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Forecasting blood glucose (BG) levels with routinely collected data is useful for glycemic management. BG dynamics
are nonlinear, complex, and nonstationary, which can be represented by nonlinear models. However, the sparsity of
routinely collected data creates parameter identifiability issues when high-fidelity complex models are used, resulting in
inaccurate forecasts. One can use models with reduced physiological fidelity for robust and accurate parameter estimation
and forecasting with sparse data. For this purpose, we approximate the nonlinear dynamics of BG regulation by a linear
stochastic differential equation: we develop a linear stochastic model, which can be specialized to different settings: type
2 diabetes mellitus (T2DM) and intensive care unit (ICU), with different choices of appropriate model functions. The
model includes deterministic terms quantifying glucose removal from the bloodstream through the glycemic regulation
system and representing the effect of nutrition and externally delivered insulin. The stochastic term encapsulates the
BG oscillations. The model output is in the form of an expected value accompanied by a band around this value. The
model parameters are estimated patient-specifically, leading to personalized models. The forecasts consist of values for
BG mean and variation, quantifying possible high and low BG levels. Such predictions have potential use for glycemic
management as part of control systems. We present experimental results on parameter estimation and forecasting in
T2DM and ICU settings. We compare the model’s predictive capability with two different nonlinear models built for
T2DM and ICU contexts to have a sense of the level of prediction achieved by this model.

Our goal is to robustly model and forecast blood glu-
cose (BG) levels of patients using sparse, routinely col-
lected data. Human glycemic regulation is a nonlinear
and coupled dynamical system whose main components
(BG, plasma and interstitial insulin levels) form complex
feedback loops complexified by time delays. Glycemic
dynamics of diabetes and critically ill patients are even
more chaotic, nonstationary, and effected by several case-
specific factors. Forecasting BG levels of patients is useful
for glycemic management. However, routinely collected
data in either setting are sparse and not sufficient for fore-
casting using high-fidelity, nonlinear models. Thus, we
approximate these complex and nonlinear dynamics by a
physiology-based, relatively simple, linear, and stochastic
model representing BG dynamics. Because of the com-
plexity of the BG regulation, unmeasured but important
variables such as plasma and interstitial insulin, unmod-
eled variables such as exercise and drug interventions, and
the sparsity of routinely collected data, robust BG trajec-
tory forecasting can be difficult, especially without careful
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hand-tuning of parameters. We soften the trajectory fore-
casting using ordinary differential equation (ODE) models
to forecasting the mean and variation of glycemic response
to observable inputs (nutritional intake and exogenous in-
sulin) using stochastic differential equations (SDEs) that
can provide sufficient resolution for plausible glycemic
management. Specifically, we develop a SDE model of BG
that incorporates minimal but present physiological me-
chanics that can robustly forecast the mean and variance
of BG based on past BG measurements, nutritional intake,
and exogenous insulin data. The aim and constraints of
our goal inform our modeling approach: we model the BG
levels as a diffusion process with the mean BG behavior
modeled by the drift term and the nonlinear oscillatory dy-
namics with the diffusion term. The resulting model has a
small number of low-fidelity, physiologically interpretable
parameters. These parameters do not represent any spe-
cific physiological processes, such as insulin sensitivity but
rather bulk processes, such as the rate of return to BG
homeostasis. This loss in physiological fidelity results in
a substantial gain: one can estimate all unknown model
parameters robustly with data, eliminating the need for
parameter hand-tuning. This feature of the model yields
the potential for the model’s use for patient and provider-
based glycemic management. While results include the de-
velopment of a new SDE model of the glucose system, a
key finding from this work is that, given real world data,
the model can be analytically estimated resulting in low
and robust mean squared error between the mean model
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Minimal Stochastic Glucose Model 2

output and BG measurements and accurate BG variability
prediction.

I. INTRODUCTION

A. Background

A high-fidelity physiology-based mechanistic model cou-
pled with data sampled at sufficient frequency provides accu-
rate prediction. However, in real world settings human phys-
iological data are often too sparse to accurately resolve high-
fidelity physiological models. Moreover, such measurement
sparsity can induce severe model unidentifiability, resulting
in non-robust predictive performance. To reduce this prob-
lem, there are two approaches. One approach is to constrain
inference.1 The other approach, and the approach we take here,
is to focus on applying model reduction and stochastic closure
techniques. This comes with the cost of reduced physiological
fidelity. However, we find that the tradeoff between reduced
model complexity versus model estimability is effective, espe-
cially when data are sparse and noisy, the underlying system is
highly complex, and not fully understood. The human glucose-
insulin system provides an important example of this challenge.
In many settings, insulin (plasma or interstitial insulin) is rarely
measured outside of highly specialized research settings. Con-
ceptually, this unobserved but important missing dynamical
variable leads to our reduced model becoming a glucose model
rather than a glucose-insulin model where we treat insulin
impact as a bulk glucose removal process.

The dynamics of human glycemic regulation show very com-
plex nonlinear behavior, which could be represented accurately
by a high-fidelity nonlinear deterministic model. However, be-
cause of constraints and limitations described above, we aim to
explore another approach: to develop a mathematically simpler
mechanistic model. This approach will reduce model unidenti-
fiability with available sparse data at the cost of reduced fidelity
to a level, which still achieves robust and accurate BG forecast-
ing. Therefore, we approximate this nonlinear system using an
Ornstein-Uhlenbeck process (a linear SDE with exponential
mean-reversion), and introduce forcing terms that parameterize
exogenous effects of nutrition and medication. The resulting
model represents the mean BG behavior and a confidence re-
gion quantifying the amplitude of the BG oscillations. With
appropriate adjustments, the model can be used to represent
and forecast BG levels in two different settings: outpatient type
2 diabetes mellitus (T2DM) and inpatient intensive care unit
(ICU). The BG levels of patients in these two settings exhibit
characteristically different behavior.

B. Clinical Settings

Glucose dynamics in T2DM setting are driven by a com-
bination of diet, activity, time delay for the effect of insulin
on glucose production, medication, and internal physiology.

Here, we specifically focus on modeling the effect of carbohy-
drate intake on glycemic levels of people with T2DM. The BG
levels of T2DM patients show non-stationary behavior over
long time-scales reflecting gradual changes in the health con-
dition. The observable BG behavior change could occur over
time-scales on the order of months. Therefore, it is possible
to capture system dynamics with a mechanistic model over
shorter time intervals, i.e., weeks, and use that information to
forecast BG levels over the following few weeks. This type
of predictive tool would be beneficial for T2DM patients in
managing their disease. Thus, in this setting, we design the
predictive framework to provide decision aid to T2DM patients
in self-management.

Patients in the ICU typically have much more volatile physi-
ological dynamics for at least four reasons: glycemic dynamics
under continuous feeding are oscillatory, time delay of insulin
on glucose production, the patients are acutely ill and their
health state changes quickly because of their disease state, and
the patients often receive dextrose-containing fluids and medi-
cations that impact glycemia such as glucocorticoids. These
patients’ BG levels change rapidly and are often non-stationary
in complex ways and on different time scales. On slower time
scales, patients eventually leave the ICU because their health
either improves or declines. But there can be fast time scale
changes too due to interventions and/or sudden health-related
events, such as a stroke. These health changes will lead to
changes in the best-fit parameters of the model. In other words
the patient-specific model itself may change abruptly, in con-
trast to the T2DM case. Also, on average, 8-10% of the ICU
patients are diabetic and only 5% of those are T1DM patients.
However, more than 90% of ICU patients require glycemic
management and 10-20% of them experience a hypoglycemic
event over the course of management. Consequently, regard-
less of being diabetic or non-diabetic, they are typically given
IV insulin to control BG levels.

More detail about these clinical settings can be found in
Appendix A.

C. Literature Review

Researchers have developed various mathematical models
ranging from extremely simple to highly complex, using ODEs
and machine learning (ML) to predict and describe human glu-
cose metabolism. We discuss these efforts organized according
to model usage.

Some mechanistic models are developed to investigate a
specific phenomenon of the glucose-insulin system such as to
understand the different phases of insulin secretion with respect
to different glucose stimulation patterns, to estimate insulin
sensitivity in the intravenous glucose tolerance test (IVGTT)
setting, and to elucidate the cause of the ultradian (long-period)
oscillations of insulin and glucose.2–8 Others have developed
models by clinically minded motivations to describe β -cell
mass, glucose, and insulin dynamics and to investigate T2DM
pathophysiology.9–12 Some researchers developed models to
describe the underlying system in more detailed way such as
the events that occur during oral glucose ingestion,13,14 or rele-
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Minimal Stochastic Glucose Model 3

vant organ systems.15 Mari et al. provides a nice review of the
models developed for clinical and physiological investigation
of BG homeostasis and T2DM.16.

Researchers have developed mechanistic models to address
challenges including fast evolution of the underlying system
(parameter variation in time), wide variation in clinical re-
sponse within and between patients, sparse measurements, and
concerns about safety issues with the goals of prediction and
control of BG levels.17–27 Others developed stochastic (mecha-
nistic) models with the same purpose.28–34

Glucose control based on mechanistic modeling is the focus
of the artificial pancreas (AP) project in the type 1 diabetes
mellitus (T1DM) setting. An artificial pancreas consists of a
glucose sensor, an insulin pump, and a mathematical model-
based algorithm to predict optimal amount of insulin deliv-
ery. These devices are currenly used by T1DM patients to
regulate their BG levels.35–37 Several nonlinear and complex
models of glucose-insulin dynamics are devleoped to be used
within AP systems.38–42 There are also nonlinear but relatively
simple models43,44 and linear models45 developed to reduce
parameter identifiability issues and computational cost. Ac-
countig for the physiological effects of exercise on glucose-
insulin regulation is important for accurate insulin delivery
during exercise for T1DM patients. Others developed mod-
els to represent the system dynamics during exercise.44,46,47

On the other handm some models are developed to provide a
virtual testing environment for closed-loop glucose regulation
algorithms.48,49 Chee et al. gives a comprehensive range of BG
control algorithms.50 Finally, other researchers conducted clini-
cal trials to compare the efficacy between different closed-loop
artificial pancreas systems and sensor-assisted pump therapy
for T1DM patients.51–55

ML approaches have been proposed in pure prediction tasks
such as predicting next glucose values or hypoglycemia. For
these purposes, some researchers used classification methods
and neural network models,56–62 while others used ARIMA
(auto-regressive integrated moving average) and linear regres-
sion models.63–70

Finally, Miller et al. developed a hybrid model balancing a
physiological and statistical model of glucose-insulin dynamics
to forecast long-term BG levels of T1DM patients based on
real-world data, showing the possibility of outperforming the
forecasting of BG levels obtained by either pure physiological
or pure statistical models alone.71

Patient-centered disease self-management is a crucial tool
to improve health condition of patients focusing on their needs,
life style, and preferences. Some researchers investigated tech-
niques for effective self glycemic management and developed
computational model-based decision support tools for T2DM
patients.72–81

In all of the models discussed above, parameter estimation
plays a vital role in the accuracy of predictions. Parameters
are rarely directly measurable, and their values will vary from
one patient to another. There are two overarching approaches
to estimating parameters, optimization where a model-data
mismatch is minimized to determine parameters,82 and the
Bayesian approach83 where the distribution of the parame-
ters, given the data and given the assumed (noisy) model-data

framework, is computed. Researchers used various approaches
for parameter estimation. The most common approaches are
the standard least squares optimization,18,84 nonlinear least
squares optimization,85 and Bayesian approach to estimate
both time-invariant and time-varying model parameters.86

D. Our Contribution

Our contribution in this paper is summarized below.

• We develop a simple, interpretable, modeling framework
limited to states and parameters that are directly observ-
able or inferable from data for prediction within the
human glucose-insulin system, based on a continuous
time linear, Gaussian, stochastic differential equation
(SDE) for glucose dynamics, in which the effect of in-
sulin appears parametrically.

• We completely describe the necassary inference
machinery—in a data assimilation and inverse problems
framework—to estimate a SDE model of glucose dy-
namics with real-world data.

• The framework is sufficiently general to be usable within
the ICU, T2DM, and potentially T1DM settings.

• The model has analytical solution, which means that
it does not require numerical solver and the prediction
could quickly be obtained in an online setting. Hence the
model could easily be used in any platform for prediction
based on real-world data.

• We demonstrate, in a train-test set-up, that the models are
able to fit individual patients with reasonable accuracy,
both ICU and T2DM data are used. The test framework
we use is a predictive one laying the foundations for
future control methodologies.

