
1. Introduction
Parameterizations of subgrid-scale processes, such as the turbulence and convection controlling clouds, are the 
principal cause of physical uncertainties in climate predictions (Bony & Dufresne, 2005; Bony et al., 2006; Brient 
& Schneider, 2016; Cess et al., 1989, 1990; Stephens, 2005; Vial et al., 2013; Webb et al., 2013). Such parametric 
uncertainties in principle can be quantified and reduced by calibration with data. High-resolution simulations 
such as large-eddy simulations (LESs) are able to resolve turbulence and convection in atmosphere and oceans 
over limited areas (Khairoutdinov et al., 2009; Matheou & Chung, 2014; Pressel et al., 2015, 2017; Schalkwijk 
et al., 2015; Siebesma et al., 2003; Stevens et al., 2005) and have been used to calibrate climate model param-
eterizations at selected sites (e.g., Couvreux et al., 2021; de Rooy et al., 2013; GEWEX Cloud System Science 
Team, 1993; Hohenegger & Bretherton, 2011; Hourdin et al., 2021; Li & Fox-Kemper, 2017; Liu et al., 2001; 
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generated in local high-resolution simulations. This raises the question of where and when to acquire additional 
data to be maximally informative about parameterizations in a GCM. Here we construct a new ensemble-based 
parallel algorithm to automatically target data acquisition to regions and times that maximize the uncertainty 
reduction, or information gain, about GCM parameters. The algorithm uses a Bayesian framework that exploits 
a quantified distribution of GCM parameters as a measure of uncertainty. This distribution is informed by 
time-averaged climate statistics restricted to local regions and times. The algorithm is embedded in the 
recently developed calibrate-emulate-sample framework, which performs efficient model calibration and 
uncertainty quantification with only 𝐴𝐴 (10
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) model evaluations, compared with 𝐴𝐴 (10
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needed for traditional approaches to Bayesian calibration. We demonstrate the algorithm with an idealized 
GCM, with which we generate surrogates of local data. In this perfect-model setting, we calibrate parameters 
and quantify uncertainties in a quasi-equilibrium convection scheme in the GCM. We consider targeted data 
that are (a) localized in space for statistically stationary simulations, and (b) localized in space and time for 
seasonally varying simulations. In these proof-of-concept applications, the calculated information gain reflects 
the reduction in parametric uncertainty obtained from Bayesian inference when harnessing a targeted sample 
of data. The largest information gain typically, but not always, results from regions near the intertropical 
convergence zone.

Plain Language Summary Climate models depend on dynamics across many spatial and temporal 
scales. It is infeasible to resolve all of these scales. Instead, the physics at the smallest scales is represented by 
parameterization schemes that link what is unresolvable to variables resolved on the grid scale. A dominant 
source of uncertainty in climate predictions comes from uncertainty in calibrating empirical parameters in 
such parameterization schemes, and these uncertainties are generally not quantified. The uncertainties can be 
reduced and quantified with data that may have limited availability in space and time, for example, data from 
field campaigns or from targeted high-resolution simulations in limited areas. But the sensitivity of simulated 
climate statistics, such as precipitation rates, to parameterizations varies in space and time, raising the question 
of where and when to acquire additional data so as to optimize the information gain from the data. Here we 
construct an automated algorithm that finds optimal regions and time periods for such data acquisition, to 
maximize the information the data provides about uncertain parameters. In proof-of-concept simulations with 
an idealized global atmosphere model, we show that our algorithm successfully identifies the informative 
regions and times, even in cases where physics-based intuition may lead to sub-optimal choices.
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Romps, 2016; Siebesma et al., 2003, 2007; Smalley et al., 2019; Souza et al., 2020; Tan et al., 2018; M. Zhang 
et al., 2013). More systematically, one can drive LES with a coarse-resolution general circulation model (GCM) 
(Shen et al., 2020, 2021), giving the freedom to run LES at many sites across the globe, at different time periods 
in the seasonal cycle, and in changed climates, with a more consistent forcing scenario than in previous idealized 
setups.

A natural question arises: how might we most effectively place such high-resolution simulations? In this paper 
we address the general task of optimal targeting of data acquisition, and we demonstrate our approach within an 
idealized GCM setting. We create an automated algorithm based on experimental design criteria (Chaloner & 
Verdinelli, 1995) to choose data acquisition sites and time periods that are maximally informative about parame-
ters in a model. The experimental-design problem we address has similarities with the problem of how to choose 
sites for targeted weather observations to optimally improve weather forecasts (Bishop & Toth, 1999; Emanuel 
et al., 1995; Lorenz & Emanuel, 1998). However, in contrast to the situation in weather forecasting, which focuses 
on trajectory matching for state estimation, our focus is on minimizing mismatches in time-averaged climate 
statistics for the estimation of parameters in climate models.

To learn from time-averaged statistics, we adopt a Bayesian inverse problem setting (see, e.g., Kaipio and 
Somersalo (2006), Tarantola (2005), Stuart (2010), and Dashti and Stuart (2013) for reviews). In this setting, 
parameters (or parametric or nonparametric functions) in parameterizations are treated as having probability 
distributions. Data (e.g., climate statistics) are used to reduce the uncertainty reflected by these distributions, 
balancing contributions of the data with that of prior knowledge about parameters (e.g., physical constraints). 
This results in the joint posterior distribution for parameters, including the correlation structure of uncertainties 
among parameters. The Bayesian experimental design tools we apply in this paper leverage the posterior distribu-
tion to determine regions and times where local data are maximally effective at reducing parameter uncertainties. 
As is typical in such analyses, we measure the quality of a design (site location or time period) by a scalar utility 
function. We choose a utility that quantifies the information entropy loss between posterior and prior for each 
design (e.g., Chaloner & Verdinelli, 1995; Drovandi et al., 2013; Fedorov & Hackl, 1997). The site and time 
period of maximal utility determines where to acquire data.

Construction of the joint posterior distribution of the parameters is well known to be a computationally intensive 
task, with commonly used Markov chain Monte Carlo (MCMC) methods typically requiring 

(

105
)

 evaluations 
of the model in which the parameters appear (see Geyer (2011) for an overview). The recent development of the 
calibrate-emulate-sample (CES) framework accelerates Bayesian learning by a factor of 10 3 (Cleary et al., 2021; 
Dunbar et al., 2021). The calibration stage uses a variant of ensemble Kalman inversion (Chen & Oliver, 2012; 
Emerick & Reynolds, 2013; Iglesias et al., 2013; Reich, 2011) to obtain a collection of samples of the model about 
an optimal set of parameters. The emulation stage features the training of a machine learning emulator, here, a 
Gaussian process (Kennedy & O’Hagan, 2000, 2001; C. K. Williams & Rasmussen, 2006), to emulate output 
statistics of the model using the pairs of parameters and model outputs from the calibration stage. The sample 
stage then samples a posterior distribution with MCMC methods, replacing the computationally expensive model 
with the cheap emulator. This framework can extend to the learning of data-driven parameterizations or other 
non-parametric functions, such as structural model errors (e.g., M. E. Levine & Stuart,  2021; Lopez-Gomez 
et al., 2022; Schneider et al., 2022). Our proposed algorithm builds on CES to incorporate Bayesian experimental 
design at negligible additional computational expense. In particular, we do not require additional forward model 
(GCM) evaluations over what is already required in CES to perform uncertainty quantification.

We demonstrate our approach with an idealized moist GCM (Frierson et al., 2006) with modifications introduced 
by O’Gorman and Schneider (2008b), with which we generate surrogates of local data and in which we cali-
brate parameters in a quasi-equilibrium convection scheme (Frierson, 2007). We conduct numerical experiments 
with the idealized GCM in statistically stationary and seasonally varying configurations and show how to deter-
mine the utility of data at different sites and in different seasons. These experiments serve as proof-of-concept 
of the broad-purpose algorithm, which can be applied, for example, to determine optimal sites and times for 
high-resolution simulations for the calibration and uncertainty quantification of parameterizations.

