant measure are known, these statistics can be as-201

similated into the ensemble, obtaining an ensemble whose202

empirical density is closer to the invariant measure.203

To our knowledge, existing methods of accelerating204

convergence of model trajectories to the invariant mea-205

sure have been problem-dependent, as in Bryan (1984)21.206

Isik (2013)30 and Isik, Takhirov, and Zheng (2017)31207

studied a relaxation-based method of accelerating the208

convergence to equilibrium of the Navier–Stokes equa-209

tions, which bears some resemblance to our approach.210

Non-autonomous (also referred to as non-stationary)211

and random dynamical systems can have time-dependent212

attractors, known as pullback attractors, to which the213

evolution converges32. A pullback attractor is the set214

that the dynamical system approaches when evolved in215

time from the infinite past to a fixed time (say time216

0 without loss of generality). We refer to the proba-217

bility measure associated with these attractors as time-218

dependent invariant measures, following Chekroun, Si-219

monnet, and Ghil (2011)33. These objects are of consid-220

erable interest for climate22,33,34. The EnFPF can also221

accelerate convergence to these invariant measures.222

The problem of accelerating convergence to the invari-223

ant measure is related to the problem of controlling the224

Fokker–Planck equation, where a density is controlled in225

order to reach to a specified target distribution35, and226

to statistical control, wherein one aims to return a per-227

turbed system to its equilibrium statistics36.228

Furthermore, the EnFPF could be tested for accel-229
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erating the convergence of sampling algorithms such as230

Langevin sampling and Markov chain Monte Carlo, when231

some statistics of the target density are known a priori.232

Finally we note that, when estimating Koopman or233

Perron–Frobenius operators, it is often necessary to have234

a large number of trajectories from initial conditions sam-235

pled from the invariant measure.236

c. Parameter estimation The EnFPF could be used237

for jointly updating states and parameters using statis-238

tical observations, by adopting a state augmentation ap-239

proach. Other work has adapted methods from data as-240

similation for parameter estimation using time-averaged241

statistics, assumed to be close to the statistics on the242

invariant measure by ergodicity37–40.243

d. Correcting for model error Generally, methods244

that correct for model error are formulated in terms of245

forecast performance at some lead time41,42. If one is in-246

stead interested in correcting statistical properties, one247

can postulate a parametric form for the model error and248

use time-averaged observations to estimate the parame-249

ters, as discussed in the preceding paragraph. Alterna-250

tively, the EnFPF could be tested for directly correcting251

model error using statistical observations, in a similar252

manner to the use of classical DA in reducing the impact253

of model error for forecast applications43,44. The analy-254

sis increments could then be taken to approximate model255

error corrections, and training a machine learning model256

to predict these corrections could be tested, as has been257

done for classical DA43–45.258

Statistical properties have previously been used to259

learn closure models for the Navier–Stokes equation using260

a 3DVar-like scheme46.261

e. Assimilation of time-averaged observations In262

paleoclimate, proxy records often represent time aver-263

ages instead of instantaneous measurements. Methods264

have been developed for making use of time-averaged ob-265

servations for state estimation in the paleoclimate data266

assimilation literature18. As discussed above, in the case267

of slow forcing, time-averaged observations can be used268

to approximately track the system’s time-varying statis-269

tics, enabling their use in the EnFPF.270

C. Contributions and Paper Outline271

The primary contributions of this work are: (i) to es-272

tablish a framework for the filtering of stochastic dynam-273

ical systems, or dynamical systems with random initial274

data, given only observations of statistics; (ii) to intro-275

duce ensemble-based state-space methods for this filter-276

ing problem via a mean field perspective; and (iii) to277

demonstrate numerically that the proposed methods are278

effective at guiding dynamical systems towards observed279

statistics. (i) is covered in section IIA and section IV;280

(ii) is covered in sections II B–II F; and (iii) is covered in281

section III.282

In section IIA we outline the Fokker–Planck filtering283

problem and distinguish it from the standard filtering284

problem. In sections II B–IID we introduce a mean-field285

algorithm and its particle and discrete-time approxima-286

tions, culminating in the ensemble Fokker–Planck filter287

(EnFPF). In section II F we discuss implementation de-288

tails, including the approximation of the score function289

and a square-root ensemble formulation with reduced290

computational effort.291

In section III we carry out numerical experiments with292

several chaotic dynamical systems, both autonomous and293

non-autonomous, and based on the Lorenz63, Lorenz96,294

and Kuramoto–Sivashinsky models. In particular, we295

demonstrate that the EnFPF can accelerate the conver-296

gence of these systems to their invariant densities, using297

information about the moments of these densities.298

In section IV we provide a justification of our algo-299

rithm. We first formulate the KB filter for densities300

(section IVA), which provides a solution to the Fokker–301

Planck filtering problem in function space, and analyze302

some of its properties in Appendix A. We then propose303

an ansatz amenable to a mean-field model (section IVB),304

and show its equivalence to the KB filter for densities un-305

der some assumptions (Theorem 1 in Appendix B). We306

then show how this ansatz can be approximated by a307

mean-field model (section IVC, providing further details308

in Appendix C).309

Finally, in section V we give conclusions and outlook310

for future work.311

II. PROBLEM AND ALGORITHM312

In subsection IIA we introduce the probabilistic for-313

mulation of the standard filtering problem, and then con-314

trast it with the Fokker–Planck filtering problem, where315

data is in the form of statistics. Subsection II B demon-316

strates an approach to this problem using a mean-field317

model. In subsection IIC we introduce a particle ap-318

proximation of the mean-field algorithm, which forms the319

basis of the proposed EnFPF.320

A. Problem Statement321

1. The Standard Filtering Problem322

In the standard filtering problem, we are given state323

observations z†(t) of v†(t), defined by Eq. (I.3), and the324

dynamics of v†(t) are given by Eq. (I.1). The problem is325

then to find an equation for the conditional distribution326

of v|Z†(t), where Z†(t) = {z†(s)}s∈[0,t] are the observa-327

tions accumulated up to time t under a fixed realization328

of B. The solution to the filtering problem is given by329

the Kushner–Stratonovich equation:330

∂ρ

∂t
= L∗(t)ρ+

〈
h(v, t)− Eh,

dz†

dt
− Eh

〉
Γ(t)