• Comparison of the data fitting for T2DM and ICU pa-
tients reveals interesting structural differences in their
glucose regulation.

• We compare the predictive power of our stochastic mod-
eling framework with that of more sophisticated models
developed for both T2DM and the ICU, demonstrating
that the simple stochastic approach is at least as accurate
as these models in both settings.

The intended audience of this paper is interdisciplinary. Ap-
proximating a nonlinear, complex, time delayed system with a
stochastic model with parameters that can be estimated with
real world data is the core of this paper. Here we use a linear
stochastic model to approximate these dynamics, where the
deterministic chaos is represented with a stochastic process.
Understanding what is possible given data, and what is gained
and lost with respect to the representation of a deterministic
system by a stochastic model is focused at the dynamical sys-
tems community. However, we also develop a new model of
BG dynamics, and this is important for endocrine modelers
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Minimal Stochastic Glucose Model 4

and the clinicians who may find such a model useful, espe-
cially in the context of ICU glycemic management and T2DM
educators. Similarly, the model construction, and the formu-
lation of the analytical solution of parameters given data may
be of interest to engineers or dynamical systems researchers
interested in applying control to the BG system.

In Section II, we introduce the general continuous-time
mathematical model (Section II A) and its specific versions
relevant in T2DM and ICU settings (Section II B). The two
model classes all derive from a single general model, and differ
according to how nutrition uptake and glucose removal are rep-
resented. In Section III, we construct the framework for stating
the parameter estimation problem and its solution. In Section
IV, we describe the datasets, the experiments we design for
parameter estimation and forecasting, and the methods we use
for parameter estimation and forecasting for the T2DM and
ICU settings. Section VI presents the experimental results on
parameter estimation and forecasting along with some uncer-
tainty quantification (UQ) results separately for T2DM and
ICU settings. Finally, in Section VII, we make some conclud-
ing remarks and discuss future directions that we intend to
pursue.

II. MODEL DEVELOPMENT

A. Continuous-Time Model

To begin construction of a simple, one-state model for
glucose dynamics, we first consider the classical two-state
Bergman equations:3

Ġ = mexternal(t)+ fHGP(G)− (c+ sII)G (1a)

İ = Iexternal(t)+β fISR(G)− kI. (1b)

Here, G denotes plasma glucose concentration and I denotes
plasma insulin concentration. External inputs of nutrition and
insulin are given by mexternal(t), Iexternal(t), respectively. The
insulin dynamics, beyond external forcing, are primarily gov-
erned by a glucose-dependent secretion rate fISR(G), insulin-
producing beta-cell mass β , and linear degradation rate k. The
glucose dynamics, aside from external forcing (i.e. meals),
are driven by a glucose-dependent (insulin independent) hep-
atic glucose production fHGP, an insulin-dependent glucose
removal rate IG (with insulin sensitivity factor sI), and a linear
degradation rate c.

In this work, we hypothesize that the pancreatic and hepatic
regulation of glucose can instead be approximated by a simple
function of glucose finternal(G). We also account for the effect
of external insulin to the blood glucose level and add a closure
term, ν . This results in a new single-state equation

Ġ = mexternal(t)+ finternal(G)+ fexternal(I)+ν(t), (2)

where the closure term ν(t) accounts for additional glycemic
dynamics not captured by the first three terms. To begin eval-
uating the utility of this perspective, we choose simple forms
for these unknown functions.

Specifically, we assume that glucose regulation can be
roughly approximated by an exponential decay to a fixed point
Gb at rate γ such that finternal(G) :=−γ

(
G(t)−Gb

)
. We also

assume that the effect of external insulin delivery has a sim-
ple relationship fexternal(I) := β Iexternal with proportionality
constant β and we denote mexternal(t) by m(t) for ease of ex-
position. Finally, we assume that the possibly large residual
errors induced by these simplifying assumptions are given by
a Brownian Motion W (t) with variance quantified by σ , i.e.,
ν(t) :=

√
2γσ2Ẇ (t). Note that, the term,

√
2γ is included to

actually have σ to represent the variance of the process and γ

is a relaxation time-scale. Although counter intuitive in this
representation, the solution of the event time model, given
in (4) below, shows the variance of the system dominantly
represented by σ . These choices yield the following Ornstein-
Uhlenbeck model for evolution of blood glucose G(t):

Ġ(t) =−γ(G(t)−Gb)+m(t)−β I(t)+
√

2γσ2Ẇ (t). (3)

There are four parameters for the model in equation (3). Gb
(mg/dl) is the basal glucose (i.e. the mean of the unforced pro-
cess), γ (1/min) is the decay rate for the exponential mean rever-
sion, β (mg/(dl*U)) is a proportionality constant for the linear
effect of IV insulin-based glucose removal, and σ (mg/dl)
governs the variance of the oscillations described by W (t).

We use simple models for the meal function m(t) and the in-
sulin delivery function I(t) (defined in Section II B) that enable
explicit solution of the continuous time model between events,
which refer to meal or insulin delivery or BG measurements.

The simple linear Gaussian structure of Ornstein-Uhlenbeck
models, along with appropriately simple forcing terms
m(t), I(t) (defined in Section II B), allow for tractable solutions
to equation (3). Specifically, integration of the system leads to
a solution G(t) that is normally distributed with analytically
calculable mean and variance.

B. Event-Time Model

For computational purposes, and because data are typically
available at discrete times, we develop a discrete-time version
of the model (3). The time discretization is informed by the
events as defined above. We define event times as times at
which the meal or insulin delivery functions change discon-
tinuously, or BG is measured. The ordered collection of all
these recorded times are the discrete times. We first present the
event-time model in generality, then develop it specifically for
outpatient T2DM glucose modeling (see Section II B 1) and for
inpatient ICU glucose modeling (see Section II B 2). Note that
ICU and T2DM settings are also the focus for our data-driven
studies.

The time discretization is defined completely by a dataset
in the following sense. Let {t(m)

k }
Km
k=1 denote the times of rele-

vant nutrition events, let {t(i)k }
Ki
k=1 denote the times of relevant

insulin delivery events, and let {t(o)k }
Ko
k=1 denote the times of

glucose measurements. We call the re-ordered union of these
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Minimal Stochastic Glucose Model 5

sets,

{tk}N
k=0 := {t(m)

k }
Km
k=1∪{t

(i)
k }

Ki
k=1∪{t

(o)
k }

Ko
k=1

as event times, where the superscripts, m, i, and o, are used to
distinguish the relevant nutrition delivery, insulin delivery, and
BG measurement times.

We can obtain the following event-time model by integrating
(3) over the event-time intervals, [tk, tk+1) for k = 0,1, ...,N−1,
via use of Itô formula,87 which is equivalent to using integrat-
ing factors in this case:

G(tk+1) = Gb + e−γhk(G(tk)−Gb)

+
∫ tk+1

tk
e−γ(tk+1−s)m(s)ds

−
∫ tk+1

tk
e−γ(tk+1−s)

β I(s)ds

+σ

√
1− e−2γhk ξk,

(4)

where hk := tk+1− tk and ξk ∼ N(0,1) independent random
variables. We exhibit specific versions of this general event-
time model for T2DM and ICU settings in more detail in the
following sections.

1. T2DM model

Based on the conditions of T2DM setting detailed in Section
I and Appendix A, we set I(t)≡ 0, i.e., we ignore the exoge-
nous insulin term in the T2DM event-time model. The meal
function, m(t), on the other hand, is essential for capturing
the uptake of glucose into the bloodstream from consumed
carbohydrates. Here, we define m(t) as the difference of two
exponential functions (this choice was shown to be effective in
the T2DM case88):

m(t) =
Km

∑
k=1

Gk

ck
(e−a(t−t(m)

k )− e−b(t−t(m)
k ))1

[t(m)
k ,∞)

(t) (5)

where t(m)
k is the time of the kth meal, Gk (mg/dl) is the total

amount of glucose in the kth meal divided by the approximate
volume of blood, and ck is a dimensionless normalizing con-

stant so that 1
ck

∫
∞

t(m)
k

(e−a(t−t(m)
k )− e−b(t−t(m)

k ))dt = 1. Note that

1[a,b)(·) is the indicator function and defined as

1[a,b)](x) =

{
1, x ∈ [a,b),
0, otherwise.

Therefore, the model in (3) becomes

Ġ(t) =−γ(G(t)−Gb)

+
Km

∑
k=1

Gk

ck
(e−a(t−t(m)

k )− e−b(t−t(m)
k ))1

[t(m)
k ,∞)

(t)

+
√

2γσ2Ẇ (t),

(6)

in the T2DM setting. In this model, the first term represents
the body’s own effect to remove insulin from the bloodstream,
the second term represents the effect of nutrition on the rate
of change of BG, and the last term models the unmodeled
dynamics by the first two terms as white noise. Integrating
over [t0, t], we can write the analytic solution of this equation
as

G(t) = Gb + e−γ(t−t0)(G(t0)−Gb)

+
Km

∑
k=1

Gk

ck
(

e−a(t−t(m)
k )− e−γ(t−t(m)

k )

γ−a

− e−b(t−t(m)
k )− e−γ(t−t(m)

k )

γ−b
)1

[t(m)
k ,∞)

(t)

+
∫ t

t0
e−γ(t−s)

√
2γσ2dW (s).

(7)

Note that, in practice, we need to evaluate BG level at specific
time points and hence need the discrete-time model implied by
the continuous time representation in (7). Now, by integrating
(6) over [tk, tk+1) and denoting gk := G(tk), we obtain

gk+1 = Gb + e−γhk(gk−Gb)+mk +σ

√
1− e−2γhk ξk, (8)

as a special case of (4). Also, for any fixed tk, find the meal
times t(m)

j such that t(m)
j ≤ tk and denote the index set of these

meal times by Ik. Then mk in (8) becomes

mk = ∑
j∈Ik

G j

c j
(

e−a(tk+1−t(m)
j )− e−γhk e−a(tk−t(m)

j )

γ−a

− e−b(tk+1−t(m)
j )− e−γhk e−b(tk−t(m)

j )

γ−b
).

(9)

In this case, we have five model parameters to be estimated:
Gb,γ,σ ,a,b. Recall that in this setting, Gb represents the basal
glucose value that BG level stays around starting some time
after nutrition intake until the next nutrition intake. γ represents
the decay rate of BG level to Gb after the nutrition intake, and
σ represents the amplitude of the BG level oscillations. The
parameters a and b entering the meal function implicitly control
the time needed for the glucose nutrition rate to reach its peak
value, and the time needed for this rate to return back to the
vicinity of 0. Because of these simple physiological meanings,
the parameters entering the event-time model are important not
only for accurately capturing and predicting glucose dynamics
based on data, but also contain implicit information about the
health condition of the patient. For example, the basal glucose
value is measured during some tests to check if an individual
is healthy pre-diabetic, or diabetic.

2. ICU model

The specifics of the ICU setting and the available data, as
described in Section I B and Appendix A, defines the structure
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Minimal Stochastic Glucose Model 6

of our ICU model. In this case, we model both the carbohydrate
intake, m(t), and IV insulin delivery, I(t).

We choose to model these external forcings as piecewise
constants functions; this choice corresponds to clinical practice,
in which constant infusions are periodically adjusted, and also
allows for simple calculations.

Here, we define the nutritional forcing function as

m(t) =
Km

∑
k=1

dk1[t(m)
k ,t(m)

k+1)
(t), (10)

where t(m)
k is the time at which a clinician changes the nutrition

delivery rate, dk is the nutrition rate over the time interval
[t(m)

k , t(m)
k+1); these features are both directly available in our

clinical dataset.
Similarly, we define the external insulin delivery rate as

I(t) =
Ki

∑
k=1

ik1[t(i)k ,t(i)k+1)
(t), (11)

where ik is the rate of insulin over the time interval [t(i)k , t(i)k+1),
again obtained directly from the dataset.

Therefore, substituting (10) and (11) into the general equa-
tion (3), the ICU version of the model becomes

Ġ(t) =−γ(G(t)−Gb)+
Km

∑
k=1

dk1[t(m)
k ,t(m)

k+1)
(t)

−β

Ki

∑
k=1

ik1[t(i)k ,t(i)k+1)
(t)+

√
2γσ2Ẇ (t).

(12)

In this model, the first term models the glucose removal rate
with the body’s own effort (γ), the second term shows the effect
of nutrition m(t) on the BG level, the third term, β I(t), models
the external insulin effect, and the last term models unmodeled
dynamics by the first three terms as a white noise term.