In Section 2, we define the inverse problems for parameter calibration and the optimal design algorithm; details 
of efficient uncertainty quantification (CES) are provided in Appendix A. In Section 3, we briefly describe the 
GCM used for demonstrating the algorithm. Results of the optimal design algorithm are described in Section 4. 
We end with a summary and discussion of conclusions in Section 5.
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2. Methodology
Our goal is to target data acquisition to regions and times at which uncertainty reduction (information gain) is 
maximized. We do this in two stages. First, we learn the temporally and spatially varying sensitivities of the 
model statistics with respect to model parameters. Second, we use this knowledge to target data acquisition to 
regions and times at which the model is maximally sensitive to new data. We work in a framework similar to 
Dunbar et al. (2021) which focuses on accelerated uncertainty quantification within a GCM.

2.1. Inverse Problem to Learn From Limited-Area Data

We study calibration of parameters in a GCM by formulating parameter learning as a Bayesian inverse problem. 
Define �

(

�; �(0)
)

 to be the forward map sending the parameters 𝐴𝐴 𝜽𝜽 to time-aggregated simulated climate statistics 
(averaged over a window of length 𝐴𝐴 𝐴𝐴 𝐴 0 ) from an initial state 𝐴𝐴 𝒗𝒗

(0) . We assume that the aggregation 𝐴𝐴 𝑇𝑇 (𝜽𝜽, ⋅) is 
statistically stationary, and we refer to samples of such aggregated climate statistics as data throughout, irrespec-
tive of whether they are observational or computationally generated. We consider a situation in which data are 
only locally available, at a particular spatial or spatio-temporal location, indexed by 𝐴𝐴 𝐴𝐴 , which we refer to as the 
design point. We make use of a restriction operation 𝐴𝐴 𝐴𝐴𝑘𝑘 to a point 𝐴𝐴 𝐴𝐴 , and define the limited-area forward map, 
�
(

�; �, �(0)
)

= ���
(

�; �(0)
)

 .

For any given k, assume we have data 𝐴𝐴 𝒛𝒛𝑘𝑘 available. For example, 𝐴𝐴 𝒛𝒛𝑘𝑘 could be produced with a simulation with 
limited spatial or temporal extent, or by running a field campaign. We form an inverse problem for GCM learning 
from this data as

�� = �
(

�; �, �(0)) + ��, (1)

where 𝐴𝐴 𝐴𝐴𝑘𝑘 is a stochastic term to capture discrepancies between model 𝐴𝐴 𝑇𝑇 (⋅; 𝑘𝑘𝑘 ⋅) and data 𝐴𝐴 𝒛𝒛𝑘𝑘 , (e.g., Kennedy 
& O’Hagan, 2001). The initial condition 𝐴𝐴 𝒗𝒗

(0) appears in this formulation but is treated as a nuisance variable. 
This view is justified in the context of learning about atmospheric parameterizations for climate models, where 
lower-frequency information (e.g., seasonal variations) is particular informative (Schneider et al., 2017). Indeed, 
the time-averaged data filters out the high-frequency information. Following Dunbar et  al.  (2021), we write 
�
(

�; �, �(0)
)

≈ ∞(�; �) + �� , where 𝐴𝐴 𝐴𝐴𝑘𝑘 ∼ 𝑁𝑁(0,Σ(𝜽𝜽)) is normal noise, independent from 𝐴𝐴 𝐴𝐴𝑘𝑘 , with mean zero and 
with a covariance matrix 𝐴𝐴 Σ(𝜽𝜽) reflecting chaotic internal variability. The Gaussian assumption is justified on the 
basis of a central limit theorem (CLT) applied to the time averages. The inverse problem 1 is thus approximated 
by the problem

𝒛𝒛𝑘𝑘 = ∞(𝜽𝜽; 𝑘𝑘) + 𝛿𝛿𝑘𝑘 + 𝜎𝜎𝑘𝑘, 𝜎𝜎 ∼ 𝑁𝑁
(

0,𝑊𝑊𝑘𝑘Σ(𝜽𝜽)𝑊𝑊
𝑇𝑇

𝑘𝑘

)

. (2)

This is a desirable inverse problem without dependence on the initial condition. It is an approximation due to 
the CLT, but this approximation should be suitable if T is taken larger than the dynamical system's Lyapunov 
timescale (for the atmosphere, this equates to 𝐴𝐴 𝐴𝐴 𝐴 15  days (F. Zhang et al., 2019)). In our experiments, we take 

𝐴𝐴 𝐴𝐴 = 90  days (Section 3.2), or 𝐴𝐴 𝐴𝐴 = 30  days (Appendix C).

Solving Equation 2 involves finding the posterior distribution of 𝐴𝐴 𝜽𝜽 given the data 𝐴𝐴 𝒛𝒛𝑘𝑘 , denoted 𝐴𝐴 𝜽𝜽|𝒛𝒛𝑘𝑘 . Although we 
cannot evaluate 𝐴𝐴 ∞ directly, the emulate phase of the CES algorithm (Cleary et al., 2021) constructs a surrogate 
of 𝐴𝐴 ∞ from carefully chosen evaluations of 𝐴𝐴 𝑇𝑇  . Details of the algorithm are provided in Appendix A.

2.2. Experimental Design

We consider a situation in which acquiring 𝐴𝐴 𝒛𝒛𝑘𝑘 is associated with large costs. For example, 𝐴𝐴 𝒛𝒛𝑘𝑘 could be data 
obtained by running a computationally demanding simulation, or running an expensive field campaign. Our 
starting point is to assume that a limited budget restricts us to evaluate 𝐴𝐴 𝒛𝒛𝑘𝑘 at a single design point 𝐴𝐴 𝐴𝐴 at a time. 
We want to choose the design point 𝐴𝐴 𝐴𝐴 that leads to the most informative inverse problem 2. We continue using 
a Bayesian point of view, namely, the optimal 𝐴𝐴 𝐴𝐴 is the one for which the posterior distribution of 𝐴𝐴 𝜽𝜽|𝒛𝒛𝑘𝑘 learned 
from the inverse problem 2 has the smallest uncertainty. This perspective is motivated by the downstream goal of 
minimizing the  parametric uncertainty of GCM predictions.
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To answer this conclusively, one would need to evaluate 𝐴𝐴 𝒛𝒛𝑘𝑘 at all design points 𝐴𝐴 𝐴𝐴 , which here is too computation-
ally expensive. Instead, we investigate only the sensitivity of the forward model statistics 𝐴𝐴 𝑇𝑇  to its parameters 𝐴𝐴 𝜽𝜽 
to assess the additional information provided at each design point 𝐴𝐴 𝐴𝐴 . This additional information at 𝐴𝐴 𝐴𝐴 is used as 
a proxy for the information content that would exist when learning from data 𝐴𝐴 𝒛𝒛𝑘𝑘 . The benefits of this approach 
are that (a) we do not require any evaluations of 𝐴𝐴 𝒛𝒛𝑘𝑘 to select the optimal location; (b) the measure of information 
content is naturally constructed from the uncertainty reflected by the Bayesian posterior distribution; and (c) we 
can perform this efficiently, and in a embarrassingly parallel fashion, requiring only 𝐴𝐴 (100) GCM runs, deter-
mined by the product of the ensemble size and the number of iterations typically needed in the calibration stage 
of the CES algorithm (see Appendix A). The approach necessarily will contain a bias from the prior distribution 
of the parameters.

Each evaluation of the forward map involves a simulation with the GCM and thus depends on an initial condition 
𝐴𝐴 𝒗𝒗

(0) and parameters 𝐴𝐴 𝜽𝜽 . Together this gives rise to the definition of time-aggregated model statistics 𝐴𝐴 𝒚𝒚 ,

� = �
(

�; �(0)) . (3)

For sufficiently large 𝐴𝐴 𝐴𝐴  , we use the CLT as in Section 2.1 to approximate this relationship as

𝒚𝒚 = ∞(𝜽𝜽) + 𝜎𝜎𝜎 𝜎𝜎 ∼ 𝑁𝑁 (0𝜎Σ(𝜽𝜽)) 𝜎 (4)

where 𝐴𝐴 Σ(𝜽𝜽) is the internal variability covariance matrix for parameters 𝐴𝐴 𝜽𝜽 . To proceed, we must choose a 
control value 𝐴𝐴 𝜽𝜽

∗ for example, we take the mean of the prior distribution. Fixing 𝐴𝐴 𝜽𝜽 = 𝜽𝜽
∗ , we generate a reali-

zation of 𝐴𝐴 𝒚𝒚 .