ρ, (II.1)

where ⟨·, ·⟩A ≡ ⟨A−1/2·, A−1/2·⟩ is the weighted Eu-331

clidean inner product. Treatments of the standard fil-332
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5

tering problem can be found in, e.g., Jazwinski (1970)1333

and Bain and Crisan (2009)47.334

2. The Fokker–Planck Filtering Problem335

In this paper we consider instead noisy observations of336

ρ†(v, t): the observation process z†(·) is given by337

dz† = H(t)
(
ρ†(·, t)

)
dt+

√
Γ(t) dB. (II.2)

Here H(t) is a linear operator mapping the space of338

probability densities into a finite-dimensional Euclidean339

space, and the dynamics of ρ† are given by the Fokker–340

Planck equation (I.5). That is, we make observations341

of statistics of the dynamical system. We refer to the342

problem of finding the conditional density of v|Z†(t),343

where Z†(t) = {z†(s)}s∈[0,t] is given by Eq. (II.2), as the344

Fokker–Planck filtering problem. In the following subsec-345

tion, we propose an approximation to the solution of this346

problem in state space.347

B. Mean-Field Equation348

Although in section IVA we treat the Fokker–Planck349

filtering problem for more general H, in the rest of what350

follows we focus on the setting where351

H(t)ρ = E[h(v, t)] =
∫

h(v, t)ρ(v, t) dv, (II.3)

for some h. With this assumption on H, Eq. (II.2) re-352

duces to Eq. (I.4). In particular, if h is a monomial in353

v, e.g., h(v) = v or h(v) = vec(v ⊗ v), then Hρ will cor-354

respond to moments of ρ. We will henceforth use E to355

denote expectation under ρ, unless otherwise indicated.356

Remark 1. Note that if ρ†(v, 0) = δ(v−v†0) for some v†0,357

and Σ = 0, then the Fokker–Planck filtering problem is358

equivalent to the standard filtering problem with v†(0) =359

v†0, observation operator h, and Σ = 0.360

Our proposed methodology is to introduce a mean-field361

model for variable v, depending on its own probability362

density function ρ(v, t). The mean-field model is chosen363

to drive the system towards the observed statistical infor-364

mation. Algorithms are then based on particle approxi-365

mation of this model, leading to ensemble Kalman–type366

methods. The mean-field model considered is367

dv = f(v, t) dt+
√

Σ(t) dW +K(t)
(
dz† − dẑ

)
,

(II.4a)

dẑ = (Eh)(t) dt+
√
Γ(t)dB, (II.4b)

K(t) = Cvh(t)Γ(t)−1, (II.4c)

Cvh(t) = E
[(
v(t)− Ev(t)

)(
h(v, t)− (Eh)(t)

)T ]
. (II.4d)

The terms in the mean-field model can be understood in-368

tuitively as follows. The first two terms on the right-hand369

side of Eq. (II.4a) are simply the dynamics of the sys-370

tem (I.1). The third term resembles the standard nudg-371

ing observer term from control theory, with an ensemble372

Kalman–inspired gain, and the use of noisy simulated373

data, as in the stochastic ensemble Kalman filter.374

In some problems we find that it is beneficial to include375

an additional score-based term in the model, replacing376

Eq. (II.4a) by377

dv = f(v, t) dt+
√
Σ(t) dW +K(t)

(
dz† − dẑ

)
+K(t)Γ(t)K(t)

T∇ log ρ(v, t) dt.
(II.5)

The additional term induces negative diffusion in the378

equation for the density of v, exactly balancing the diffu-379

sion introduced through z† and ẑ. We justify equations380

(II.4) and (II.5) in detail in section IV by building on the381

Fokker–Planck picture in density space.382

C. Particle Approximation of Mean-Field Equation383

In order to tractably implement the mean-field equa-384

tions (II.4), we use a particle (or ensemble) approxima-385

tion. That is, given J particles, we consider the following386

interacting particle system for {v(j)}Jj=1:387

dv(j) = f(v(j), t) dt+
√
Σ(t) dW (j) +K(t)

(
dz† − dẑ(j)

)
,

(II.6a)

dẑ(j) = (EJh)(t) dt+
√
Γ(t) dB(j), (II.6b)

K(t) = (Cvh(t))J Γ(t)−1. (II.6c)

Here EJ denotes expectation with respect to the empirical388

measure formed by equally weighting Dirac measures at389

the particles {v(j)}Jj=1; (C
vh)J denotes the sample cross-390

covariance computed using this empirical measure:391

Cvh(t) = EJ
[(
v(t)− Ev(t)

)(
h(v, t)− (Eh)(t)

)T ]
.392

Note that, unlike the ensemble Kalman filter,393

the predicted observation for each ensemble member,394

Eq. (II.6b), involves the expectation of h over the en-395

semble, instead of the observation operator applied to396

that ensemble member.397

D. Discrete-Time Approximation of Mean-Field Equation398

A discrete-time analogue of Eqs. (II.6) is given by399

v̂
(j)
i+1 = Ψi(v

(j)
i ) + ξ

(j)
i , (II.7a)

v
(j)
i+1 = v̂

(j)
i+1 +Ki+1(y

†
i+1 − ŷ

(j)
i+1), (II.7b)