We integrate (12) to get the analytical solution for any t ≥ t0
as follows

G(t) = Gb + e−γ(t−t0)(G(t0)−Gb)

+
Km

∑
k=1

dk

∫ t

t0
e−γ(t−s)

1
[t(m)

k ,t(m)
k+1)

(s)ds

−β

Ki

∑
k=1

ik
∫ t

t0
e−γ(t−s)

1
[t(i)k ,t(i)k+1)

(s)ds

+
√

2γσ2
∫ t

t0
e−γ(t−s)dW (s).

(13)

As in the previous section, we can also integrate (12) over
[tk, tk+1) to obtain solutions at event-times, with gk = G(tk),

gk+1 = Gb + e−γhk(gk−Gb)+
1
γ
(1− e−γhk)dk

−β
1
γ
(1− e−γhk)ik +σ

√
1− e−2γhk ξk

(14)

as another special case of (4). Here, we have four model
parameters to estimate: Gb,γ,σ ,β . Remember once again, Gb
is the basal glucose value and γ is the decay rate of the BG
level to its basal value, and σ is a measure for the magnitude
of the BG oscillations. Finally, β is a proportionality constant,
which is used to scale the effect of IV insulin on the BG rate
change appropriately. These four parameters represent physio-
logically valid quantities that could properly resolve the mean
and variance of the BG level.

III. PARAMETER ESTIMATION

In this section we formulate the parameter estimation prob-
lem. We construct an overarching Bayesian framework for our
parameter estimation problems. We then describe two solution
approaches for this problem: an optimization based approach
which identifies the most likely solution, given the model we
developed and data assumptions; and Markov Chain Monte
Carlo (MCMC), which samples the distribution on parameters,
given data, under the same model and data assumptions. These
two solution approaches are detailed in Appendices B and C.

As shown in detail before, the model takes slightly different
forms in the T2DM and ICU settings. In the former the model
parameters to be estimated are Gb,γ,σ ,a,b whereas in the
latter the unknown parameters are Gb,γ,σ ,β . However, we
adopt a single approach to parameter estimation. To describe
this approach we let the vector, θ represent the unknown model
parameters to be determined from the data, noting that this is
a different set of parameters in each case. Many problems
in biomedicine, and the problems we study here in particular,
have both noisy models and noisy data, leading to a relationship
between parameter θ and data y of the form

y = G (θ ,ζ ) (15)

where unknown ζ is a realization of a mean zero random
variable, but its value is not known to us. The objective is to
recover θ from y. We will show how the model of the glucose
regulatory system developed here lead to such a model.

The Bayesian approach to parameter estimation is desirable
for two primary reasons: first it allows for seamless incorpora-
tion of imprecise prior information with uncertain mathemati-
cal model and noisy data, by adopting a formulation in which
all variables have probabilities associated to them; secondly
it allows for the quantification of uncertainty in the parameter
estimation. Whilst extraction of information from the posterior
probability distribution on parameters given data is challeng-
ing, stable and practical computational methodology based
around the Bayesian formulation has emerged over the last few
decades.89 In this work, we will follow two approaches: (a)
obtaining the maximum a posteriori (MAP) estimator, which
leads to an optimization problem for the most likely parameter
given the data, and (b) obtaining samples from the posterior
distribution on parameter given data, using MCMC techniques.

Now let us formulate the parameter estimation problem.
Within the event-time framework, let g = [gk]

N
k=0 be the vector

of BG levels at event times {tk}N
k=0, and y = [yk]

Ko
k=1 be the
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Minimal Stochastic Glucose Model 7

vector of measurements at the measurement times {t(o)k }
Ko
k=1 ⊂

{tk}N
k=0. By using the event-time version, and defining {ξk}N

k=0
to be independent and identically distributed standard normal
random variables, we see that given the parameters θ , g has
multivariate normal distribution, i.e., P(g|θ) =N(m(θ),C(θ)).
Equivalently,

g = m(θ)+
√

C(θ)ξ , ξ ∼ N(0, I). (16)

Let L be a Ko×(N+1) matrix that maps {gk}N
k=0 to {yk}Ko

k=1.
That is, if a measurement i ∈ 1, ...,Ko is taken at the event time
t j, j ∈ 0,1, ...,N, then the ith row of L has all 0’s except the
( j+ 1)st element, which is 1. Adding a measurement noise,
we state the observation equation as follows:

y = Lg+
√

Γ(θ)η , η ∼ N(0, I), (17)

where Γ(θ) is a diagonal matrix representing the measurement
noise. Thus, we obtain the likelihood of the data, given the
glucose time-series and the parameters, namely

P(y|g,θ) = N(Lg,Γ(θ)).

However, when performing parameter estimation, we are not
interested in the glucose time-series itself, but only in the pa-
rameters. Thus we directly find the likelihood of the data given
the parameters (implicitly integrating out g) by combining (16)
and (17) to obtain

y = Lm(θ)+
√

S(θ)ζ , ζ ∼ N(0, I), (18)

where S(θ) = LC(θ)LT +Γ(θ). Since ζ has multivariate nor-
mal distribution, using the properties of this distribution, we
find that given the parameters, θ , y also has multivariate nor-
mal distribution with mean Lm(θ) and covariance matrix S(θ).
This is the specific instance of equation (15) that arises for the
models in this paper.

We have thus obtained P(y|θ) = N(Lm(θ),S(θ)), that is,

P(y|θ) = 1√
(2π)Km det(S(θ)))

∗

exp
(
−1

2
(y−Lm(θ))T S(θ)−1/2(y−Lm(θ))

)
;

(19)

this is the likelihood of the data, y, given the parameters, θ .
Also, since we prefer to use − log(P(y|θ)) rather than directly
using P(y|θ) for the sake of computation, we state it explicitly
as follows:

− log(P(y|θ)) = Km

2
log(2π)+

1
2

log(det(S(θ)))

+
1
2
(y−Lm(θ))T S(θ)−1(y−Lm(θ)).

(20)

Moreover, by using Bayes Theorem, we write

P(θ |y) = P(y|θ)P(θ)
P(y)

∝ P(y|θ)P(θ). (21)

Note that the second statement of proportionality follows
from the fact that the term, P(y), on the denominator is con-
stant with respect to the parameters, θ , and plays the role of a
normalizing constant.

From another point of view, considering (16) and (18), we
see that given θ , (g,y) has multivariate normal distribution
with mean and covariance matrix that could be computed from
the above equations since, given θ , everything is explicitly
known. Then, integrating g out, in other words, computing the
marginal distribution we obtain the distribution of y|θ , which
corresponds to the one stated in (18).

Now, to define the prior distribution P(θ) we assume that
the unknown parameters are distributed uniformly across a
bounded set Θ and define

P(θ) =
1
|Θ|

1Θ(θ) =

{
1
|Θ| , θ ∈Θ,

0, θ /∈Θ,
(22)

where 1Θ(·) is the indicator function and |Θ| is the volume of
the region defined by Θ. Thus, by substituting the likelihood,
(19), and the prior distribution, (22), into (21), we formulate
the posterior distribution as follows

P(θ |y) ∝
1

|Θ|
√
(2π)Km det(S(θ)))

∗

exp
(
−1

2
(y−Lm(θ))T S(θ)−1/2(y−Lm(θ))

)
1Θ(θ).

(23)

Then, we use this posterior distribution to state the parameter
estimation problem whose details can be found in Appendix B.

IV. EXPERIMENTAL DESIGN

In this section, we describe the datasets in more detail, the
experiments that we design to present our results, and the
methods that we follow to perform parameter estimation and
forecasting. Depending on the specifics of each case and to
reflect the real-life situation, we designed different experiments
in the T2DM and ICU settings. However, the mathematical
approaches for parameter estimation and forecasting stay the
same for both settings because we use similar mechanistic
models.

We theoretically define the observational noise covariance
Γ(θ), given in (17), to be a diagonal matrix with form
diag(Γ(θ)) := λ ∗Lm(θ), which represents that it is propor-
tional to the mean BG level. However, we observed that the
variation in glycemic response, which we will define later more
formally, is the sum of the measurement noise and personal
glycemic variation, accounted by the model parameter, σ . Be-
cause of this relationship, for more accurate estimation of σ ,
we set the measurement noise to 0. Note that this is only a
practical choice and with this choice, we can still estimate the
variation in glycemic response accurately.
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Minimal Stochastic Glucose Model 8

A. T2DM

1. Model, Parameters, and Dataset

In this setting, we use the model (8) with the function mk
defined as in (9). Hence, there are five parameters to be esti-
mated: basal glucose value, Gb, BG decay rate γ , the measure
for the amplitude of BG oscillations, σ , and a and b, which
are the parameters implicitly modeling the time needed for
the rate of glucose in the nutrition entering the bloodstream
to reach its maximum value and the total time needed for
this rate to decrease back to 0. We assume that the prior dis-
tribution is non-informative and initially the parameters are
independent, except for a constraint on the ordering of a and
b. We determine realistic lower and upper bound values for
each of them, define Θ′ := [0,750]× [0.01,0.5]× [0,100]×
[0.01,0.05]× [0.01,0.05] (in the order of Gb,γ,σ ,a,b), and
then define Θ from Θ′ by adding the constraint a < b. We
thereby form the prior distribution as defined in (22). Recall
that these bounds define the constraints employed when we
define the parameter estimation problem in the optimization
setting for the MAP point. The set Θ is determined from clini-
cal and physiological prior knowledge, and by simulating the
model (6) and requiring realistic BG levels.

The self-monitoring T2DM dataset is from a previous
prospective self-management trial. It contains the carbohy-
drate intake in the meals and 1-2 BG measurements collected
before and after the meals with the corresponding timing of
each event. The carbohydrate amounts are reviewed and con-
firmed by expert nutritionists. None of the T2DM patients in
our dataset took exogenous insulin to control their BG level.
This means that the carbohydrate intake is the only input to the
model developed here. More information on the dataset can be
found in Table I.

Patient ID patient 1 patient 2 patient 3
Total # glucose measurement 304 211 91
Total # meals recorded 122 76 46
Total # days measured 26.6 27.67 28.12
Mean measured glucose 113±25 127±32 124±26
Training set: # glucose measurement 80 53 29
Training set: # meals recorded 26 18 15
Training set: # days measured 7.02 7 7.05
Training set: mean measured glucose 112±25 116±28 125±24
Testing set: # glucose measurement 224 158 62
Testing set: # meals recorded 96 58 46
Testing set: # days measured 19.58 20.67 21.07
Testing set: mean measured glucose 113±25 130±33 123±27

TABLE I: Information about the dataset that is used in the
T2DM setting, which is collected from three different T2DM
patients. Note that there is a considerable variability between

the data collection behavior of each patient, which is also
reflected in the number of recorded measurements and meals.
Also, recall that we intentionally used one week of data for

training and the following three week of data for testing.

2. Parameter Estimation and Uncertainty Quantification

We perform parameter estimation for three patients sepa-
rately. First, we estimate parameters by using data over four
consecutive, non-overlapping time intervals with optimization
and MCMC approaches. Besides estimated values, we also
provide UQ results. In the optimization setting, we use the
Laplace approximation as detailed in Appendix B. The optimal
parameters determine the mean of the Gaussian approximation,
and the inverse of the Hessian matrix becomes the covariance
matrix, providing the tools for UQ. In the MCMC approach,
we use the resulting random samples for UQ.

3. Forecasting

We adopt a train-test set-up as follows. Since the health con-
ditions of the T2DM patients are unlikely to change over time
intervals that are on the order of days, we design an experiment
in which we use one week of data for estimating the patient-
specific parameters. Then, we use the estimated parameters to
form a patient-specific model and use this model to forecast
BG levels for the following three weeks, using the known glu-
cose input through the meals; this leads to a three-week testing
phase. We provide a visual representation of this process in
Fig 1. From a practical patient-centric point of view this leads
to a setting in which forecasting BG levels for the following
three weeks requires patients to collect BG data for only one
week in every month, and then the patient-specific model will
be able to capture their dynamics and provide forecasts based
on nutrition intake data over the rest of the month.

FIG. 1: This schema shows how we divided T2DM patients’
data into training and test time windows. For each patient, the
first week of data is the training time window used to estimate

the model. The estimated model represents each patient’s
personalized BG behavior and is used to forecast BG values

over the test time window, which is of length three weeks and
follows the training time window.

