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Abstract
We propose a novel method for sampling and optimiza-
tion tasks based on a stochastic interacting particle sys-
tem. We explain how this method can be used for the
following two goals: (i) generating approximate samples
from a given target distribution and (ii) optimizing a
given objective function. The approach is derivative-free
and affine invariant, and is thereforewell-suited for solv-
ing inverse problems defined by complex forward mod-
els: (i) allows generation of samples from the Bayesian
posterior and (ii) allows determination of the maximum
a posteriori estimator. We investigate the properties of
the proposed family of methods in terms of various
parameter choices, both analytically and by means of
numerical simulations. The analysis and numerical sim-
ulation establish that the method has potential for gen-
eral purpose optimization tasks over Euclidean space;
contraction properties of the algorithm are established
under suitable conditions, and computational experi-
ments demonstrate wide basins of attraction for various
specific problems. The analysis and experiments also
demonstrate the potential for the samplingmethodology
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in regimes in which the target distribution is unimodal
and close to Gaussian; indeed we prove that the method
recovers a Laplace approximation to the measure in cer-
tain parametric regimes and provide numerical evidence
that this Laplace approximation attracts a large set of ini-
tial conditions in a number of examples.
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optimization, sampling, stochastic interacting particle systems

1 INTRODUCTION

1.1 Background

We consider the inverse problem of finding 𝜃 from 𝑦 where

𝑦 = 𝐺(𝜃) + 𝜂. (1)

Here 𝑦 ∈ 𝐑𝐾 is the observation, 𝜃 ∈ 𝐑𝑑 is the unknown parameter, 𝐺 ∶ 𝐑𝑑 → 𝐑𝐾 is the forward
model, and 𝜂 is the observational noise. We adopt the Bayesian approach to inversion1 and assume
that the parameter and the noise are independent and normally distributed: 𝜃 ∼ 𝖭(0, Σ) and 𝜂 ∼
𝖭(0, Γ). By (1) and Bayes’ formula, the posterior density (i.e., the conditional probability density
function of 𝜃 given 𝑦) equals

𝜌(𝜃) =
exp (−𝑓(𝜃))

∫
𝐑𝑑 exp (−𝑓(𝜃)) d𝜃

, (2)

where

𝑓(𝜃) ∶= Φ(𝜃; 𝑦) +
1

2
|𝜃|Σ2, Φ(𝜃; 𝑦) =

1

2
|𝑦 − 𝐺(𝜃)|Γ2. (3)

In the foregoing and in what follows, we adopt the following notation: for a positive definite
matrix 𝐴,

⟨∙, ∙⟩𝐴 = ⟨∙, 𝐴−1∙⟩, |∙|2
𝐴
= ⟨∙, ∙⟩𝐴.

For amatrix𝐵, we denote by ‖𝐵‖ the operator norm induced by theEuclidean vector norm, andwe
also define the weightedmatrix norm ‖𝐵‖𝐴 = ‖𝐴−1∕2𝐵𝐴−1∕2‖ (noting that this is not the induced
matrix norm from vector norm |∙|𝐴).
Solving inverse problems in the Bayesian framework can be prohibitively expensive because of

the need to characterize an entire probability distribution. One approach to this is simply to seek
the point of maximum posterior probability, the MAP point,1,2 defined by

𝜃∗ = argmin𝜃 𝑓(𝜃). (4)
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However, this essentially reduces the solution of the inverse problem to a classical optimization
approach3 and fails to capture uncertainty. A compromise between a fully Bayesian approach
and the classical optimization approach is to seek a Gaussian approximation of the measure.4
By the Bernstein–von Mises theorem (and its extensions),5 the posterior is expected to be well
approximated by a Gaussian density in the large data limit, if the parameter is identifiable in
the infinite data setting; a Gaussian approximation is also expected to be good if the forward
map is close to linear. For these reasons, use of the Laplace method6 to obtain a Gaussian
approximation of the posterior density is often viewed as a useful approach in many application
domains.
Many inverse problems arising in applications are defined by complex forward models𝐺, often

available only as a black box, and in particular adjoints and derivatives may not be readily avail-
able. Consensus-based approaches are proving to be interesting and viable derivative-free tech-
niques for optimization.7–9 The focus of this paper is on developing consensus-based sampling
(CBS) of the posterior distribution for Bayesian inverse problems and, in particular, on the study
of such methods in the context of Gaussian approximation of the posterior.
The computational methodology we introduce applies to arbitrary measures with negative log

density 𝑓, and is not restricted to the choice in (3) resulting from the inverse problem (1). Some of
our analysis, however, is specific to the inverse problem in the casewhere𝐺 is linear. The proposed
methodology is potentially useful for the solution of complex problems for which the evaluation
of 𝑓 or𝐺 is expensive, and derivatives of 𝑓 and𝐺 are not available, or noisy and not useable. In this
sense the proposed methodology is competitive with state-of-the-art ensemble Kalman methods
for inverse problems, which are also of particular value for derivative-free sampling when 𝐺 is
expensive to evaluate. The fact that the analysis of the accuracy of the proposed sampling method
is confined to unimodal distributions, which are close to Gaussian, is also a limitation of ensemble
Kalman methods. Our work thus provides impetus for further innovation in the analysis and
design of particle-based, derivative-free sampling methods.

1.2 Literature review

Systematic procedures to sample probability measures have their roots in statistical physics and
the 1953 paper ofMetropolis et al.10 In 1970Hastings recognized this work as a special case of what
is now known as the Metropolis-Hastings methodology.11 These methods in turn may be seen as
part of the broaderMarkov chainMonte Carlo (MCMC) approach to sampling.12 In 2006, sequen-
tial Monte Carlo (SMC) methods, based on creating a homotopy deforming the initial (simple to
sample) measure into the desired target measure, were introduced13; in practice these methods
work best when entwined with MCMC kernels. These SMC methods introduce the idea of using
the evolution of a system of interacting particles to approximate the desired target measure; the
large particle limit of this evolution captures the homotopy from the initial measure to the target
measure. In a parallel development, the mathematical physics community has developed a large
body of understanding of interacting particle systems, and theirmean-field limits, initially primar-
ily for models on a countable state space14,15 and more recently for models in uncountable state
space.16–20 Studying interactions between sampling, collective dynamics of particles and mean-
field limits holds considerable promise as a direction for finding improved sampling algorithms
for specific classes of problems and is an active area of research.21–24
The focus of this work is on sampling measure (2), or optimizing objective function (4), by

means of algorithms, which only involve black box evaluation of𝐺. While someMCMC and SMC
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methods are of this type, the Metropolis algorithm being a primary example, the use of collective
dynamics of particles opens the door to a wider range of methods to solve inverse problems in this
setting. There are two primary classes of methods emerging in this context: those arising from
consensus forming dynamics9 and those arising from ensemble Kalman methods.25
Iterative ensemble Kalman methods for inverse problems were introduced in Refs. 26, 27. Sim-

ilar ideas are also implicit in the work of Reich22 who studies state estimation sequential data
assimilation, rather than the inverse problem; however, what is termed the “analysis” step in
sequential data assimilation corresponds to solving a Bayesian inverse problem. These iterative
ensemble Kalman methods are similar to SMC in that they seek to map the prior to the posterior
in finite continuous time or in a finite number of steps. Reich also introduced continuous time
analysis of ensemble Kalman methods for state estimation in Refs. 28, 29, naming the resulting
algorithm the ensemble Kalman Bucy filter (EnKBF); the ensemble Kalman approach to inverse
problems introduced in Refs. 26, 27 may be studied using the EnKBF leading to a clear link with
SMCmethods in continuous time. An alternative Kalmanmethodology (ensemble Kalman inver-
sion [EKI]) for the optimization approach to the inverse problem,which involves iteration to infin-
ity, was introduced and studied in Refs. 30, 31 in discrete time and in Refs. 32, 33 in continuous
time; the idea of using ensemble methods for optimization rather than sampling was anticipated
in Ref. 22. The ensemble-based optimization approach was generalized to approximate sampling
of the Bayesian posterior solution to the inverse problem inRef. 34 (the ensemble Kalman sampler
[EKS]), and studied further in Refs. 35–37.
The idea of consensus-based optimization (CBO) may be seen as a variation of particle swarm

optimizationmethods,38,39 which are themselves related to Cucker-Smale dynamics for collective
behavior and opinion formation.16,18,40–43 These dynamical systems model the tendency of the
constituent particles to align (consensus in velocity) or to concentrate in certain variables model-
ing averaged quantities (consensus in position or opinion), and they have been extensively studied
in terms of long time asymptotics leading to consensus.42,44 CBO was introduced in Ref. 9 based
on the following simple idea: particles are explorers in the landscape of the graph of the function
𝑓(𝜃) to be minimized, they are able to exchange information instantaneously, and they redirect
their movement toward the location of a consensus position in parameter space that is a weighted
average of the explorer’s parameter values relative to the Gibbsmeasure associated to the function
𝑓, 1

𝑍
𝑒−𝑓(𝜃). Noise is introduced for suitable exploration in parameter space but the strength of the

noise is reduced according to the distance to the consensus parameter values. These effects lead
to concentration in parameter space at the global minimum of the function, as proven in Ref. 7
for the mean-field limit Partial Differential Equation (PDE) and in Ref. 45 for the particle system
under certain conditions on 𝑓 and the parameters of the model . The original CBO method has
been recently improved so as to be efficient for high-dimensional optimization problems,8 such as
those arising in machine learning, by adding coordinate-wise noise terms and introducing ideas
from randombatchmethods46 for computing stochastic particle systems efficiently. Furthermore,
these ideas have been recently used to solve constraint problems on the sphere.47–49 There are
other approaches to the use of interacting particles system in optimization, including the use of
individual gradient dynamics coupled through a graph Laplacian.50–53
The development of the EKI into the EKS suggests a parallel development of CBO into a sam-

pling methodology. In this paper we pursue this idea and develop CBS. A key property of the
EKS is that it is affine invariant54 as shown in Ref. 36 where the Affine Invariant Interacting
Langevin Dynamics (ALDI) algorithm is introduced; relatedly, in the mean-field limit, the rate of
convergence to the posterior is the same for all Gaussian posterior distributions.34 We will show
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identical properties for the CBS algorithm. Our focus is on unimodal distributions and obtain-
ing Gaussian approximations to the target distribution. We note, however, that there are recent
forays into the use of ensembleKalmanmethods for the sampling ofmultimodal distributions.55,56
Furthermore, there is also recent work extending ensemble Kalmanmethods to inverse problems
beyond the setting of additive Gaussian noise; more complex loss functions, such as cross-entropy
and those arising in logistic regression57,58 are considered. And finally, recent work shows that
ensemble methods automatically smooth noisy likelihood functions, essentially denoising rough
energy landscapes.59 Similar developments for the CBSmethodology proposed here would also be
of interest. Like the EKS, the CBS approach is only exact for Gaussian problems and in the mean-
field limit.However, recently developedmethods based onmultiscale stochastic dynamics provide
a refinablemethodology for sampling fromnon-Gaussian distributions60;methods such as CBS or
EKS may be used to precondition these multiscale stochastic dynamics algorithms, making them
more efficient. Alternatively, the CBSmethodmay be used in the calibration step employedwithin
the calibrate-emulate-sample methodology introduced in Ref. 61. Thus, the methods developed
in this paper potentially form an important component in an efficient and rigorously justifiable
approach to solving Bayesian inverse problems.

1.3 Our contributions

We introduce CBS as a method to approximate probability distributions of the form (2), or to find
theMAP estimator (4). Themethod requires𝐺 only as a black-box (it is derivative-free) and hence
is of potential use for large-scale inverse problems. We study the proposed algorithm in settings
where the posterior is Gaussian or close to Gaussian. We reemphasize that the computational
methodology does not require the specific choice of 𝑓 in (3), it applies to arbitrary measures with
negative log density 𝑓, up to an additive constant; however some of our analysis exploits the spe-
cific form in (3) in the case where 𝐺 is linear. We show the following:

∙ in the case of linear𝐺, and in themean-field limit, parameters can be chosen in the algorithm so
that, if initiated at aGaussian, successive iterates remainGaussian and converge to theGaussian
posterior (2);

∙ in the case of linear 𝐺, and in the mean-field limit, parameters can be chosen in the algorithm
so that, if initiated at a Gaussian, successive iterates remain Gaussian and converge to a Dirac
located at the MAP point 𝜃∗ given by (4);

∙ the CBS method is affine invariant and, in the case of linear 𝐺 and in the mean-field limit,
converges at the same rate across all linear inverse problems defined by (2); for linear 𝐺, we
obtain sharp convergence rates that are explicit in terms of all parameters of the method;

∙ in the case of nonlinear 𝐺, and in the mean-field limit, parameters can be chosen in the algo-
rithm so that it has a steady-state solution, which is Gaussian, close to the Laplace approxima-
tion of the posterior (2) and the algorithm is a local contractionmapping in the neighborhood of
the steady state; we make explicit the dependence of this approximation, and its rate of attrac-
tion, on the parameters of the method;

∙ we present numerical results illustrating the foregoing theory and, more generally, demonstrat-
ing the viability of the CBS scheme for sampling posterior distributions and for finding MAP
estimators.
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The results are in arbitrary dimension 𝑑, with the exception of the results concerning
the Laplace approximation, which are restricted to 𝑑 = 1. There are no intrinsic barriers to
extending the Laplace approximation results to arbitrary dimension, but doing so will be tech-
nically involved and would lose the focus of the paper.
In Section 2we introduce themethod, including its continuous time limit, andmean-field limits

in both discrete and continuous time; we establish its properties in the Gaussian setting. Section 3
contains analysis of themethod beyond the Gaussian setting, deriving conditions for convergence
to an approximation of theMAP estimatorwhen in optimizationmode, and for convergence to the
Laplace approximation of the targetmeasure when in samplingmode. In Section 4we provide the
numerical experiments. Proofs of most of the theoretical results in Sections 2 and 3 are presented
in Section 5.

2 PRESENTATION OF THEMETHOD

We propose a novel method for sampling and optimization tasks based on a system of interacting
particles. Our goals are the following:

(1) Sampling: to generate approximate samples from the posterior distribution (2); this allows to
understand the distribution of parameters taking into account bothmodel (1) and the available
data 𝑦.

(2) Optimization: to find the minimizer of 𝑓(∙), which corresponds to the MAP point (4), the
most likely parameter 𝜃 given the data 𝑦 and the model relating them.

To introduce the approach, we start by defining themean-field limits of the algorithms, in discrete
and continuous time; later we explain how particle approximations of the mean-field limit lead
to implementable algorithms. We will be interested in the followingMcKean difference equation:
given parameters 𝜆 > 0, 𝛽 > 0, and 𝛼 ∈ [0, 1),{

𝜃𝑛+1 = 𝛽(𝜌𝑛) + 𝛼
(
𝜃𝑛 −𝛽(𝜌𝑛)

)
+

√
(1 − 𝛼2) 𝜆−1𝛽(𝜌𝑛) 𝝃𝑛,

𝜌𝑛 = Law(𝜃𝑛),
(5)

where 𝝃𝑛, for 𝑛 ∈ {0, 1, … } are independent𝖭(𝟎, 𝐼𝑑) random variables, and𝛽,𝛽 denote, respec-
tively, the mean and variance for a suitable reweighting of measures:

𝛽 ∶ 𝜌 ↦ (𝐿𝛽𝜌) , 𝛽 ∶ 𝜌 ↦ (𝐿𝛽𝜌) , 𝐿𝛽 ∶ 𝜌 ↦
𝜌e−𝛽𝑓

∫
𝐑𝑑 𝜌e

−𝛽𝑓
(6a)

(𝜇) = ∫
𝐑𝑑

𝜃𝜇(𝑑𝜃) , (𝜇) = ∫
𝐑𝑑

(
𝜃 −(𝜇)

)
⊗

(
𝜃 −(𝜇)

)
𝜇(𝑑𝜃) . (6b)

Letting 𝛼 = exp(−Δ𝑡) and viewing 𝜃𝑛 as a discrete time approximation of a continuous time pro-
cess 𝜃(𝑡) at time 𝑡 = 𝑛Δ𝑡, we find that the Δ𝑡 → 0 continuous-time limit associated with these
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dynamics is the following McKean Stochastic Differential Equation (SDE):{
d𝜃𝑡 = −

(
𝜃𝑡 −𝛽(𝜌𝑡)

)
d𝑡 +

√
2𝜆−1𝛽(𝜌𝑡) d𝐖𝑡,

𝜌𝑡 = Law(𝜃𝑡),
(7)

where𝐖𝑡 denotes a standard Brownian motions in 𝐑𝑑. We refer to the two families of methods
as CBS methods, parameterized by 𝛼, 𝛽 with the ranges 𝛼 ∈ [0, 1) corresponding to (5) and 𝛼 = 1

corresponding to (7). Recall that 𝛽 > 0. We will focus on two choices of 𝜆: (i) the choice 𝜆 = 1,
when the method is used to minimize 𝑓(∙), which will be referred to as CBS-O(𝛼, 𝛽); and (ii)
𝜆 = (1 + 𝛽)−1 when the method is used for sampling the target distribution 𝑒−𝑓(∙), which will be
referred to as CBS(𝛼, 𝛽).
In Section 2.1, we introduce the notation used throughout the paper. In Section 2.2 we give

motivation for the mean-field stochastic dynamical systems (5) and (7). In Section 2.3 we describe
key properties of the mean-field models, and in Section 2.4, we establish convergence to equilib-
rium for (5) and (7) in the setting where the forward model 𝐺 is linear and the law of the initial
condition is Gaussian. Section 2.5 introduces particle approximations to the mean-field limit.

2.1 Notation

In what follows, we denote by 𝑔(∙;𝐦, 𝐶) the density of the Gaussian random variable 𝖭(𝐦,𝐶):

𝑔(𝜃;𝐦, 𝐶) =
1√

(2𝜋)𝑑 det(𝐶)
exp

(
−
1

2
|𝜃 −𝐦|2

𝐶

)
. (8)

We also use the shorthand notation

𝐦𝛽(𝐦,𝐶) ∶= 𝛽

(
𝑔(∙;𝐦, 𝐶)

)
, 𝐶𝛽(𝐦, 𝐶) ∶= 𝛽(𝑔(∙;𝐦, 𝐶)

)
. (9)

More generally, we frequently denote 𝐦𝑛 = (𝜌𝑛) and 𝐶𝑛 = (𝜌𝑛) for the standard mean and
covariance calculated with respect to a probability measure 𝜌𝑛. For a matrix𝐴 ∈ 𝐑𝑑×𝑑, we denote
by ‖𝐴‖ the operator norm induced by the Euclidean vector norm, and by ‖𝐴‖F the Frobenius
norm.1 Sometimes, we will make use of the shorthand notation ‖𝐴‖𝐵 ∶= ‖𝐵−1∕2𝐴𝐵−1∕2‖ for
a given invertible matrix 𝐵 ∈ 𝐑𝑑×𝑑. We let 𝐍 ∶= {0, 1, 2, 3, … } and 𝐍>0 ∶= {1, 2, 3, … }, and we
denote by 𝑑

++ the set of symmetric strictly positive definite matrices in 𝐑𝑑×𝑑. For symmetric
matrices 𝑋 and 𝑌, the notation 𝑋 ≽ 𝑌 (resp. 𝑋 ≼ 𝑌) means that 𝑋 − 𝑌 is positive semidefinite
(resp. negative semidefinite).