We now solve a set of inverse problems, with the solution of each providing additional information at a design. 
Specifically, given 𝐴𝐴 𝒚𝒚 , we temporarily “forget” 𝐴𝐴 𝜽𝜽

∗ , and for any design point 𝐴𝐴 𝐴𝐴 , we consider

��� = ��∞(�) + ��, �� ∼ �
(

0,��Σ(�)� �
�

)

, (5)

where 𝐴𝐴 𝐴𝐴𝑘𝑘 restricts the data space to 𝐴𝐴 𝐴𝐴 . The posterior distributions of �|��� for all 𝐴𝐴 𝐴𝐴 obtained by solving Equa-
tion 5 informs us about the sensitivities of 𝐴𝐴 ∞ with respect to parameters, when only data at different 𝐴𝐴 𝐴𝐴 is avail-
able. To simplify the solution of the inverse problem, we approximate the internal variability covariance matrix 

𝐴𝐴 Σ(𝜽𝜽) by a fixed covariance matrix 𝐴𝐴 Σ(𝜽𝜽
∗
) . This covariance matrix can be obtained by running a collection of 

control simulations with parameters fixed to (the known) 𝐴𝐴 𝜽𝜽
∗ but with different initial conditions.

The utility 𝐴𝐴 𝐴𝐴  of a design 𝐴𝐴 𝐴𝐴𝑘𝑘 is a scalar function reflecting the quality of a given design. The design that maxi-
mizes the utility function is known as the optimal design. We choose a utility function by measuring informa-
tion gain (or uncertainty reduction) in 𝐴𝐴 𝜽𝜽|𝑊𝑊𝑘𝑘𝒚𝒚 relative to the prior, in a form of Bayesian optimal design. We 
use a common choice of utility function that arises in both the Bayesian and non-Bayesian design literature 
(e.g., Chaloner & Verdinelli, 1995; Fedorov & Hackl, 1997; Ryan et al., 2016; Schneider & Griffies, 1999), 
namely, the inverse of the determinant of the information matrix (i.e., the inverse of the posterior covariance 
matrix),

�(��) = (det (Cov (�|���)))−1. (6)

In practice, the posterior covariance matrix is estimated as the empirical covariance matrix of samples drawn from 
𝐴𝐴 𝜽𝜽|𝑊𝑊𝑘𝑘𝒚𝒚 . This utility fulfills the so-called D-optimality criterion; unlike trace-based measures (e.g., A-optimal utility 

functions), it is invariant under arbitrary linear transformations of the parameters, for example, when parameters 
have different dimensional scales. It has been used in investigations of linear and nonlinear design (Alexanderian 
et al., 2016; Alexanderian & Saibaba, 2018; Drovandi et al., 2013; Ryan et al., 2014) and particularly in the 
context of sensor placement (Uciński, 2000; Uciński & Patan, 2007). For linear forward maps and Gaussian 
priors, maximization of this utility is equivalent to maximization of the expected Kullback-Leibler divergence 
(KLD), a relative entropy measure (Cook et al., 2008; Huan & Marzouk, 2013; Kim et al., 2014). While KLD has 
beneficial mathematical properties, especially for highly non-Gaussian posteriors (Paninski, 2005), it is difficult 
to evaluate, especially in high-dimensional problems (e.g., Huan & Marzouk, 2013).
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2.3. Synthesis: Targeted Uncertainty Quantification Algorithm

The combined algorithm for targeted uncertainty quantification consists of two stages: first, finding an optimal 
design point 𝐴𝐴 �̃�𝑘 in a design stage and, second, evaluating parameter uncertainty with data from 𝐴𝐴 �̃�𝑘 in an uncertainty 
quantification stage. Let 𝐴𝐴 𝐴𝐴 be the finite index set for the set of design points, and define 𝐴𝐴 𝐴𝐴𝑘𝑘 to be the restriction 
map for any 𝐴𝐴 𝐴𝐴 ∈ 𝐷𝐷 . The two stages then are as follows:

 1.  The design stage consists of the following steps:

 (a)  Generate a sample of GCM simulated data � = �
(

�∗; �(0)
)

 , and estimate the internal variability covari-
ance matrix 𝐴𝐴 Σ(𝜽𝜽

∗
) . We approximate 𝐴𝐴 Σ(𝜽𝜽) as 𝐴𝐴 Σ(𝜽𝜽

∗
) .

 (b)  For each 𝐴𝐴 𝐴𝐴 ∈ 𝐷𝐷 , solve Equation 5, in parallel, for the posterior of 𝐴𝐴 𝜽𝜽|𝑊𝑊𝑘𝑘𝒚𝒚 , using the CES-type algorithm 
described in Appendix A.

 (c)  For each 𝐴𝐴 𝐴𝐴 ∈ 𝐷𝐷 , calculate the utility �(��) from Equation 6 and choose the optimal design

�̃�𝑘 = argmax
𝑘𝑘∈𝐷𝐷

𝑈𝑈 (𝑊𝑊𝑘𝑘) . 

 2.  The uncertainty quantification stage consists of the following steps:

 (a)  At the optimal design point 𝐴𝐴 �̃�𝑘 , obtain a sample 𝐴𝐴 𝒛𝒛�̃�𝑘 .
 (b)  Solve the inverse problem Equation 2 for the posterior distribution of 𝐴𝐴 𝜽𝜽|𝒛𝒛�̃�𝑘 .

This algorithm could be used as one iteration of a workflow loop where, for example, the posterior distribution 
𝐴𝐴 𝜽𝜽|𝒛𝒛�̃�𝑘 can be used to inform a new choice of 𝐴𝐴 𝜽𝜽

∗ .

The complexity of the first stage grows linearly with the candidate design points 𝐴𝐴 𝐴𝐴 because we only consider one 
point at a time. However, if one wishes to choose a design composed of 𝐴𝐴 𝐴𝐴 simultaneous points from a set 𝐴𝐴 𝐴𝐴 , a 
combinatorial problem arises, with complexity growing like 𝐴𝐴 |𝐷𝐷|! ∕ ((|𝐷𝐷| - |𝐾𝐾|)! |𝐾𝐾|!)—a common problem in the 
related field of sensor placement design (Uciński & Patan, 2007; van de Wal & de Jager, 2001). This will become 
prohibitively costly to solve by brute force, even in parallel. We focus on the algorithm for single design points 𝐴𝐴 𝐴𝐴 
for now, addressing scaling questions in the discussion section.

3. Idealized GCM and Experimental Setup
3.1. Idealized GCM, Parameters, and Priors

To demonstrate the algorithm in a simplified setting, we use the idealized aquaplanet GCM described by Frierson 
et al. (2006) and Frierson (2007) with the modifications introduced by O’Gorman and Schneider (2008b). The 
idealized GCM uses the spectral transform dynamical core of the Flexible Modeling System, developed at the 
Geophysical Fluid Dynamics Laboratory. We use a coarse spectral resolution of T21 (32 latitude points and 
64 longitude points on the Gaussian transform grid). The vertical is discretized with finite differences with 20 
equally spaced sigma levels (Simmons & Burridge, 1981). The time discretization uses a second-order leap-
frog method with a Robert-Asselin-Williams filter (P. D. Williams, 2011). The GCM's atmosphere is coupled 
to a 1-m thick slab ocean, and it uses a two-stream gray radiation scheme. Convection is represented by a 
simple quasi-equilibrium moist convection scheme, which relaxes temperature and specific humidity toward 
moist-adiabatic reference profiles with a fixed relative humidity 𝐴𝐴 RH (Frierson, 2007). The timescale with which 
the temperature and specific humidity relax to their respective reference profiles is given by the parameter 𝐴𝐴 𝐴𝐴 . The 
parameters 𝐴𝐴 RH and 𝐴𝐴 𝐴𝐴 are the focus of this study.