B. ICU

1. Model, Parameters, and Dataset

In the ICU setting, we use the model (14), and there are now
four parameters to be estimated: basal glucose value, Gb, BG
decay rate, γ , the parameter used to quantify the amplitude
of the oscillations in the BG level, σ , and a proportionality
constant, β to scale the effect of insulin IV on the BG level.
Similar to what we did in the T2DM setting, we find realistic
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Minimal Stochastic Glucose Model 9

lower and upper bounds for the unknown parameter values and
set Θ := [0,750]× [0.02,0.5]× [0,100]× [20,110] to obtain the
prior distribution as defined in (22). In this case, we impose
two further linear constraints, namely Gb−3.5∗β < 115 and
β−1110∗γ < 10. These constraints are imposed to ensure that
the model predictions remain biophysically plausible, and are
determined simply by forward simulation of the SDE model;
the resulting inequality constraints do not overly constrain
the parameters in that good fits can be found which satisfy
these constraints, and yet they yield more realistic BG level
behavior than solutions found without them. Thus as in the
T2DM case, we choose the bounds and the constraints based
on physiological knowledge and requiring simulated BG levels
resulting from values within the region Θ to be realistic.

The retrospective ICU dataset is extracted from the
Columbia University Medical Center Clinical Data Warehouse.
It contains carbohydrate rate through the enteral feeding tube,
IV insulin rate, BG measurements, and the timing of all these
events. It is important to emphasize that we do not have plasma
insulin or interstitial insulin rate, as they are collected rarely.
The carbohydrate and IV insulin rates are the inputs to the
model. Considering the highly non-stationary behavior of the
system, the BG measurements are sparse, at most 15 measure-
ments per day. In this case, we aim this predictive framework
to be used as a clinical decision support tool in the ICU setting.
Summary statistics about our ICU dataset can be found in Ta-
ble II. Note that in this case, we used all available data for each
patient to perform parameter estimation and forecasting, and
all three ICU patients are non-T2DM.

Patient ID patient 4 patient 5 patient 6
Total # of glucose measurement 177 204 271
Total # of days measured 13.99 16.8 24.48
Mean measured glucose 141±18 151±32 151±43
Training set: average # of 14.13 13.5 14.07glucose measurement
Testing set: average # of 1 1 1glucose measurement

TABLE II: Information about the dataset that is used in the
ICU setting, collected from three ICU patients who are not
T2DM. Because of the experiment we designed the training
sets are moving with by overlapping with each other. So, we
provide average number of glucose measurements over these

moving windows. Also, since we forecast until the next
measurement time following the training time window, each

testing set contains only one glucose measurement. Other
information that is included in Table I, but not here, such as

mean measured glucose over training set(s) is neither
meaningful nor helpful in this setting.

2. Parameter Estimation and Uncertainty Quantification

We use both the optimization and MCMC approaches for
parameter estimation in a patient-specific manner, in this set-
ting, too. However, for UQ, we use only MCMC to estimate

the posterior mean and variance on the parameter; this is be-
cause there were cases where it was not appropriate to use the
Laplace approximation, something that will be explained in
more detail in Section VI B.

3. Forecasting

The characteristics of the health conditions of ICU patients
are described in Section I B and Appendix A. The abrupt
changes in their health conditions are reflected in the model
parameters. To avoid compensating for different values of
parameters over longer time intervals, and to make more ac-
curate predictions, we use only one day of data for parameter
estimation in the ICU. Moreover, to construct an experiment
that reflects real-life scenarios, we need be able to estimate the
model parameters with smaller size datasets than in the T2DM
case, because of the imperative of regular intervention within
the ICU setting, typically on a time-scale of hours. As a conse-
quence our train-test set-up in this case differs quantitatively
from the T2DM case. The training sets for each patient consist
of approximately one day of data over a moving time intervals,
with end points chosen to be BG measurement times. Thus,
the time windows are obtained by moving the right end point
to the next BG measurement time and choosing its left end
point with the constraint that it contains approximately one
day of data. In this case, there is a large overlap between the
consecutive time windows of the training sets.

On the other hand, because of rapidly changing conditions,
forecast of BG levels needs only to be accurate over shorter
time-scales. It is important to know glycemic dynamics on
the order of hours (not days) to manage the glycemic response
of ICU patients. Thus, the test time windows include only
one BG measurement, which is the next BG measurement
collected right after the BG measurement defining the right
end point of the corresponding training time window. We
follow the same procedure over the moving time intervals to
the end of the whole dataset for each patient. We visually
exhibit this procedure in Fig 2. From a practical point of
view, this experiment exhibits a real life situation in which
we use only one day of data for parameter estimation and
then perform forecasting for the next few hours based on the
estimated parameters. Such a set-up would be desirable as a
support to glycemic management of these patients.

V. MODEL EVALUATION

In this section, we introduce the statistics that we will use
to evaluate and compare the forecasting capability of the mod-
els. Let {yi}N

i=1 denote the true BG measurements over the
predefined testing time window for an experiment. Let {ŷi}N

i=1
denote the forecast obtained by a model at the measurement
time points . Note that for a stochastic model, {ŷi}N

i=1 repre-
sents the mean of the model output. When a stochastic model
is used, it is natural to obtain a confidence interval as this may
be obtained as a direct consequence of the fact that the model
output is in the form of a random variable; such an output

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
46

80
8



Minimal Stochastic Glucose Model 10

FIG. 2: This schema shows our experimental design for the
ICU setting. Each training time window has a length of

approximately 24 hours, which is used for model estimation.
Then, we forecast the first BG value measured after the

training time window. We perform this prediction for the
whole dataset by moving the time windows.

cannot be obtained for an ODE model when parameters are
learned through optimization. However, by using appropri-
ate parameter and state estimation techniques, it may again
be possible to obtain a similar kind of confidence interval for
the model output which is in the form of a point-estimate.
When we have probabilistic forecasts we let {εi}N

i=1 denote
the corresponding standard deviation for each forecast at the
true measurement points so that we can form 1- and 2-stdev
bands as [ŷi− εi, ŷi + εi]

N
i=1 and [ŷi− 2εi, ŷi + 2εi]

N
i=1, respec-

tively. Then, for each model, we can compute the percentage
of true measurements, {yi}N

i=1, that are captured in their respec-
tive 1- and 2-stdev bands. These percentages will be the tools
that we will use for evaluation. In addition, we will use stan-
dard measures such as root-mean-squared error (RMSE), mean
percentage error (MPE), and Pearson’s correlation coefficient,
(CORR) which are computed as follows.

RMSE =

√
1
N

N

∑
i=1

(yi− ŷi)2, MPE =
N

∑
i=1

|yi− ŷi|
yi

∗100,

CORR = corr
(
{yi}N

i=1,{ŷi}N
i=1
)

In addition to these metrics, we compare the forecasting
accuracy of this model with other physiology-based mecha-
nistic models. In T2DM setting, we use the longitudinal dia-
betes pathogenesis model (LDP),90 describing BG dynamics
of T2DM patients. In the ICU setting, we use ICU Minimal
Model (ICUMM),18,85 describing BG dynamics of ICU pa-
tients. Also, in both settings, we use the mean and variance
computed from the respective training data for comparison.
We call this model, mean-variance model. We provide more
detail about these models in Sections VI A 3 and VI B 3.

Here, by comparing models, we mean comparing their fore-
casting ability given available data and the limitations of model
estimation. Both the LDP model and ICUMM are nonlinear
mechanistic models while the model developed here is a linear
mechanistic model. To compare models, we must optimize the
models, or computationally solve for model parameters that
minimize the distance between model output and data. Model
estimation problems formulated based on a nonlinear model
requires solving a nonlinear optimization problem. Solutions
to nonlinear optimization problems often have multiple global

minima, but it is not possible to know for sure how many
global minima exist nor whether you have found one of them.
In contrast, solutions to quadratic optimization problems have
a unique minimum that produces the optimal solution to model
estimation problem. In the setting here, we are comparing
a model whose global optimal parameters can be calculated
and known versus models for which these the global optimal
parameters cannot be known. Because of these characteristic
differences, an absolute comparison between models that re-
quire nonlinear optimization methods to compute parameters
and models for which quadratic optimization methods are used
is not possible. Therefore, comparison of prediction accuracy
between these different types of models should be carefully
handled. For example, obtaining a smaller error with a linear
model does not imply that this model is better than the nonlin-
ear model, as it is unknown if the global minimum is reached
by the nonlinear model. However, comparing the prediction
accuracy is useful to have a sense of the level of prediction
accuracy achieved by these models.

VI. RESULTS

In this section, we present results concerning the simple yet
interpretable model introduced in this paper; we now refer to
this as the minimal stochastic glucose (MSG) model. The two
primary conclusions are that:

• We obtain BG forecasting results at least as accurate as
other established models in both the T2DM and ICU
settings,85 and the uncertainty bands with which we
equip our forecasts play an important role in this regard;

• We learn a substantial amount about the interpretable
parameters within the models, with possible clinical uses
deriving from the parameter estimates, and from tracking
them over time, again using the uncertainty measures
that accompany them as measures of confidence.

The combination of simple predictive model and data ac-
quisition accounts for the uncontrolled and complex nature
of the data, including data sparsity, inaccuracy, noisiness,
non-stationarity, and biases resulting from the health care
process,91–98 whilst also being interpretable and leading to
patient-specific parameter inference and prediction. Even
though the MSG model is relatively simple it is not always
identifiable, given data. For example, having two parameters, γ

and β , related to BG decay rate in the ICU context made it hard
to identify these parameters accurately because of the complex-
ities mentioned above. Despite lack of identifiability of some
parameters, parameters as estimated lead to models which
are able to forecast and represent the glucose dynamics. To
answer whether the parameter estimates, forecasts, and uncer-
tainty quantification are good enough to impact clinical under-
standing and decision-making or to construct physiologically-
anchored phenotypes would require evaluation,76,99,100 e.g.,
manual chart review in conjunction with a qualitative trial
of clinical decision-making or a phenotyping analysis respec-
tively. In the absence of these analyses we will rely on face
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Minimal Stochastic Glucose Model 11

validity,101–103 to evaluate effectiveness of the model in repre-
senting the dynamics and in forecasting.

A. T2DM

In this setting, our results demonstrate the effectiveness
of the MSG model in capturing the patients’ BG dynamics.
Specifically the effectiveness is reflected in the estimated pa-
rameter values and in forecasting future BG levels, using these
parameters, over time periods of length up to three weeks.

1. Parameter Estimation

Our results exhibit three substantive pieces of evidence that
support the validity of the model and its potential effectiveness
for understanding the physiologic state of an individual and
forecasting. First, the estimated model parameter values and
their evolution over time are physiologically valid. That is, the
estimated values reflect the patient’s state as evaluated given
available data. Moreover, the evolution of the estimated param-
eter values over time reflects changes in the patients’ states in a
manner consistent with both the data and what is known about
the non-stationary nature of T2DM. Second, the UQ intervals
for the estimated parameters are physiologically plausible and
have three features that make the model potentially useful:
(i) relative to the value of the estimated parameter, the UQ
intervals are wide enough to provide information on the reli-
ability of the point estimates, (ii) the UQ intervals’ evolution
over time, demonstrating sensitivity to time and the ability to
adapt to non-stationary patients, and (iii) the UQ intervals are
narrow enough to plausibly be used to differentiate behavior
choices, such as carbohydrate consumption. And third, the
UQ and parameter estimation appears to be robust; different
estimation methods arrive at similar results. A comparison of
the estimated parameter values and corresponding UQ inter-
vals obtained using optimization and MCMC are very similar
in almost all of the cases, supporting the robustness of the
estimates and relative insensitivity to the estimation method-
ology. Together, these features imply that with a reasonable
inference scheme, this model could provide useful information
for decision-making and a robust clinical understanding of the
patient.

To demonstrate that the estimated parameters are physiologi-
cally valid, consider Fig 3 where we see the point estimates and
UQ intervals for all parameters and all three patients obtained
with optimization and MCMC methods. The estimated basal
glucose, Gb, values are in the ranges of ∼ 95− 105 mg/dl,
∼ 105− 140 mg/dl, and ∼ 105− 125 mg/dl over the course
of four weeks for patients 1, 2, and 3, respectively. These
values are indeed in the expected ranges based on the BG
measurements of these patients.

To show that the UQ intervals are potentially useful in prac-
tice, once again consider Fig 3. The range of UQ intervals
for each estimated parameter in most cases contains physio-
logically plausible parameter values that are tight enough to
enforce the reliability of the point estimates. To quantify this

statement we computed the coefficient of variation, defined
as the standard deviation divided by the mean and can be in-
terpreted as a measure of variability of the point estimator in
this context. For Gb and σ , which are the most influential pa-
rameters in characterizing the mean and variance of the model
output, the coefficient of variation is in the ∼ 1− 5% band
and ∼ 4−14% band, respectively for all three patients. These
results support the reliability of the point estimates that are
used to form patient-specific models to describe dynamics of
each patient.