ŷ
(j)
i+1 = EJ[hi+1(v̂i+1)] + η

(j)
i+1, (II.7c)

Ki+1 = (Ĉvh
i+1)

J((Ĉhh
i+1)

J + (Γd)i+1)
−1, (II.7d)
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where ξ
(j)
i ∼ N (0, (Σd)i), η

(j)
i ∼ N (0, (Γd)i), hi(v) =400

h(v, t), and401

(Ĉvh
i+1)

J = EJ[(v̂i+1 − EJv̂i+1) (II.8)

⊗ (hi+1(v̂i+1)− EJ[hi+1(v̂i+1)])],

(Ĉhh
i+1)

J = EJ[(hi+1(v̂i+1)− EJ[hi+1(v̂i+1)]) (II.9)

⊗ (hi+1(v̂i+1)− EJ[hi+1(v̂i+1)])].

Furthermore, we introduce the following rescalings402

adopted in Law, Stuart, and Zygalakis (2015)3:403

f(·, t) = (Ψi(·)− I·)/τ, z†i+1 − z†i = τy†i+1,

Σ(iτ) = (Σd)i/τ Γ(iτ) = τ(Γd)i, i = t/τ,
(II.10)

Then Eqs. (II.7) can be seen to be a discretization of404

Eqs. (II.6) with time-step τ . More justification is given405

for these rescalings in Salgado, Middleton, and Goodwin406

(1988)48 and Simon (2006)49. Note that both Ki+1 =407

(Ĉvh
i+1)

J (Γd)
−1
i+1 and Eq. (II.7d) are consistent with the408

continuous-time gain as τ → 0. We use the latter, similar409

to the discrete-time Kalman filter.410

E. Score Function Term411

We now discuss further computational issues that arise412

when Eq. (II.4a) is replaced by (II.5). This term involves413

the score function, defined as ∇ log ρ, but with an ad-414

ditional preconditioning. If this term is added to the415

discrete-time particle version of the filter, Eq. (II.7b) be-416

comes417

v
(j)
i+1 = v̂

(j)
i+1 +Ki+1(y

†
i+1 − ŷ

(j)
i+1) (II.11)

+Ki+1(Γd)i+1K
T
i+1(∇ log ρi+1)

J(v̂
(j)
i+1).

where (∇ log ρi+1)
J denotes particle-based approxima-418

tion of the score function using the {v̂(j)i+1}Jj=1. If we419

make the assumption that the density is Gaussian with420

mean Ev and covariance Cvv, the score function takes on421

a simple form,422

∇ log ρ = −(Cvv)−1(v − Ev). (II.12)

A natural particle approximation (∇ log ρ)J follows by re-423

placing the mean and covariance with the corresponding424

quantities computed under the empirical measure of the425

set of particles.426

More general kernel-based nonparametric estimators427

for the score function have been developed, such as those428

defined in Zhou, Shi, and Zhu (2020)50 and implemented429

in the kscore package. In the numerical experiments430

reported in this paper, we either omit the score term431

completely, or use it and employ only the Gaussian ap-432

proximation.433

F. Implementation434

1. Ensemble Square-Root Formulation435

In order to make the method scale well to high dimen-436

sions, an ensemble square-root formulation51 of Eq. (II.7)437

can be used, although we do not use it in the numerical438

experiments reported here. The advantage of this for-439

mulation is that the most expensive linear algebra op-440

erations are rewritten in the ensemble space, resulting441

in favorable computational complexity when J is much442

smaller than the state-space dimension d or observation-443

space dimension p.3444

To implement this method we write (Cvv)J = V V T ,445

(Cvh)J = V Y T , and (Chh)J = Y Y T , where the jth col-446

umn of V and the jth column of Y are given by447

V (j) = (v(j) − EJv)/
√
J − 1,

Y (j) = (h(v(j))− EJh)/
√
J − 1,

(II.13)

respectively. Then, K can be written as448

K = V Y TW, (II.14)

whereW = (Γ−1
d −Γ−1

d Y (I+Y TΓ−1
d Y )−1Y TΓ−1

d ) by the449

Woodbury identity.450

We assume that Γ−1
d is provided and can be applied451

cheaply, for example if it is diagonal. This is a standard452

assumption51. With this expression, K can be computed453

in O(J3 + J2p+ Jp2 + dJp).454

Note that the Gaussian score function approximation455

Eq. (II.12) cannot be applied in cases when J < d, since456

(Cvv)J will be singular. We do not consider the score457

function term in the complexity analysis.458

The complexity is thus a quadratic polynomial in d459

and p, whereas various ensemble square-root filters can460

be implemented to be linear in p and d. The latter rely461

on the fact that the in the standard Kalman filter the up-462

dated covariance can be written as (I −KH)Cvv, where463

H is the observation operator. The EnFPF cannot be464

written in this way. Whether the EnFPF can be refor-465

mulated to be linear in p and d by another approach is a466

topic for future research.467

2. Code468

The open-source Julia code for the EnFPF is avail-469

able at https://github.com/eviatarbach/EnFPF. In470

the numerical experiments that follow, we compute the471

Wasserstein distance (explained in section III) using472

the Python Optimal Transport library52. We used the473

parasweep library to facilitate parallel experiments53.474

3 Note, however, that in many applications with a high-
dimensional state space, the statistics of interest may be rela-
tively low-dimensional, such that the regular version of the algo-
rithm (II.7) will be feasible.
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3. Numerical Methods for the Test Models475