2.2 Motivation

Themean-fieldmodel (5) contains a number of tuneable parameters. In this section, we give intu-
ition about the role of these parameters in effecting approximate sampling or optimization for the

1 The Frobenius norm on matrices should not to be confused with the norm |𝐮|𝐴 ∶= ⟨𝐮,𝐴−1𝐮⟩ 12 on vectors defined pre-
viously.
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inverse problem defined by (1). We motivate sampling primarily through the discrete time mean-
fieldmodel and optimization primarily through the continuous timemean-fieldmodel. However,
both discrete and continuous time models apply to optimization and to sampling. In practice, the
mean-field SDEs in this subsection can bemade into algorithms by invoking finite particle approx-
imations, as described in Section 2.5.

2.2.1 Sampling

Let 𝐺(∙) = 𝐺∙ be a linear map so that the posterior distribution given by (2) is Gaussian, and
denote this Gaussian by 𝖭(𝐚,𝐴). The mean 𝐚 and covariance 𝐴 may be identified by completing
the square in (2): 𝑓 is of the form 1

2
|𝜃 − 𝐚|2

𝐴
.

To motivate the algorithms that are the object of study in this paper we describe parameter
choices for which the iteration (5) has equilibrium distribution given by the Gaussian 𝖭(𝐚,𝐴).
For any choice of forward model 𝐺, it can be shown that the evolution of the first and second
moments is given by

(𝜌𝑛+1) = 𝛼(𝜌𝑛) + (1 − 𝛼)𝛽(𝜌𝑛), (10a)

(𝜌𝑛+1) = 𝛼2(𝜌𝑛) + 𝜆−1(1 − 𝛼2)𝛽(𝜌𝑛). (10b)

From these identities it is clear that any fixed point of the mean and covariance is independent of
𝛼. Further, when the initial distribution 𝜌0 is Gaussian the systems of Equations (5) for 𝛼 ∈ [0, 1)

map Gaussians into Gaussians. Computing the relationship between the mean and covariance of
the Gaussian 𝜌 and the mean and covariance of the Gaussian 𝐿𝛽𝜌 gives

𝐦𝛽(𝐦,𝐶) =
(
𝐶−1 + 𝛽𝐴−1

)−1(
𝛽𝐴−1𝐚 + 𝐶−1𝐦

)
, (11a)

𝐶𝛽(𝐦,𝐶) =
(
𝐶−1 + 𝛽𝐴−1

)−1
. (11b)

Therefore, the mean and covariance of a nondegenerate Gaussian steady-state 𝑔(∙;𝐦∞,𝐶∞) for
(5) satisfies

𝐦∞ =
(
𝐶−1∞ + 𝛽𝐴−1

)−1(
𝛽𝐴−1𝐚 + 𝐶−1∞ 𝐦∞

)
,

𝐶∞ = 𝜆−1
(
𝐶−1∞ + 𝛽𝐴−1

)−1
.

This has solution

𝐦∞ = 𝐚, 𝐶∞ =
1 − 𝜆

𝜆𝛽
𝐴.

Choosing 𝜆−1 = 1 + 𝛽 delivers a steady state equal to the posterior distribution. This motivates
our choice of 𝜆 in the sampling case. Furthermore, choosing 𝜆 = 1 is seen to be natural in the
optimization setting: the fixed point of the iteration is then aDirac at theMAP estimator 𝐚.Wewill
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demonstrate that these two distinguished choices of 𝜆 work well for sampling and optimization,
beyond the setting of a Gaussian posterior 𝖭(𝐚,𝐴).

Remark 1 (Enlarging the Choice of Parameters). The mean-field dynamics (5) can be generalized
to the form

𝜃𝑛+1 = 𝑝1𝜃𝑛 + 𝑝2(𝜌𝑛) + 𝑝3𝛽(𝜌𝑛) +
√
𝑝4(𝜌𝑛) + 𝑝5𝛽(𝜌𝑛) 𝝃𝑛, 𝜌𝑛 = Law(𝜃𝑛) , (12)

where (𝝃 𝑛)𝑛=0,1,… are independent 𝖭(𝟎, 𝐼𝑑) random variables. Given 𝛽, one can ask the following
question: for what values of the parameters (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) does the dynamics (12) admit the
Gaussian 𝖭(𝐚,𝐴) as an equilibrium distribution? A calculation analogous to that above shows
that 𝖭(𝐚,𝐴) is a steady state of (12) if and only if

𝑝1 + 𝑝2 + 𝑝3 = 1, (13a)

𝑝21 + 𝑝4 + 𝑝5(1 + 𝛽)−1 = 1. (13b)

Note that these constraints do not guarantee that 𝖭(𝐚,𝐴) is the only steady state, and in fact,
if 𝑝1 = 1 and 𝑝2 = 𝑝3 = 𝑝4 = 𝑝5 = 0, then any distribution is a steady state. In this paper, we
study only the dynamics (5), which corresponds to the special casewhere𝑝2 = 𝑝4 = 0 and𝑝1 = 𝛼,
𝑝3 = 1 − 𝛼 and 𝑝5 = 𝜆−1(1 − 𝛼2), but it is potentially useful to exploit this wider class of mean-
field models.

2.2.2 Optimization

We now discuss the algorithm in optimization mode, through the lens of the continuous time
limit. Another starting point triggering the research in this paper is the use of systems of inter-
acting particles for minimizing a target function 𝑓(𝜃). Refs. 7, 9 introduce the CBO technique for
achieving this aim by means of particle approximations of the stochastic dynamical system

�̇� = −(𝜃 − �̄�) + 𝜎|𝜃 − �̄�| �̇�, �̄� = 𝛽(𝜌𝑡), (14)

where𝐖 is a standard Brownian motion in𝐑𝑑, 𝜎 > 0 is the noise strength, and 𝜌𝑡 is the law of 𝜃.
The idea behind the CBOmethod is to think about realizations of 𝜃 as explorers, in the landscape
of the function 𝑓(𝜃), which can continuously exchange the evaluation of the function 𝑓 at their
position 𝜃, through𝛽(𝜌𝑡). Then, the explorers compute a weighted average of their position in
parameter space and direct their relaxationmovement toward this average �̄�; this explains the first
term on the right-hand side of (14). The role of the second term is to impose the property of noise
strength decreasing proportionally to the distance of the explorer to the weighted average �̄�. The
choice of the weighted average promotes the concentration toward parameter points 𝜃 leading
to smaller values of 𝑓. The resulting law of the system converges as 𝑡 → ∞ toward a Dirac mass
concentrated at the MAP point 𝜃∗, the global minimizer of 𝑓, under certain conditions on 𝑓; see
Refs. 7, 45. The weighted covariance ̄ = 𝛽(𝜌𝑡) provides an alternative to the cooling schedule in
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(14) by way of using ̄ = 𝛽(𝜌𝑡) as the modulation of the noise. In other words, one could propose
as alternative to the CBO method (14), the following mean-field system

�̇� = −(𝜃 − �̄�) +
√
2̄ �̇�. (15)

This gives (7) in the optimization mode 𝜆 = 1. We show in Proposition 3 for the quadratic
case, and Proposition 6 for the one-dimensional convex case, that (15) converges precisely to
the minimizer of 𝑓, whereas the CBO method usually concentrates to a point in the vicinity
of the minimizer, with an error depending on 𝛽. On the other hand, while the CBO dynamics
concentrates exponentially fast under rather general assumptions on 𝑓, including the multi-
dimensional nonconvex setting,7,8 the dynamics (15) converges algebraically in time and our
proofs concern only simple settings, considering quadratic or one-dimensional convex functions
𝑓. Adapting the parameter 𝛽 during the evolution is shown empirically to improve the rate of
convergence for (15), see the discussions in Section 4; but analysis is needed to understand this
property. Other differences between the methods are that, unlike CBO, the dynamics (15) is affine
invariant (see Section 2.3.2) and satisfies the invariant subspace property (see Lemma 4), although
further investigation is necessary to determine whether these two properties are useful in the con-
text of optimization.
In terms of time complexity, one iteration of (the particle approximations of) either method

requires the evaluation of 𝑓 at all the particles; thus, in the context of Bayesian inverse problems
where evaluating the forward model is the dominating computational expense, the methods have
a similar computational cost per iteration. For problems where the dimension of the state space
is very large and evaluation of 𝑓 is cheap, however, the particle method corresponding to (15) is
slightlymore expensive than that of (14), as it requires calculating the square root of largematrices
̄. We note, however, that employing a generalized square root as proposed in Ref. 36 for the ALDI
method would help to mitigate this difficulty.

2.3 Key properties of the mean-field limits

In this subsection, we summarize key properties of the stochastic dynamics (5) and (7). We con-
sider, in turn: (i) the time evolution of the laws; (ii) the affine invariance; (iii) the steady states;
(iv) the evolution of the first and second moments; and (v) propagation properties for Gaussian
initial conditions.

2.3.1 Evolution equations for the law of the mean-field dynamical systems

The time evolution of the law of the solution (5) is governed by the following discrete-time dynam-
ics on probability densities:

𝜌𝑛+1(𝜃) = ∫
𝐑𝑑

𝑔
(
𝜃;𝛽(𝜌𝑛) + 𝛼

(
𝑢 −𝛽(𝜌𝑛)

)
, (1 − 𝛼2) 𝜆−1 𝛽(𝜌𝑛)) 𝜌𝑛(𝑢) d𝑢. (16)

When 𝛼 = 0, the map (16) takes a particularly simple form (recalling notation 8 for a Gaussian):

𝜌𝑛+1 = 𝑔
(
𝜃;𝛽(𝜌𝑛), 𝜆

−1 𝛽(𝜌𝑛)). (17)
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Likewise, the time evolution of the law of the solution to (7) is governed by the following non-
linear and nonlocal Fokker–Planck equation:

𝜕𝜌

𝜕𝑡
= ∇ ⋅

((
𝜃 −𝛽(𝜌)

)
𝜌 + 𝜆−1 𝐶𝛽(𝜌)∇𝜌

)
. (18)

Remark 2. We will not discuss here the question of existence and uniqueness of solutions to (18),
and we assume from now on that there exists a unique strong solution to (18) for smooth initial
data 𝜌0 ∈ 2(𝐑𝑑), implying in turn the existence and uniqueness of a solution to (7). Equation
(18) will be analyzed in subsequent work.

2.3.2 Affine invariance

A fundamental property of both (5) and (7) is that they are affine invariant, in the sense of Ref. 54;
the utility of this concept has been established for MCMC methods in Ref. 62 and for Langevin-
based dynamics through theALDI algorithm inRef. 36. For linear inverse problemswith posterior
𝖭(𝐚,𝐴) this has the consequence that the rate of convergence is independent of the conditioning
of 𝐴. We study affine invariance of (5); a similar reasoning can be employed to show that the
continuous-time mean-field dynamics (7) are also affine invariant.
To demonstrate affine invariance for (5), let {𝜃𝑛}𝑛∈𝐍 denote the solution to (5) with initial con-

dition 𝜃0 ∼ 𝜌0, and let 𝜌𝑛 = Law(𝜃𝑛). Consider a vector 𝐛 ∈ 𝐑𝑑 and an invertible matrix 𝐵 ∈

𝐑𝑑×𝑑, which, together, define the affine transformation 𝜃 ↦ 𝐵𝜃 + 𝐛. We introduce the following
notation:

𝜃𝑛 = 𝐵𝜃𝑛 + 𝐛, 𝑓(𝜃) = 𝑓
(
𝐵−1(𝜃 − 𝐛)

)
, �̃�𝛽 ∶ 𝜇 ↦

𝜇 e−𝛽𝑓

∫
𝐑𝑑 e

−𝛽𝑓
.

We also introduce ̃𝛽 ∶ 𝜇 ↦ (�̃�𝛽𝜇) and ̃𝛽 ∶ 𝜇 ↦ (�̃�𝛽𝜇). To prove the affine invariance of the
scheme (5), we must show that {𝜃𝑛}𝑛∈𝐍 is equal in law to the solution {𝜃𝑛}𝑛∈𝐍 of

𝜃𝑛+1 = 𝛼𝜃𝑛 + (1 − 𝛼)̃𝛽(𝜌𝑛) +
√
(1 − 𝛼2) 𝜆−1̃𝛽(𝜌𝑛) �̂� 𝑛, 𝜌𝑛 = Law(𝜃𝑛), (19)

with initial condition 𝜃0 = 𝜃0 and where {�̂� 𝑛}𝑛∈𝐍 are independent 𝖭(𝟎, 𝐼𝑑) random variables. To
show this, we apply the affine transformation 𝜃 ↦ 𝐵𝜃 + 𝐛 to both sides of (5), which leads to

𝜃𝑛+1 = 𝛼𝜃𝑛 + (1 − 𝛼)
(
𝐵𝛽(𝜌𝑛) + 𝐛

)
+ 𝐵

√
(1 − 𝛼2) 𝜆−1𝛽(𝜌𝑛) 𝜉𝑛, 𝜌𝑛 = Law(𝜃𝑛).

Now notice that 𝐵𝛽(𝜌𝑛) + 𝐛 = ̃(𝜌𝑛), where 𝜌𝑛 = Law(𝜃𝑛), that

𝐵
√

𝛽(𝜌𝑛) 𝝃𝑛 =
√
𝐵𝛽(𝜌𝑛)𝐵𝖳 𝝃𝑛 in law,

and that 𝐵𝛽(𝜌𝑛)𝐵𝖳 = ̃𝛽(𝜌𝑛), which implies that {𝜃𝑛}𝑛∈𝐍 is indeed a solution to (19).
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2.3.3 Steady states

The steady states of (5) and (7) coincide, if they exist, and they are necessarily Gaussian. Recall
the notation (8). We have:

Lemma 1. Let probability distribution 𝜌∞ have finite secondmoment and be a steady-state solution
of (16) or (18). Then

𝜌∞(∙) = 𝑔
(
∙;𝛽(𝜌∞), 𝜆

−1𝛽(𝜌∞)). (20)

Conversely, all probability distributions solving (20) are steady states of (16) and (18). In particular,
all steady states are Gaussian (with the limiting case of Diracs included in the definition) and all
Dirac masses are steady states.

Proof. If 𝜌∞ is an invariant measure for the law of (7), then 𝜌∞ must be an invariant measure of
the following SDE:

d𝜃𝑡 = −
(
𝜃𝑡 −𝛽(𝜌∞)

)
d𝑡 +

√
2𝜆−1𝛽(𝜌∞) d𝐖𝑡. (21)

Because this is just the Ornstein–Uhlenbeck process, we deduce (20).
Similarly, if 𝜌∞ is an invariant measure for the law of the discrete-time dynamics (5), then 𝜌∞

is the invariant measure of the following equation:

𝑋𝑛+1 = 𝛽(𝜌∞) + 𝛼
(
𝑋𝑛 −𝛽(𝜌∞)

)
+

√
(1 − 𝛼2)𝜆−1𝛽(𝜌∞)𝝃𝑛,

where (𝝃 𝑛)𝑛=0,1,… are independent 𝖭(𝟎, 𝐼𝑑) random variables. Because this equation is an exact
discretization of (21), we deduce that (20) holds. ■

2.3.4 Equations for the moments

The evolution equations for the moments given in (10) hold regardless of whether 𝜌𝑛 is Gaussian
but they define closed equations characterizing 𝜌𝑛 completely in settings where 𝜌0 is Gaussian.
The evolution of the moments can also be written for the limiting continuous time stochastic
dynamical system (7) obtained when 𝛼 → 1:

𝜕𝑡((𝜌)) = −(𝜌) +𝛽(𝜌), (22a)

𝜕𝑡((𝜌)) = −2(𝜌) + 2𝜆−1𝛽(𝜌). (22b)

2.3.5 Propagation of Gaussians

We show that Gaussianity is preserved along the flow, both in discrete and continuous time.
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Lemma 2. Let 𝜆 ∈ (0, 1] and 𝛽 > 0.