We can see the robustness of the estimated parameter values
by comparing parameter estimates using two different methods,
optimization and MCMC. The results are shown in Fig 3;
the upper and lower panels show parameter estimates using
optimization and MCMC, respectively. The point estimates as
well as the corresponding UQ intervals for Gb and σ obtained
with optimization and MCMC are very close to each other in
most cases. Some parameters have more variation between
methods; specifically, γ , a, and b do show variation between
the results obtained with optimization and MCMC methods.
This variation does not seem to have substantial effect on
the model’s ability to represent patient dynamics. The overall
result is a model whose ability to represent the data is relatively
insensitive to parameter estimation techniques.

2. Forecasting

We evaluate forecasting ability of the model in this setting
along two pathways, a face validity pathway that is mostly
motivated by potential clinical decision-making, and a more
statistical-based pathway that is motivated by our desire to be
quantitative. In a sense, both evaluations address whether the
data could plausibly be generated by the model.

The first evaluation—face validity—is to consider whether
the model can capture the dynamics qualitatively. Because the
model’s forecast is in the form of a distribution, the forecast we
have to evaluate is anchored to the mean and standard devia-
tion. In Figs 4a and 5, the red circles are the BG measurements
and from our modeling perspective are also a realization of the
stochastic process whose mean is shown by the blue curve and
variance is represented by the gray region. Fig 4a shows the
training time window for one of the patients and Figs 5a-5c
show the test time window for each patient. An initial inspec-
tion of these figures implies that the model output seems to
represent the data well. Fig 5 demonstrates the model’s effec-
tiveness in quantifying the oscillating BG measurements with
two standard deviation (2-stdev) bands around the model mean;
these bands capture most of the future BG measurement. These
results are further quantified in Table III that shows summary
statistics for how often the future measurements were captured
by the 2-stdev bands. Being able to contain ∼ 89−97% of the
true BG measurements in these confidence regions for all three
patients is an indicator of this model’s predictive capability.
Because of more dangerous consequences of hypoglycemia,
we also check the percentage of measurements that are smaller
than the lower 2-stdev band, i.e., missed by the 2-stdev band
on the lower-end, over the test time window, which are 1.79%
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Minimal Stochastic Glucose Model 12

(a) optimization (b) optimization (c) optimization

(d) MCMC (e) MCMC (f) MCMC

FIG. 3: Parameter estimation and uncertainty quantification in the T2DM setting. Panels (a) - (c) show results obtained with
optimization and panels (d) - (f) show results obtained with MCMC for patients 1, 2, and 3, respectively. Both approaches are
used in a patient-specific manner. We see that the point estimates obtained with two approaches are very close to each other in
most cases. Also the width of the 1- and 2-stdev intervals, which are obtained with Laplace approximation (optimization) and

directly from the approximate posterior samples (MCMC), are also in agreement with each other. Here, these intervals quantify
the uncertainty in the point-estimates of the parameters. The parameter estimates and agree with real physiological values and the
non-stationary behavior of the glucose dynamics of T2DM patients is reflected in the time-evolving behavior of the estimated

parameters. All these features enforce the reliability of the parameter estimation results.

(four measurements out of 224 total BG measurements), 0%,
and 0% for patient 1, 2, and 3, respectively. These four mea-
surements for patient 1 are 88, 94, 102, and 118 mg/dl, and
the lower bound of the 2-stdev band for these measurements
are estimated to be 94, 99, 105, and 123 mg/dl. Also, this
patient had total of 31 BG measurements in the range of 68-
88 mg/d, and the estimated 2-stdev band missed only one of

BG measurements (88 mg/dl) in that range and estimated the
possibility of occurrence of all the remaining ones. This result
shows that model could provide decision support for the possi-
ble occurrence of hypoglycemia. Thus, this model is providing
substantial forecasting information beyond what is available
given the data alone.

The second evaluation quantifies how plausible it is that the
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Minimal Stochastic Glucose Model 13

(a) Model output and BG measurements

(b) KDE - Patient 1 (c) KDE - Patient 2 (d) KDE - Patient 3

FIG. 4: In panel (a), the model output of the estimated linear stochastic model is shown over the week of the training data along
with the true BG measurements. Model output is a stochastic process and described by a mean and variance. The red circles show
true BG measurements, the blue curve shows the mean of the model output, and the gray area represents the estimated 2-stdev

band around the mean. Here 2-stdev band is used to quantify the oscillations of BG levels, which are not aimed to be tracked by
the mean of the model output, but rather to be encapsulated by the gray region. The peaks in the model output show the BG

response to the nutrition. Since the model aims to track the mean BG behavior (by blue curve) and capture the amplitude of BG
oscillations (by the gray region), we plot the model output using a curve and a region. In panels (b)-(d), kernel density estimate

(KDE) of 1,000 different realizations of the estimated model output and BG measurements are shown for each patient.
Comparison of the true BG measurements, which are assumed to be a realization of the model output, with the mean and 2-stdev

band of the stochastic process—being the model output—along with the KDE plots in panels (b)-(d) implies that BG
measurements could indeed be considered as a realizations of the random process.

data we observe could have originated from the model. We
quantify this plausibility using the two-sample Kolmogorov-
Smirnov (KS) test. To start, Fig 4b-4d show the kernel density
estimates (KDEs) obtained from the BG measurements (red
curve) and from 1,000 independent realizations of the esti-
mated stochastic process (blue curves) over the training time
window for each patient. The KDEs in Fig 4b-4d support the
idea that the BG measurements could be assumed to be drawn
from the distribution given by the estimated model output. To
perform the two-sample Kolmogorov-Smirnov (KS) test we
created datasets by resampling 10,000 independent realiza-
tions of the model output at the BG measurement times and
performed the test using each generated sample against BG
measurements with the kstest2 function in MATLAB with 1%
significance level. We performed this procedure over one-week

of training window and three-week of test window for each
patient separately. Note that the null hypothesis states that
the two samples are drawn from the same distribution and
not rejecting the null hypothesis supports that the MSG model
could accurately represent the distribution of the measurements.
Moreover, the null hypothesis here is a distributional one so
that re-ordering measurements or forecasts will have no effect
on the KS test.

Out of 10,000 different samples in each case, the rejection
rates were 0.55%, 0.02%, and 0.59% over the training time
window and they were 1.65%, 67.54%, and 0.38% over the
test time window, respectively for patients 1, 2, and 3. First,
observe that the rejection rates are much smaller over the train-
ing time window. This is expected as the random samples used
against the BG measurements in the KS test are generated by
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Minimal Stochastic Glucose Model 14

(a) Patient 1

(b) Patient 2

(c) Patient 3

FIG. 5: Panels (a) - (c) show forecasting results in the T2DM setting obtained via models formed by using the estimated
parameters with the optimization approach for patients 1, 2, and 3, respectively. In each plot, the red circles show the true BG

measurements, the blue curve shows the mean of the model output, and the gray region is the estimated 2-stdev band around the
mean of the model output, quantifying possible low and high values of the forecasted BG levels. These forecasting results show
that the proposed model mean, when equipped with confidence bands found from standard deviations, estimate the BG levels

accurately, and in a patient specific way. This reinforces the claim that the model parameters could be used to provide information
about the health condition of individual patients.
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Minimal Stochastic Glucose Model 15

the model output estimated using the same BG measurements.
However, the model output used to generate samples over the
test time window was obtained only using the patient-specific
model, which is trained by the training data and nutrition intake
data of those patients over the test time window. Therefore,
even though we have a high rejection rate for patient 2 over the
test time window, those much smaller numbers for patients 1
and 3 are still reassuring and show that our initial assumption,
which is that our simplified stochastic model can describe the
BG values, is a valid assumption in this setting.

While the KS test establishes the distributional similarity be-
tween the data and our fitted model, we also evaluate pointwise
correlations to establish the validity of the model’s predicted
dynamics; i.e., responses to meals. We report the Pearson cor-
relation coefficients in Table III, and show substantial positive
correlation. This indicates that the MSG model is superior to a
constant statistical model of the data distribution.

Finally, we see from Fig 5b that the mean of the model out-
put exhibits unusually high peak BG values after the meals. In
addition, the Kolmogorov-Smirnov test has a high rejection
rate for this patient. Investigation of parameter values shown in
Fig 3a-3c reveals that there is an order of magnitude difference
between estimated gamma values for patient 2 and for patients
1 and 3. Since γ represents the decay rate to the patient’s basal
glucose value, we hypothesized the reason for not estimating
the gamma parameter accurately for this patient could be re-
lated to their BG measurement pattern. To investigate, we
checked the time difference between the recorded meal times
and the first BG measurement times after each meal. We found
that patient 2 had 18 meals over their training time window and
that time difference was exactly 2 hours for each meal. Patients
1 and 3 had variability among their measurement times. We
believe such a regular measurement pattern without any vari-
ability is the reason for not being able to estimate the gamma
parameter, representing the decay rate to the basal glucose
value. In addition, we believe this is also the reason for the
high rejection rate for Kolmogorov-Smirnov test for patient 2.
We provide more detail about the BG measurement pattern of
these patients in Appendix F.

3. Comparison of Forecasting Accuracy with Longitudinal
Diabetes Pathogenesis Model

In this section, we compare the forecasting accuracy of the
T2DM version of the MSG model with a well-known model,
the longitudinal diabetes pathogenesis (LDP) model90 devel-
oped by Ha & Sherman and a simple mean-variance model.
The LDP model is developed to understand different pathways
of T2DM pathogenesis. It represents the metabolic state of
T2DM patients at any time during the disease progression over
years. The model consists of four differential equations and
11 model parameters. We perform the same forecasting task
by estimating the most commonly estimated sets of parame-
ters, {σ ,SI},{σ ,SI,hepaSI},{σ ,SI,hepaSI,r20}, setting the
remaining parameters at known default values and estimating
all 11 parameters.

The experiment in this setting will be the same as described

Patient 1
1-std % 2-std % RMSE MPE CORR

MSG Model 75.45 93.30 20.12 12.97 0.5680

LDP Model
2-parameter 36.16 62.50 21.66 13.65 0.4947
3-parameter 37.05 61.61 21.66 13.71 0.4826
4-parameter 37.50 63.84 21.83 13.48 0.5028
11-parameter 36.61 61.16 21.31 14.03 0.4926

Mean-Variance Model 73.66 95.98 24.48 16.97 0
Patient 2

1-std % 2-std % RMSE MPE CORR
MSG Model 63.29 89.24 33.52 17.35 0.3674

LDP Model
2-parameter 26.58 44.30 32.75 17.21 0.4524
3-parameter 22.15 42.41 35.05 18.35 0.4364
4-parameter 22.15 44.30 34.12 17.67 0.4428
11-parameter 23.42 45.57 33.23 17.30 0.4376

Mean-Variance Model 68.99 90.51 35.54 18.17 0
Patient 3

1-std % 2-std % RMSE MPE CORR
MSG Model 51.61 96.77 24.27 17.12 0.4759

LDP Model
2-parameter 26.49 49.01 25.97 16.50 0.3799
3-parameter 29.14 50.99 26.20 16.73 0.3642
4-parameter 27.15 53.64 26.19 16.47 0.3761
11-parameter 28.48 50.99 26.42 6.89 0.3586

Mean-Variance Model 58.07 95.16 26.96 18.74 0

TABLE III: Comparison of the forecasting results with three
different models. For each different case of the LDP model the
results in the corresponding row shows which parameters are
estimated during the whole forecasting experiment. We obtain
better forecasting accuracy with the MSG model than with the

LDP model and mean-variance model, in general.
Furthermore, for the LDP model, the forecasting accuracy

decreases as the number of parameters being estimated
increases.

above in Section VI A 2. For a fair comparison, mean-variance
model corresponds simply to computing the sample mean and
variance from the training data and to using the mean as the
point estimator over the test time window and the variance
for quantifying the BG oscillations in the forecast. On the
other hand, the LDP model consists of a set of coupled ODEs.
To estimate the unknown model parameters and forecast BG
levels with the LDP model we used the constrained Ensemble
Kalman Filter (EnKF) algorithm.1 We coded the algorithm on
MATLAB for parameter estimation and BG forecasting using
the constrained EnKF method based on the LDP model. We
used MATLAB’s ODE solver ode23 to solve the LDP model
numerically.