In section III, we will present numerical experiments476

with the Lorenz63, Lorenz96, and Kuramoto–Sivashinsky477

models. We integrate the Lorenz63 and Lorenz96 mod-478

els using the fourth-order Runge–Kutta method, with a479

time step of 0.05 for both. We integrate the Kuramoto–480

Sivashinsky equation in Fourier space using the ex-481

ponential time differencing fourth-order Runge–Kutta482

method54 with 64 Fourier modes and a time step of 0.25.483

III. NUMERICAL EXPERIMENTS484

In this section we present the results of numerical485

experiments applying the discrete-time EnFPF of sec-486

tion IID to the Lorenz63, Lorenz96, and Kuramoto–487

Sivashinsky systems. The first three subsections are de-488

voted, respectively, to these three models; a final fourth489

subsection returns to the Lorenz63 model, with quasiperi-490

odic forcing.491

We found in the experiments that assimilating too of-492

ten can cause degraded results for some systems, as op-493

posed to the situation in standard filtering, where in-494

creased assimilation frequency is typically preferred. In495

the standard filtering problem, there is a single true tra-496

jectory, and under certain conditions the filtering distri-497

bution will converge to this trajectory in the limit of zero498

observational noise3,55. In the non-zero noise case, how-499

ever, the filtered time-series (e.g., the maximum a poste-500

riori estimate) will not even generally be a trajectory of501

the dynamical system, except in methods such as strong-502

constraint 4DVar. Here, we expect that the problem of503

ensemble members deviating from being trajectories can504

be amplified, since the method only aims to match statis-505

tical features of the entire ensemble. Thus, if assimilation506

is done too frequently, then ensemble members may be507

pushed too far from being trajectories into unphysical or508

unstable parts of the phase space. In fact, we found the509

assimilation frequency to be a key tuning parameter. We510

refer to a single forecast–assimilation step (Eqs. (II.7))511

as a cycle, as is common in the DA literature, and each512

cycle lasts for τ time units.513

We found, furthermore, that the score term did not514

consistently improve filtering performance. In the exper-515

iments that follow, we omit the score term except in the516

experiments with the Kuramoto–Sivashinsky system in517

section III C, where it leads to clear improvements when518

used, together with the Gaussian approximation, in the519

form Eq. (II.12). For both the Lorenz models we found520

that the inclusion of the Gaussian approximation of the521

score degraded performance and that use of the kernel-522

based score approximations, based on the paper of Zhou,523

Shi, and Zhu (2020)50, was no better than simply omit-524

ting the term altogether.525

In the experiments below, we use a Wasserstein metric526

to quantify the distance between the ensemble distribu-527

tion and the invariant density. We estimate the invariant528

density using an ensemble integrated for a sufficiently529

long time. We employ the W1 Wasserstein metric which530

allows us to compute distances between empirical distri-531

butions. The code for computing this distance is readily532

available (see II F 2).533

A. Lorenz63 Model534

For the experiments in this subsection, we use the535

Lorenz (1963)56 model536

dx

dt
= σ(y − x),

dy

dt
= x(r − z)− y,

dz

dt
= xy − βz,

(III.1)

with the standard parameter values σ = 10, r = 28, and537

β = 8/3.538

1. Assimilating Time-Varying Means and Second539

Moments540

We first verify the ability of the EnFPF to force an541

ensemble to adopt time-varying statistics. We do this542

by applying the EnFPF to a 10-member ensemble, with543

noisy statistical observations of the means and uncen-544

tered second moments of the three variables coming from545

a 100-member ensemble being evolved concurrently. The546

difference between the statistics computed over the 10-547

and 100-member ensembles arise due to both sampling548

errors and different initial conditions. The 100-member549

ensemble (despite having its own sampling error) better550

approximates the true statistics of the system, and we551

view these 100-member ensemble statistics as the truth,552

based on which we may compute errors in the statistics of553

10-member ensembles. We assimilate observations every554

0.2 time units, with an observation error covariance set555

to 20% of the time variability of each statistic computed556

over the 100-member ensemble.557

Figure 2 shows the resulting error in the means and558

second moments of the 10-member ensemble, compared559

with the errors arising from an unfiltered run of the 10-560

member ensemble; in both cases the errors are computed561

by comparison with the 100-member ensemble. After562

several cycles, the filter appears to reach an asymptotic563

error on the order of the observation error, and this error564

is significantly lower than that arising in the unfiltered565

case.566

Table I shows the impact of the observation error co-567

variance magnitude on the filtering performance. The568

set-up is otherwise the same as that described above. As569

expected, the error increases as Γ is increased, although570

still outperforming the unfiltered ensemble.571

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
71

82
7



8

FIG. 2: The impact of filtering on the root-mean-square
error (RMSE) in the mean and second moment in the

Lorenz63 model.

FIG. 3: The estimated Wasserstein distance to the
invariant density in Lorenz63, in unfiltered and filtered

cases. For the filtered case, the first and second
moments are assimilated. Each curve is averaged over

10 different initializations.

2. Accelerating Convergence to the Invariant Density572

We now test the ability of the EnFPF to accelerate573

convergence to the invariant density. We assimilate ob-574

servations of fixed statistics of the invariant density, the575

means and second moments of the three variables, into a576

100-member ensemble. We use the same assimilation fre-577

quency and observation error as in subsubsection IIIA 1.578

Figure 3 shows the impact of the EnFPF on the con-579

vergence to the invariant density. In this case, we only580

apply the EnFPF for the first 30 cycles (indicated by the581

pink rectangle), and then let the ensemble evolve under582

the regular Lorenz63 dynamics. We see that the EnFPF583

Means
Observation error Filtered RMSE

10% (0.088) 0.11

35% (0.31) 0.40

60% (0.53) 0.69

85% (0.75) 0.97

Second moments

Observation error Filtered RMSE

10% (2.8) 20

35% (9.9) 23

60% (17) 29

85% (24) 35

TABLE I: The impact of the observation error
covariance on filtering performance. In the first column
are the percentages of the standard deviation of the
time variability of each statistic taken to be the

observation error, and in parentheses the square root of
the total variance of the observation error in the

statistic. With no filtering, the RMSE is 2.5 in the
unfiltered means and 73 in the second moments. The
RMSE is averaged over 1400 cycles after 100 transient

cycles.