(i) Discrete time 𝛼 = 0. The law of (5) is Gaussian for all 𝑛 ∈ 𝐍.
(ii) Discrete time 𝛼 ∈ (0, 1). If the initial law 𝜌0 for (5) is Gaussian, then so is the law for any 𝑛 ∈

𝐍>0, and the time evolution of themoments (𝐦𝑛, 𝐶𝑛) of𝜌𝑛 is governed by the recurrence relation

𝐦𝑛+1 = 𝛼𝐦𝑛 + (1 − 𝛼)𝐦𝛽(𝐦𝑛, 𝐶𝑛), (23a)

𝐶𝑛+1 = 𝛼2𝐶𝑛 + 𝜆−1(1 − 𝛼2)𝐶𝛽(𝐦𝑛, 𝐶𝑛), (23b)

with𝐦𝛽 , 𝐶𝛽 given by (9).
(iii) Continuous time 𝛼 → 1. If the initial law 𝜌0 for (7) is Gaussian, then so is the corresponding law

for any 𝑡 > 0. The time evolution of the moments (𝐦(𝑡), 𝐶(𝑡)) of the solution is governed by the
equation

�̇� = −𝐦+𝐦𝛽(𝐦,𝐶), (24a)

�̇� = −2𝐶 + 2𝜆−1𝐶𝛽(𝐦, 𝐶). (24b)

Proof. For the discrete-time dynamics in setting (i), this follows directly from (17). For (ii) note
that, if 𝜃𝑛 ∼ 𝖭(𝐦𝑛, 𝐶𝑛), then 𝜃𝑛+1, being the sum of Gaussian random variables as given in (5), is
also normally distributed.
To show (iii), we consider a solution (𝐦(𝑡), 𝐶(𝑡)) to the moment Equations (24). Then,

𝑔(𝜃;𝐦(𝑡), 𝐶(𝑡)) solves (18). To see this, one can verify that general Gaussians 𝑔(𝜃;𝐦, 𝐶) satisfy
the relations

∇𝜃𝑔 = −∇𝐦𝑔 , 𝑥𝑇(D2
𝜃 𝑔)𝑦 = 2𝐷𝐶𝑔 ∶ (𝑥 ⊗ 𝑦),

for any 𝑥, 𝑦 ∈ 𝐑𝑑; see similar computations in Refs. 34, 35. The first identity can be checked
directly, and the second identity follows, e.g., from equations (57) and (61) in Ref. 63. Then

𝜕

𝜕𝑡

(
𝑔(𝜃,𝐦(𝑡), 𝐶(𝑡))

)
= ∇𝐦𝑔 ⋅ �̇� + 𝐷𝐶𝑔 ∶ �̇�

= −∇𝐦𝑔 ⋅
(
𝐦−𝐦𝛽

)
+ 2𝐷𝐶𝑔 ∶

(
𝜆−1𝐶𝛽 − 𝐶

)
= ∇𝜃𝑔 ⋅

(
𝐦−𝐦𝛽

)
+ ∇𝜃 ⋅ (−𝐶∇𝜃𝑔) + 𝜆−1𝐷2

𝜃
𝑔 ∶ 𝐶𝛽

= ∇𝜃 ⋅
(
(𝜃 −𝐦𝛽)𝑔 + 𝜆−1 𝐶𝛽 ∇𝜃𝑔

)
,

where we used the explicit expression of 𝐶∇𝜃𝑔 in the last equation. ■
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TABLE 1 Convergence rates for CBS in sampling and optimization modes, in the case of a Gaussian target
distribution and a Gaussian initial condition with 𝐶0 ∈ 𝑑

++. This table summarizes the results in Propositions 1
to 3. All rates are sharp, see Remark 4

Sampling Optimization
Mean Covariance Mean Covariance

𝛼 = 0
(

1

1+𝛽

)𝑛 (
1

1+𝛽

)𝑛
𝑘0

𝑘0+𝛽𝑛

𝑘0

𝑘0+𝛽𝑛

𝛼 ∈ (0, 1)
(
1+𝛼𝛽

1+𝛽

)𝑛 (
1+𝛼2𝛽

1+𝛽

)𝑛 (
𝑘0+𝛽

𝑘0+𝛽+𝛽(1−𝛼2)𝑛

) 1

1+𝛼 𝑘0+𝛽

𝑘0+𝛽+𝛽(1−𝛼2)𝑛

𝛼 = 1 e
−
(

𝛽

1+𝛽

)
𝑡

e
−
(

2𝛽

1+𝛽

)
𝑡

(
𝑘0+𝛽

𝑘0+𝛽+2𝛽𝑡

) 1

2 𝑘0+𝛽

𝑘0+𝛽+2𝛽𝑡

2.4 Convergence for Gaussian targets

In this subsection, we consider the case of a linear forward map in (1), leading to the posterior
distribution being a Gaussian 𝖭(𝐚,𝐴) where, throughout, we assume that 𝐴 is strictly positive
definite,𝐴 ∈ 𝑑

++. The corresponding potential 𝑓(∙). The corresponding potential 𝑓(∙) is given by
the quadratic function 𝑓(𝜃) = 1

2
|𝜃 − 𝐚|2

𝐴
. Recall the shorthand notation ‖𝐵‖𝐴 = ‖𝐴−1∕2𝐵𝐴−1∕2‖.

Throughout this section, we denote

𝑘0 = ‖𝐶−10 ‖𝐴−1 = ‖𝐴1∕2𝐶−10 𝐴1∕2‖.
The main convergence results of this subsection, Propositions 1 to 3, establish the convergence

of the moments of the solutions to (5) and (7), respectively, in the case of Gaussian initial condi-
tions. All results show algebraic convergence in optimization mode (𝜆 = 1) and exponential con-
vergence in sampling mode (𝜆 = (1 + 𝛽)−1); this is analogous to what is known about the EKI32
and the EKS34 methods. We provide in Table 1 an overview of the results we obtain. Most proofs
of the results presented in the rest of this subsection are given in Section 5.1.
We draw a number of conclusions from these results. First, in the discrete time setting, smaller

choices of 𝛼 provide a faster rate of convergence, and choosing 𝛼 = 0 is therefore the most favor-
able choice in this regard. Second, larger choices of 𝛽 increase the speed of convergence, without
limit as 𝛽 → ∞ for 𝛼 = 0; in the case 𝛼 > 0, increasing 𝛽 is favorable but does not give rates, which
increase without limit.

2.4.1 Convergence analysis for the discrete-time dynamics

Using the explicit expression of the weighted moments in the Gaussian case (11), we can rewrite
the right-hand sides of Equation (23) as

(𝐦𝑛+1 − 𝐚) =
[
𝛼𝐼𝑑 + (1 − 𝛼)𝐴(𝐴 + 𝛽𝐶𝑛)

−1
]
(𝐦𝑛 − 𝐚),

𝐶𝑛+1 =
[
𝛼2𝐼𝑑 + (1 − 𝛼2)𝜆−1𝐴(𝐴 + 𝛽𝐶𝑛)

−1
]
𝐶𝑛 .
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Letting �̃�𝑛 ∶= 𝐴−1∕2(𝐦𝑛 − 𝐚) and 𝐶𝑛 ∶= 𝛽𝐴−1∕2𝐶𝑛𝐴
−1∕2, we can verify that (�̃�𝑛, 𝐶𝑛)𝑛∈𝐍 solves

the following recurrence relation:

�̃�𝑛+1 =
[
𝛼𝐼𝑑 + (1 − 𝛼)(𝐼𝑑 + 𝐶𝑛)

−1
]
�̃�𝑛 , (25a)

𝐶𝑛+1 =
[
𝛼2𝐼𝑑 + (1 − 𝛼2)𝜆−1(𝐼𝑑 + 𝐶𝑛)

−1
]
𝐶𝑛 . (25b)

This is a recurrence relation uniquely solvable given initial conditions (�̃�0, 𝐶0). We begin by
studying the easier case 𝛼 = 0, where the convergence of the scheme can be computed explic-
itly by a direct argument.

Lemma 3. Consider the iterative scheme (17) with 𝛼 = 0 and initial conditions (𝐦0, 𝐶0) ∈ 𝐑𝑑 ×

𝑑
++. Then, for any 𝜆 ∈ (0, 1] and 𝛽 > 0, we have

𝐦𝑛 = 𝐚 + 𝜆𝑛𝐶𝑛𝐶
−1
0 (𝐦0 − 𝐚), 𝐶−1𝑛 =

{
𝜆𝑛𝐶−10 + (1 − 𝜆𝑛)𝐶−1∞ if 𝜆 ≠ 1,

𝐶−10 + 𝑛𝛽𝐴−1 if 𝜆 = 1.

Proof. When 𝛼 = 0, the evolution Equations (25) for the moments simplify to

�̃�𝑛+1 = (𝐼𝑑 + 𝐶𝑛)
−1�̃�𝑛 , 𝐶−1𝑛+1 = 𝜆

(
𝐶−1𝑛 + 𝐼𝑑

)
.

For 𝜆 = 1, the result for the covariance matrix is easily obtained by solving the second equation
explicitly for 𝐶−1𝑛 . Next, consider the case 𝜆 ≠ 1. We have

𝐶−1𝑛 = 𝜆𝑛𝐶−10 + (𝜆 +⋯ + 𝜆𝑛)𝐼𝑑 = 𝜆𝑛𝐶−10 + 𝜆

(
1 − 𝜆𝑛

1 − 𝜆

)
𝐼𝑑 .

For the evolution of the mean, notice that

𝐶−1𝑛+1�̃�𝑛+1 = 𝜆
(
𝐶−1𝑛 + 𝐼𝑑

)
(𝐼𝑑 + 𝐶𝑛)

−1�̃�𝑛 = 𝜆𝐶−1𝑛 �̃�𝑛 .

Hence, �̃�𝑛 = 𝜆𝑛𝐶𝑛𝐶
−1
0 �̃�0 and the result follows. ■

We deduce from this result a convergence estimate for the mean and the covariance of the
iterates.

Proposition 1. Consider the iterative scheme (17)with𝛼 = 0and initial conditions (𝐦0, 𝐶0) ∈ 𝐑𝑑 ×

𝑑
++. Then the following statements hold:

(i) Sampling mode 𝜆 = (1 + 𝛽)−1. For all 𝑛 ∈ 𝐍, it holds that

|𝐦𝑛 − 𝐚|𝐴 ⩽ max (1, 𝑘0)𝜆
𝑛|𝐦0 − 𝐚|𝐴 ,‖𝐶𝑛 − 𝐴‖𝐴 ⩽ max (1, 𝑘0)𝜆
𝑛‖𝐶0 − 𝐴‖𝐴 .
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(ii) Optimization mode 𝜆 = 1. For all 𝑛 ∈ 𝐍, it holds that

|𝐦𝑛 − 𝐚|𝐴 ⩽

(
𝑘0

𝑘0 + 𝛽𝑛

)|𝐦0 − 𝐚|𝐴 , 𝐶𝑛 ≼

(
𝑘0

𝑘0 + 𝛽𝑛

)
𝐶0.

To study the convergence in the general case 𝛼 ∈ (0, 1), we will reduce the evolution of the
moments (25) to the scalar case,

𝑢𝑛+1 =
[
𝛼 + (1 − 𝛼)(1 + 𝑣𝑛)

−1
]
𝑢𝑛, (26a)

𝑣𝑛+1 =
[
𝛼2 + (1 − 𝛼2)𝜆−1(1 + 𝑣𝑛)

−1
]
𝑣𝑛 (26b)

by diagonalization. Then, using LemmaA.1, the asymptotic behavior of themoments can be sum-
marized as follows.

Proposition 2. Consider the iterative scheme (5) with 𝛼 ∈ (0, 1) and initial conditions (𝐦0, 𝐶0) ∈

𝐑𝑑 × 𝑑
++. Then the following statements hold:

(i) Sampling mode 𝜆 = (1 + 𝛽)−1. For all 𝑛 ∈ 𝐍,

|𝐦𝑛 − 𝐚|𝐴 ⩽ max (1, 𝑘0)
1

1+𝛼
(
(1 − 𝛼)𝜆 + 𝛼

)𝑛|𝐦0 − 𝐚|𝐴 ,
‖𝐶𝑛 − 𝐴‖𝐴 ⩽ max (1, 𝑘0)

(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛‖𝐶0 − 𝐴‖𝐴 .
(ii) Optimization mode 𝜆 = 1. For all 𝑛 ∈ 𝐍, it holds that

|𝐦𝑛 − 𝐚|𝐴 ⩽

(
𝑘0 + 𝛽

𝑘0 + 𝛽 + 𝛽(1 − 𝛼2)𝑛

) 1

1+𝛼 |𝐦0 − 𝐚|𝐴 ,
𝐶𝑛 ≼

(
𝑘0 + 𝛽

𝑘0 + 𝛽 + 𝛽(1 − 𝛼2)𝑛

)
𝐶0 .

2.4.2 Convergence analysis for the continuous-time dynamics

Next, we consider the limiting case 𝛼 → 1. Rewriting the right-hand side of (24a) and (24b) using
(11), we obtain for any 𝜆 ∈ (0, 1] and 𝛽 > 0,

�̇� = −𝛽𝐶(𝐴 + 𝛽𝐶)
−1
(𝐦 − 𝐚), (27a)

�̇� = −2𝛽 𝐶 (𝐴 + 𝛽𝐶)
−1

(
𝐶 −

(
1 − 𝜆

𝛽𝜆

)
𝐴

)
. (27b)

Proposition 3. Let (𝐦(𝑡), 𝐶(𝑡)) denote the solution to Equations (27) with initial conditions
(𝐦0, 𝐶0) ∈ 𝐑𝑑 × 𝑑

++. Then, the following statements hold:
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(i) Sampling mode 𝜆 = (1 + 𝛽)−1. For all 𝑡 > 0,

|𝐦(𝑡) − 𝐚|𝐴 ⩽ max
(
1, 𝑘

𝜆∕2
0

)
e−(1−𝜆)𝑡|𝐦0 − 𝐚|𝐴,

‖𝐶(𝑡) − 𝐴‖𝐴 ⩽ max
(
1, 𝑘𝜆0

)
e−2(1−𝜆)𝑡‖𝐶0 − 𝐴‖𝐴 .

(ii) Optimization mode 𝜆 = 1. For all 𝑡 ⩾ 0, it holds

|𝐦(𝑡) − 𝐚|𝐴 ⩽

(
𝑘0 + 𝛽

𝑘0 + 𝛽 + 2𝑡𝛽

) 1

2 |𝐦0 − 𝐚|𝐴 ,
𝐶(𝑡) ≼

(
𝑘0 + 𝛽

𝑘0 + 𝛽 + 2𝑡𝛽

)
𝐶0 .

Remark 3 (Discrete to Continuum). Notice that, by letting 𝛼 = e−𝑡∕𝑛 in the convergence results
obtained for 𝛼 ∈ (0, 1) in Proposition 2 and taking the limit 𝑛 → ∞, we recover the convergence
results of the continuous-time setting, up to the constant prefactor.

Remark 4 (Sharpness). It is possible to show, using the lower bounds on the trend to equilibrium
provided by Lemmas A.1 and A.2, that the convergence rates we obtained in Propositions 2 and 3
are all sharp with respect to 𝑛 and 𝑡, respectively. Note that the argument leading to Proposition 2
also applies to the case 𝛼 = 0. However, the upper bounds we obtain in Proposition 1 are stronger
than those we would be able to obtain by applying Lemma A.1 for 𝛼 = 0. Lower bounds for the
sampling mode in the case 𝛼 = 0 can be obtained the same way as for 𝛼 ∈ (0, 1). In optimiza-
tion mode (𝜆 = 1), we can derive lower bounds explicitly using the expression from Lemma 3 as
follows: for 𝐶𝑛 ∶= 𝛽𝐴−1∕2𝐶𝑛𝐴

−1∕2, we have �̃�0 ≼ ‖�̃�0‖𝐼𝑑, so
�̃�−1𝑛 = �̃�−10 + 𝑛𝐼𝑑 ≼

(
1 + 𝑛‖�̃�0‖) �̃�−10 ⇒ 𝐶𝑛 ≽

(
1

1 + 𝛽𝑛‖𝐶0‖𝐴
)
𝐶0.

The conclusion from the above observations is that all rates provided in Table 1 are sharp.

Remark 5 (Attractor). As a consequence of the above convergence results for linear objective
functions 𝑓, the steady-state (𝐚, 𝐴) is the unique attractor of the moment Equations (23) and (24)
when taking an initial condition with 𝐶0 ∈ 𝑑

++. Therefore, while the mean-field dynamics (16)
and (18) admit infinitely many steady states given by all Dirac distributions in addition to the
Gaussian steady-state 𝖭(𝐚,𝐴), the solutions to the mean-field dynamics always converge to the
desired target measure 𝖭(𝐚,𝐴) when initialized at Gaussian initial conditions with 𝐶0 ∈ 𝑑

++,
avoiding the manifold of Diracs along the evolution.

2.5 Particle approximations

In this subsection we describe particle approximations of the mean-field dynamics (5) and (7).
This leads to the implementable algorithms used in Section 4. The following is a discrete-time
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system of interacting particles in 𝐑𝑑 with mean-field limit given by (5):

𝜃
(𝑗)
𝑛+1 = 𝛽(𝜌

𝐽
𝑛) + 𝛼

(
𝜃
(𝑗)
𝑛 −𝛽(𝜌

𝐽
𝑛)
)
+

√
(1 − 𝛼2) 𝜆−1𝛽(𝜌𝐽𝑛) 𝝃 (𝑗)𝑛 , 𝑗 = 1,… , 𝐽. (30)

Here 𝝃 (𝑗)𝑛 , for 𝑗 ∈ {1, … , 𝐽} and 𝑛 ∈ 𝐍, are independent 𝖭(𝟎, 𝐼𝑑) random variables, and 𝜌𝐽𝑛 is the
empirical measure associated with the particle system at iteration 𝑛,

𝜌𝐽𝑛 ∶=
1

𝐽

𝐽∑
𝑗=1

𝛿
𝜃
(𝑗)
𝑛
.

We note that

𝛽(𝜌
𝐽
𝑛) =

∑𝐽

𝑗=1 e
−𝛽𝑓(𝜃

(𝑗)
𝑛 ) 𝜃

(𝑗)
𝑛∑𝐽

𝑗=1 e
−𝛽𝑓(𝜃

(𝑗)
𝑛 )

, (31a)

𝛽(𝜌𝐽𝑛) =
∑𝐽

𝑗=1

((
𝜃
(𝑗)
𝑛 −𝛽(𝜌

𝐽
𝑛)
)
⊗

(
𝜃
(𝑗)
𝑛 −𝛽(𝜌

𝐽
𝑛)
))

e−𝛽𝑓(𝜃
(𝑗)
𝑛 )

∑𝐽

𝑗=1 e
−𝛽𝑓

(
𝜃
(𝑗)
𝑛

) . (31b)

The limit cases 𝛼 = 0 and 𝛼 → 1 for fixed 𝜆 > 0 and 𝛽 > 0 reduce to simpler systems. Indeed, in
the case where 𝛼 = 0, the method simplifies to

𝜃
(𝑗)
𝑛+1 = 𝛽(𝜌

𝐽
𝑛) +

√
𝜆−1𝛽(𝜌𝐽𝑛) 𝝃 (𝑗)𝑛 , 𝑗 = 1,… , 𝐽.

On the other hand, when 𝛼 ≈ 1, the particle evolution Equation (30) may be viewed as a time
discretization with timestep Δ𝑡 = − log 𝛼 of the following continuous-time interacting particle
system, in which we generalize the notation (31) to continuous time in the obvious way:

�̇�(𝑗) = −
(
𝜃(𝑗) −𝛽(𝜌

𝐽
𝑡 )
)
+

√
2𝜆−1 𝛽(𝜌𝐽𝑡 ) �̇�(𝑗), 𝑗 = 1, … , 𝐽, (32)

where {𝐖(𝑗)}𝐽
𝑗=1

are independent standard Brownian motions in𝐑𝑑. The formal mean-field limit
of this equation is given by (7).
We note that the finite-dimensional particle systems (30) and (32) are both affine invariant;

the proof is similar to that given for the mean-field limit. In addition, like ensemble Kalman–
basedmethods for inverse problems ,64 the particle systems (30) and (32) both satisfy the following
invariant subspace property.