Note that we use the constrained EnKF algorithm because it
is validated to provide accurate forecasting results with com-
plex ODE models.1 Moreover, the ensembles of state estimates
could be used for uncertainty quantification. However using
a filtering algorithm requires exploiting all the data collected
up until the forecasting time point; unlike the optimization
algorithm paired with MSG model, which could use data col-
lected only over the training time window to train the model
and then simulate over the test time window for forecasting.
Note that with LDP model - EnKF algorithm pair, we used all
the data contained in the training and test time windows. Then,
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Minimal Stochastic Glucose Model 16

we used the BG forecasting values over the test time window
for comparison. The comparison results are shown in Table
III, where the sets of estimated parameters are referred by the
number of parameters in each set.

The results in Table III show that the MSG model provides
at least the same level of accuracy in forecasting future BG
levels in T2DM patients than all variants of the LDP model
and mean-variance model when compared holistically.

First, MSG model achieves slightly lower, or the same level
of RMSE and MPE obtained with all different variations of
the LDP model and mean-variance model for all three patients,
demonstrating that mean of the MSG model output is also
useful as a point estimator.

Second, we see the benefit of using a stochastic model, which
inherently quantifies the level of certainty in the BG predictions.
It is worth noting that the MSG model is based on learning
parameters of a stochastic model, while the LDP quantifies
uncertainties by learning an ensemble of parameters and states;
this may contribute to the differences between them at the level
of uncertainty prediction. The percentages in Table III show
that the MSG model captures a significantly larger number
of the BG measurements in the respective confidence bands
compared to the LDP model. However, it is not as good as
the mean-variance model for these percentages. Nevertheless,
comparing the correlation values over the test time window
shows a higher correlation between BG forecasts and mea-
surements with the MSG model, except for patient 2 when
estimated by the LDP model.

In summary, the MSG model provides BG prediction results
that are as least as accurate with the results we obtained by the
LDP and mean-variance model. Note that these forecasting
results support the rationale behind our modeling approach,
which is using the linear MSG model for BG forecasting: trad-
ing physiological resolution for the robustness of forecasts.

B. ICU

We now move to the more complex and difficult case of mod-
eling and forecasting glycemic dynamics in the ICU, where
non-stationarity is manifest on much shorter time-scales. Pa-
rameter estimation and forecasting are, in general, harder in
the ICU context because of the characteristics of ICU patients
as explained in Section I B and Appendix A. A detailed expla-
nation about how the MSG model represent the dynamics in
ICU setting is provided in Appendix D.

1. Parameter Estimation

The difficulties presented in the ICU setting are reflected in
our parameter estimation results. Despite these complexities,
our results exhibit four substantive pieces of evidence which
support the validity of the model and its potential effective-
ness for understanding the physiological state of ICU patients
and for forecasting. First, the model captures the dynamics
reflected in the parameter estimates with sparse data. Second,

the estimated model parameters, which have the most influ-
ence in resolving the mean and variance of the BG level, are
physiologically valid in most of the cases. Third, the changes
in the parameter estimation results over moving time windows
are realistic and reflective of the expected non-stationary be-
havior of ICU patients. And fourth, the UQ results show that
the parameters (basal glucose rate, Gb and the model standard
deviation, σ ), which have the most influence in resolving mean
and variance of BG levels are estimated with more certainty.
Having tighter bands around the point estimates for these pa-
rameters indicates the robustness of the estimation. We explain
these claims in detail in the following paragraphs. Fig 6 con-
tains evidence supporting all these results and Table II shows
the sparsity of the BG measurements.

With the complexity of ICU data in mind, consider the
parameter estimation results. Figure 6 shows the parameter
estimates over moving time windows with length of 24 hr
for each ICU patient obtained with MCMC approach. The
mean of each chain is shown using blue stars. These parameter
estimates are physiologically plausible for all three patients
except in a small number of cases. For example, estimates
of the basal glucose rate, Gb, were around ∼ 105−145mg/dl,
∼ 140−180mg/dl, ∼ 135−210mg/dl, for patients 4, 5, and 6,
respectively, all plausible values given the patient’s data. As
shown in Appendices D and E, it was not possible to compute
good estimates for parameters γ and β in some of the cases.

Fig 6 also shows that the time evolution of the estimated pa-
rameters is realistic within the ICU context. In ICU the training
time windows move in positive (increasing time) direction of
measurements—given a measurement the model is estimated
using the previous 24 hours of data,∼ 14 data points to forecast
the future measurement whenever it comes—so that the con-
secutive time windows have an overlap of 20-23 hours. This
means that the model varies relatively continuously between
consecutive time windows. This relative continuity is reflected
in Fig 6 that shows the time evolution of estimated parameters
for all three patients. Even though the health condition of the
ICU patients can change rapidly, the estimated parameters do
not change wildly (in most of the cases), reflecting the expecta-
tion under these settings. Nevertheless, the patients are clearly
non-stationary and the observed evolution of the parameter
estimates, shown in Fig 6, reflects this non-stationarity.

And finally, as was the case in the T2DM setting, the model
is relatively robust to the methods used to estimate it; however,
as can be inferred from the discussion above about parameters
and their face validity to physiology, the ICU formulation of
the model can have more complex parameter estimation issues
compared to the T2DM setting. In particular, in the ICU setting
there are some cases where the Laplace approximation does
not work well because the parameter misfit solution surface is
flat in some parameter directions – a reflection of identifiability
issues. We provide more insight about this issue in Appendix E.
Even though the point estimates for each patient and parameter
pair by MCMC and optimization are close to each other, since
UQ results are more meaningful by MCMC, we present the
plots obtained by MCMC. In general we observe that Gb and
σ , both allow for more robust estimation compared to the
estimation of γ and β . The robustness of the estimation of Gb
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Minimal Stochastic Glucose Model 17

(a) Patient 4

(b) Patient 5

(c) Patient 6

FIG. 6: Panels (a) - (c) show parameter estimation and uncertainty quantification results in the ICU setting obtained with MCMC
for patients 4, 5, and 6, respectively. In each plot, the blue stars are the point-estimate of each parameter and the gray area is the
2-stdev band around the point-estimates (both obtained from the resulting random samples). Here, the gray region represents the
uncertainty in the point-estimates. The estimated model parameters exhibit biophysically realistic values. Also, 1- and 2-stdev
bands enforces the reliability of the estimated parameters, especially, Gb and σ , which are the most influential parameters in

predicting the mean and variance of BG levels.
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Minimal Stochastic Glucose Model 18

and σ is important for clinical applications because the mean
and variance are what is used for glycemic management. As a
demonstration of the robustness of Gb and σ , consider Fig 6.
Here we can see the 2-stdev band around the mean for Gb and
σ is tighter than the 2-stdev bands for γ and β for all three
patients. Remember that both γ and β are related to the glucose
removal rate from the blood. This is, perhaps, an indicator of an
identifiability issue for these parameters. But it is also true that
we are indeed less certain about this physiology; glucose can be
removed at different rates by different physiological processes,
e.g., liver versus adipose tissue, and we are not resolving these
physiological subsystems. Moreover, due to the non-stationary
and sparse nature of the data in the ICU setting, it is harder to
estimate some of the model parameters accurately. Separating
these inference issues is not possible given the data presently
collected in these settings. Nevertheless, the parameters that
play a key role in resolving the mean and variance of the BG
dynamics can be estimated accurately up to the desired level.

2. Forecasting

Forecasting results in the ICU setting are indicative of two
major features of this model: (i) we can capture the trend of
BG measurements through the mean of the model and (ii) we
can estimate the variance of the BG measurements accurately.
Once again, since resolving mean and variance of BG dynamics
is central to glycemic management, these results show potential
usefulness of this model in the ICU context.

Fig 7 demonstrates that the forecasted mean of the model
output encapsulates the essence of the behavior of BG measure-
ments for all three patients. In each of the plots in Fig 7, the red
circles show the BG measurements, the blue stars are the mean
of the model, and the gray region is the 2-stdev band around
the mean, each one obtained separately with the corresponding
patient-specific model.

To observe the effectiveness of this model in estimating
the variance of the BG measurements accurately, consider
Fig 7 and Table IV. Fig 7 shows the ability of the model to
estimate the variance in glycemic dynamics visually where a
large number of true BG measurements are contained in the
gray regions that represent the forecasted 2-stdev bands around
the forecasted mean. These results are quantified in Table IV
which contains summary statistics both for optimization and
MCMC methods and demonstrate the forecasting accuracy
of the MSG model and imply potential use in the ICU for
glycemic management. Note that given the forecast, data,
and the fundamental challenges of the ICU setting, we should
expect forecast UQ bands to be quite large. But, this does not
mean it is not valuable to clinicians but rather means that we
can provide a realistic estimate of the possible BG oscillations
in an extremely volatile and poorly measured system.

Patient 4
1-std % 2-std % RMSE MPE CORR

MSG Model optimization 56.14 89.47 17.27 10.29 0.3177
MCMC 60.82 91.81 18.60 11.07 0.2341

ICUMM 45.61 80.12 17.35 9.87 0.3232
Mean-Variance Model 59.06 94.15 18.07 10.96 0.1753

Patient 5
1-std % 2-std % RMSE MPE CORR

MSG Model optimization 58.65 83.97 33.27 18.91 0.2751
MCMC 64.14 88.19 30.95 18.51 0.2773

ICUMM 29.54 53.59 34.45 18.81 0.1427
Mean-Variance Model 64.14 89.87 31.79 19.06 0.1737

Patient 6
1-std % 2-std % RMSE MPE CORR

MSG Model optimization 59.04 87.45 43.16 25.22 0.2859
MCMC 63.84 91.14 44.78 27.12 0.1859

ICUMM 18.45 38.01 44.77 26.18 0.1374
Mean-Variance Model 63.84 91.14 46.66 28.04 0.1231

TABLE IV: Comparison of the forecasting results obtained
with the MSG, ICUMM and mean-variance models. The

percentages of 1- and 2-stdev bands that capture the true BG
measurements with the MSG model is substantially higher

than the ICUMM whereas they are smaller than
mean-variance model. On the other hand, RMSE and MPE
values are closer when comparing all three models, yet the

MSG model still provides smaller values for these measures,
as well. In addition, the forecasted BG levels by MSG model
gives the highest correlation with the BG measurements for all

three patients.

3. Comparison of Forecasting Accuracy With The ICU
Minimal Model

In this section, we use the ICUMM and mean-variance
model in a similar manner as in T2DM context for the com-
parison of the forecasting results. The ICUMM is a nonlinear
physiological model that represents the glucose-insulin dynam-
ics of ICU patients and was developed to be used for glycemic
management in ICU. The model consists of four coupled dif-
ferential equations and has 12 model parameters. One of those
model parameters is used for the purpose of having units equal
on both sides of the equation and set to 1. Two of the model
parameters represent the volume of glucose and insulin distri-
bution space and are set to nominal values from the literature.
This leaves us with nine unknown model parameters to be
estimated. For parameter estimation and BG forecasting, we
used the constrained EnKF method, which enables us to obtain
confidence bands for the forecasting results using the ensem-
bles. We implemented the BG forecasting algorithm using
the EnKF method based on the ICUMM on MATLAB. We used
MATLAB’s ODE solver ode45 to obtain the solution of ICUMM.
The mean-variance model uses the mean and variance of BG
measurements over the training time window for forecasting.

The comparison results are shown in Table IV. These results
indicate the efficiency of the MSG model in forecasting mean
and vaiance of BG measurements.

First, the point estimators in the MSG case exhibit com-
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Minimal Stochastic Glucose Model 19

(a) Patient 4

(b) Patient 5

(c) Patient 6

FIG. 7: Panels (a) - (c) show forecasting results obtained based on parameters estimated with MCMC in the ICU setting for
patients 4, 5, and 6, respectively. In each plot, the red circles show the true BG measurements, the blue stars show the mean of the
model output, and the gray region shows the 2-stdev band around this mean, obtained from the model output of the stochastic
model, forecasting the magnitude of the BG oscillations. These results are, in general, very close to those obtained using the

optimization approach, and the most relevant properties are shared by them both. Obtaining similar results with another numerical
solution technique based on the same mechanistic model shows the reliability of the model and estimated model parameters.
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Minimal Stochastic Glucose Model 20

parable or improved, accuracy in comparison to the ICUMM
and mean-variance model, as observed from the comparison
of RMSE and MPE values. In addition, correlation values ob-
tained with the MSG model are significantly larger than those
with the ICUMM and the mean-variance model, except for
patient 2 when estimated with the ICUMM. These results show
that with a relatively simple model, we are able to reach at
least the same level of accuracy in forecasting BG levels with
the other two models, ICUMM and the mean-variance model.