leads to a more rapid convergence: by the end of the fil-584

tering period, the distance is close to the asymptotic one,585

while it takes at least 100 cycles for the unfiltered case586

to reach the same. Figure 4 visualizes in state space this587

rapid convergence toward the invariant density via the588

EnFPF.589

3. Impact of Higher-Order Moments590

Figure 5 shows the convergence to the invariant mea-591

sure of Lorenz63 with different assimilated moments of592

x and y, namely the first, first and second, and first,593

second, and third marginal moments. Assimilating the594

first-order moments accelerates the convergence to the in-595

variant measure compared to the unfiltered case. Adding596

the second and third order moments appears to result597

in the most rapid initial rate of convergence, and after598

about 50 cycles assimilating the first two and the first599

three moments leads to a similar asymptotic distance to600

the invariant measure.601

B. Lorenz96 Model602

We now test the convergence to the invariant density603

of the Lorenz (1996)57 model604

dxi
dt

= −xi−1(xi−2 + xi+1)− xi + F, (III.2)
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FIG. 4: Top panel: an ensemble evolving in time from left to right, superimposed on the invariant density of
Lorenz63 in the x− z plane. Orange corresponds to higher probability density and blue to lower. Bottom panel: the

same, but with the EnFPF applied.

FIG. 5: The estimated Wasserstein distance to the
invariant density in Lorenz63, in unfiltered and filtered
cases when different moments are assimilated. The

curves are averaged over 25 initial conditions, and the
shaded areas correspond to ± the standard error over
the initializations. Here, for the filtered cases, the

EnFPF is applied at every cycle.

where the indices i range from 1 to D and are cyclical.605

We use F = 8 and D = 40 variables. This is a model of606

an atmospheric latitude circle that is commonly used in607

data assimilation experiments.608

We assimilate the means and second moments of the609

40 variables on the invariant density, with an observation610

error covariance of 20% of the temporal variability of the611

statistics computed over a 100-member ensemble. We612

assimilate every 0.05 time units into a 100-member en-613

semble for 40 cycles. Figure 6 shows that the convergence614

towards the invariant density is thereby significantly ac-615

celerated.616

FIG. 6: The estimated Wasserstein distance to the
invariant density in Lorenz96, in unfiltered and filtered

cases. For the filtered case, the first and second
moments are assimilated. Here, we show the mean of

the Wasserstein distances corresponding to the marginal
density for each variable.

C. Kuramoto–Sivashinsky Model617

We now carry out experiments with the Kuramoto–618

Sivashinsky model, a chaotic partial differential equation619

in one spatial dimension:620

ut + uxxxx + uxx + uux = 0, x ∈ [0, L]. (III.3)

We use L = 22 and periodic boundary conditions, dis-621

cretized using 64 Fourier modes (see II F 3 for details on622

the numerical method).623

We assimilate the means and second moments of the624

invariant density of the 64 variables in physical space,625

every 2.0 time units. We assimilate for 30 cycles using626

a 100-member ensemble, and again use an observational627
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FIG. 7: The estimated Wasserstein distance to the
invariant density in the Kuramoto–Sivashinsky

equation, in unfiltered and filtered cases. For the filtered
case, the first and second moments are assimilated.
Here, we show the mean of the Wasserstein distances

corresponding to the marginal density for each variable.

error covariance of 20% of the temporal variability. Fig-628

ure 7 shows the results with and without the score term629

included. In both cases, there is an acceleration com-630

pared to the unfiltered case; inclusion of the score term631

considerably accelerates convergence.632

D. Time-Dependent Invariant Measures633

We now use the Lorenz63 model (Eq. (III.1)), but with634

the r parameter subject to quasiperiodic forcing, as in635

Daron and Stainforth (2015)22:636

r(t) = 28 + sin (2πt) + sin
(√

3t
)
+ sin

(√
17t

)
. (III.4)

Since this system is non-autonomous, it possesses for637

each time t a pullback attractor with a corresponding638

time-dependent invariant measure, as discussed in sec-639

tion IB. The measure at time t can be approximated by640

the empirical density at time t of an ensemble initialized641

sufficiently far back in time, at t − T for some large T .642

Here, we evolve a 100-member ensemble using T = 500643

time units to approximate the invariant measures at time644

t. Then, we evolve the ensemble for the additional time645

period of t to t + 20 to obtain approximations to the646

invariant measures in this period.647

We evolve two separate 100-member ensembles for the648

same time period t to t+20, but with T = 0 (no spin-up).649

We apply the EnFPF to one of these ensembles and not650

the other. For the EnFPF, we assimilate every 0.05 time651

units with an observation error covariance of 20% of the652

temporal variability. We then measure the distance be-653

tween the empirical densities of these two ensembles and654

the one approximating the invariant measure described655

in the previous paragraph.656

Figure 8 shows that the convergence to the time-657

dependent invariant measures is indeed accelerated by658

the EnFPF, reaching a comparable asymptotic distance659

to the invariant measure in less than half the time.660

FIG. 8: The estimated Wasserstein distance to the
invariant density in the non-autonomous Lorenz63

model, in unfiltered and filtered cases. For the filtered
case, E[xi], E[yi], and E[zi] for i = 1, 2, 3 are assimilated.