Since the GCM has no topography or other asymmetries at the surface, its statistics are zonally symmetric. With 
fixed insolation at the top of the atmosphere, the statistics are also statistically stationary. Prescribing seasonally 
(but not diurnally) varying insolation generates seasonally varying (cyclostationary) statistics, with symmetry 
between the northern and southern hemisphere (i.e., winter in the northern hemisphere winter is statistically 
identical to winter in the southern hemisphere) (Bordoni & Schneider,  2008; Howland et  al.,  2022). Dunbar 
et al. (2021) and Howland et al. (2022) have shown that the parameters 𝐴𝐴 RH and 𝐴𝐴 𝐴𝐴 of the convection parameter-
ization in the GCM can be calibrated in the stationary and cyclostationary regimes. Here we want to determine 
optimal designs for learning about these parameters in the two regimes.
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The priors for these parameters are taken to be logit-normal and lognormal distributions, 𝐴𝐴 RH ∼ Logitnormal(0, 1) 

and 𝐴𝐴 𝐴𝐴 ∼ Lognormal(12 h, (12 h)
2
) . That is, we define the invertible transformation

 (RH, 𝜏𝜏) =

(

logit(RH), ln

(

𝜏𝜏

1 s

))

, 

which transforms each parameter to values along the real axis. We label the transformed (or computational) 
parameters as 𝐴𝐴 𝜽𝜽 =  (RH, 𝜏𝜏) . The untransformed (or physical) parameters (relative humidity and timescale) are 
uniquely defined by 𝐴𝐴 

−1(𝜽𝜽) . We apply our calibration methods in the space of the transformed parameters 𝐴𝐴 𝜽𝜽 , 
where priors are unit-free, normally distributed, and unbounded; meanwhile, the idealized GCM uses the phys-
ical parameters 𝐴𝐴 

−1(𝜽𝜽) , with 𝐴𝐴 RH ∈ [0, 1] and 𝐴𝐴 𝐴𝐴 ∈ [0,∞) . In this way, the prior distributions enforce physical 
constraints on the parameters.

3.2. Objective Function for Parameter Learning

We learn from statistics of model output that are known to be sensitive to the convection parameters. We have 
knowledge about these sensitivities from a body of previous studies that used this idealized GCM (e.g., Bischoff 
& Schneider, 2014; Bordoni & Schneider, 2008; Kaspi & Schneider, 2011, 2013; X. Levine & Schneider, 2015; 
Merlis & Schneider,  2011; O’Gorman,  2011; O’Gorman & Schneider,  2008a,  2008b,  2009b; Schneider 
et al., 2010; Wei & Bordoni, 2018; Wills et al., 2017). We know, for example, that the convection scheme primar-
ily affects the atmospheric thermal stratification in the tropics, with weaker effects in the extratropics (Schneider 
& O’Gorman, 2008). We also know that the relative humidity parameter 𝐴𝐴 RH in the convection scheme controls 
the humidity of the tropical free troposphere but has a weaker effect on the humidity of the extratropical free 
troposphere (O’Gorman et al., 2011). Thus, we expect tropical circulation statistics to be especially informative 
about the parameters in the convection scheme. However, convection plays a central role in intense precipitation 
events at all latitudes (O’Gorman & Schneider, 2009a, 2009b), so we expect statistics of precipitation intensity 
to be informative about convective parameters, and in particular to contain information about the relaxation 
timescale 𝐴𝐴 𝐴𝐴 .

As statistics to learn from, we choose averages of the free-tropospheric relative humidity, of the precipitation 
rate, and of a measure of the frequency of intense precipitation. We use averages over 𝐴𝐴 𝐴𝐴 = 90  days in both the 
statistically stationary and seasonal cycle simulations. We exploit the statistical zonal symmetry in the GCM 
by taking zonal averages in addition to the time averages. The relative humidity data are evaluated at 𝐴𝐴 𝐴𝐴 = 0.5 
(where 𝐴𝐴 𝐴𝐴 = 𝑝𝑝∕𝑝𝑝𝑠𝑠 is pressure 𝐴𝐴 𝐴𝐴 normalized by the local surface pressure 𝐴𝐴 𝐴𝐴𝑠𝑠 ), the precipitation rate is taken daily, 
and as a measure of the frequency of intense precipitation, we use the frequency with which daily precipitation 
exceeds the latitude-dependent 90th percentile of precipitation rates in a long (18,000 days) control simulation. 
We hence have 3 statistics, each a function of the 32 latitude points on the spectral transform grid, resulting in a 
96-dimensional output vector 𝐴𝐴 𝑇𝑇  . In the statistically stationary case, we take the forward map 𝐴𝐴 𝑇𝑇 = 𝑇𝑇  .

For the simulations with a seasonal cycle, 𝐴𝐴 𝑇𝑇  is not statistically stationary but is cyclostationary over multiples 
of a year. The year length in the GCM is 360 days. We stack four 90-day seasons of data together (Howland 
et al., 2022) and define the forward map

�
(

�; �(0)) =
[

�
(

�; �(0)) ,… ,�
(

�; �(3))] 

over a one-year cycle (360 days), where 𝐴𝐴 𝒗𝒗
(𝑖𝑖) is the model state at the beginning of each 90-day long season labeled 

𝐴𝐴 𝐴𝐴 = 0, 1, 2, 3 . With this batching, we have now constructed stationary statistics for the stacked data. The theory of 
Section 2 applies, and our inverse problems can be formulated in the seasonally varying case.

3.3. Design Choices

In the stationary GCM setting, we aggregate statistics temporally and zonally. Thus, a local design implies a 
restriction to certain latitudes. Recall our discretization has 32 discrete latitudes. We therefore choose a design 
space that contains sets of 𝐴𝐴 𝓁𝓁 consecutive discrete latitudes, indexed from south to north poles. In the stationary 
experiments, we focus on the case 𝐴𝐴 𝓁𝓁 = 1 .
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In the seasonally varying setting, we still aggregate temporally and zonally, but we also stack the seasons in a 
vector. We define a local design by indexing both a restriction to a season and a restriction to certain latitudes. We 
choose a design space that contains sets of 𝐴𝐴 𝓁𝓁 consecutive discrete latitudes, collected season by season, indexed 
from south to north poles. In the seasonal experiments, we focus on the case 𝐴𝐴 𝓁𝓁 = 1 .

For additional design scenarios in the stationary setting, we consider cases with wider design stencils, 𝐴𝐴 𝓁𝓁 = 3 , in 
Appendix B, and we consider cases with shorter averaging periods, 𝐴𝐴 𝐴𝐴 = 30  days, in Appendix C.

3.4. Synthetic Data and Noise

We generate limited-area data 𝐴𝐴 𝒛𝒛𝑘𝑘 with the idealized GCM itself at a fixed parameter vector 𝐴𝐴 𝜽𝜽
† , adding Gauss-

ian noise 𝐴𝐴 𝐴𝐴𝑘𝑘 with zero mean and covariance matrix 𝐴𝐴 Δ as in Equation 2. One interpretation of this added noise 
is that it plays the role of an artificial corruption of �

(

�†; �
)

 , with unbiased model error 𝐴𝐴 𝐴𝐴𝑘𝑘 that plays the same 
role as additional observational noise (Kennedy & O’Hagan, 2001). One can obtain unbiased 𝐴𝐴 𝐴𝐴𝑘𝑘 by inclusion 
of models for structural model error within 𝐴𝐴 𝑇𝑇  , for example, learned error models that enforce conservation 
laws and sparsity (M. E. Levine & Stuart, 2021; Schneider et al., 2022). The inverse problem 2 can be written 
as

�� = ∞(�; �) + ��, �� ∼ �
(

0,��(Σ(�) + Δ)� �
�

)

. (7)

We construct the measurement error covariance matrix 𝐴𝐴 Δ to be diagonal with entries 𝐴𝐴 𝐴𝐴
2
𝑖𝑖
= Δ𝑖𝑖𝑖𝑖 > 0 , where 𝐴𝐴 𝐴𝐴 

indexes over data type (three observed quantities) and over the discrete latitudes,

Σ + diag
(

�2
�

)

= Σ + Δ. (8)

We choose 𝐴𝐴 𝐴𝐴𝑖𝑖 so that it is proportional to the mean 𝐴𝐴 𝐴𝐴𝑖𝑖 of the variable in question, with a proportionality factor 
𝐴𝐴 𝐴𝐴max = 0.1 . To prevent the noise from becoming so large that the variables can cross a physical boundary 𝐴𝐴 𝐴𝐴Ω𝑖𝑖 

(e.g., relative humidity becoming negative), we limit the noise standard deviation to a factor 𝐴𝐴 𝐴𝐴 = 0.2 times the 
distance between the approximate 95% noise confidence interval and the physical boundary:

𝑑𝑑𝑖𝑖 = min

(

𝐶𝐶min

(

dist

(

𝜇𝜇𝑖𝑖 + 2
√

Σ𝑖𝑖𝑖𝑖, 𝜕𝜕Ω𝑖𝑖

)

, dist

(

𝜇𝜇𝑖𝑖 − 2
√

Σ𝑖𝑖𝑖𝑖, 𝜕𝜕Ω𝑖𝑖

))

, 𝐶𝐶max𝜇𝜇𝑖𝑖

)

. 