Second, the confidence bands that we use to quantify possi-
ble high and low values of BG levels contain a larger number
of BG measurements with the MSG model then the ICUMM.
Compared to ICUMM, the improved accuracy of the MSG
model in terms of forecasting the variance may be related, in
part, to the fact that the model we use is inherently stochastic,
and fits the stochastic fluctuations of data; in contrast, ICUMM
provides bands quantifying the BG oscillations only through
the ensemble of solutions which are a product of the algorithm
used to fit the data, and not inherent to the model itself. These
2-stdev bands contain only a slightly larger number of BG mea-
surements with mean-variance model compared to the MSG
model. On the other hand, the MSG model’s mean model
output shows a higher correlation with the BG measurements
than both the ICUMM and mean-variance model except for
the forecasting of patient 4 with ICUMM. Even though the
mean-variance model provides a comparable level of prediction
accuracy to the MSG model, it does not give any physiological
understanding of the system.

In summary, a comprehensive comparison of the MSG
model with a more complex physiology-based mechanistic
model and a simpler data-driven model suggests that the MSG
model, a linear mechanistic model with a small number of
parameters work at least as good as these models in represent-
ing BG behavior and forecasting future BG levels in the ICU
setting.

C. Limitations

These results have some limitations. For each of the T2DM
and ICU settings, we only had three patients. The model
should be evaluated with larger patient cohorts in both set-
tings. Also, for each of these settings, we chose one nonlinear
glucose-insulin model (the LDP model90 for T2DM and the
ICUMM18,85 for ICU) representing respective BG dynamics to
exhibit what we mean with resolving mean and variance of BG
behavior for robust BG forecasting and show our stochastic
model’s effectiveness in BG forecasting compared to exist-
ing mechanistic glucose-insulin models. However, we did not
hand-tune these nonlinear models but left many parameters
fixed at their nominal values and only estimated the commonly
estimated parameters since it is not possible to estimate all of
the unknown model parameters based on the available data as
explained in Section I.

Approximating the distribution of glucose levels by Gaus-
sian distribution is a limitation of our modeling approach be-
cause the distribution of Glucose levels resembles Gamma
distribution rather than Gaussian distribution.97 However, the

developed model producing a Gaussian process is appropriate
because it is analytically solvable and provides sufficiently
accurate and robust forecasting results.

VII. DISCUSSION AND CONCLUSION

Summary of the modeling framework: In this paper, we
introduce a new mathematical model of the glucose regulatory
system in humans. The model was created with five goals in
mind: (i) the model should be robustly identifiable/estimable
and verifiable with real world human data104—data collected
for health management—such that the model could poten-
tially be useful for personalized parameter estimation and state
forecasting;104 (ii) the model should be interpretable in the
sense that patient specific parameters may be used to explain,
and quantify basic physiological mechanisms; (iii) the model
should be physiologically simple, even if it is functionally com-
plex, to minimize parameter identifiability problems present in
many existing physiological models; (iv) the modeling frame-
work generalizable and adaptable to several contexts including
T2DM and ICU; and (v) the model should be amenable to a
model-based control environment. With these goals driving
the model development, the MSG model follows different ap-
proach, as explained in Section II compared to many other
glucose-insulin modeling efforts. The most important depar-
ture of the MSG model compared with others is the inclusion of
insulin as a lumped parameter affecting the glucose state rather
than as an independent state(s). We formulated the model this
way because, in clinical settings, insulin is rarely measured,
and therefore difficult to estimate.

Benefits of a linear SDE model: In accordance with our
goal, which is to develop a highly simplified yet interpretable
model, we work with a forced SDE of Ornstein-Uhlenbeck
type to describe glucose evolution, together with a linear ob-
servation model, subject to additive Gaussian noise. The Gaus-
sian structure allows for computational tractability in predic-
tion since probability distributions on the glucose state are
described by Gaussians and hence represented by simply a
mean and variance. On the other hand, the protocols for man-
aging glucose depend on intervals; e.g., a goal may be to keep
glucose between 80-150 mg/dl and interval deviation from
this goal, e.g., 151-180 mg/dl, induce changes in the insulin
dosage. This means that decisions are made based on bound-
aries of glycemic trajectories. Nevertheless, because glucose
oscillates under continuous feeding, clinicians typically aim to
ensure that the glycemic mean does not fall below 60 mg/dl
or above 180 mg/dl for any length of time. The intervals are
then a proxy for this balance of managing the mean and pro-
tecting against trajectories diverging too high or low at any
time, including between observations.105 Hence Gaussian ap-
proximation with accurate mean and variance prediction can
potentially be suffiecient for forecasting and glycemic manage-
ment purposes.

Balancing physiological fidelity and forecasting accu-
racy with sparse data: With this modeling approach, we
balance the trade-off between the physiological fidelity of the
model and its effectiveness for robust forecasting. We gain
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Minimal Stochastic Glucose Model 21

robust model parameter estimation with sparse data. The de-
veloped stochastic model can accurately forecast the region
where the oscillating nonstationary BG levels will lie, which is
useful for glycemic management. The model has an analyti-
cal solution, which makes it potentially useful within clinical
decision support tools for real-time BG forecasting. Also,
as a linear model, it could be coupled with a wide range of
control-theoretical algorithms for model-based glucose control
systems. The cost of the gained robustness is that we cannot
resolve the exact glycemic trajectory and fine physiological
processes such as insulin secretion or resistance.

Generalizability of modeling approach: In our modeling
framework, we replaced high fidelity ODE model(s) with a
lower fidelity SDE model to obtain useful BG forecasts with
the available sparse data. The deterministic component of
the model represents the mean behavior of the BG dynamics
and the stochastic component encapsulates the BG oscillations.
Similar approach could be used in many settings to give access
to predictive power given sparse data.

Model development constrained by real world data: Re-
stricting model development to the constraints imposed by
readily available real world data is a severe, but important,
restriction. To be directly useful in applications, models must
be estimable using data that are collected within the context of
the given application, and these data are almost always much
more sparse than ideal laboratory experiments. To circumnav-
igate these problems, we are forced to use data collected to
manage health and the models that can be applied with these
data will likely be different than models built to be estimable
with, e.g., laboratory data. Therefore, to help facilitate the
circular process of allowing our knowledge of systems physiol-
ogy to inform and impact how clinicians manage the health of
people, we need a bridge between these worlds, and the bridge
proposed here is through inference with data based on simple
yet interpretable models.

Including insulin in a mechanistic modeling framework:
There are, at a high level, two pathways for estimating and mod-
eling blood glucose behavior. First, one can include dynamic
equations for glucose and insulin, along with other related
processes. Second, one can include a dynamic equation for
glucose that includes a parameterized function capturing the
impact of insulin on glucose that is not dynamic. The second
option excludes a model equation for insulin and instead has a
parameterized function that represents the impact of glucose
on insulin that is hypothesized to exist. The most common
tactic is the first approach. However, as we emphasized before,
insulin measurements rarely exist in any practical setting and
insulin levels are not interpretable or meaningful for patients
or for most clinicians. This implies that modeling glucose
together with insulin leaves one of two primary variables free
to vary, causing the system to be ill-posed and not identifiable.
In contrast, the second option does not have these pathologies,
will be uniquely estimable under most circumstances, and will
provide a more stable forecast.

Blood glucose variability and its effect on uncertainty
quantification: Both in T2DM and ICU settings, we obtain
the forecasted mean and 2-stdev bands around this mean as
the model output. The characteristics of BG behavior, in par-

ticular BG variability, affect the width of the 2-stdev bands in
these two settings. It is natural to expect to have wider bands
in the ICU setting because of the highly non-stationary BG
behavior of ICU patients. However, there are other factors
affecting the width of these bands. First, BG measurements
are relatively dense in the ICU, compared to T2DM. The sec-
ond factor is the difference between the experiments that were
designed according to the specific needs of each setting, which
is depicted in Fig 1 and 2. Using the latest 24-hour data for
model estimation and forecasting in the ICU setting could help
reduce uncertainty in the forecasts and may result in occasional
more narrow 2-stdev bands. In addition, the GM is performed
by clinicians in ICU and by patients in the T2DM setting. A
clinician’s management is likely to reduce the variability in BG
behavior, which can be reflected in the width of the estimated
2-stdev bands.

Impact of the nutrition function choice in the ICU con-
text: We also considered a different form for the nutrition func-
tion in the ICU setting to test robustness of the MSG model to
the simplistic piecewise constant meal function that we adopt
in this case. Because ICU patients are tube-fed with nutrition
quantities that are considerably less than a healthy individual
would ingest, per unit time, it is reasonable to consider the use
of a piecewise constant function. Nonetheless we investigated
if modifying the piecewise constant function as shown in Fig 8
could improve the parameter estimation and/or forecasting re-
sults. Using this function introduces two more parameters to
be estimated in the ICU setting, increasing the flexibility and
the complexity at the same time. Hence the parameters to be
estimated are Gb,γ,σ ,β ,a,b. Using this function modeling
the nutrition delivery did not improve the forecast accuracy
which lead us to use the simpler version of the model.

FIG. 8: Smoothing piecewise constant nutrition function that
is used for ICU patients

The function shown on the right hand side of Fig 8 is formu-
lated as follows:

m(t) =
Km

∑
k=1

ck((1− e−a(t−t(m)
k ))1

[t(m)
k ,t(m)

k+1)
(t)

+(1− e−ah(m)
k )(2− eb(t−t(m+1)

k ))1
[t(m+1)

k ,t(m)
k+1+

ln(2)
b ]

(t)),

(24)

where h(m)
k := t(m+1)

k − t(m)
k and

ck :=
dkh(m)

k

h(m)
k +(e−ah(m)

k /a)+(1− e−ah(m)
k )((2ln(2)−1)/b)

,

is the normalizing constant for k = 1,2, ...,Km.
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Minimal Stochastic Glucose Model 22

Outlook: The model we have developed has demonstrable
predictive capability in a patient-specific manner. Yet it has
some limitations, which give space for future development, and
also suggests some natural next-step applications. We outline
a number of possible future directions.

Glycemic control: Given the MSG model construction, an
obvious next step is to formulate the work on the control prob-
lem where we determine estimates of the input ranges of nu-
trition and insulin, necessary to keep the output, here BG, in a
desired target range.

Phenotyping: Because the parameters of the MSG model
are interpretable, we could potentially use the model param-
eter estimates for phenotyping studies.76,99,100 Meaning, we
could estimate parameter for individuals in a given health state,
establishing an inferred phenotype for the patient, and then
relate this phenotype to other external health features or cluster
the patient phenotypes in an effort to find structure among
the inferred physiology. We have deemed efforts such as this
high-fidelity phenotyping96 and believe that this model could
be used to these ends.

Gamma process: As we mentioned in Section VI C, approx-
imating the underlying BG dynamics by a Gaussian process is
a limitation of this work. BG levels resemble Gamma distribu-
tion. However, SDEs producing Gamma distribbution require
numerical solution techniques. We will investigate the ue of
such SDEs to model and forecast BG levels in future work.