IV. JUSTIFICATION OF ALGORITHM661

A. Kalman–Bucy (KB) Filter for Densities662

Since both the Fokker–Planck equation (I.5) and the663

observation equation (II.2) are linear, and since all noise664

is additive Gaussian, the conditional probability measure665

over densities, ρ|Z†(t), is a Gaussian. This filtering prob-666

lem can be solved using a Kalman–Bucy filter in Hilbert667

space, posing significant challenges because it involves668

finding a sequence of probability measures on an infinite-669

dimensional space of functions (densities).670

We start by defining the Hilbert space H = L2(Rd,R)671

with inner product672

⟨a, b⟩H ≡
∫
ab dv. (IV.1)

We consider density functions ρ ∈ H, and we require673

that ρ(v, t) → 0 as v → ∞. Note that we will some-674

times use this inner product in situations where one of675

the arguments is only locally square integrable; in partic-676

ular we will need to use the constant function 1(v) = 1.677

To distinguish them from the Hilbert space inner prod-678

uct, we denote the standard Euclidean inner product in679

Rp as ⟨·, ·⟩Rp and the weighted Euclidean inner product,680

defined for any strictly positive-definite and symmetric681

A ∈ Rp×p, as ⟨·, ·⟩A ≡ ⟨A−1/2·, A−1/2·⟩Rp .682

Recall definition Eq. ((I.5)b) of the adjoint of the gen-683

erator L. We are given the dynamics and observation684

equations (I.5) and (II.2):685

dρ†(v, t) = L∗(t)ρ†(v, t) dt, (IV.2)

dz†(t) = H(t)ρ†(v, t) dt+
√
Γ(t)dB. (IV.3)

Then, given all observations up to time t, Z†(t) =686

{z†(s)}s∈[0,t], the filtering distribution is given by687

ρ(·, t)|Z†(t) ∼ µ(t) ≡ N
(
m(t), C(t)

)
, (IV.4)

whereN is a Gaussian measure onH with meanm(t) and688

covariance operator C(t). For notational simplicity, we689
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have dropped the explicit dependence of m(t), C(t), and690

ρ(t) on v. Here C ∈ L(H,H) is necessarily self-adjoint691

and trace class58; that is, tr(C) <∞. In what follows the692

expectation Eµ is defined with respect to the measure µ693

on the space of L2 densities ρ.694

Using Theorem 7.10 in Falb (1967)59, the KB filter for695

this system can be written as696

dm(t) = L∗(t)m(t) dt (IV.5a)

+ C(t)H∗(t)Γ(t)−1
(
dz†(t)−H(t)m(t)

)
dt,

dC(t) = L∗(t)C(t) dt+ C(t)L(t) dt (IV.5b)

− C(t)H∗(t)Γ(t)−1H(t)C(t) dt,

m(0) = m0, C(0) = C0, (IV.5c)

where697

C(t) = cov(ρ(t)−m(t), ρ(t)−m(t)), (IV.6)

and698

cov(x, y) ≡ Eµ[x⊗ y]− Eµ[x]⊗ Eµ[y]. (IV.7)

The outer-product x1 ⊗ y1 is defined by the identity699

(x1 ⊗ y1)x = x1⟨y1, x⟩H (IV.8)

holding for all x ∈ H. Note that Falb (1967)59 requires700

boundedness of L∗, but the results have been extended to701

unbounded operators60. However, we still require bound-702

edness of H. For the rest of the paper, we will assume703

that H takes the form in Eq. (II.3).704

The adjoint operator H∗ is then given by705

H∗(t)u = ⟨h(v, t), u⟩Rp , (IV.9)

for u ∈ Rp. Note that, formally, H∗(t)u is to be viewed706

as a function of v, in the space H.707

In general the solution of Eq. (IV.5a), m(t), will not708

be normalized. However, in Appendix A we show that709

normalization is preserved under certain conditions on710

the initializations m0 and C0 from Eq. (IV.5c). How-711

ever, m(t) is not guaranteed to be non-negative for all v712

and t, and thus cannot be a proper probability density.713

Nonetheless, we can still consider integrals against it.714

B. Ansatz and Relation to KB Filter for Densities715

Solving the KB filter equations directly is intractable.716

We therefore seek an equation which is amenable to a717

mean-field model, which in turn can be approximated by718

a particle system. We propose the following ansatz for719

the density of v|Z†(t):720

∂ρ

∂t
= L∗(t)ρ+

〈
h(v, t)−H(t)ρ,

dz†

dt
−H(t)ρ

〉
Γ(t)

ρ.

(IV.10)
Note the similarity to the Kushner–Stratonovich (KS)721

equation (II.1). Although the solutions of this equation722

do not match the KB filter for densities in general, we723

show in Theorem 1 that they coincide in observation724

space for linear f and h, under additional assumptions725

detailed there. The proof sketch is provided in Appendix726

B.727

C. Mean-Field Approximation728

We would now like to find a mean-field model which729

has, as its FP equation, Eq. (IV.10). We postulate the730

following form:731

dv = f(v, t) dt+
√
Σ(t) dW + a(v, ρ, t) dt (IV.11)

+K(v, ρ, t)
(
dz† −H(t)ρ(v, t) dt−

√
Γ(t)dB

)
.