In our proof-of-concept experiments, we generate a sample of ground truth data, 𝐴𝐴 𝒛𝒛𝑘𝑘 , and its variability, by carrying 
out a set of control simulations, with the parameters fixed to values 𝐴𝐴 𝜽𝜽

† , where 𝐴𝐴 
−1
(

𝜽𝜽
†
)

= (0.7, 2 h) are standard 
values used in previous studies (O’Gorman & Schneider, 2008b). We use this set of control simulations to estimate 
the restricted covariance matrix 𝐴𝐴 𝐴𝐴𝑘𝑘Σ(𝜽𝜽)𝐴𝐴

𝑇𝑇

𝑘𝑘
≈ 𝐴𝐴𝑘𝑘Σ

(

𝜽𝜽
†
)

𝐴𝐴
𝑇𝑇

𝑘𝑘
 for any 𝐴𝐴 𝐴𝐴 . In the statistically stationary case, we carry 

out control simulations for 200 windows of length 𝐴𝐴 𝐴𝐴 = 90  days, after discarding the first 50 months for spin-up, and 
we calculate the sample covariance matrix 𝐴𝐴 Σ(𝜽𝜽

†
) from the 200 samples. Here, 𝐴𝐴 𝐴𝐴𝑘𝑘Σ

(

𝜽𝜽
†
)

𝐴𝐴
𝑇𝑇

𝑘𝑘
 is a symmetric matrix 

whose size depends on the design space; it represents noise from internal variability in the 90-day time averages. In 
the seasonally varying case, we carry out a control simulation for 150 years, discarding the first 4 years for spin-up, 
and obtain the sample covariance matrix 𝐴𝐴 Σ(𝜽𝜽

†
) from the stacked seasonal (𝐴𝐴 𝐴𝐴 = 90  days) averages. In the seasonal 

case, 𝐴𝐴 𝐴𝐴𝑘𝑘Σ
(

𝜽𝜽
†
)

𝐴𝐴
𝑇𝑇

𝑘𝑘
 is a symmetric matrix whose size depends on 4 times the design space. We add a small regu-

larization term of 𝐴𝐴 10
−4 to the diagonal of 𝐴𝐴 Σ(𝜽𝜽

†
) to prevent zero variability, which occurs due to finite-time averages 

of intense precipitation. In practical implementations of this method, good estimates of the local variability that we 
represent by 𝐴𝐴 𝐴𝐴𝑘𝑘Σ

(

𝜽𝜽
†
)

𝐴𝐴
𝑇𝑇

𝑘𝑘
 can be obtained from the observed climatology of the statistics of interest, instead of 

estimating them from a control simulation of the GCM.

In the data acquisition algorithm, we require a sample of data 𝐴𝐴 𝐴𝐴𝑘𝑘𝒚𝒚 , and its variability, for different 𝐴𝐴 𝐴𝐴 . To obtain 
this, we use a set of control simulations of the GCM in which we fix the parameters to the prior mean 𝐴𝐴 𝜽𝜽

∗ , the 
value used to generate 𝐴𝐴 𝒚𝒚 , equivalent to the physical values 𝐴𝐴 

−1
(

𝜽𝜽
∗
)

= (0.5, 7 h) . In the stationary case, the three 
latitude-dependent fields evaluated at 32 latitude points produce a 96 × 96 symmetric matrix 𝐴𝐴 Σ(𝜽𝜽

∗
) , representing 

noise from internal variability in 90-day averages. Similarly, in the seasonal case, the stacked statistics produce 
a 384 × 384 symmetric matrix 𝐴𝐴 Σ(𝜽𝜽

∗
) , and since 𝐴𝐴 𝐴𝐴 = 90  days, 𝐴𝐴 Σ(𝜽𝜽

∗
) represents noise from internal variability in 

90-day averages. We again add a small regularization term of 𝐴𝐴 10
−4 to the diagonal of 𝐴𝐴 Σ(𝜽𝜽

∗
) . In both cases, we 

estimate 𝐴𝐴 Σ(𝜽𝜽) ≈ Σ(𝜽𝜽
∗
) in the optimal design stage of the algorithm.
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The mean and 95% confidence interval of the data at 𝐴𝐴 𝜽𝜽
∗ , with covariance constructed from 𝐴𝐴 Σ(𝜽𝜽

∗
) , are shown in 

Figure 1 for the statistically stationary case and in Figure 2 for the seasonally varying case. The black (stationary) 
and colored (seasonal) solid lines illustrate a realization of the data for one initial condition. Similarly, the mean 
and 95% confidence interval of the data at 𝐴𝐴 𝜽𝜽

† , with noise added with covariance matrix 𝐴𝐴 Δ + Σ(𝜽𝜽
†
) , are shown in 

Figure 3 for the stationary and in Figure 4 for the seasonally varying case.

4. Results
4.1. Stationary Statistics

We first apply the optimal design algorithm to the statistically stationary GCM. The logarithm of the utility func-
tion is shown in Figure 5. The extent to which hemispheric symmetry of the statistics is broken in Figure 5 is an 
indication of sampling variability, as the infinite-time GCM statistics are hemispherically symmetric. The design 
landscape appears surprising, as precipitation and parameterized tendencies from convection are largest in the 
ITCZ (within ±3° of the equator), and one may expect the optimal region to be in the ITCZ as well. Our algorithm 
indicates that the equatorial region is indeed a good location, but larger utilities are found at latitude ±19°, near 
the precipitation minima under the descending branches of the Hadley circulation in this model. Indeed, daily 
precipitation rates at this subtropical latitude correlate more strongly with the relative humidity parameter in the 
convection scheme than in the equatorial latitudes (Figure 6). With designs focused on a single latitude (𝐴𝐴 𝓁𝓁 = 1 ), 
this region is indicated to be most informative. With wider design stencils (𝐴𝐴 𝓁𝓁 = 3 ), the algorithm's aligns closer 
with intuition, placing optimal utility near the equator (Figure B1).

Figure 2. Aggregated climate statistics in the seasonally varying control simulation, with parameters set to the mean of the prior 𝐴𝐴 𝜽𝜽
∗ . The mean (solid lines) and 95% 

confidence intervals (shading) of the data are plotted against latitude, with the different colors for different seasons, with the labels referring to the northern hemisphere. 
The infinite-time statistics between the two hemispheres are identical, so differences between, for example, northern and southern hemisphere winter or summer are 
indicative of sampling variability from finite-time averages. No noise is added here.

Figure 1. Aggregated climate statistics in the statistically stationary control simulation, with parameters set to the mean of the prior 𝐴𝐴 𝜽𝜽
∗ . The mean (gray lines) and 95% 

confidence intervals (shading) of the data are plotted against latitude. One realization of the 90-day averaged data is shown (black line). No noise is added here.
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We validate our optimal choice by solving Equation 7 at four representative design choices, at latitudes −19°, 
−3°, −8°, and −75°, (in decreasing order of utility) shown as colored discs in Figure 5. The samples of climate 
statistics used at each latitude are shown in Figure 3 (colored discs). Density plots of the posterior distributions 
at each latitude are shown in Figure 7. Each panel shows the density contours bounding 50%, 75%, and 99% of 
the posterior distribution, shaded dark to light; the priors are largely uninformative and have been excluded from 
the plots. The panels a–d are ordered by decreasing utility from Figure 5, which is a predictor of information 
content based on uncertainty at the prior mean 𝐴𝐴 𝜽𝜽

∗ . The true utilities of the posterior distributions 𝐴𝐴 𝜽𝜽
†
|𝒛𝒛𝑘𝑘 are 26.4, 

13.9, 4.4, and 1.7. Thus, the order of predicted information content reflects the order of actual information 
content. Visually, we see an increased area covered by the different contours for less informative distributions. 
However, the prediction of the ordering of utilities does not extend to providing accurate prediction of the actual 
utility value, due to the additional error inflation present in the true data and sampling error. Physical intuition, 
positing the equatorial region as the optimal target location, would lead to a reasonable design with a utility of 
13.9 (Figure 7b), around half that of the optimal design (26.4). A poor guess, positing high latitudes as the opti-
mal target location, would lead to only moderate improvements relative to the prior (Figure 7d), with a utility of 
1.7 that is around a factor 20 smaller than that for the optimal design. With wider design stencils, the optimally 
informative location is predicted to be closer to the equator (Figure B1) As observed in other investigations 
(Dunbar et al., 2021), the posterior distributions are subject to variability due to the finite-time sampling and the 
inflation. However, all distributions capture the true parameter values within 50% of the posterior mass.