Lemma 4. Let denote the linear span of {𝜃(𝑗)0 }𝐽
𝑗=1

. Then 𝜃(𝑗)𝑛 ∈  for all (𝑗, 𝑛) ∈ {1, … , 𝐽} × 𝐍 and

𝜃
(𝑗)
𝑡 ∈  for all (𝑗, 𝑡) ∈ {1, … , 𝐽} × [0,∞).

Proof. We prove only the first claim, which follows from a simple recursion. Let us assume the
claim is true for (𝑗, 𝑛) ∈ {1, … , 𝐽} × {0, … ,𝑁} and prove that it is then also true for 𝑛 = 𝑁 + 1. Let
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𝐚 ∈ ⟂, where ⟂ is the orthogonal complement of  in 𝐑𝑑. Taking the inner product of both
sides of (30) with 𝐚, we obtain for all 𝑗 ∈ {1, … , 𝐽} that

𝐚𝖳𝜃
(𝑗)
𝑁+1 = 𝐚𝖳𝛽(𝜌

𝐽
𝑛) + 𝛼𝐚𝖳

(
𝜃
(𝑗)
𝑁 −𝛽(𝜌

𝐽
𝑁)

)
+ 𝐚𝖳

√
(1 − 𝛼2) 𝜆−1𝛽(𝜌𝐽𝑁) 𝝃 (𝑗)𝑁

= 0 + 0 + 𝐚𝖳
√
(1 − 𝛼2) 𝜆−1𝛽(𝜌𝐽𝑁) 𝝃 (𝑗)𝑁 ,

and so by the Cauchy–Schwarz inequality,

|||𝐚𝖳𝜃(𝑗)𝑁+1|||2 ⩽ (1 − 𝛼2) 𝜆−1
|||𝝃 (𝑗)𝑁 |||2 ||||

√
𝛽(𝜌𝐽𝑁)𝐚

||||
2

= 0,

because 𝛽(𝜌𝐽𝑁)𝐚 = 0 by the formula (31b) for the weighted covariance 𝛽(𝜌𝐽𝑁). Because 𝐚 was
arbitrary in ⟂, the proof is complete. ■

Remark 6 (Cooling schedule). To improve algorithmic implementations it will be of value to
develop a rigorous understanding of the relationship between the number of particles 𝐽 and the
parameter 𝛽 needed to establish good performance of the method. Relatedly, it will also be useful
to investigate theoretically the rate of convergence to equilibrium in the setting where a cooling
schedule is employed for 𝛽. See Section 4 for numerical investigations in this direction.

3 ANALYSIS BEYOND THE GAUSSIAN SETTING

In this section, we study the proposed method (5) in the case where the function 𝑓 is not nec-
essarily quadratic, and so the target probability distribution may be non-Gaussian. We begin, in
Section 3.1, by presenting preliminary bounds on𝐦𝛽(𝐦,𝐶) and 𝐶𝛽(𝐦,𝐶) defined in (9), and then
we analyze the optimization (𝜆 = 1) and sampling (𝜆 = (1 + 𝛽)−1)methods in Sections 3.2 and 3.3,
respectively. The proofs of all results are presented in Section 5, with the exception of Theorem 2,
which is presented in text.
The results in this section are based on the following two assumptions.

Assumption 1 (Convexity of the potential). The function 𝑓 satisfies 𝑓 ∈ 𝐶2(𝐑𝑑) and D2 𝑓(𝜃) ≽

𝐿 ≽ 𝓁𝐼𝑑 for all 𝜃 ∈ 𝐑𝑑, for some 𝐿 ∈ 𝑑
++ and some 𝓁 > 0.

Assumption 1 guarantees the existence of a unique globalminimizer for𝑓, whichwewill denote
throughout this section by

𝜃∗ ∶= argmin
𝜃∈𝐑𝑑

𝑓(𝜃).

Assumption 2 (Bound from above on the Hessian). The function 𝑓 satisfies 𝑓 ∈ 𝐶2(𝐑𝑑) and
D2 𝑓(𝜃) ≼ 𝑈 ≼ 𝑢𝐼𝑑 for all 𝜃 ∈ 𝐑𝑑, for some 𝑈 ∈ 𝑑

++ and some 𝑢 > 0.

These assumptions are very similar to the ones made in Ref. 7 to show the convergence of
the CBO method9 for global optimization. The convergence results we present in this section are
summarized in Table 2.
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TABLE 2 Sharp upper bounds on the convergence rates for CBS in sampling and optimization modes, in the
case of a non-Gaussian target distribution and a Gaussian initial condition with strictly positive definite
covariance matrix 𝐶0. Here 𝑘 is a positive constant independent of 𝑛, 𝑡, 𝛼 and 𝛽, and 𝑘0 ∶= ‖𝐿1∕2𝐶−1

0 𝐿1∕2‖, where
𝐿 is the symmetric positive definite matrix from Assumption 1, and 𝑞 is any constant strictly greater than
2max(2, 𝑢∕𝓁), where 𝓁 and 𝑢 are the constants from Assumption 1 and 2, respectively. Obtaining sharp
convergence rates for the mean in the non-Gaussian case for 𝛼 ≠ 0 in optimization mode is an open problem

Sampling Optimization
Mean (𝒅 = 𝟏) Covariance (𝒅 = 𝟏) Mean (𝒅 = 𝟏) Covariance (any 𝒅)

𝛼 = 0
(
𝑘

𝛽

)𝑛 (
𝑘

𝛽

)𝑛
≲

log(𝑛)

𝑛

𝑘0

𝑘0+𝛽𝑛

𝛼 ∈ (0, 1)
(
𝛼 + (1 − 𝛼2)

𝑘

𝛽

)𝑛 (
𝛼 + (1 − 𝛼2)

𝑘

𝛽

)𝑛 ≲ 𝑛−1∕𝑞

(not optimal)
𝑘0+𝛽

𝑘0+𝛽+𝛽(1−𝛼2)𝑛

𝛼 = 1 e
−
(
1−

2𝑘

𝛽

)
𝑡

e
−
(
1−

2𝑘

𝛽

)
𝑡 ≲ 𝑡−1∕𝑞

(not optimal)
𝑘0+𝛽

𝑘0+𝛽+2𝛽𝑡

3.1 Preliminary bounds

We first obtain sharp bounds on 𝐶𝛽 , which, in the special case when 𝑓 is quadratic, enable to
recover (11b). The first bound relies on a logarithmic Sobolev inequality for the probability mea-
sure 1

𝑍𝛽
e−𝛽𝑓 , where 𝑍𝛽 is the normalization constant.

Lemma 5 (Upper bound on weighted covariance). If Assumption 1 holds, then

∀(𝐦,𝐶) ∈ 𝐑𝑑 × 𝑑
++, 𝐶𝛽(𝐦, 𝐶) ≼

(
𝐶−1 + 𝛽𝐿

)−1
.

Remark 7. We note that, by the standard Holley–Stroock result, see, e.g., Ref. [65, Theorem 2.11],
a similar bound could be obtained when 𝑓 is of the type 𝑓𝑐 + 𝑓𝑏, where 𝑓𝑐 satisfies the convexity
property Assumption 1 and 𝑓𝑏 is a bounded function.

The next lemma provides a bound from below on 𝐶𝛽 .

Lemma 6 (Lower bound on weighted covariance). If Assumption 2 holds, then

∀(𝐦,𝐶) ∈ 𝐑𝑑 × 𝑑
++, 𝐶𝛽(𝐦, 𝐶) ≽

(
𝐶−1 + 𝛽𝑈

)−1
.

We now obtain a crude bound on the weighted first moment𝐦𝛽(𝐦,𝐶), which will be our start-
ing point for establishing the existence of a steady state for the sampling scheme. This bound is
useful because it shows that𝐦𝛽(𝐦,𝐶) �����→

𝛽→∞
𝜃∗ for any fixed𝐦 and 𝐶 > 0.

Lemma 7 (Bound on weighted mean). If Assumptions 1 and 2 hold, then there exists a positive
constant 𝑘 = 𝑘(𝓁, 𝑢, 𝑑) such that,

∀(𝐦,𝐶, 𝛽) ∈ 𝐑𝑑 × 𝑑
++ × 𝐑>0, |𝐦𝛽(𝐦,𝐶) − 𝜃∗| ⩽

√‖𝐶−1‖
𝓁𝛽

|𝐦− 𝜃∗| + 𝑘

(
1‖𝐶‖ + 𝛽𝓁

)−1∕2

.
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Unfortunately, this bound degenerates in the limit 𝐶 → 0. In spatial dimension one, we will
obtain, in the proof of Proposition 5, a finer bound on the weighted mean that can be used for
proving convergence of the optimization scheme.

3.2 Analysis of the optimization scheme

In this subsection, we are concernedwith the large-time convergence of the law of the solutions to
the mean-field evolution Equations (5) and (7) when 𝜆 = 1 and under the following assumption
on the initial condition:

Assumption 3 (Nondegenerate Gaussian initial conditions). The initial condition for the mean-
field evolution (16) (or (18), in the continuous time setting) is Gaussian with strictly positive defi-
nite covariance matrix.

Under this assumption, following Lemma 2, the solutions are normally distributed for all (dis-
crete or continuous) timeswith the first and secondmoments evolving according toEquations (23)
and (24), respectively. We will show that, under appropriate assumptions, the mean converges to
𝜃∗ and the covariance to zero.
Throughout this subsection, we denote by {(𝐦𝑛, 𝐶𝑛)}𝑛∈𝐍 a solution to (23) with 𝐶0 ≽ 0, and by

{(𝐦(𝑡), 𝐶(𝑡))}𝑡∈[0,∞) a solution to (24) with 𝐶(0) ≽ 0. We also denote by 𝜌𝑛 and 𝜌𝑡 solutions to (16)
and (18), respectively.
We begin by showing that the covariance matrices decrease to zero with rates matching those

obtained in the case of quadratic 𝑓 in Section 2.4, up to constant prefactors.

Proposition 4 (Collapse of the ensemble in optimizationmode). Let 𝜆 = 1 and 𝛽 > 0 and assume
that Assumption 1 holds. Then we have

(i) Discrete time 𝛼 = 0. If 𝐶0 ∈ 𝑑
++, then

𝐶𝑛 ≼

( ‖𝐶−10 ‖𝐿‖𝐶−10 ‖𝐿 + 𝛽𝑛

)
𝐶0. (33)

(ii) Discrete time 𝛼 ∈ (0, 1). If 𝐶0 ∈ 𝑑
++, then

𝐶𝑛 ≼

( ‖𝐶−10 ‖𝐿 + 𝛽‖𝐶−10 ‖𝐿 + 𝛽 + 𝛽(1 − 𝛼2)𝑛

)
𝐶0. (34)

(iii) Continuous time 𝛼 = 1. If 𝐶(0) ∈ 𝑑
++, then

𝐶(𝑡) ≼

( ‖𝐶(0)−1‖𝐿 + 𝛽‖𝐶(0)−1‖𝐿 + 𝛽 + 2𝛽𝑡

)
𝐶(0). (35)
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Ideally, we would like to show that𝐦𝑛 �����→
𝑛→∞

𝜃∗ and𝐦(𝑡) �����→
𝑡→∞

𝜃∗; however, we were able to
show this result only in the one-dimensional setting. In the multidimensional case, we establish
the following weaker result.

Theorem 1. Let 𝜆 = 1, 𝛽 > 0, 𝐶0 ∈ 𝑑
++, and suppose that Assumptions 1 and 2 hold. If there exists

�̂� ∈ 𝐑𝑑 such that𝐦𝑛 �����→
𝑛→∞

�̂� for some 𝛼 ∈ [0, 1) or𝐦(𝑡) �����→
𝑡→∞

�̂� for 𝛼 = 1, then �̂� = 𝜃∗ is the min-
imizer of 𝑓.

It follows from the identity

∀𝜇 ∈ 2(𝐑𝑑), 𝑊2(𝜇, 𝛿𝜃∗)
2 = |(𝜇) − 𝜃∗|2 + tr ((𝜇)), (36)

where 𝑊2(∙, ∙) denotes the quadratic Wasserstein distance, that Proposition 4 and Theorem 1
can be combined to obtain convergence results for the solutions to the mean-field systems (16)
and (18). For example, the following result holds in the discrete-time case.

Corollary 1. Suppose that Assumptions 1 to 3 hold. If there exists �̂� such that(𝜌𝑛) �����→
𝑛→∞

�̂�, then
𝑊2(𝜌𝑛, 𝛿𝜃∗) �����→𝑛→∞

0.

In the one-dimensional case, it is possible to prove the convergence of𝑚𝑛 and𝑚(𝑡) to the min-
imizer 𝜃∗ without the a priori assumption that𝑚𝑛 and𝑚(𝑡) have a limit.

Proposition 5 (Convergence in the one-dimensional case). Let 𝑑 = 1, 𝜆 = 1, 𝛽 > 0, 𝐶0 ∈ 𝑑
++,

and suppose that Assumptions 1 and 2 are satisfied. Then it holds that 𝑚𝑛 �����→
𝑛→∞

𝜃∗ for 𝛼 ∈ [0, 1)

and, likewise,𝑚(𝑡) �����→
𝑡→∞

𝜃∗ for 𝛼 = 1.

As above, this result can be combined with Proposition 4 to obtain a convergence result in
Euclidean Wasserstein distance for the solution to (16) and (18), under Assumptions 1 to 3. When
deriving this convergence result, we obtain nonoptimal rates of order 𝑛−1∕𝑟 for the case 𝛼 = 0,
𝑛−1∕2𝑟 for 𝛼 ∈ (0, 1) and 𝑡−1∕2𝑟 for 𝛼 = 1, with 𝑟 = 𝑟(𝑢, 𝑙) > 2.
To conclude this section, we present a convergence result for𝑚𝑛 with an explicit sharp rate in

the particular case 𝛼 = 0.

Proposition 6 (Rate of convergence). Let 𝑑 = 1, 𝜆 = 1, 𝛽 > 0, 𝛼 = 0, 𝐶0 ∈ 𝑑
++ and suppose that

Assumptions 1 and 2 are satisfied. Suppose additionally that e−𝛽𝑓 is, together with all its derivatives,
bounded from above uniformly in 𝐑. Then there exists a positive constant 𝑘 = 𝑘(𝑚0, 𝐶0) such that,
for sufficiently large 𝑛,

|𝑚𝑛 − 𝜃∗| ⩽ 𝑘

(
log 𝑛

𝑛

)
.

The rate of convergence obtained in Proposition 6 is almost optimal in view of the fact shown in
Section 2.4 that |𝑚𝑛 − 𝜃∗| scales with 𝑛 as (1∕𝑛) in the case when 𝑓 is quadratic. We expect the
result to extend to other values of 𝛼 and to the continuous-time solution to (24), but we focus
on the case 𝛼 = 0 to avoid overly lengthy and technical proofs. We point out that, already in
the Gaussian case, the argument to obtain an optimal decay rate for 𝛼 ∈ (0, 1] is quite technical.
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Finding a simplified argument to prove optimal rates in the optimization setting is an interesting
open problem, which we leave for future work.

3.3 Analysis of the sampling scheme

In this subsection, we investigate the existence of steady states and convergence for themean-field
dynamics associated with the consensus-based samplers, that is when used with 𝜆 = (1 + 𝛽)−1.
We consider both the iteration (16) (in the case 𝛼 ∈ [0, 1)) and the nonlocal, nonlinear Fokker–
Planck equation (18) (in the case 𝛼 = 1).
We begin by stating an existence result in the multidimensional setting. Because the corre-

sponding proof is very short, we include it in this section.

Theorem 2 (Existence of steady states). Let 𝜆 = (1 + 𝛽)−1, 𝛽 > 0 and 𝛼 ∈ [0, 1]. Suppose Assump-
tions 1 and 2 are satisfied. Then there exists 𝛽 such that, for all 𝛽 ⩾ 𝛽, the dynamics (16) and (18)
admit a Gaussian steady-state 𝑔(∙;𝐦∞(𝛽), 𝐶∞(𝛽)) satisfying

𝑈−1 ≼ 𝐶∞(𝛽) ≼ 𝐿−1 and |𝐦∞(𝛽) − 𝜃∗| = 
(

1√
𝛽

)
.

Proof. By Lemma 1, a Gaussian 𝑔(∙;𝐦∞,𝐶∞) is a steady state if and only if

𝐦∞ = 𝐦𝛽(𝐦∞,𝐶∞) and 𝐶∞ = 𝜆−1𝐶𝛽(𝐦∞,𝐶∞) ,

i.e., if and only if (𝐦∞(𝛽), 𝐶∞(𝛽)) is a fixed point of the map

Φ𝛽 ∶ (𝐦,𝐶) ↦
(
𝐦𝛽(𝐦,𝐶), (1 + 𝛽)𝐶𝛽(𝐦, 𝐶)

)
.

To prove the result, we show that Φ𝛽(𝑆𝛽) ⊂ 𝑆𝛽 for all 𝛽 sufficiently large, where

𝑆𝛽 =
{
(𝐦, 𝐶) ∶ |𝐦− 𝜃∗| ⩽ 𝑅𝛽−1∕2 and 𝑈−1 ≼ 𝐶 ≼ 𝐿−1

}
and 𝑅 = 2𝑘∕

√
𝓁, with 𝑘 = 𝑘(𝓁, 𝑢, 𝑑) the constant from Lemma 7. Because Φ𝛽 is continuous, the

result then follows from Brouwer’s fixed point theorem. By Lemmas 5 and 6, it holds that 𝑈−1 ≼

(1 + 𝛽)𝐶𝛽(𝐦, 𝐶) ≼ 𝐿−1 for any (𝐦, 𝐶) ∈ 𝑆𝛽 , so we have to show only that there exist 𝛽 such that

∀𝛽 ⩾ 𝛽, ∀(𝐦,𝐶) ∈ 𝑆𝛽, |𝐦𝛽(𝐦,𝐶) − 𝜃∗| ⩽ 𝑅𝛽−1∕2.