Specifically, we aim to choose the pair of functions (a,K)732

so that the Fokker–Planck equation for v governed by733

this mean-field model coincides with Eq. (IV.10). In Ap-734

pendix C we detail the choices which achieve this and,735

after making a further approximation of K, we obtain736

equations (II.4) with (II.4a) replaced by (II.5). How-737

ever, as explained there, in many cases use of Eq. (II.4a),738

which corresponds to setting a ≡ 0 and using a simple ap-739

proximation of K, leads to algorithms which empirically740

perform well.741

V. CONCLUSIONS742

In this paper we introduce the Fokker–Planck filtering743

problem, which consists of estimating the evolving proba-744

bility density of a (possibly stochastic) dynamical system745

given noisy observations of expectations evaluated with746

respect to it. We provide a solution for this problem using747

the KB filter in Hilbert space, and introduce an ensemble748

algorithm, the ensemble Fokker–Planck filter (EnFPF),749

that approximates it under conditions on the dynamics750

and observables. We also show, through numerical exper-751

iments, that this method can be used to accelerate con-752

vergence to the invariant measure of dynamical systems,753

and that this acceleration phenomenon applies beyond754

the conditions on the dynamics and observables required755

to provably link the KB filter and the mean-field model756

underlying our proposed ensemble method.757

Future work will test this method on higher-758

dimensional models, such as turbulent channel flows and759

ocean models. Other future directions, as described in760

section IB, include: (i) the testing of this method as an761

approach to counteract model error; (ii) use in parameter762

estimation; and (iii) use in the acceleration of sampling763

methods such as Langevin dynamics and Markov chain764

Monte Carlo when some statistics of the target density765

are known. Furthermore, many of the numerical results766

require deeper understanding; these include the impact of767

the assimilation frequency, the score term, and the incor-768

poration of higher-order moments, or other observables,769
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on the filter performance. Finally, on the theoretical side,770

there is a considerable need for deeper analysis.771
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Appendix A: Properties of the KB Filter for Densities979

Lemma 1 and Remark 2 below give the conditions un-980

der which m(t) and ρ(t) ∼ N (m(t), C(t)) will be nor-981

malized. The function 1 is defined as 1(v) ≡ 1 for all982

v.983

Lemma 1. Assume that ρ(0) ∼ µ(0) = N (m0, C0) with984 {
⟨m0,1⟩H = 1,

C01 = 0.
(A.1)

Then, for m(t) and C(t) satisfying equations (IV.5a)–985

(IV.5c),986

(a) C(t)1 = 0 for all t ≥ 0, and987

(b) ⟨m(t),1⟩H = 1 for all t ≥ 0.988

Proof. (Sketch)989

(a) Since L1 = 0, we have990

d

dt
(C1) = L∗C1− CH∗Γ−1HC1. (A.2)

Assuming uniqueness of the solution to the equa-991

tion (IV.5b) for the evolution of C(t), we deduce992

that C(t)1 = 0 solves Eq. (A.2).993

(b) Applying Itô’s lemma to ⟨m,1⟩H (the Itô correc-994

tion does not appear due to linearity of the inner995

product),996

d

dt
⟨m,1⟩H = ⟨L∗m,1⟩H +

〈
CH∗Γ−1(dz† −Hm),1

〉
H ,

= ⟨m,L1⟩H +
〈
H∗Γ−1(dz† −Hm), C1

〉
H ,

= 0,
(A.3)

since L1 = 0, C is self-adjoint by construction,997

and C1 = 0 by (a). Now assuming uniqueness998

of the equation (IV.5a) for m(t) we find that,999

⟨m(t),1⟩H = 1 solves Eq. (A.3).1000

1001

Remark 2. If the conditions in Eq. (A.1) hold then1002

⟨ρ(t),1⟩ = 1 for t ≥ 0 almost surely, where ρ(t) ∼ µ(t) =1003

N (m(t), C(t)). This is because 1 is in the null-space of1004

both the symmetric operator square-root of C(t),
√
C(t),1005

and1006

ρ(t) = m(t) +
√
C(t)ξ, (A.4)
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where ξ ∼ N (0, I). Thus1007

⟨ρ(t),1⟩H = ⟨m(t),1⟩H + ⟨
√
C(t)ξ,1⟩H,

= 1 + ⟨ξ,
√
C(t)1⟩H,

= 1.

(A.5)

This explains the importance of the conditions in1008

Eq. (A.1): they ensure that ρ(t) is normalized.1009

Appendix B: Theorem 11010

Theorem 1. Assume that:1011

1. The system dynamics f and h are linear in state1012

space: f(v, t) = LT v and h(v, t) = Hv, with injec-1013

tive H.1014

2. Σ = 0.1015

3. ρ(0) is chosen such that its mean m(0) and covari-1016

ance C(0) satisfy1017 {
Hm(0) = Hm0,

HC(0)HT = HC0H
∗.

(B.1)

4. m(t) stays in the subspace1018

S ≡
{
u ∈ H

∣∣∣∫ |u(v)|vivjdv <∞ ∀i, j ∈ {1, . . . , d}
}

and C(t) stays in L(S,S), the space of bounded lin-1019

ear operators from S into itself.1020

Then, under the same noise realization for Z†,1021

Hm(t) = Hm(t) and HC(t)HT = HC(t)H∗ will hold for1022

t ≥ 0, where m(t) and C(t) are the mean and covariance1023

of ρ(t) obtained from Eq. (IV.10), and m(t) and C(t) are1024

given by the KB filter for densities (IV.5a)–(IV.5c).1025

Proof. (Sketch)1026

We give here the outlines of a proof, but a rigorous1027

proof, as well as analysis of whether the equivalence holds1028

in any setting more general than the above restrictive1029

conditions, will require considerably more work.1030

We consider the evolution of the mean and covariance1031

of the KB filter for densities (Eqs. (IV.5a) and (IV.5b))1032

projected into observation space:1033

d(Hm) = HL∗mdt+HCH∗Γ−1(dz† −Hmdt),
(B.2a)

d(HCH∗) = HL∗CH∗ dt+HCLH∗ dt

−HCH∗Γ−1HCH∗ dt, (B.2b)

where H(t) = H is not time-dependent because h(v, t) =1034

h(v) = Hv. These equations now describe the time evolu-1035

tion of the finite-dimensional quantities Hm and HCH∗.1036

Now, imposing f(v, t) = LT v and h(v, t) = Hv on the1037

ansatz (Eq. (IV.10)), the time evolution of ρ can be en-1038

tirely characterized by its mean and covariance, and we1039

obtain the following equations for them:1040

dm = LTm dt+ CHTΓ−1(dz† − Hm dt), (B.3a)

dC = LTC dt+ CL dt− CHTΓ−1HC dt, (B.3b)

where m ≡ E[v] and C ≡ E[(v − m)(v − m)T ]. A simi-1041

lar calculation is made in, e.g., section 7.4 of Jazwinski1042

(1970)1. In observation space, we have that1043

d(Hm) = HLTm dt+ HCHTΓ−1(dz† − Hm dt),
(B.4a)

d(HCHT ) = HLTCHT dt+ HCLHT dt

− HCHTΓ−1HCHT dt. (B.4b)