Continuous Glucose Monitoring Data: Continuous glucose
monitoring (CGM) data provides valuable information about
the BG dynamics. However, these data are collected mostly
for T1DM patients and are far from being collected routinely
in ICU and T2DM settings. Because of this reason, we aimed
to develop this model accounting for routinely collected sparse
data rather than CGM data. In addition, availaiblity of CGM
data reduce data sparsity only for BG measurements and other
important system components, such as interstitial or plasma
insulin, will still be missing. Therefore, it is interesting to
understand how this stochastic model performs with noisy but
dense CGM data.
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Appendix A: Clinical Settings of Interest

The model that we develop can be used in T2DM and ICU
settings with appropriate adjustments, which is presented in
Section II. Here, we describe the respective clinical settings in
more detail.

a. Type 2 Diabetes Mellitus (T2DM) T2DM is a highly
heritable chronic disease characterized by insulin resistance
and pancreatic beta-cell failure resulting in hyperglycemia. Co-
morbid conditions include overweight or obesity, hypertension,
and dyslipidemia. Individuals with T2DM are at markedly
increased risk of chronic vascular and other complications
such as atherosclerotic cardiovascular disease, renal dysfunc-
tion, neuropathy, visual impairment, and need for limb ampu-
tation. Uncontrolled hyperglycemia causes acute symptoms
and risk for infections. Individuals usually develop insulin
resistance early in the disease course, and progress through
impaired glucose tolerance and/or abnormal fasting glucose
before serum glucose concentrations meet the criteria for diag-
nosis of diabetes mellitus. When compared with individuals
having normal glucose tolerance, T2DM patients experience
marked glycemic variability related to carbohydrate intake,
activity, glucose-lowering medications, and individual patho-
physiology. Training and testing the model developed here
in patients with T2DM not requiring pharmacologic therapy
allows us to isolate the effects of carbohydrate intake and in-
dividual pathophysiology without the additional variable of
medication effects.

b. Intensive Care Unit (ICU) Critically-ill patients often
develop stress hyperglycemia from physiologic responses to
medical or surgical stress, burns, and/or trauma, including up-
regulation of inflammatory cytokine pathways and activation of
the hypothalamic-pituitary-adrenal axis with increased cortisol
and epinephrine production leading to decreased glucose up-
take, increased lipolysis, and increased hepatic glucose produc-
tion. The resulting stress hyperglycemia can also exacerbate
critical illness leading to impaired immunity, hypercoagulabil-
ity, myocardial injury, oxidative stress, decreased endothelial
function, impaired wound healing, and electrolyte loss, in an
escalating cycle. Conversely, insulin therapy and conditions
such as sepsis and critical illness can lead to increased risk for
hypoglycemia, especially in the setting of acute kidney injury,
hypovolemia, and impaired gastrointestinal function. Con-
stantly and rapidly changing physiologic states and invasive
interventions such as need for mechanical ventilation, invasive
monitoring, and the need to be nil per os for most procedures
can result in dramatic variance in blood glucose levels in ICU
patients with stress hyperglycemia.

Appendix B: Optimization

In solving the parameter estimation problem with the op-
timization approach, our goal here is to determine parameter
values, θ , which maximize the posterior distribution, P(θ |y)
and is called to be the maximum a posteriori (MAP) estimator.
Using the prior distribution as specified above, the parameter
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Minimal Stochastic Glucose Model 23

estimation problem becomes

θ
∗ = argmax

θ

P(θ |y) = argmax
θ∈Θ

P(y|θ)

= argmin
θ∈Θ

− log(P(θ |y)).
(B1)

Remember that for the parameter estimation problem with the
Minimal Stochastic Glucose model, we have

− log(P(θ |y)) = Km

2
log(2π)+

1
2

log(det(S(θ)))

+
1
2
(y−Lm(θ))T S(θ)−1(y−Lm(θ)).

(B2)

Then, substituting (B2) into (B1), the problem will take the
form

θ
∗ = argmin

θ∈Θ

||S(θ)−1/2(y−Lm(θ))||2

+ log(det(S(θ))).
(B3)

Hence, placing uniform prior distribution turns the problem
of finding the MAP estimator into a constrained optimiza-
tion problem. To solve this problem, we use built-in MATLAB
functions, such as fmincon and multistart. fmincon is a
gradient-based minimization algorithm for nonlinear functions.
multistart starts the optimization procedure from the indi-
cated number of starting points that are picked uniformly over
the region defined by the constraints. It uses fmincon and
other similar algorithms to perform each optimization process
independently and provides the one that achieves the minimum
value among the results of all separate runs. With this approach,
we have the opportunity to compare different optimization pro-
cedures that start from different initial points. This provides
some intuitive understanding of the solution surface and hence
the estimated optimal parameters.

Once an optimal point has been found, we may also em-
ploy the Laplace approximation106,107 to obtain a Gaussian
approximation to the posterior distribution. The Laplace ap-
proximation is a reasonable approximation in many data rich
scenarios in which all parameters are identifiable from the data,
because of the Bernstein Von Mises Theorem,108 which asserts
that the posterior distribution will then be approximately Gaus-
sian, centered near the truth and with variance which shrinks
to zero as more and more data is acquired. However, data is
not always abundant, and not all parameters are identifiable,
even if it is; in this setting, sampling the posterior distribution
is desirable, and for this purpose, we use Markov Chain Monte
Carlo (MCMC) techniques.

Appendix C: Markov Chain Monte Carlo

MCMC methods are a flexible set of techniques which may
be used to sample from a target distribution, which is not neces-
sarily analytically tractable.109,110 For example, the distribution
P(θ |y) is the conditional distribution of the random model pa-
rameters, θ given the data, y. Even though we can explicitly

formulate it using the Bayes’ Theorem, it is not always an easy
task to extract useful quantities, such as posterior mean and
variance, from that formula. In such cases, MCMC techniques
are used to generate random samples from this target distri-
bution and this random sample is used to obtain the desired
information, which could be anything such as the mean, mode,
covariance matrix, or higher moments of the parameters. More-
over, this technique is also very helpful to obtain uncertainty
quantification (UQ) results for the estimated parameters.

In order to obtain more extensive knowledge than MAP
estimator can provide about the posterior distribution of pa-
rameters given the data, θ |y, we use MCMC methods as a
natural choice to sample from that distribution. Among differ-
ent possible algorithms,111 we use the standard random walk
Metropolis-Hastings algorithm. In order to make sure the re-
sulting sample is indeed a good representer of the posterior
distribution, we perform some diagnostics such as checking if
chains for each parameter converged and if they are uncorre-
lated. Then, after removing the burn-in period, we compute
the mean and the covariance matrix from the remaining part
of the sample. We use the mean as a point estimator for sim-
ulation and forecasting, and the covariance matrix provides
valuable information to quantify uncertainty for the estimated
parameters.

In general, it is hard to obtain efficient results with MCMC
methods even when sampling from the joint distribution of
four or five parameters, due to the issues such as parameter
identification. Moreover, obtaining accurate results with this
approach requires careful choice of starting point and tuning
some other parameters. In general the performance of the
algorithm will depend on the initial point. We tested the use
of both random starting points and MAP estimators as starting
point. The former enables us to detect when several modes
are present in the posterior distribution. The latter helps to
focus sampling near to the most likely parameter estimate and
to quantify uncertainty in it. However, it is also important to
note that using MAP estimator as a starting point is not helpful
in all cases. More precisely, if the MAP estimator is not a
global minimum but a local minimum, then the chain could get
stuck around this point. Therefore, it requires careful analysis,
comparison and synthesis of the results obtained with these
different approaches.

Appendix D: Insight About the MSG Model’s Ability to
Capture ICU Dynamics

We explain here how the model captures the BG dynamics
in the ICU setting. Consider Fig 9, which demonstrates both
the model’s relative robustness and its capability of capturing
the dynamics and various complexities encountered in different
conditions in the ICU setting. These figures show simulated
BG values for patient 4 over different training time windows
for which the parameters are estimated with the optimization
approach. Here the the red curves represent the mean of the
BG dynamics that are assumed to be oscillatory, the amplitude
of oscillations are expected to lie in the gray region as it is the
2-stdev band around the mean. The red circles show the BG
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(a) Gb=106.49, γ=0.07, σ=12.34 (b) Gb=131.40, γ=0.49, σ=13.33 (c) Gb=139.12, γ=0.50, σ=17.61

FIG. 9: BG simulations are shown with respective to the estimated parameters over respective training time window. In each plot,
the light blue curve is the glucose rate in the nutrition delivered to the patient (right y-axis), the red circles show the true BG
measurements (left y-axis), the red curve is the mean of the model output (left y-axis), and the gray area is the 2-stdev band

around the mean of the model output (left y-axis). These figures show two main cases that could arise as a result of parameter
estimation in the ICU setting: Panel (a): the input (nutrition rate) is reflected in the output (BG measurements), panels (b) and (c):

the input is not reflected in the output, which makes it impossible to estimate the decay rate γ accurately.

measurements the light blue curve shows the tube-nutrition
input rate. For simplicity we consider patient 4 who did not
need any exogenous insulin, so the tube-feed nutrition is the
only driver of the BG level. Each subfigure of Fig 9 shows a
different training time window that is representative of different
circumstances relative to our ability to estimate Gb, γ , and σ .

Fig 9a shows a situation where the BG measurements (the
output of the system) reflect the nutrition rate (the input to the
system) quite well. As the nutrition rate, the only driver of the
system included in the model, the BG measurements increases,
which is reflected in the mean of the model output.

In contrast, Fig 9b and 9c demonstrate a situation where
the BG measurements do not reflect the nutrition rate over the
shown time window. In Fig 9b, we see that there is no change in
the nutrition rate over the whole time window, which is clearly
reflected by the mean of the model output. However, having no
change in the nutrition rate means that there is no opportunity
to “learn" the glycemic decay parameter, γ . Therefore, in the
absence of any information, optimization algorithm provides
the possible largest value to reflect non-changing nutrition rate
in the mean of the model output, which also around the mean
of all the BG measurements in the respective training time
window.

On the other hand, the situation in Fig 9c occurs when
the changes in the BG measurement are uncorrelated with
the changes in the nutrition rate, potentially due to changes
in health states or other interventions, e.g., other hormone
drips. Hence it is impossible for the model parameters to
accurately reflect the physiology as they are accounting for
dynamical glucose features that they were not designed to
accommodate. Observe from Fig 9c that, with a γ value as
in Fig 9a, there should be a substantial decrease in the mean
of the model output due to the decrease in the nutrition rate.
Since this is not the case as seen by the BG measurements,
the optimization algorithm provides a reasonable mean model
output (characterized by Gb) and set the decay rate as high as
possible (here the upper bound for this parameter) so that it

could keep the mean model output constant over the whole
interval accommodating for the two widely different nutrition
rate regimes.

These issues do not mean the model cannot represent and
forecast the glycemic dynamics, it still is usually able to repre-
sent glycemic dynamics, but some of the parameters might lose
their intended meaning. For example, in the two respective
examples, despite parameter estimate issues, in both of these
cases the estimated Gb, and σ values are enough to capture the
mean and variance of the BG measurements accurately. These
examples are not the only cases where we observe parameter
estimates that are not physiologically valid while at the same
time the glucose forecast and modeling itself remains accurate.
The other examples are all variations of the same theme: we
either do not have the available data to estimate a parameter
accurately, or the data are behaving in a more complex manner,
and in both cases, the parameters make up for these data-driven
and model-driven short-comings by deviating from their nor-
mal roles to render a robust glucose forecast. It is likely that
problems such as these will not be eliminated by using more
complex datasets and more complex models, because full rep-
resentation of the relevant processes is out of reach in such
non-stationary ICU settings.

Appendix E: Parameter Identifiability Issues in the ICU Setting

We encountered some parameter identifiability issues while
solving the optimization problem stated in (B3) in the ICU set-
ting, which caused the solution surface, the function we mini-
mize (P(θ |y)), to be flat in some parameter directions. Because
of this reason, the Hessian matrix becomes ill-conditioned.
However, the Laplace approximation requires computing the
inverse of the Hessian matrix, which gives the variance of the
estimated unknown model parameters on the diagonal. When
we compute the inverse of an ill-conditioned Hessian matrix,
the resulting matrix has very large entries. Hence the variance
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(a) Patient 4

(b) Patient 5

(c) Patient 6

FIG. 10: Panels (a) - (c) show the UQ bands when we use the optimization approach for parameter estimation in the ICU setting
for patients 4, 5, and 6, respectively. The blue stars are the point estimates for the respective parameters and the gray region

quantifies the uncertainty in the estimation. Because of the parameter identifiability issues, the Hessian matrix is-ill conditioned.
When we compute its inverse to obtain the variance in the estimated model parameters, we obtain unreasonably wide UQ bands.

of the estimated model parameters is also unreasonably large,
resulting in non-useful UQ results, which can be seen in Fig 10.

Appendix F: The Effect of Blood Glucose Measurement
Pattern to Parameter Estimation in the T2DM Setting

We observed that the BG measurement pattern of T2DM
patients significantly affects the values of estimated model pa-
rameters based on this patient-collected data. For each patient,

we computed the time difference between the meal time and
the first BG measurement after that meal time for each meal
recorded during the training time window. We show the his-
togram of these time differences for each patient in Fig 11. We
see that patients 1 and 3 measured their BG levels at varying
times after meal consumption. However, patient 2 measured
precisely after two hours for each meal.
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(a) Patient 1 (b) Patient 2 (c) Patient 3

FIG. 11: Panels (a) - (c) show histograms for the elapsed time after meal time until the first BG measurement for all recorded
meal data in the training time window for patients 1, 2, and 3, respectively. Lack of variability in the data of patient 2 causes

suboptimal parameter estimation and forecasting results for this patient.
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