If (𝐦, 𝐶) ∈ 𝑆𝛽 , then by Lemma 7 there exists 𝑘 = 𝑘(𝓁, 𝑢, 𝑑) such that

∀𝛽 > 0, |𝐦𝛽(𝐦,𝐶) − 𝜃∗| ⩽ 𝑅

𝛽

√
𝑢

𝓁
+ 𝑘(𝓁 + 𝛽𝓁)

−1∕2

⩽ 𝑅𝛽−1∕2

(√
𝑢

𝛽𝓁
+
𝑘

𝑅

√
1

𝓁

)
= 𝑅𝛽−1∕2

(√
𝑢

𝛽𝓁
+
1

2

)
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from where the statement follows easily with 𝛽 = 4𝑢

𝓁
. ■

This result shows that the sampling scheme admits a steady state whose mean is close to the
minimizer of 𝑓 for large 𝛽, but it does not provide much information on the covariance of the
Gaussian steady state. In the one-dimensional setting, we can show that the steady state is in fact
unique and arbitrarily close to the Laplace approximation of the target distribution provided that
𝛽 is sufficiently large. By the Laplace approximation �̂� of the target distribution, we mean the
Gaussian probability distribution 𝑔(∙; 𝜃∗, D

2 𝑓(𝜃∗)
−1), that is,

�̂�(𝜃) ∶=
e−𝑓(𝜃)

∫
𝐑𝑑 e

−𝑓(𝜃) d𝜃
, 𝑓(𝜃) ∶= 𝑓(𝜃∗) +

1

2

(
(𝜃 − 𝜃∗) ⊗ (𝜃 − 𝜃∗)

)
∶ D2 𝑓(𝜃∗).

(Note that �̂� coincides with the target distribution when 𝑓 is quadratic.) To establish results in the
one-dimensional setting, we make the following additional assumption on 𝑓.

Assumption 4. Let 𝑑 = 1. The function 𝑓 is smooth and, together with all its derivatives, it is
bounded from above by the reciprocal of a Gaussian, in the sense that for all 𝑖 ∈ {0, 1, … } there
exists 𝜆𝑖 ∈ 𝐑 such that

‖e−𝜆𝑖𝑡2𝑓(𝑖)(𝑡)‖∞ < ∞.

We let 𝐶∗ ∶= 1∕𝑓′′(𝜃∗) and denote by 𝐵𝑅(𝑚∗, 𝐶∗) the closed ball of radius 𝑅 around (𝑚∗, 𝐶∗).

Theorem 3 (Convergence to the steady state). Let 𝑑 = 1 and 𝜆 = (1 + 𝛽)−1, and suppose Assump-
tions 1 and 4 hold. For any 𝑅 ∈ (0, 𝐶∗), there exists 𝛽 = 𝛽(𝑓, 𝑅) and 𝑘 = 𝑘(𝑓, 𝑅) such that the fol-
lowing statements hold for all 𝛽 ⩾ 𝛽:

∙ Steady state. There exists a pair (𝑚∞(𝛽), 𝐶∞(𝛽)), unique in 𝐵𝑅(𝜃∗, 𝐶∗), such that the Gaussian
density 𝜌∞ = 𝑔(∙;𝑚∞, 𝐶∞) satisfies (20), and this pair satisfies|||||

(
𝑚∞(𝛽)

𝐶∞(𝛽)

)
−

(
𝑚∗

𝐶0

)||||| ⩽ 𝑘

𝛽
.

By Lemma 1, the density 𝜌∞ is a steady state of both the iterative scheme (16) with any 𝛼 ∈ [0, 1)

and the nonlinear Fokker–Planck equation (18), corresponding to 𝛼 = 1.
∙ Discrete time 𝛼 ∈ [0, 1). If Assumption 3 holds and the moments of the initial (Gaussian) law
satisfy (𝑚0, 𝐶0) ∈ 𝐵𝑅(𝜃∗, 𝐶∗), then the solution to the iterative scheme Equation (16) converges
geometrically to the steady-state 𝜌∞ provided that 𝛼 + (1 − 𝛼2)

𝑘

𝛽
< 1. More precisely,

∀𝑛 ∈ 𝐍,
|||||
(
𝑚𝑛

𝐶𝑛

)
−

(
𝑚∞(𝛽)

𝐶∞(𝛽)

)||||| ⩽
(
𝛼 + (1 − 𝛼2)

𝑘

𝛽

)𝑛 |||||
(
𝑚0

𝐶0

)
−

(
𝑚∞(𝛽)

𝐶∞(𝛽)

)||||| .
∙ Continuous time 𝛼 = 1. If Assumption 3 holds and the moments of the initial (Gaussian) law
satisfy (𝑚0, 𝐶0) ∈ 𝐵𝑅(𝜃∗, 𝐶∗), then the solution to the mean-field Fokker Planck equation (18)
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converges exponentially to the steady-state 𝜌∞ provided that 1 − 2𝑘

𝛽
> 0. More precisely,

∀𝑡 ≥ 0,
|||||
(
𝑚(𝑡)

𝐶(𝑡)

)
−

(
𝑚∞(𝛽)

𝐶∞(𝛽)

)||||| ⩽ exp

(
−

(
1 −

2𝑘

𝛽

)
𝑡

) |||||
(
𝑚0

𝐶0

)
−

(
𝑚∞(𝛽)

𝐶∞(𝛽)

)||||| .
There is no conceptual obstruction to generalizing this result to the multidimensional setting,

but the associated calculations involving the Laplace’s method, on which the proof of Theorrem
3 relies, are significantly more technical than in the one-dimensional setting, so we focus here on
the one-dimensional case only.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments illustrating our method. The performance of
CBS in optimization mode is studied in Section 4.1. We then illustrate the efficacy of the method
for sampling in Section 4.2, where a simple inverse problemwith low-dimensional parameter and
data is considered, and in Section 4.3,where amore realistic and challenging example is examined.
Video animations associated with the numerical experiments presented in this section are freely
available online.66

4.1 General-purpose optimization

In this subsection, we study the efficacy of our method for solving optimization problems that do
not necessarily originate from a Bayesian context. We also show empirically how the convergence
of the algorithm can be improved by adapting the parameter 𝛽 appropriately during the simula-
tion. Throughout the subsection, we consider the same nonconvex test functions as those taken
in9: the translated Ackley function, defined for 𝑥 ∈ 𝐑𝑑 by

𝑓𝐴(𝑥) = −20 exp
⎛⎜⎜⎝−

1

5

√√√√ 1

𝑑

𝑑∑
𝑖=1

|𝑥𝑖 − 𝑏|2⎞⎟⎟⎠ − exp

(
1

𝑑

𝑑∑
𝑖=1

cos
(
2𝜋(𝑥𝑖 − 𝑏)

))
+ e +20, (37)

and the Rastrigin function, defined by

𝑓𝑅(𝑥) =

𝑑∑
𝑖=1

(
(𝑥𝑖 − 𝑏)2 − 10 cos

(
2𝜋(𝑥𝑖 − 𝑏)

)
+ 10

)
. (38)

Both functions are minimized at 𝑥∗ = (𝑏, … , 𝑏), where 𝑏 ∈ 𝐑 is a translation parameter. They are
depicted in Figure 1.
In all simulations presented below, the initial particle ensemble members are drawn indepen-

dently from 𝖭(0, 3𝐼𝑑), and the simulation is stopped when ‖(𝜌𝐽𝑛)‖F < 10−12 for the first time;
here 𝜌𝐽𝑛 denotes the empirical measure associated with the ensemble at iteration 𝑛.
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F IGURE 1 Ackley (left) and Rastrigin (right) functions for 𝑑 = 2 and 𝑏 = 2; see (37) and (38)

4.1.1 Dynamic adaptation of 𝛽

In this paragraph, we show numerically that adapting 𝛽 dynamically during a simulation can be
advantageous for convergence. We consider the following simple adaptation scheme with param-
eter 𝜂 ∈

(
1

𝐽
, 1

)
: denoting by {𝜃(𝑗)𝑛 }𝐽

𝑗=1
the ensemble at step 𝑛, the parameter 𝛽 employed for the

next iteration is obtained as the positive solution to the following equation:

𝐽ef f (𝛽) ∶=

(∑𝐽

𝑗=1 𝜔𝑗

)2
∑𝐽

𝑗=1 |𝜔𝑗|2 = 𝜂𝐽, 𝜔𝑗 ∶= e−𝛽𝑓(𝜃
(𝑗)
𝑛 ) . (39)

Employing the notation 𝑓𝑗 = 𝑓(𝜃
(𝑗)
𝑛 ), we calculate

𝐽′
ef f
(𝛽) = −2𝛽

(∑𝐽

𝑗=1 𝜔𝑗

)(∑𝐽

𝑗=1 𝑓𝑗𝜔𝑗

)
−

(∑𝐽

𝑗=1 𝑓𝑗|𝜔𝑗|2)(∑𝐽

𝑗=1 |𝜔𝑗|2)2 ⩽ 0,

so 𝐽ef f is a continuous, nonincreasing function with 𝐽ef f (0) = 𝐽 and lim𝛽→∞ 𝐽ef f (𝛽) = 1. Conse-
quently, Equation (39) admits a unique solution in (0,∞). The left-hand side of (39) is known
in statistics as an effective sample size, which motivates the notation 𝐽ef f . When this approach
is employed, the parameter 𝛽 is generally small in the early stage of the simulation as long as
the initial ensemble has large enough spread, and it increases progressively as the simulation
advances and the ensemble spread decreases. In other words, this cooling schedule for 𝛽 ensures
that roughly always the same proportion 𝜂 of particles contribute to the weighted sums in the
scheme. This adaptation approach is useful for a two primary reasons:

∙ On the one hand, provided that 𝜂 and 𝐽 are sufficiently large, adapting 𝛽 according to (39)
ensures that situations where the ensemble quickly collapses to a very narrow distribution do
not arise. An early collapse of the ensemble is not desirable as the schememay then get stuck in
local minima of the objective function 𝑓, or in the case when the collapse is not complete, the
convergence is slowed down considerably. This issue is especially critical when the scheme (30)
is employed with 𝛼 = 0: in this case, if 𝛽 is not sufficiently small at the beginning of the
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TABLE 3 Performance of the CBS in optimization mode for the Ackley function in spatial dimension 𝑑 = 2,
without and with adaptive 𝛽. The three data presented in each cell are respectively the success rate of the method,
the average number of iteration until the stopping criterion is met, and the average (over the successful runs)
error at the final iteration, computed as the infinity norm between the minimizer and the ensemble mean. Our
definition of the success rate is very similar to that used in Ref. 9: a run is considered successful if the ensemble
mean is within 0.25, in infinity norm, of the minimizer at the final iteration

Adapt? 𝜶 𝑱 = 𝟓𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟐𝟎𝟎

No 0 100% | 511 | 8.73 × 10−3 100% | 966 | 4.34 × 10−3 100% | 1767 | 2.5 × 10−3
No 0.5 100% | 611 | 1.22 × 10−2 100% | 1191 | 6.87 × 10−3 100% | 2141 | 3.38 × 10−3
No 0.9 100% | 2028 | 1.6 × 10−2 100% | 3693 | 8.31 × 10−3 100% | 7259 | 5.22 × 10−3
Yes 0 100% | 31 | 1.86 × 10−7 100% | 31 | 1.09 × 10−7 100% | 31 | 8.44 × 10−8
Yes 0.5 100% | 49 | 2.86 × 10−7 100% | 48 | 2.0 × 10−7 100% | 48 | 1.43 × 10−7
Yes 0.9 100% | 251 | 2.27 × 10−6 100% | 242 | 4.36 × 10−7 100% | 238 | 2.87 × 10−7

simulation, it is often the case that the weighted covariance of the initial ensemble is very close
to zero, in which case the ensemble collapses nearly to a point in a single step.

∙ On the other hand, increasing 𝛽 in the later stage of the simulation significantly accelerates
convergence to theminimizer. Indeed, when a fixed value of 𝛽 is employed, the weights {𝜔𝑗}𝐽𝑗=1
all converge to the same value as the simulation progresses and the ensemble collapses, and
so the influence of the objective function on the dynamics diminishes. By increasing 𝛽 dynam-
ically, we strengthen the bias of the dynamics towards areas of small 𝑓, thereby accelerating
convergence.

In the remainder of this section, we consider for simplicity only the choice 𝜂 = 1

2
. Amore detailed

analysis of the efficiency of this approach, through both theoretical and numerical means, is
left for future work. More generally, an interesting open question is whether it is possible to
determine an optimal cooling schedule for 𝛽 taking the above considerations into account. We
illustrate in Table 3 the performance of CBS in optimization mode, with both fixed and adaptive
𝛽, for finding theminimizer of the Ackley function with 𝑏 = 0 in dimension 2. The data presented
in each cell are calculated from 100 independent runs of the method. For all the values of 𝐽 and
𝛼 considered, using the adaptive strategy based on (39) provides a significant advantage, in terms
of both the number of iterations required for convergence and the accuracy of the approximate
minimizer.

4.1.2 Low-dimensional optimization problem: 𝑑 = 2

The performance of CBS in optimization mode is illustrated in Tables 4 and 5, for the Ackley and
Rastrigin functions respectively, in spatial dimension 𝑑 = 2. We make a few observations:

∙ Influence of 𝛼: The simulations corresponding to 𝛼 = 0 consistently require fewer iterations to
converge than those corresponding to 𝛼 =

1

2
, and they have a better success rate for the Rastri-

gin function.
∙ Influence of 𝐽: For the Rastrigin function, a high number of particles, i.e. a large value of 𝐽, corre-
lates with a better success rate. With only 50 particles, the method often converges to the wrong
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TABLE 4 Performance of the CBS in optimization mode for the Ackley function in spatial dimension 𝑑 = 2.
See the caption of Table 3 for a description of the data presented

𝒃 𝜶 𝑱 = 𝟓𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟐𝟎𝟎

0 0 100% | 31 | 1.86 × 10−7 100% | 31 | 1.09 × 10−7 100% | 31 | 8.44 × 10−8
0 0.5 100% | 49 | 2.86 × 10−7 100% | 48 | 2.0 × 10−7 100% | 48 | 1.43 × 10−7
1 0 100% | 31 | 1.83 × 10−7 100% | 31 | 1.16 × 10−7 100% | 31 | 7.91 × 10−8
1 0.5 100% | 49 | 3.23 × 10−7 100% | 49 | 2.05 × 10−7 100% | 49 | 1.47 × 10−7
2 0 100% | 31 | 1.86 × 10−7 100% | 32 | 1.1 × 10−7 100% | 32 | 8.61 × 10−8
2 0.5 100% | 51 | 3.03 × 10−7 100% | 50 | 1.92 × 10−7 100% | 50 | 1.38 × 10−7

TABLE 5 Performance of the CBS in optimization mode for the Rastrigin function in spatial dimension
𝑑 = 2. See the caption of Table 3 for a description of the data presented

𝒃 𝜶 𝑱 = 𝟓𝟎 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟐𝟎𝟎

0 0 83% | 41 | 1.73 × 10−7 99% | 45 | 1.19 × 10−7 100% | 45 | 8.43 × 10−8
0 0.5 77% | 74 | 3.39 × 10−4 98% | 69 | 2.21 × 10−7 100% | 66 | 1.56 × 10−7
1 0 84% | 42 | 1.85 × 10−7 99% | 44 | 1.03 × 10−7 100% | 45 | 7.8 × 10−8
1 0.5 72% | 68 | 6.03 × 10−7 91% | 68 | 2.23 × 10−7 100% | 68 | 1.56 × 10−7
2 0 79% | 42 | 1.84 × 10−7 96% | 44 | 1.12 × 10−7 100% | 45 | 7.78 × 10−8
2 0.5 58% | 80 | 4.14 × 10−4 74% | 75 | 3.52 × 10−5 96% | 74 | 1.54 × 10−7

local minimizer, but with 200 particles the ensemble almost always collapses at the global
minimizer.

∙ Influence of 𝑏: For the Rastrigin function, a low value of 𝑏 correlates with better performance.
This behavior, whichwas observed also for CBO inRef. 9, is not surprising because, when 𝑏 = 0,
the minimizer is centered with respect to the initial ensemble.

We also note that, like CBO,9 our method performs markedly better for the Ackley function than
for the Rastrigin function. Snapshots of the particles are presented in Figure 2 for the parameters
𝛼 = 0 and 𝐽 = 100.

4.1.3 Higher-dimensional optimization problem: 𝑑 = 10

In this paragraph, we repeat the numerical experiments of the previous section in higher dimen-
sion 𝑑 = 10. We employ an adaptive 𝛽 in all the simulations, as this approach was shown in the
previous subsection to perform much better. The associated results are presented in Tables 6 and
7, which show that themethod performs better for small𝛼 and large 𝐽 for this case aswell. Overall,
the method seems to require a larger ensemble size than CBO to guarantee a similar success rate.
A fair comparison of the computational expenses required by both methods is difficult, however,
because the number of time steps employed in CBO is not documented in Ref. 9.
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F IGURE 2 Illustration of the convergence of CBS in optimization mode for the Ackley (left) and Rastrigin
(right) functions in dimension 2, for the parameters 𝐽 = 100, 𝛼 = 0, and with adaptive 𝛽. The black cross denotes
the unique global minimizer, and the red cross shows the ensemble mean
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TABLE 6 Performance of the CBS in optimization mode for the Ackley function in dimension 10. See the
caption of Table 3 for a description of the data presented

𝒃 𝜶 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟓𝟎𝟎 𝑱 = 𝟏𝟎𝟎𝟎

0 0 100% | 95 | 4.19 × 10−4 100% | 77 | 9.81 × 10−8 100% | 78 | 6.97 × 10−8
0 0.5 100% | 248 | 1.27 × 10−2 100% | 109 | 1.71 × 10−7 100% | 110 | 1.13 × 10−7
1 0 100% | 100 | 1.34 × 10−3 100% | 78 | 1.04 × 10−7 100% | 78 | 6.79 × 10−8
1 0.5 98% | 278 | 3.27 × 10−2 100% | 111 | 1.72 × 10−7 100% | 111 | 1.13 × 10−7
2 0 98% | 125 | 7.72 × 10−3 100% | 78 | 9.71 × 10−8 100% | 79 | 6.85 × 10−8
2 0.5 65% | 306 | 6.53 × 10−2 100% | 113 | 1.7 × 10−7 100% | 113 | 1.13 × 10−7

TABLE 7 Performance of the CBS in optimization mode for the Rastrigin function in dimension 10. See the
caption of Table 3 for a description of the data presented

𝒃 𝜶 𝑱 = 𝟏𝟎𝟎 𝑱 = 𝟓𝟎𝟎 𝑱 = 𝟏𝟎𝟎𝟎

0 0 6% | 222 | 2.1 × 10−2 95% | 107 | 9.69 × 10−8 100% | 111 | 6.62 × 10−8
0 0.5 10% | 331 | 6.68 × 10−2 99% | 150 | 1.88 × 10−7 100% | 155 | 1.14 × 10−7
1 0 4% | 224 | 4.61 × 10−2 94% | 108 | 9.66 × 10−8 100% | 111 | 6.97 × 10−8
1 0.5 0% | 334 |− 74% | 165 | 5.75 × 10−7 99% | 162 | 1.18 × 10−7
2 0 0% | 224 |− 74% | 113 | 9.82 × 10−8 99% | 114 | 7.07 × 10−8
2 0.5 0% | 333 |− 19% | 190 | 1.17 × 10−4 69% | 189 | 1.24 × 10−7

4.2 Sampling: Low-dimensional parameter space

We first consider an inverse problem with low-dimensional parameter space that was first pre-
sented in Ref. 67 and later employed as a test problem in Refs. 34,68. In this problem, the forward
model maps the unknown (𝑢1, 𝑢2) ∈ 𝐑2 to the observation (𝑝(𝑥1), 𝑝(𝑥2)) ∈ 𝐑2, where 𝑥1 = 0.25

and 𝑥2 = 0.75 and where 𝑝(𝑥) denotes the solution to the boundary value problem

−e𝑢1 𝑝′′ = 1, 𝑥 ∈ [0, 1], (40)

with boundary conditions 𝑝(0) = 0 and 𝑝(1) = 𝑢2. This problem admits the following explicit
solution68:

𝑝(𝑥) = 𝑢2𝑥 + e−𝑢1
(
−
𝑥2

2
+
𝑥

2

)
.