Figure 3. Aggregated climate statistics in the statistically stationary control simulation using the ground truth parameters 𝐴𝐴 𝜽𝜽
† . The mean (gray lines) and 95% 

confidence intervals (shading) of the data are plotted against latitude. Noise mimicking observational and/or model error is added. Each colored disc represents a 90-day 
realization of GCM data coming from a different design (latitude) used in the experiment.

Figure 4. Aggregated climate statistics in the seasonally varying control simulation using the ground truth parameters 𝐴𝐴 𝜽𝜽
† . We added noise mimicking observational 

and/or model error. The mean (solid lines) and 95% confidence intervals (shading) of the data are plotted against latitude, with the colors indicating different seasons, 
referenced to the northern hemisphere. The blue vertical line indicates the location and season (northern winter) in which we observe the data for uncertainty 
quantification; the specific 90-day realization of GCM data for the one-latitude design is given by the blue disc.
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When the climate statistics that are used are based on shorter-term averages 
and hence are noisy, the targeting algorithm, as expected, can become less 
effective, and parameter posteriors can become more multimodal (Figure C5).

4.2. Seasonally Varying Statistics

In the seasonally varying case, we choose the optimal design with the algo-
rithm in Section 2.3 applied to the data stacked in seasons. Figure 8 shows the 
logarithm of the utility function. Hemispheric and seasonal asymmetries are 
evident here. In northern winter, latitudes just south of the equator (−3°) opti-
mize the design, in the vicinity of the ITCZ. Conversely, in northern summer, 
latitudes just north of the equator (3°) optimize the design, again in the vicin-
ity of the seasonally migrating ITCZ. Additional peaks in the data utility can 
be seen around 30°, in the summer subtropics and again near the descending 
branch of the Hadley circulation. The equinox seasons have less utility at 

the optimal designs (3° and −3°). Because the equinoctial Hadley cells and ascent regions in the ITCZ are less 
pronounced than the solstitial Hadley cells (Schneider et al., 2010), utility is more spread out across the latitudes.

Figure 5. Logarithm of the data utility as a function of latitude, with 
designs corresponding to a single latitude. The colored discs signify the four 
representative designs indicated in Figure 3, which are used in the uncertainty 
quantification experiment.

Figure 6. Daily precipitation rates at equatorial (left) and subtropical (right) latitudes, plotted against the relative humidity 
and relaxation timescale in the convection scheme. The scatter plots are generated by sampling independently from the prior 
distribution for the two parameters and then projecting into each parameter dimension.
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We solve the analogue inverse problem 7 as in the statistically stationary case with a sample of data taken at lati-
tudes of ±3° or ± 30°, corresponding to the first and second peaks of utility for the solstice seasons. The posterior 
distributions are collected in Figure 9, colored by season. In general, the true parameter values lie within 50% of 
the posterior mass in each case. The utilities at the optimal latitudes in northern summer and winter are 131.9 and 
154.7, respectively. In contrast, the utilities corresponding to the secondary peaks in the subtropics are 47.9 and 
39.5 for northern summer and winter, respectively. As in the statistically stationary case, the design with highest 

predicted utility (northern winter at 3°) indeed has highest utility. Visually we 
see symmetry between these seasons, with qualitatively similar distributions 
in the opposing hemispheres for northern summer and winter. For the equi-
nox seasons, from data sampled at their respective optimal latitudes of +3° 
and −3° (Figure  10), we see lower utilities of 89.7 and 54.8 for northern 
fall and spring, respectively, and we see asymmetry most likely indicating 
sampling variability, because the infinite-time GCM statistics are hemispher-
ically symmetric. In this seasonally varying setting, we again observe that our 
targeted data acquisition algorithm is a good predictor of informativeness of 
additional data for learning about the convection parameters.

5. Conclusions and Discussion
We have presented a novel framework for automated optimal data acquisition 
to calibrate a global model. The framework can be used with computation-

Figure 7. Posterior distributions for convection parameters learned from data restricted to different design points. The drawn 
contours bound 50%, 75%, and 99% of the distribution. Panels a–d correspond to designs at latitudes −19°, −3°, 3°, and 
−75°, ordered according to decreasing utility in Figure 5. The true utility of these distributions are 26.4, 13.9, 4.4, and 1.7. 
The true parameter values in the control simulation are given by the blue circle. The parameters found to be optimal in the 
calibration scheme (given a single random realization of data) are given by the red star in each case.

Figure 8. Logarithm of the data utility plotted against latitude (1 design per 
latitude). The shading represents the (northern) season over which data was 
averaged. The blue disc signifies that an equatorial latitude in northern winter 
maximizes the utility function across all locations and seasons.
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ally expensive and chaotic (noisy) GCMs, whose derivatives may not be available. The data are assumed to be 
accessible only at limited locations and at different times of year. Given a global simulation, we use parameter 
uncertainty information provided by the CES algorithm to guide our choice of design (when and where we target 
data acquisition). We have demonstrated the efficacy of the algorithm for finding optimally informative locations 
in perfect-model settings in which we generated data with an idealized GCM and learnt about parameters in a 
convection parameterization. Using statistically stationary or seasonally varying statistics, we have explored both 
spatial and spatio-temporal designs.

With the idealized GCM, we have targeted a location and time period at which additional data will produce 
parameter estimates that minimize uncertainty. In our proof-of-concept with narrow designs consisting of data 
measured only at a single latitude (𝐴𝐴 𝓁𝓁 = 1 ), the automatically targeted optimal location for new data acquisition 
was, in the seasonal case, in the vicinity of the seasonally migrating ITCZ, with secondary maxima in the 
summer subtropics. This is consistent with the fact that the convection scheme in the idealized GCM is most 
important near the ITCZ (O’Gorman & Schneider, 2008b). In the statistically stationary case, regions near the 
ITCZ are optimal for data acquisition with wider design stencils (𝐴𝐴 𝓁𝓁 = 3 , Appendix B). However, in scenarios 
with narrower designs (𝐴𝐴 𝓁𝓁 = 1 ), the subtropical precipitation minimum turns out to be the optimal location, 
which we confirmed by calibrating convection parameters at this and other locations. We showed that the opti-
mal targeting is limited in its effectiveness when the available data are very noisy (as shown in Appendix C 
when both the averaging timescale and stencil sizes are reduced). However, the algorithm provides access to 
the posterior distributions of the parameters, so that this behavior is both diagnosable a posteriori and action-
able with successive iterations of  the optimal design process (e.g., using the current posterior as the prior for 

Figure 9. Posterior distribution obtained from using data at the optimal latitudes (±3°, left) and second-optimal latitudes 
(±30°, right). The top row corresponds to data targeted to northern summer in the northern hemisphere, and the bottom row 
corresponds to data targeted to southern summer in the southern hemisphere. Contours bound 50%, 75%, and 99% of the 
distribution (in decreasing color saturation). The true utility of the northern summer distributions are (left: 131.9, right: 47.9), 
and southern summer distributions are (left: 154.7, right: 39.5). The true parameter values in the control simulation are given 
by the blue circle. The parameters found to be optimal in the calibration scheme (given a single random realization of data) 
are given by the red star in each case.
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a subsequent iteration with additional data). We also showed that although the algorithm correctly predicts 
the ordering of information content of different sites in many scenarios, it does not necessarily provide an 
accurate estimate of the actual information content at the sites, due to sampling variability and the additional 
model error inflation.