We would now like to show that Hm(t) = Hm(t) and1044

HC(t)HT = HC(t)H∗ for all t ≥ 0. We do this by1045

showing that the RHS of Eqs. (B.2a) and (B.2b) are1046

equal to the RHS of Eqs. (B.4a) and (B.4b) at time t∗1047

if Hm(t∗) = Hm(t∗) and HC(t∗)HT = HC(t∗)H∗. To-1048

gether with the initial conditions (B.1) and uniqueness,1049

this proves the theorem.1050

It follows immediately that1051

HC(t∗)H∗Γ−1

[
dz†

dt
−Hm(t∗)

]
= HC(t∗)HTΓ−1

[
dz†

dt
− Hm(t∗)

]
,

(B.5)

and that1052

HC(t∗)H∗Γ−1HC(t∗)H∗ = HC(t∗)HTΓ−1HC(t∗)HT .
(B.6)

Note that1053

Hm(t∗) = Hm(t∗),

= H

∫
vm(t∗) dv,

(B.7)

which implies that1054

m(t∗) =

∫
vm(t∗) dv, (B.8)

because H was assumed to be injective.1055

We proceed with the rest of the terms. For the first1056

term of the RHS of Eq. (B.2a),1057

HL∗m = H

∫
vL∗mdv,

= −H

∫
v∇ · (mf) dv,

= −HLT
∫
v∇ · (mv) dv,

= HLT
∫
vmdv,

= HLTm,

(B.9)Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
71

82
7



15

where the fourth line follows from integration by parts,1058

and the last from Eq. (B.8). Note that the boundary term1059

in the integration by parts vanishes from assumption 4.1060

Thus,1061

HL∗m = HLTm. (B.10)

It remains to show that HL∗C(t∗)H∗ = HLTC(t∗)HT .1062

We have that for any u,1063

HC(t∗)H∗u = H

∫
vC(t∗)H∗u dv = HC(t∗)HTu.

(B.11)

Since H was assumed to be injective,1064

∫
vC(t∗)H∗u dv = C(t∗)HTu. (B.12)

Then, for any w,1065

HL∗C(t∗)H∗w = H

∫
vL∗C(t∗)H∗w dv

= −H

∫
v∇ · (C(t∗)H∗wLT v) dv

= HLT
∫
vC(t∗)H∗w dv

= HLTC(t∗)HTw
(B.13)

where the third line follows from integration by parts1066

(with the boundary term vanishing by the same argument1067

as above), and the last line from Eq. (B.12). Taking the1068

adjoint demonstrates that HC(v, t∗)LH∗ = HC(t∗)LHT ,1069

completing the proof.1070

Appendix C: Mean-Field Approximation1071

We omit the function arguments until the end of the1072

subsection, for brevity. Using Eq. 3.30 from Calvello,1073

Reich, and Stuart (2022)9, we know that the FP equation1074

of Eq. (IV.11) when f(v, t) = 0 and Σ = 0 is1075

∂ρ

∂t
= −∇ · (ρ(a−KHρ))−

〈
∇ · (ρKT ),

dz†

dt

〉
+∇ ·

(
∇ · (ρKΓKT )

)
. (C.1)

We now match the terms of Eqs. (C.1) and (IV.10)1076

to make them equal. By matching the terms involving1077

dz†/dt, we obtain that1078

Γ−1(h−Hρ)ρ = −∇ · (ρKT ), (C.2)

and matching the rest of the terms,1079

−ρ⟨h−Hρ,Hρ⟩Γ = −∇·(ρ(a−KHρ))+∇·(∇·(ρKΓKT )).
(C.3)

Substituting Eq. (C.2) into Eq. (C.3), we obtain1080

⟨∇ · (ρKT ), Hρ⟩ = ∇ · (ρKHρ)
= −∇ · (ρ(a−KHρ))

+∇ · (∇ · (ρKΓKT )).

(C.4)

Setting the term in the divergence to 0, we obtain1081

a = KΓKT∇ log ρ. (C.5)

This is the origin of the score function term discussed in1082

subsection II E.1083

We propose a test function ψ(v) = v − Ev, take the1084

outer product of it with both sides of Eq. (C.2), and1085

integrate by parts, obtaining the identity1086

EK = E[ψ(h−Hρ)T ]Γ−1 = CvhΓ−1, (C.6)

where Cvh(t) ≡ E[(h(v, t)−Hρ)(h(v, t)−Hρ)T ].1087

Fixing the value of the gain K to its expectation (the1088

constant gain approximation discussed in Calvello, Reich,1089

and Stuart (2022)9), we then obtain1090

K(t) = Cvh(t)Γ(t)
−1
. (C.7)

Thus, the mean-field model is1091

dv = f(v, t) dt+
√
Σ(t) dW +K(t)

(
dz† − dẑ

)
+K(t)Γ(t)K(t)

T∇ log ρ(v, t) dt,

dẑ = (Eh)(t) dt+
√
Γ(t)dB,

which gives Eqs. (II.4), with (II.4a) replaced by (II.5).1092
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