We employ the same parameters as in Ref. 34: the prior distribution is 𝖭(0, 𝜎2𝐼2)with 𝜎 = 10, and
the noise distribution is 𝖭(0, 𝛾2𝐼2) with 𝛾 = 0.1. The observed data are 𝑦 = (27.5, 79.7).
We now investigate the efficiency of (30) for sampling from the posterior distribution. To this

end, we use the parameters 𝛼 = 𝛽 =
1

2
and 𝐽 = 1000 particles. The ensemble after 100 iterations is

depicted in Figure 3, together with the true posterior. It appears from the figure that the Gaussian
approximation of the posterior provided by scheme (30) is close to the true posterior, and indeed
we can verify that the mean and covariance of the true and approximate posterior distributions,
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F IGURE 3 Left: Particles at iteration 𝑛 = 100 for fixed 𝛼 = 𝛽 =
1

2
. Middle: Gaussian density with the same

mean and covariance as the empirical distribution associated with these particles. Right: True Bayesian posterior

which are given, respectively, by

𝑚𝑝 =

(
−2.714…

104.346…

)
𝐶𝑝 =

(
0.0129… 0.0288…

0.0288… 0.0808…

)
and

�̃�𝑝

(
−2.712…

104.356…

)
𝐶𝑝 =

(
0.0135… 0.0302…

0.0302… 0.0829…

)
,

are fairly close.

4.3 Sampling: Higher dimensional parameter space

In this section, we consider the more challenging inverse problem of finding the permeability
field of a porous medium from noisy pressure measurements in a Darcy flow; for other methods
applied to this problem, see Refs. 2,34,60. Assuming Dirichlet boundary conditions and scalar
permeability for simplicity, we consider the forward model mapping the logarithm of the perme-
ability, denoted by 𝑎(𝑥), to the solution of the PDE

−∇ ⋅
(
e𝑎(𝑥) ∇𝑝(𝑥)

)
= 𝑓(𝑥), 𝑥 ∈ 𝐷, (41a)

𝑝(𝑥) = 0, 𝑥 ∈ 𝜕𝐷. (41b)

Here 𝐷 = [0, 1]2 is the domain and 𝑓(𝑥) = 50 represents a source of fluid. We assume that noisy
pointwise measurements of 𝑝(𝑥) are taken at a finite number equispaced points in 𝐷, given by

𝑥𝑖𝑗 =

(
𝑖

𝑀
,
𝑗

𝑀

)
, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑀 − 1,
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and that these measurements are perturbed by Gaussian noise with distribution  (0, 𝛾2𝐼𝐾),
where 𝛾 = 0.01 and 𝐾 = (𝑀 − 1)2. For the prior distribution, we employ a Gaussian measure on
𝐿2(𝐷) with mean zero and precision (inverse covariance) operator given by

−1 = (−Δ + 𝜏2)𝑟,
equipped with Neumann boundary conditions on the space of mean-zero functions. Here 𝑟 and
𝜏 are parameters controlling the smoothness and characteristic inverse length scale of samples
drawn from the prior, respectively. The eigenfunctions and eigenvalues of the covariance operator
are

𝜓𝓁(𝑥) = cos (𝜋(𝓁1𝑥1 + 𝓁2𝑥2)), 𝜆𝓁 =
(
𝜋2|𝓁|2 + 𝜏2

)−𝑟
, 𝓁 ∈ 𝐍2.

By the Karhunen–Loève (KL) expansion,69 it holds for any 𝑎 ∼  (0, 𝐶) that

𝑎(𝑥) =
∑
𝓁∈𝐍2

(𝑎, 𝜓𝓁)𝜓𝓁(𝑥) =∶
∑
𝓁∈𝐍2

√
𝜆𝓁 𝜃𝓁 𝜓𝓁(𝑥) , (42)

for independent coefficients 𝜃𝓁 ∼  (0, 1), and where (∙, ∙) denotes the L2-inner product.
To approach the problem numerically, we take as object of inference a finite number of terms

{𝜃𝓁}|𝓁|∞⩽𝑁 in the KL expansion of the log-permeability, which may be ordered as a linear vector
given an ordering of {0, … ,𝑁}2. The associated prior distribution is given by the finite-dimensional
Gaussian (0, 𝐼𝑑), where 𝑑 = (𝑁 + 1)2. At the numerical level, the forwardmodel is evaluated as
follows: for a given vector of coefficients 𝜃 ∈ 𝐑𝑑, a log-permeability field is calculated by summa-
tion as 𝑎(∙; 𝜃) ∶=

∑|𝓁|∞⩽𝑁 √
𝜆𝓁 𝜃𝓁 𝜓𝓁(∙), and the corresponding solution to (41) is approximated

with a finite element method (FEM). Linear shape functions over a regular mesh with 100 subdi-
visions per direction are employed for the finite element solution.
For the numerical experiments presented below, a true value 𝜃† ∈ 𝐑𝑑 for the vector of coef-

ficients is drawn from (0, 𝐼𝑑) and employed to construct the true permeability field which, in
turn, is used with the FEM described above to generate the data. In particular, we employ only
(𝑁 + 1)2 terms in the KL expansion of the true permeability. We note that, with this approach, the
resulting random field should be viewed only as an approximate sample from (0,). Our aim
is to study the performance of CBS, not the effect of FEM discretization and truncation of the KL
series on the solution of the inverse problem.
The ensemble obtained after 100 iterations of CBSwith adaptive 𝛽, with 𝛼 = 0 andwith 𝐽 = 512

is depicted in Figure 4, along with the marginals of the Gaussian distribution with the same first
and second moments as the empirical measure associated with the ensemble. The particles form-
ing the initial ensembles were drawn independently from 𝖭(0, 9𝐼𝑑). To validate our results, we
use as point of reference the solution provided by the ensemble Kalman samplingmethod,34 com-
bined with the adaptive time-stepping scheme from Ref. 57. It appears from the simulations that
the agreement between the posterior distribution obtained by CBS and that obtained by ensemble
Kalman sampling is very good, and both approximate posteriors are in good agreement with the
true solution.
Using the final ensemble as initial condition for (30) in optimization mode, and running 50

more iterations of the algorithm, one obtains an approximation of the MAP estimator, whose
associated permeability field is illustrated in Figure 5. Here we use as point of comparison
the solution provided by the EKI approach.31 We present below the values of the first nine
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F IGURE 4 Approximate posterior samples produced by (30) with 𝛼 = 0 and adaptive 𝛽. Here, the labels on
the 𝑥-axis denote the multi-indices associated with the KL coefficients of the permeability. The (nonnormalized)
solid curves represent the marginals of the Gaussian distribution whose mean and covariance are calculated from
the samples produced by CBS. The (nonnormalized) dashed curves are the marginal distributions obtained by
kernel density estimation using Gaussian kernels from the samples produced by ensemble Kalman sampling.34

The black crosses denote the true values of the KL coefficients, i.e., the values employed to generate the data

F IGURE 5 Logarithms of true (left) and approximate permeability profiles (right). The approximate
permeability profile was constructed from the approximation of the MAP estimator provided by (30) with 𝛼 = 0,
adaptive 𝛽 and 𝜆 = 1 (optimization mode), with 𝐽 = 512 particles

Karhunen–Loève coefficients of (i) the true permeability, (ii) theMAP estimator obtained by CBS,
and (iii) the MAP estimator obtained by EKI:

(𝑢†)𝖳 =
(
1.19 −2.52 2.07 −0.97 −0.10 −1.54 0.10 −0.00 1.01 …

)
,

(𝑢CBSMAP)
𝖳 =

(
1.17 −2.48 2.04 −0.73 −0.23 −1.65 −0.22 −0.02 0.23 …

)
,

(𝑢EKIMAP)
𝖳 =

(
1.17 −2.48 2.04 −0.73 −0.23 −1.65 −0.23 −0.02 0.24 …

)
.



1102 CARRILLO et al.

(All the numbers displayed herewere rounded to two decimals.) The agreement between theMAP
estimators as approximated by EKI and by our method is very good, and both vectors are close to
the KL series of the logarithm of the true permeability.

4.4 Discussion

We draw the following conclusions from the numerical experiments presented in this section.

∙ It is crucial to dynamically adapt the parameter 𝛽 during a simulation for our method to be
competitive, both for optimization and sampling tasks.Weobtained very goodnumerical results
with the adaptation scheme based on the effective sample size in (39).

∙ For optimization tasks, ourmethod generally requiresmore particles than CBO9 to consistently
find the globalminimizerwhen the number of localminima is large. Relatedly, for a given num-
ber of particles, the probability of converging to (a small neighborhood) of the correctminimizer
appears to be better for CBO.

∙ For sampling tasks, our numerical experiments suggest that theCBSmethod is competitivewith
the ensemble Kalman sampling scheme.34 The number of iterations required by both methods
to reach equilibrium is of the same order of magnitude, and the quality of the posterior approx-
imation appears similar in the test cases we considered.

In future work, wewill aim to give our proposed 𝛽-adaptation scheme a theoretical footing, and
to investigate other adaptation strategies. It will also beworthwhile tomore precisely compare our
method with discretizations of CBO and EKS in terms of computational cost, especially for PDE-
based inverse problems, where evaluations of the forward model are typically the predominant
computational cost. Finally, it would be interesting, both for optimization and sampling tasks, to
investigate whether ideas from Refs. 36,46,70 could be leveraged to improve the performance of
our method when the number of particles is of the same order of magnitude as the dimension of
the parameter space.

5 PROOF OF THEMAIN RESULTS

Throughout this section, for a given𝐦 ∈ 𝐑𝑑 and 𝐶 ∈ 𝐑𝑑×𝑑, we will use the notation

𝜌𝛽(𝜃;𝐦, 𝐶) =
1

𝑍𝛽
𝑒−𝑉𝛽(𝜃) , 𝑉𝛽(𝜃;𝐦, 𝐶) ∶=

1

2
|𝜃 −𝐦|2

𝐶
+ 𝛽𝑓(𝜃) , (43)

where 𝑍𝛽 = 𝑍𝛽(𝐦,𝐶) is the normalization constant. When the parameters 𝐦, 𝐶 are clear from
the context, we will often write just 𝜌𝛽(𝜃) and 𝑉𝛽(𝜃) for conciseness.

5.1 Proof of the convergence estimates in the Gaussian setting

Proof of Proposition 1. Consider first the sampling case 𝜆 = (1 + 𝛽)−1. Using the same notation as
in the proof of Lemma 3, we have

𝐶−1𝑛 − 𝛽−1𝐼𝑑 = 𝜆𝑛
(
𝐶−10 − 𝛽−1𝐼𝑑

)
. (44)



CARRILLO et al. 1103

Rearranging the equation, we obtain

𝐶𝑛 − 𝛽𝐼𝑑 = (𝐶𝑛𝐶
−1
0 )𝜆𝑛

(
𝐶0 − 𝛽𝐼𝑑

)
.

Because 𝐶𝑛 commutes with 𝐶−10 from (44), the matrix 𝐶𝑛𝐶−10 is symmetric and positive definite.
By (44), the eigenvalues {𝓁𝑖} of 𝐶𝑛𝐶−10 are of the form

𝓁𝑖 =
1

𝛽−1𝑚𝑖 + 𝜆𝑛(1 − 𝛽−1𝑚𝑖)
⩽ max

{
𝛽

𝑚𝑖
, 1

}
⩽ max {1, 𝑘0},

where {𝑚𝑖} denote the eigenvalues of 𝐶0. Hence,

‖𝐶𝑛 − 𝐴‖𝐴 = 𝛽−1‖�̃�𝑛 − 𝛽𝐼𝑑‖ = 𝜆𝑛𝛽−1
‖‖‖(�̃�𝑛�̃�−10 ) (

�̃�0 − 𝛽𝐼𝑑
)‖‖‖

⩽ 𝜆𝑛‖�̃�𝑛�̃�−10 ‖𝛽−1‖�̃�0 − 𝛽𝐼𝑑‖ ⩽ 𝜆𝑛 max (1, 𝑘0) ‖𝐶0 − 𝐴‖𝐴 .
This shows the convergence result of the covariance, and the convergence result for the mean
follows similarly using Lemma 3:

|𝐦𝑛 − 𝐚|𝐴 = |�̃�𝑛| = 𝜆𝑛|�̃�𝑛�̃�−10 �̃�0| ⩽ 𝜆𝑛‖�̃�𝑛�̃�−10 ‖|�̃�0|
⩽ 𝜆𝑛 max(1, 𝑘0) |�̃�0| = 𝜆𝑛 max(1, 𝑘0) |𝐦0 − 𝐚|𝐴 .

In the optimization case 𝜆 = 1, we have using the definition of 𝑘0 that

𝐶−1𝑛 = 𝐶−10 + 𝑛𝐼𝑑 ≽

(
1 +

𝛽𝑛

𝑘0

)
𝐶−10 ⇒ 𝐶𝑛 ≼

(
𝑘0

𝑘0 + 𝛽𝑛

)
𝐶0.

This shows the convergence result for the covariance, which directly implies the convergence
estimate for the mean. ■

Proof of Proposition 2. Notice that the right-hand side of (25b) commuteswith𝐶𝑛, so there exists an
orthogonal matrix 𝑄 such that 𝐶𝑛 ∶= 𝑄𝖳𝐶𝑛𝑄 is diagonal for all 𝑛 ∈ 𝐍. Introducing �̂�𝑛 = 𝑄𝖳�̃�𝑛,
we can check that �̂�𝑛 and 𝐶𝑛 solve again (25). Therefore, for all 𝑖 ∈ {1, … , 𝑑}, it holds that
(𝑢𝑖,𝑛, 𝑣𝑖,𝑛) ∶= ((�̂�𝑛)𝑖, (𝐶𝑛)𝑖𝑖) solves the discrete-time equation (26) with initial conditions which
depend on 𝑖. The convergence of the solution for the two-dimensional difference equation (26)
is then given by Lemma A.1. Note that 𝑣𝑖,0 ⩾ 𝛽∕𝑘0 for all 𝑖 ∈ {1, … , 𝑑}, because by definition
𝑘0 = 𝛽‖�̃�−10 ‖ = 𝛽‖𝐶−10 ‖. In the sampling case, we have

|𝐦𝑛 − 𝐚|𝐴 = |�̂�𝑛| ⩽ max(1, 𝑘0)
1

1+𝛼 ((1 − 𝛼)𝜆 + 𝛼)
𝑛|�̂�0|

= max(1, 𝑘0)
1

1+𝛼 ((1 − 𝛼)𝜆 + 𝛼)
𝑛|𝐦0 − 𝐚|𝐴 .

On the other hand, it holds for any 1 ⩽ 𝑖 ⩽ 𝑑 that

|(𝐶𝑛)ii − 𝛽| ⩽ max(1, 𝑘0)
(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛|(𝐶0)ii − 𝛽|.
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From this, we deduce

‖𝐶𝑛 − 𝛽𝐼𝑑‖ ⩽ max(1, 𝑘0)
(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛‖𝐶0 − 𝛽𝐼𝑑‖.
Because ‖𝑄𝑀𝑄𝖳‖ = ‖𝑀‖ for any symmetric matrix𝑀 and orthogonal matrix 𝑄, we deduce

‖�̃�𝑛 − 𝛽𝐼𝑑‖ ⩽ max(1, 𝑘0)
(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛‖�̃�0 − 𝛽𝐼𝑑‖.
The statement then follows because ‖𝐶𝑛 − 𝐶∞‖𝐴 = 𝛽−1‖�̃�𝑛 − 𝛽𝐼𝑑‖ by definition of ‖∙‖𝐴. An
analogous argument, using the estimates (A.3a) and (A.3b) in Lemma A.1 and noting that the
function 𝑠 ↦ (𝑠 + 1)∕(𝑠 + 1 + (1 − 𝛼2)𝑛) is strictly decreasing for 𝑠 ⩾ 0, yields the bounds for the
optimization case 𝜆 = 1. ■

Proof of Proposition 3. Letting �̃�(𝑡) = 𝐴−1∕2(𝐦(𝑡) − 𝐚) and 𝐶(𝑡) = 𝛽𝐴−1∕2𝐶(𝑡)𝐴−1∕2, we can ver-
ify that �̃� and 𝐶 solve

̇̃𝐦 = −𝐶
(
𝐼𝑑 + 𝐶

)−1
�̃�,

̇̃𝐶 = −2𝐶
(
𝐼𝑑 + 𝐶

)−1(
𝐶 −

(
1 − 𝜆

𝜆

)
𝐼𝑑

)
.