Our algorithm couples the optimization over the design space to the specific application through the posterior 
distribution of parameters. Therefore, it captures different applications of targeted data acquisition by modifying 
only the forward map and data entering the loss function to learn this parameter distribution, without changing 
the algorithm structure. Our framework is thus immediately applicable to the motivating example of automati-
cally targeting embedded high-resolution simulations such as those in Shen et al. (2020) and Shen et al. (2021) 
to regions that are maximally informative about parameterizations. One could even consider targeting observa-
tional data acquisition, such as informing choices for new field campaigns (e.g., Rauber et al., 2007; Stevens 
et al., 2003), or new in-situ observatory locations (e.g., Stokes & Schwartz, 1994). However, many additional 
practical considerations beyond the scope of optimal experimental design also play a role in site selection in such 
cases.

The current algorithm relies on evaluating utilities naively at all design points. Thus, for moderately sized design 
spaces, the computational cost is dominated by the cost of running the GCM. In practice, if we want to determine 

𝐴𝐴 (10
3
) limited-area data acquisition sites optimally within 𝐴𝐴 10

6 or more possible locations, such naive approaches 
are inefficient. Instead, one can use more sophisticated optimization algorithms. For determinant based (i.e., 
D-optimal) utilities, this typically requires accelerating the determinant evaluation (and its gradients). Various 
methods have been developed to do so, for example, using Laplace approximations (Beck et  al., 2018; Long 
et al., 2013; Rue et al., 2009), polynomial chaos surrogates (Huan & Marzouk, 2014), optimization of criteria 
bounds (Tsilifis et al., 2017), fast random determinant approximation (Alexanderian et al., 2014; Alexanderian 
& Saibaba,  2018), and Gaussian process surrogates (Buathong et  al.,  2020; Paglia et  al.,  2020). The latter, 
kernel-based approaches are particularly amenable to our setting, as they give sparse representations of the utility 
function that are independent of the underlying computational grid. They may offer a way forward in the climate 
modeling setting.

As we have presented it here, the algorithm is directly applicable to comprehensive climate models. It will be 
interesting to explore to what extent application to comprehensive models yields results such as the ones we have 
seen in the idealized setting: non-obvious optimal locations for targeting computational or observational data 
acquisition for reducing uncertainties in convection or other parameterization schemes.

Figure 10. Posterior distribution obtained from uncertainty quantification using data targeted at the optimal latitude (±3°) 
from each equinox season. Contours bound 50%, 75%, and 99% of the distribution (in decreasing color saturation). The 
northern spring (at latitude +3°) distribution has utility 54.8, while northern autumn (at latitude −3°) has utility 89.7. The 
true parameter values in the control simulation are given by the blue circle. The parameters found to be optimal in the 
calibration scheme (given a single random realization of data) are given by the red star in each case.
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Appendix A: Calibrate-Emulate-Sample With Design
Key to the success of this work, is the ability to efficiently calculate the posterior distribution (in particular 
the covariance), which is needed to calculate the utility function (6) at all designs. We present a methodology: 
calibrate-extract-emulate-sample, (CEES) which allows for the parallel sampling of the posterior distribution at 
all designs with a combined total of 𝐴𝐴 (10

2
) evaluations of our forward model.

The methodology is based on the calibrate-emulate-sample (CES) algorithm, for full details of the individ-
ual stages, see Cleary et al. (2021) and Dunbar et al. (2021), here we present an overview and motivation. 
The core purpose of CES is to form a computationally cheap statistical emulator of 𝐴𝐴 ∞ from intelligently 
chosen samples of 𝐴𝐴 𝑇𝑇  ; then one is able to solve the Bayesian inverse problem for the emulated 𝐴𝐴 ∞ with a 
sampling method. We achieve this by using Gaussian process emulators, trained on the samples of the (noisy 
and expensive) forward map. The Gaussian process mean function is naturally smoother than the data it is 
trained on (Kennedy & O’Hagan, 2001; Notz et al., 2018), and is capable of representing the noise of the 
forward model within the covariance function, leading to a smooth likelihood function that is quick to eval-
uate. The training points for the Gaussian Process are given by applying an optimization scheme, Ensemble 
Kalman Inversion (EKI) (Chen & Oliver, 2012; Iglesias et al., 2013; Schillings & Stuart, 2017), to the inverse 
problem in its finite-time averaged form Equation 3. Theoretical work shows that noisy continuous-time 
versions of EKI exhibit an averaging effect that skips over fluctuations superimposed onto the ergodic 
averaged forward model (Duncan et al., 2022), and similar effects are observed in practice for EKI, thus it 
is highly suited to optimization of parameters coming from a noisy, expensive model without derivatives 
available. Ensemble Kalman methods are scalable to very high dimensional problems (Kalnay, 2003; Oliver 
et al., 2008) with use of localization and regularization.

Let 𝐴𝐴 𝐴𝐴 index a finite space of designs. Given a time 𝐴𝐴 𝐴𝐴 𝐴 0 , and prior on 𝐴𝐴 𝜽𝜽 with prior mean 𝐴𝐴 𝜽𝜽
∗ . Draw a sample 

𝐴𝐴 𝒚𝒚 = 𝑇𝑇

(

𝜽𝜽
∗
, 𝒗𝒗

(0)
)

 , from initial condition 𝐴𝐴 𝒗𝒗
(0) :

 1.  Calibrate: We solve Equation 3 with 𝐴𝐴 𝒚𝒚 using evaluations of 𝐴𝐴 𝑇𝑇  in an optimization sense, where we minimize 
the functional.

Φ𝑇𝑇 (𝜽𝜽, 𝒚𝒚) = ‖𝒚𝒚 − 𝑇𝑇 (𝜽𝜽)‖
2

2Σ
. (A1)

The notation 𝐴𝐴 ‖ ⋅ ‖Σ = ‖Σ−
1

2 ⋅ ‖2 is the Mahalanobis distance. We drop the notation of the initial conditions, which 
are drawn at random from the invariant distribution for every evaluation of 𝐴𝐴 𝑇𝑇  . The weight 𝐴𝐴 2Σ is the sum of 
internal variability of 𝐴𝐴 𝑇𝑇  and of 𝐴𝐴 𝒚𝒚 . The optimization is performed using several iterations the Ensemble Kalman 
Inversion algorithm. This leads to 𝐴𝐴 {𝜽𝜽𝑖𝑖,𝑗𝑗 (𝜽𝜽𝑗𝑗)}

𝐽𝐽

𝑗𝑗=1
 of input-output pairs that are localized around the optimal 

parameter value.

 2.  Extract: For each design 𝐴𝐴 𝐴𝐴 ∈ 𝐷𝐷 , we apply the restriction mapping 𝐴𝐴 𝐴𝐴𝑘𝑘 to the forward map, 𝐴𝐴 {𝜽𝜽𝑗𝑗 ,𝑊𝑊𝑘𝑘𝑇𝑇 (𝜽𝜽𝑗𝑗)}
𝐽𝐽

𝑗𝑗=1
 , 

and apply the following Emulate(𝐴𝐴 𝐴𝐴 ) and Sample(𝐴𝐴 𝐴𝐴 ) stages.
 3.  Emulate(𝐴𝐴 𝐴𝐴 ): We decorrelate the data space with an SVD on the internal variability covariance 𝐴𝐴 Σ , yielding a 

change-of-basis matrix 𝐴𝐴 𝐴𝐴 . We train Gaussian process emulators, on the pairs 𝐴𝐴 {𝜽𝜽𝑗𝑗 , 𝑉𝑉 𝑉𝑉𝑘𝑘𝑇𝑇 (𝜽𝜽𝑗𝑗)}
𝐽𝐽

𝑗𝑗=1
 , yielding 

𝐴𝐴 (
GP
(𝜽𝜽),Σ

GP
(𝜽𝜽)) , where 𝐴𝐴 

GP
≈ 𝑉𝑉 𝑉𝑉𝑘𝑘∞(𝜽𝜽) (crucially 𝐴𝐴 ∞ and not 𝐴𝐴 𝑇𝑇  ) and 𝐴𝐴 Σ

GP
(𝜽𝜽) ≈ 𝑉𝑉 𝑉𝑉𝑘𝑘Σ𝑉𝑉

𝑇𝑇

𝑘𝑘
𝑉𝑉

𝑇𝑇  .
 4.  Sample(𝐴𝐴 𝐴𝐴 ): We now solve the inverse problem Equation 5, This is feasible as the emulator provides us with an 

approximation of 𝐴𝐴 ∞ (not just 𝐴𝐴 𝑇𝑇  ). The posterior distribution associated with Equation 5 is proportional to a 
product of prior and likelihood contribution from Bayes theorem. Explicitly, for a Gaussian prior �(�, �) on 
the computational parameters, and the likelihood dependent on the emulator, we write the MCMC objective 
function (also known as the log-posterior) as

ΦMCMC (�, � ���) =
1
2
‖� ��� − GP(�)‖2ΣGP(�)

+ 1
2
log det ΣGP(�)

+1
2
‖� −�‖

2
� .
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The posterior is then given by

ℙ (𝜽𝜽|𝑉𝑉 𝑉𝑉𝑘𝑘𝒚𝒚) ∝ exp (−Φ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝜽𝜽, 𝑉𝑉 𝑉𝑉𝑘𝑘𝒚𝒚)) . 