It is then straightforward to show the result by employing the same reasoning as in the discrete-
time case and using Lemma A.2, which characterizes the convergence to equilibrium for the fol-
lowing ordinary differential equation (ODE) system with 𝑢, 𝑣 scalar functions :

�̇� = −
( 𝑣

1 + 𝑣

)
𝑢, �̇� = −2

( 𝑣

1 + 𝑣

)
(𝑣 − 𝑣∞), 𝑣∞ =

1 − 𝜆

𝜆
. (46)

We leave the details to the reader. ■

5.2 Proof of the preliminary bounds

Proof of Lemma 5. Recall notation (43), and let 𝜃 denote the unique global minimizer of 𝑉𝛽(𝜃).
The function 𝑔 defined by

𝑔(𝜃) = 𝑓(𝜃) −

(
𝑓(𝜃) + ∇𝑓(𝜃)𝖳(𝜃 − 𝜃) +

1

2
|𝜃 − 𝜃|2

𝐿−1

)
is such that 𝑔(𝜃) = ∇𝑔(𝜃) = 0 and D2 𝑔(𝜃) ≽ 0 for all 𝜃 ∈ 𝐑𝑑, by the convexity assumption on the
function 𝑓. We denote

𝑉𝛽(𝜃) ∶=
1

2
|𝜃|2 + 𝛽𝑔(𝜃) , 𝑔(𝜃) ∶= 𝑔

(
𝜃 +

(
𝐶−1 + 𝛽𝐿

)−1∕2
𝜃
)
,
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and define 𝜌𝛽(𝜃) =
1

𝑍𝛽
e−𝑉𝛽(𝜃) where 𝑍𝛽 is the normalization constant. By a change of variables,

it holds

𝐶𝛽(𝐦,𝐶) = (𝜌𝛽) = (
𝐶−1 + 𝛽𝐿

)−1∕2(𝜌𝛽)(𝐶−1 + 𝛽𝐿
)−1∕2

,

It remains to show (𝜌𝛽) ≼ 𝐼𝑑 or, equivalently, that for every unit vector 𝐚 ∈ 𝐑𝑑 it holds

𝐚T(�̃�𝛽)𝐚 = ∫
𝐑𝑑

|||||𝐚T𝜃 − ∫
𝐑𝑑

(𝐚T𝜃) �̃�𝛽(𝜃)d𝜃
|||||
2

�̃�𝛽(𝜃) d𝜃 ⩽ 1, (47)

Clearly 𝑔(0) = ∇𝑔(0) = 0 and D2 𝑔 ≽ 0, so D2 𝑉𝛽 ≽ 𝐼𝑑. Therefore, by the Bakry–Emery crite-
rion Ref. [65, Theorem 2.10], the probability distribution d𝜇(𝜃) ∶= 𝜌𝛽(𝜃)d𝜃 satisfies a logarith-
mic Sobolev inequality, and thus also a Poincaré inequality by Ref. [65, Proposition 2.12], with the
factor on the right equal to 1. That is, it holds

∀𝑢 ∈ 𝐻1(𝜇), ∫
𝐑𝑑

|||||𝑢 − ∫
𝐑𝑑

𝑢 d𝜇
|||||
2

d𝜇 ⩽ ∫
𝐑𝑑

|∇𝑢|2d𝜇.
Applying this inequality with 𝑢(𝜃) = 𝐚𝖳𝜃 gives (47). ■

Proof of Lemma 6. Let 𝜃 denote again the unique global minimizer of 𝑉𝛽(𝜃), where 𝑉𝛽 is given in
(43). The function 𝑔 defined by

𝑔(𝜃) = 𝑓(𝜃) −

(
𝑓(𝜃) + ∇𝑓(𝜃)𝖳(𝜃 − 𝜃) +

1

2
|𝜃 − 𝜃|2

𝑈−1

)
is such that 𝑔(𝜃) = ∇𝑔(𝜃) = 0 and D2 𝑔(𝜃) ≼ 0 for all 𝜃 ∈ 𝐑𝑑, by assumption 2. By a change of
variables, it holds

𝐶𝛽(𝐦,𝐶) = (𝜌𝛽) = (
𝐶−1 + 𝛽𝑈

)−1∕2(𝜌𝛽)(𝐶−1 + 𝛽𝑈
)−1∕2

,

where 𝜌𝛽(𝜃) =
1

𝑍𝛽
e−𝑉𝛽(𝜃), with 𝑍𝛽 the normalization constant and

𝑉𝛽(𝜃) ∶=
1

2
|𝜃|2 + 𝛽𝑔(𝜃) , 𝑔(𝜃) ∶= 𝑔

(
𝜃 +

(
𝐶−1 + 𝛽𝑈

)−1∕2
𝜃
)
.

It remains to show that (𝜌𝛽) ≽ 𝐼𝑑. To this end, let �̄� = (𝜌𝛽) for brevity and, for a given unit
vector 𝐚 ∈ 𝐑𝑑, let 𝜕𝐚 = 𝐚𝖳∇ and so 𝜕𝐚𝜌𝛽 = −(𝜕𝐚𝑉𝛽)𝜌𝛽 . By the Cauchy–Schwarz inequality,

∫
𝐑𝑑

𝜕𝐚𝑉𝛽(𝜃) 𝐚
𝖳(𝜃 − �̄�) 𝜌𝛽(𝜃) d𝜃 ⩽

√
∫
𝐑𝑑

|𝜕𝐚𝑉𝛽(𝜃)|2𝜌𝛽(𝜃) d𝜃
√

∫
𝐑𝑑

|𝐚𝖳(𝜃 − �̄�)|2𝜌𝛽(𝜃) d𝜃.
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After rearranging and using integration by parts, this gives

𝐚𝖳(𝜌𝛽)𝐚 ⩾
(∫

𝐑𝑑 𝜕𝐚𝑉𝛽(𝜃) 𝐚
𝖳(𝜃 − �̄�) 𝜌𝛽(𝜃) d𝜃

)2
∫
𝐑𝑑 |𝜕𝐚𝑉𝛽(𝜃)|2𝜌𝛽(𝜃) d𝜃

=

(∫
𝐑𝑑 𝐚

𝖳(𝜃 − �̄�) 𝜕𝐚𝜌𝛽(𝜃) d𝜃
)2

− ∫
𝐑𝑑 𝜕𝐚𝑉𝛽(𝜃)𝜕𝐚𝜌𝛽(𝜃) d𝜃

=
1

∫
𝐑𝑑 𝜕

2
𝐚𝑉𝛽(𝜃)𝜌𝛽(𝜃) d𝜃

,

where we denote 𝜕2𝐚ℎ(𝜃) = 𝐚𝑇𝐷2ℎ(𝜃)𝐚. Because D2 𝑉𝛽 ≼ 𝐼𝑑 because D
2 𝑔 ≼ 0, it follows immedi-

ately that (𝜌𝛽) ≽ 𝐼𝑑. ■

Proof of Lemma 7. Let 𝜃 denote again the unique global minimizer of𝑉𝛽(𝜃) given by (43). We first
show a bound on 𝜃 − 𝜃∗. By the assumptions on 𝑓, it holds

𝑉𝛽(𝜃) ⩾
1

2
|𝜃 − 𝑚|2

𝐶
+
𝓁𝛽

2
|𝜃 − 𝜃∗|2 + 𝛽𝑓(𝜃∗) ⩾

𝓁𝛽

2
|𝜃 − 𝜃∗|2 + 𝛽𝑓(𝜃∗).

Likewise, it holds 𝑉𝛽(𝜃∗) ⩽
1

2
‖𝐶−1‖|𝜃∗ − 𝑚|2 + 𝛽𝑓(𝜃∗), so we obtain

𝑉𝛽(𝜃) − 𝑉𝛽(𝜃∗) ≥ 𝓁𝛽

2
|𝜃 − 𝜃∗|2 − 1

2
‖𝐶−1‖|𝜃∗ − 𝑚|2.

In particular, for any 𝜃 such that

|𝜃 − 𝜃∗| > (‖𝐶−1‖
𝓁𝛽

)1∕2|𝜃∗ − 𝑚| =∶ 𝑅,
it holds 𝑉𝛽(𝜃) − 𝑉𝛽(𝜃∗) > 0, implying that |𝜃 − 𝜃∗| ⩽ 𝑅. Now,

|𝐦𝛽(𝐦,𝐶) − �̃�| = |(𝜌𝛽) − �̃�| = |||∫𝐑(𝜃 − �̃�)𝜌𝛽(𝜃) d𝜃
|||

⩽

√
∫
𝐑𝑑

|𝜃 − �̃�|2 𝜌𝛽(𝜃) d𝜃 =
√√√√√∫

𝐑𝑑 |𝜃 − �̃�|2 e−𝑉𝛽(𝜃) d𝜃
∫
𝐑𝑑 e

−𝑉𝛽(𝜃) d𝜃
. (48)

Because 𝑉𝛽(𝜃) is minimized at 𝜃 = 𝜃, it holds

𝑉𝛽(�̃�) +
1

2
|𝜃 − �̃�|2

(𝐶−1+𝛽𝐿)−1
⩽ 𝑉𝛽(𝜃) ⩽ 𝑉𝛽(�̃�) +

1

2
|𝜃 − �̃�|2

(𝐶−1+𝛽𝑈)−1
.

Using these inequalities, we can obtain an upper bound for the numerator in (48) and a lower
bound for the denominator in (48), respectively:

∫
𝐑𝑑

|𝜃 − �̃�|2 e−𝑉𝛽(𝜃) d𝜃 ⩽ e−𝑉𝛽(�̃�) tr
((
𝐶−1 + 𝛽𝐿

)−1)
det

(
𝐶−1 + 𝛽𝐿

)−1∕2
(2𝜋)𝑑∕2
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∫
𝐑𝑑

e−𝑉𝛽(𝜃) d𝜃 ≥ e−𝑉𝛽(�̃�) det
(
𝐶−1 + 𝛽𝑈

)−1∕2
(2𝜋)𝑑∕2.

Combining these inequalities, writing the determinant as a product of eigenvalues, and using the
inequality 1+𝑥

1+𝑦
⩽

𝑥

𝑦
for all 0 < 𝑦 ⩽ 𝑥, we deduce

|||𝐦𝛽(𝐦,𝐶) − �̃�
||| ⩽

√
tr
(
(𝐶−1 + 𝛽𝐿)

−1
)det (𝐶−1 + 𝛽𝑈

)1∕4
det (𝐶−1 + 𝛽𝐿)

1∕4

⩽
√
𝑑‖(𝐶−1 + 𝛽𝐿)−1‖det (𝐶−1 + 𝛽𝑢𝐼𝑑

)1∕4
det (𝐶−1 + 𝛽𝓁𝐼𝑑)

1∕4
⩽

√
𝑑‖(𝐶−1 + 𝛽𝐿)−1‖(𝑢

𝓁

)𝑑∕4
.

The statement then follows from the triangle inequality,

|𝐦𝛽(𝐦,𝐶) − 𝜃∗| ⩽ |𝜃∗ − �̃�| + |𝐦𝛽(𝐦,𝐶) − �̃�|,
and from the fact that ‖(𝐶−1 + 𝛽𝐿)−1‖ ⩽ ‖(𝐶−1 + 𝛽𝓁𝐼𝑑)

−1‖ ⩽ (‖𝐶‖−1 + 𝛽𝓁)−1. ■

5.3 Proof of Proposition 4 and Theorem 1

Proof of Proposition 4. Let 𝑥 = 𝛼2 for simplicity. It holds by (10b) and Lemma 5 that

𝐶𝑛+1 ≼ 𝑥𝐶𝑛 + (1 − 𝑥)(𝐶−1𝑛 + 𝛽𝐿)−1.

Therefore, introducing �̄�𝑛 = 𝛽𝐿1∕2𝐶𝑛𝐿
1∕2, it holds

�̄�𝑛+1 ≼ 𝑥�̄�𝑛 + (1 − 𝑥)(�̄�−1𝑛 + 𝐼𝑑)
−1.

Let �̄�𝑛 denote the solution to the discrete-time equation

�̄�𝑛+1 = 𝑥�̄�𝑛 + (1 − 𝑥)(�̄�−1
𝑛 + 𝐼𝑑)

−1, �̄�0 = �̄�0.

It is clear that �̄�𝑛 ≼ �̄�𝑛 for all 𝑛 ⩾ 0. Indeed, this is true for 𝑛 = 0, and if �̄�𝑛 ≼ �̄�𝑛 then

�̄�𝑛+1 − �̄�𝑛+1 ≽ 𝑥(�̄�𝑛 − �̄�𝑛) + (1 − 𝑥)
(
(�̄�−1

𝑛 + 𝐼𝑑)
−1 − (�̄�−1𝑛 + 𝐼𝑑)

−1
)

≽ (1 − 𝑥)
(
(�̄�−1

𝑛 + 𝐼𝑑)
−1 − (�̄�−1𝑛 + 𝐼𝑑)

−1
)
.

By Ref. [71, Proposition V.1.6], the function𝐑 ∋ 𝑠 ↦ −1∕𝑠 is operator monotone on (0,∞), mean-
ing that if two symmetric positive definite matrices 𝑀1 and 𝑀2 are such that 𝑀1 ≽ 𝑀2, then it
holds that𝑀−1

1 ≼ 𝑀−1
2 . Therefore

�̄�𝑛 ≼ �̄�𝑛 ⇒ �̄�−1𝑛 ≽ �̄�−1
𝑛 ⇒ �̄�−1𝑛 + 𝐼𝑑 ≽ �̄�−1

𝑛 + 𝐼𝑑 ⇒ (�̄�−1𝑛 + 𝐼𝑑)
−1 ≼ (�̄�−1

𝑛 + 𝐼𝑑)
−1,
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which shows that �̄�𝑛+1 − �̄�𝑛+1 ≽ 0. Now note that �̄�𝑛 satisfies the same equation as 𝐶𝑛 in (25b),
so we deduce by a reasoning similar to the proof of Proposition 2 that �̄�𝑛 satisfies

�̄�𝑛 ≼

( ‖�̄�−10 ‖ + 1‖�̄�−10 ‖ + 1 + (1 − 𝑥)𝑛

)
�̄�0,

which implies the statement for the discrete-time case 𝛼 ∈ (0, 1). If 𝛼 = 0, then it follows from
Proposition 1 that

�̄�𝑛 ≼

( ‖�̄�−10 ‖‖�̄�−10 ‖ + 𝑛

)
�̄�0.

Similarly in the continuous-time case, let �̄�(𝑡) = 𝛽𝐿1∕2𝐶(𝑡)𝐿1∕2 and let �̄�(𝑡) denote the solution
to the equation

d

d𝑡
�̄�(𝑡) = −2�̄�(𝑡) + 2

(
�̄�(𝑡)−1 + 𝐼𝑑

)−1
, �̄�(0) = �̄�(0).

We have by (22b) and Lemma 5 that

d

d𝑡
�̄�(𝑡) ≼ −2�̄�(𝑡) + 2

(
�̄�(𝑡)−1 + 𝐼𝑑

)−1
.

Using the same reasoning as in the discrete-time case, we derive that

d

d𝑡

(
�̄�(𝑡) − �̄�(𝑡)

)
≽ −2

(
�̄�(𝑡) − �̄�(𝑡)

)
⇔

d

d𝑡

(
e2𝑡

(
�̄�(𝑡) − �̄�(𝑡)

))
≽ 0,

and so �̄�(𝑡) ≼ �̄�(𝑡) for all 𝑡 ⩾ 0. Employing a reasoning similar to that in Proposition 3, we obtain
the statement. ■

We show a similar result establishing a lower bound on 𝐶𝑛.

Lemma8 (Lower bound on the covariance in optimizationmode). Let𝜆 = 1,𝛽 > 0and𝛼 ∈ [0, 1),
and assume that Assumption 2 holds. Then, for any solution {(𝑚𝑛, 𝐶𝑛)}𝑛∈𝐍 to Equations (23a) and
(23b) with 𝐶0 ∈ 𝑑

++, it holds that

𝐶𝑛 ≽
(
𝐶−10 + 𝑛(1 − 𝛼2)𝛽𝑈

)−1
. (49)

Likewise, for any solution
{
(𝑚(𝑡), 𝐶(𝑡))

}
𝑡∈𝐑⩾0

to Equations (24a) and (24b) with 𝐶(0) ∈ 𝑑
++, the

following inequality holds:

𝐶(𝑡) ≽
(
𝐶(0)−1 + 2𝑡𝛽𝑈

)−1
. (50)

Proof. Let us now use the notation 𝐶𝑛 = 𝛽𝑈1∕2𝐶𝑛𝑈
1∕2. It holds by Lemma 6 that

𝐶𝑛+1 ≽ 𝑥𝐶𝑛 + (1 − 𝑥)(𝐶−1𝑛 + 𝐼𝑑)
−1.
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Defining 𝑃𝑛 = 𝐶−1𝑛 for 𝑛 ∈ {0, 1, … } we have

𝑃𝑛+1 ≼ (𝑥𝐼𝑑 + 𝑃𝑛)
−1(𝐼𝑑 + 𝑃𝑛)𝑃𝑛 = 𝑃𝑛 + (1 − 𝑥)(𝐼𝑑 + 𝑥𝑃−1𝑛 )−1 ≼ 𝑃𝑛 + (1 − 𝑥)𝐼𝑑,

so we deduce (49). For the continuous-time case, we employ the notation 𝐶(𝑡) = 𝛽𝑈1∕2𝐶(𝑡)𝑈1∕2

and 𝑃(𝑡) = 𝐶(𝑡)−1. By (24b) and Lemma 6, we have that

d

d𝑡
𝐶(𝑡) ≽ −2𝐶(𝑡) + 2(𝐶(𝑡)−1 + 𝐼𝑑)

−1

= −2(𝐶(𝑡)−1 + 𝐼𝑑)
−1

[
(𝐶(𝑡)−1 + 𝐼𝑑)𝐶(𝑡) − 𝐼𝑑

]
= −2𝐶(𝑡)

(
𝐶(𝑡) + 𝐼𝑑

)−1
𝐶(𝑡) .

Hence,

d

d𝑡
𝑃(𝑡) = −𝐶(𝑡)−1

d

d𝑡
𝐶(𝑡)𝐶(𝑡)−1 ≼ 2

(
𝐼𝑑 + 𝐶(𝑡)

)−1
≼ 2𝐼𝑑,

leading to the statement. ■

Remark 8. A simple corollary of Proposition 4 and Lemma 8 is that the condition number

cond(𝐶𝑛) = ‖𝐶𝑛‖‖𝐶−1𝑛 ‖
of 𝐶𝑛 remains bounded as 𝑛 → ∞, and similarly in continuous time.

To prove Theorem 1, we first show the following auxiliary result.

Lemma 9. Let 𝛽 > 0 and suppose 𝑓 satisfies Assumptions 1 and 2. Then there exists a constant
𝐾 = 𝐾(𝛽, 𝑑, 𝓁, 𝑢) > 0 such that the following inequality holds

|𝐦𝛽(𝐦,𝐶) −𝐦 + 𝛽𝐶∇𝑓(𝐦)| ⩽ e𝛽𝑓(𝐦) 𝐾𝛽|𝐶∇𝑓(𝐦)| ‖𝐶‖ + 𝐾‖𝐶‖3∕2
1 − 𝐾e𝛽𝑓(𝐦)‖𝐶‖ ,

for all (𝐦,𝐶) ∈ 𝐑𝑑 × 𝑑
++ such that the denominator is positive.