This can be sampled with a standard random walk metropolis sampling algorithm. In practice we run the algo-
rithm for 𝐴𝐴 2 × 10

5 samples, discarding the first 𝐴𝐴 10
5 as spin-up.

The CEES algorithm is illustrated in Figure A1. We then collect the posterior distributions 𝐴𝐴 {𝜽𝜽|𝑊𝑊𝑘𝑘𝒚𝒚}𝑘𝑘 , ∀𝑘𝑘 ∈ 𝐷𝐷 
and calculate the utility function using Equation 6. In particular the algorithm requires 𝐴𝐴 𝐴𝐴  model evaluations inde-
pendent of the number of designs.

The CES algorithm is used to solve Equation 7 at a given design 𝐴𝐴 �̃�𝑘 , by calibrating with the corresponding objec-
tive function for the limited-area data, followed by emulate and sample stages at 𝐴𝐴 �̃�𝑘 .

Appendix B: Results for Three-Latitude Stencil
For the statistically stationary case, we increase the stencil size to 𝐴𝐴 𝓁𝓁 = 3 . Here, we have 30 designs indexed 
from south to north poles. We plot the logarithm of the utility against the designs in Figure B1. The center 
of the three-latitude stencil is take as a representative latitude for that design. The colored discs represent the 
designs centered on latitudes −8°, −3°, −19°, and −75°, in decreasing order of utility on the plot. The increase 
in spatial extent smooths the design landscape. We validate the optimal design methodology by taking a data 
sample at each of these representative designs. We then apply the uncertainty quantification stage of the algo-
rithm for each design to obtain the posterior distributions for the convection parameters given each data. The 
distributions are displayed in Figure B2; panels a–d are ordered according to decreasing predicted utility given by 
Figure B1. The true utilities for the distributions a—d are 126.0, 35.3, 97.5, and 2.1. In this case, the algorithm 
has identified the design with maximal utility centered at −8° (Figure B1a), where analysis of precipitation and 
parameterized  tendencies would suggest the ITCZ region centered at −3° that presents the bimodal distribution 
(Figure B1b).

Figure A1. Procedure of the uncertainty quantification framework (blue), to produce output (pink). A restriction operator 𝐴𝐴 𝐴𝐴1 
extracting a subset of the GCM output (yellow); the subsequent emulate and sample stages may be performed in parallel for 
all 𝐴𝐴 𝐴𝐴𝑖𝑖 , from a single calibration run.

Figure B1. Logarithm of the data utility as a function of latitude, with designs corresponding to a three-latitude stencil, 
the center of which is plotted. The colored discs signify the four representative designs, which are used in the uncertainty 
quantification experiment.
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Appendix C: Results for 30-Day Time Averages
For the statistically stationary case, we also run a suite of experiments for time-averages of 𝐴𝐴 𝐴𝐴 = 30  days. The first 
control simulation at the prior mean 𝐴𝐴 𝜽𝜽

∗ produces the 600 samples of 30-day averaged control statistics, with which 

Figure B2. Posterior distributions for convection parameters learned from data restricted to different design points. The 
drawn contours bound 50%, 75%, and 99% of the distribution. Panels a–d correspond to designs −8°, −3°, −19°, and −75°), 
ordered as points of decreasing utility in Figure B1. The true utility of these distributions are 126.0, 35.3, 97.5, and 2.1. 
The true parameter values in the control simulation are given by the blue circle. The parameters found to be optimal in the 
calibration scheme (given a single random realization of data) are given by the red star in each case.

Figure C1. Aggregated climate statistics in the statistically stationary control simulation, with parameters set to the mean of the prior 𝐴𝐴 𝜽𝜽
∗ . The mean (gray lines) and 

95% confidence intervals (shading) of the data are plotted against latitude. One realization of the data is shown (black line). No noise is added here.
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we use to approximate 𝐴𝐴 Σ(𝜽𝜽) . The statistics are represented in Figure C1. We run an experiment for three-stencil 
designs (𝐴𝐴 𝓁𝓁 = 3 ). Here we have 30 designs are indexed from south to north poles. We plot the logarithm of the 
utility against the designs in Figure C3. The colored discs represent the designs centered on latitudes −3°, −8°, 
25°, and −69° (in decreasing order of utility on the plot).

To validate the optimal design methodology, we sample the ground truth data at the designs (Figure C2). We then 
obtain the posterior distributions for the convection parameters given this data. The distributions are displayed in 
Figure C4, with panels a–d ordered according to decreasing predicted utility given by Figure C3. The uncertainty 
of the distributions in panels a–d gives utilities 181.6, 97.5, 66.6, and 1.8. In this case, the automated algorithm 
has identified the optimal stencil correctly.

Figure C2. Aggregated climate statistics in the statistically stationary control simulation using the ground truth parameters. Mean (gray lines) and 95% confidence 
intervals (shading) of the data are plotted against latitude. Additional inflation noise is added. Each set of colored discs represents a 30-day realization of inflated GCM 
data coming from a different three-latitude design used in the experiment.

Figure C3. Logarithm of the data utility as a function of latitude, with designs represented by a node at the center of each 
stencil (comprised of three neighboring latitudes). The colored discs signify the four representative designs indicated in 
Figure 3, which are used in the uncertainty quantification experiment.
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With the choices 𝐴𝐴 𝓁𝓁 = 1 and 2, Figure C5 shows the utility function against the latitude at the center of the stencil 
and the posterior distribution at the respective optimal designs. The behavior of the utility function is similar 
to the 90-day time averaged case. For 𝐴𝐴 𝓁𝓁 = 2 , we find optimality around the equator; for 𝐴𝐴 𝓁𝓁 = 1 , we find two 
additional peaks revealed at ±19° (see Figure 5). The posterior distributions are seen to be far broader than in 
the  three-latitude case, as less information is available. The posteriors are multimodal but nevertheless capture the 
true parameters (blue disc) with high probability. They provide insight into the correlation structure between  the 
parameters at the optimal design location. We observe that for these sparser designs, non-identifiability (multi-

Figure C4. Posterior distributions for convection parameters learned from data restricted to different design points. The 
drawn contours bound 50%, 75%, and 99% of the distribution. Panels a–d correspond to three-stencil designs with centers 
at − 8°, −3°, 25°, and −70°, ordered to express learning from data at decreasingly informative design points (i.e., points 
of decreasing utility in Figure C3). The true parameter values in the control simulation are given by the blue circle. The 
parameters found to be optimal in the calibration scheme (given a single random realization of data) are given by the red star 
in each case (in panel (d) this is outside the plotting region).
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modality) appears only at data from 𝐴𝐴 𝜽𝜽
† , but not at 𝐴𝐴 𝜽𝜽

∗ . As a result, the optimal uncertainty is not guaranteed to be 
found at the location of optimal utility. This is remedied by having a better initial guess through the prior, or by 
having a less noisy data set from which the parameters are more identifiable.

Data Availability Statement
All computer code used in this paper is open source. The code for the idealized GCM, the Julia code for the opti-
mal design algorithm, the plotting tools, and the slurm/bash scripts to run both GCM and design algorithms are 
available at: https://doi.org/10.5281/zenodo.6679974.
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