Proof. By Taylor’s theorem, there exists for all (𝜃,𝐦) ∈ 𝐑𝑑 × 𝐑𝑑 a point 𝜉 = 𝜉(𝜃,𝐦) ∈ 𝐑𝑑 on the
straight segment between 𝜃 and𝐦 such that

e−𝛽𝑓(𝜃) = e−𝛽𝑓(𝐦) − e−𝛽𝑓(𝐦) 𝛽∇𝑓(𝐦) ⋅ (𝜃 −𝐦)

+
1

2
e−𝛽𝑓(𝜉)

(
𝛽2(∇𝑓(𝜉) ⊗ ∇𝑓(𝜉)) − 𝛽 D2 𝑓(𝜉)

)
∶
(
(𝜃 −𝐦) ⊗ (𝜃 −𝐦)

)
=∶ e−𝛽𝑓(𝐦) − e−𝛽𝑓(𝐦) 𝛽∇𝑓(𝐦) ⋅ (𝜃 −𝐦) + 𝑅(𝜃;𝐦).
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By Assumptions 1 and 2, it is clear that

1

2
sup
𝜉∈𝐑𝑑

(
e−𝛽𝑓(𝜉)

(
𝛽2|∇𝑓(𝜉)|2 + 𝛽‖D2𝑓(𝜉)‖F)) < ∞,

where ‖∙‖F denotes the Frobenius norm. Consequently, there exists a constantM such that

∀(𝜃,𝐦) ∈ 𝐑𝑑 × 𝐑𝑑, |𝑅(𝜃;𝐦)| ⩽ 𝑀|𝜃 −𝐦|2. (51)

We therefore deduce

∫
𝐑𝑑

𝑔(𝜃;𝐦, 𝐶) e−𝛽𝑓(𝜃) d𝜃 = e−𝛽𝑓(𝐦) +𝑅0(𝐦, 𝐶), (52a)

∫
𝐑𝑑

(𝜃 −𝐦) 𝑔(𝜃;𝐦, 𝐶) e−𝛽𝑓(𝜃) d𝜃 = −e−𝛽𝑓(𝐦) 𝛽𝐶∇𝑓(𝐦) + 𝑅1(𝐦,𝐶), (52b)

with remainder terms satisfying the bounds

∀(𝐦,𝐶) ∈ 𝐑𝑑 × 𝑑
++,

⎧⎪⎨⎪⎩
|𝑅0(𝐦,𝐶)| ⩽ 𝐾‖𝐶‖,
|𝑅1(𝐦,𝐶)| ⩽ 𝐾‖𝐶‖3∕2. (53)

The second bound holds because, by (51) and a change of variable, we have

|𝑅1(𝐦,𝐶)| ⩽ 𝑀 ∫
𝐑𝑑

|𝜃 −𝐦|3 𝑔(𝜃;𝐦, 𝐶) d𝜃

= 𝑀 ∫
𝐑𝑑

|𝐶1∕2𝑢|3 𝑔(𝑢; 𝟎, 𝐼𝑑) d𝑢 ⩽ 𝑀‖𝐶3∕2‖∫
𝐑𝑑

|𝑢|3𝑔(𝑢; 𝟎, 𝐼𝑑) d𝑢.
Using eqns. (52a, 52b), we obtain

𝐦𝛽(𝐦,𝐶) −𝐦 =
−e−𝛽𝑓(𝐦) 𝛽𝐶∇𝑓(𝐦) + 𝑅1(𝐦,𝐶)

e−𝛽𝑓(𝐦) +𝑅0(𝐦, 𝐶)
.

In view of (53), it therefore holds

|𝐦𝛽(𝐦,𝐶) −𝐦 + 𝛽𝐶∇𝑓(𝐦)| = |||||𝛽𝐶∇𝑓(𝐦)𝑅0(𝐦, 𝐶) + 𝑅1(𝐦, 𝐶)

e−𝛽𝑓(𝐦) + 𝑅0(𝐦, 𝐶)

|||||
⩽ e𝛽𝑓(𝐦) 𝐾𝛽|𝐶∇𝑓(𝐦)| ‖𝐶‖ + 𝐾‖𝐶‖3∕2|1 + e𝛽𝑓(𝐦)𝑅0(𝐦, 𝐶)| .

Using the bound on 𝑅0(𝐦,𝐶) given in (53), we obtain the statement. ■

Proof of Theorem 1. For a contradiction, assume𝐦𝑛 → �̂� and �̂� ≠ 𝜃∗, where 𝜃∗ denotes the global
minimizer of 𝑓. Then, by the convexity assumption on 𝑓, it holds that |∇𝑓(𝜃)| > 0. By Proposition
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4, it holds 𝐶𝑛 → 0, and by Remark 8, the condition number of 𝐶𝑛 satisfies cond(𝐶𝑛) ⩽ 𝜅 for some
𝜅 > 0 and all 𝑛 ∈ {0, 1, … }. By continuity of∇𝑓 at �̂�, we have that for any 𝜀 > 0, there is 𝛿 = 𝛿(𝜀) >

0 such that

∀𝐦 ∈ 𝐵𝛿(�̂�), |∇𝑓(�̂�) − ∇𝑓(𝐦)| ⩽ 𝜀

𝜅
|∇𝑓(�̂�)|. (54)

Fix 0 < 𝜀 ≪ 1 and let 𝛿 = 𝛿(𝜀). From Lemma 9, there exists 𝐾 > 0 such that the inequality

|𝐦𝛽(𝐦,𝐶) −𝐦 + 𝛽𝐶∇𝑓(𝐦)| ⩽ 𝐾𝛽e𝛽𝑓(𝐦)|𝐶∇𝑓(𝐦)| ‖𝐶‖ + 𝐾e𝛽𝑓(𝐦)‖𝐶‖3∕2
1 − 𝐾e𝛽𝑓(𝐦)‖𝐶‖ (55)

is satisfied for all (𝐦, 𝐶) ∈ (𝐑𝑑 × 𝑑
++) such that the denominator is positive. We claim that there

exists 𝑐 > 0 such that the following inequalities are satisfied for all 𝐦 ∈ 𝐵𝛿(�̂�) and all matrices
0 < 𝐶 ⩽ 𝑐𝐼𝑑 such that cond(𝐶) ⩽ 𝜅:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

|||1 − 𝐾e𝛽𝑓(𝐦)‖𝐶‖||| ⩾ 1

2
,

𝐾𝛽 e𝛽𝑓(𝐦) ‖𝐶‖ ⩽ 𝜀

4
,

𝐾 e𝛽𝑓(𝐦) ‖𝐶‖3∕2 ⩽ 𝜀

4
|𝐶∇𝑓(𝐦)|.

(56)

Indeed, it suffices to choose

𝑐 = min
⎛⎜⎜⎝
𝐼

2𝐾
,
𝜀𝐼

4𝐾𝛽
,

(
𝜀𝐼

4𝐾𝜅
inf

𝐦∈𝐵𝛿(�̂�)
|∇𝑓(𝐦)|)2⎞⎟⎟⎠, where 𝐼 = inf

𝐦∈𝐵𝛿(�̂�)
e−𝛽𝑓(𝐦) .

Here the arguments of the minimum guarantee that each of the three inequalities in (56) are
satisfied, respectively. We note that inf𝐦∈𝐵𝛿(�̂�)

|∇𝑓(𝐦)| > 0 by (54) and the fact that 𝜀∕𝜅 < 1. To
justify that the third inequality in (56) is indeed satisfied for this choice of 𝑐, notice that

|𝐶∇𝑓(𝐦)| ≥ 𝜆min(𝐶)|∇𝑓(𝐦)| ≥ cond(𝐶)−1|∇𝑓(𝐦)| ‖𝐶‖.
Substituting the three inequalities in (56) into the estimate (55) from Lemma 9, we obtain that, for
all𝐦 ∈ 𝐵𝛿(�̂�) and all 0 < 𝐶 ⩽ 𝑐𝐼𝑑 such that cond(𝐶) ⩽ 𝜅, it holds

|𝐦𝛽(𝐦,𝐶) −𝐦+ 𝛽𝐶∇𝑓(𝐦)| ⩽ 𝜀|𝐶∇𝑓(𝐦)|. (57)

Now because (𝐦𝑛, 𝐶𝑛) → (�̂�, 0) as 𝑛 → ∞ by assumption, there exists 𝑁 sufficiently large such
that𝐦𝑛 ∈ 𝐵𝛿(�̂�) and 0 < 𝐶𝑛 ⩽ 𝑐𝐼𝑑 and cond(𝐶𝑛) ⩽ 𝜅 for all 𝑛 ⩾ 𝑁. By (10), we have that for any
𝑛 ⩾ 𝑁 it holds

𝐦𝑛+1 −𝐦𝑛 = (1 − 𝛼)
(
𝐦𝛽(𝐦𝑛, 𝐶𝑛) −𝐦𝑛

)
= −(1 − 𝛼)

(
𝛽𝐶𝑛∇𝑓(𝐦𝑛) + 𝐫(𝐦𝑛, 𝐶𝑛)

)
,
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where 𝐫(𝐦𝑛, 𝐶𝑛) is the remainder term, bounded by (57). Taking the inner product of both sides
with ∇𝑓(�̂�) and using (57), we deduce

−(𝐦𝑛+1 −𝐦𝑛)
T∇𝑓(𝜃) ≥ 𝛽(1 − 𝛼)

(
∇𝑓(𝜃)T𝐶𝑛∇𝑓(𝐦𝑛)

)
− 𝜀(1 − 𝛼)‖𝐶𝑛‖|∇𝑓(𝐦𝑛)||∇𝑓(𝜃)|.

For any (𝐱, 𝐲) ∈ 𝐑𝑑 × 𝐑𝑑 with |𝐱 − 𝐲| ⩽ 𝜁|𝐱|, it holds
𝐱𝖳𝐶𝑛𝐲 = 𝐱𝖳𝐶𝑛𝐱 − 𝐱𝖳𝐶𝑛(𝐱 − 𝐲)

⩾ 𝐱𝖳𝐶𝑛𝐱 −
√
𝐱𝖳𝐶𝑛𝐱𝖳

√
(𝐱 − 𝐲)

𝖳
𝐶𝑛(𝐱 − 𝐲) ⩾ 𝜆min(𝐶𝑛)|𝐱|2(1 − cond(𝐶𝑛) 𝜁).

Together with (54), this implies

∀𝑛 ≥ 𝑁, −(𝐦𝑛+1 −𝐦𝑛)
T∇𝑓(𝜃) ≥ 𝛽(1 − 𝛼)(1 − 𝜀)𝜆min(𝐶𝑛)|∇𝑓(𝜃)|2

− 𝜀
(
1 +

𝜀

𝜅

)
(1 − 𝛼)𝜆max(𝐶𝑛)|∇𝑓(𝜃)|2.

By repeating this reasoning with a smaller 𝜀 if necessary, we can ensure

∀𝑛 ≥ 𝑁, −(𝐦𝑛+1 −𝐦𝑛)
T∇𝑓(𝜃) ≥ 𝐾𝜆min(𝐶𝑛)|∇𝑓(𝜃)|2, (58)

with a constant 𝐾 independent of 𝑛. Because 𝜆min(𝐶𝑛) ⩾
𝜆

𝑛
by (49), for some other constant 𝜆

independent of 𝑛, we conclude that for any 𝑛 ⩾ 𝑁, it holds

−(𝐦𝑛+1 −𝐦𝑁)
𝖳∇𝑓(�̂�) ⩾

(
𝑛∑

𝑠=𝑁

1

𝑠

)
𝐾𝜆|∇𝑓(�̂�)|2 �����→

𝑛→∞
∞,

which is a contradiction because we assumed 𝐦𝑛 → �̂�. A similar reasoning applies in the
continuous-time setting. ■

5.4 Proof of Propositions 5 and 6

For simplicity, we introduce the “dimensionless” notation �̃� =
√
𝓁𝛽(𝑚 − 𝜃∗) and 𝐶 = 𝓁𝛽𝐶. We

also introduce

�̃�𝛽(�̃�, 𝐶) =
√
𝓁𝛽

(
𝑚𝛽

(
𝜃∗ +

�̃�√
𝓁𝛽

,
𝐶

𝓁𝛽

)
− 𝜃∗

)
=

√
𝓁𝛽

(
𝑚𝛽(𝑚, 𝐶) − 𝜃∗

)
,

𝐶𝛽(�̃�, 𝐶) = 𝓁𝛽 𝐶𝛽

(
𝜃∗ +

�̃�√
𝓁𝛽

,
𝐶

𝓁𝛽

)
= 𝓁𝛽 𝐶𝛽(𝑚, 𝐶) .

We begin by obtaining auxiliary results.
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Lemma 10 (Bound on the weighted mean). Let 𝑑 = 1 and 𝛽 > 0. If Assumption 1 is satisfied, then
it holds

∀(�̃�, 𝐶) ∈ 𝐑 × 𝐑>0, |�̃�𝛽(�̃�, 𝐶)| ⩽ |�̃�|
1 + 𝐶

⎛⎜⎜⎜⎜⎝
1 + 2

𝜙

( |�̃�|√
𝐶(1+𝐶)

)
|�̃�|√
𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎠
, (59)

with 𝜙 the probability density function of the standard normal distribution, i.e., 𝜙 = 𝑔(∙; 0, 1).

Proof. Let 𝜌+(𝜃) ∶=
1

𝑍+
1[𝜃∗,∞)(𝜃)𝜌𝛽(𝜃) and 𝜌−(𝜃) ∶=

1

𝑍−
1(−∞,𝜃∗)(𝜃)𝜌𝛽(𝜃), where 𝜌𝛽 is defined as

in (43) and 𝑍+, 𝑍− are the normalization constants. It is clear that

(𝜌−) ⩽ (𝜌𝛽) ⩽ (𝜌+) and (𝜌−) ⩽ 𝜃∗ ⩽ (𝜌+).

For example, we have

(𝜌+) − 𝜃∗ =
∫ ∞

𝜃∗
(𝜃 − 𝜃∗)𝜌𝛽(𝜃)

∫ ∞

𝜃∗
𝜌𝛽(𝜃)

⩾
∫ ∞

𝜃∗
(𝜃 − 𝜃∗)𝜌𝛽(𝜃)

∫ ∞

−∞
𝜌𝛽(𝜃)

⩾
∫ ∞

−∞
(𝜃 − 𝜃∗)𝜌𝛽(𝜃)

∫ ∞

−∞
𝜌𝛽(𝜃)

= (𝜌𝛽) − 𝜃∗.

Now notice that, because 𝑓(𝜃) = 𝑓(𝜃∗) +
𝓁

2
|𝜃 − 𝜃∗|2 + 𝑔(𝜃) for a function 𝑔 that is nondecreasing

on [𝜃∗,∞) and such that 𝑔(𝜃∗) = 𝑔′(𝜃∗) = 0, it holds by Lemma A.3 that

(𝜌+) − 𝜃∗ =
∫ ∞

𝜃∗
(𝜃 − 𝜃∗) exp

(
−
(𝜃−𝑚)2

2𝐶
− 𝛽𝑓(𝜃)

)
d𝜃

∫ ∞

𝜃∗
exp

(
−
(𝜃−𝑚)2

2𝐶
− 𝛽𝑓(𝜃)

)
d𝜃

⩽
∫ ∞

𝜃∗
(𝜃 − 𝜃∗) exp

(
−
(𝜃−𝑚)2

2𝐶
−

𝛽𝓁

2
|𝜃 − 𝜃∗|2)d𝜃

∫ ∞

𝜃∗
exp

(
−
(𝜃−𝑚)2

2𝐶
−

𝛽𝓁

2
|𝜃 − 𝜃∗|2)d𝜃 .

Completing the square in the last expression, we obtain

(𝜌+) − 𝜃∗ ⩽

∫
∞

𝜃∗

(𝜃 − 𝜃∗) exp

⎛⎜⎜⎜⎝−
1

2

(
1

𝐶
+ 𝛽𝓁

)⎛⎜⎜⎝𝜃 −
𝑚

𝐶
+ 𝓁𝛽𝜃∗

1

𝐶
+ 𝓁𝛽

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠d𝜃

∫
∞

𝜃∗

exp

⎛⎜⎜⎜⎝−
1

2

(
1

𝐶
+ 𝛽𝓁

)⎛⎜⎜⎝𝜃 −
𝑚

𝐶
+ 𝓁𝛽𝜃∗

1

𝐶
+ 𝓁𝛽

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠d𝜃

=∶ 𝐷(𝑚, 𝐶).

We claim that 𝐷(∙, 𝐶), is a nondecreasing function for fixed 𝐶. Indeed, let us introduce the
function 𝜇 ∶ (𝑚, 𝐶) ↦

𝑚∕𝐶+𝓁𝛽𝜃∗

1∕𝐶+𝓁𝛽
. Because 𝜇(𝑚, 𝐶) is an increasing function of𝑚 for fixed 𝐶, it is
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sufficient to show that the function

𝜇 ↦
∫

∞

𝜃∗

(𝜃 − 𝜃∗) exp

(
−
1

2

(
1

𝐶
+ 𝛽𝓁

)
(𝜃 − 𝜇)

2
)
d𝜃

∫
∞

𝜃∗

exp

(
−
1

2

(
1

𝐶
+ 𝛽𝓁

)
(𝜃 − 𝜇)

2
)
d𝜃

(60)

is nondecreasing for fixed 𝐶. To this end, assume that 𝜇1 ⩽ 𝜇2 and note that

exp

(
−
1

2

(
1

𝐶
+ 𝛽𝓁

)|𝜃 − 𝜇1|2)
∝ exp

(
−
1

2

(
1

𝐶
+ 𝛽𝓁

)|𝜃 − 𝜇2|2) exp

(
−

(
1

𝐶
+ 𝛽𝓁

)
(𝜇2 − 𝜇1)𝜃

)
.

Because the second factor is decreasing for 𝜃 ∈ [𝜃∗,∞), we deduce by Lemma A.3 that the func-
tion defined in (60) is nondecreasing, and therefore 𝐷(∙, 𝐶) is also nondecreasing.
Using the standard formula for the mean of a truncated normal distribution, we deduce

𝐷(𝑚,𝐶) = 𝜇(𝑚, 𝐶) − 𝜃∗ +

𝜙

(√
1

𝐶
+ 𝓁𝛽(𝜃∗ − 𝜇(𝑚, 𝐶))

)
1 − Φ

(√
1

𝐶
+ 𝓁𝛽(𝜃∗ − 𝜇(𝑚, 𝐶))

) 1√
1

𝐶
+ 𝓁𝛽

,

where Φ denotes the CDF of the standard normal distribution. Using the notation introduced at
the beginning of this section and the fact that Φ(𝑥) + Φ(−𝑥) = 1, this rewrites

√
𝓁𝛽𝐷(𝑚, 𝐶) =

1

1 + 𝐶

⎛⎜⎜⎜⎜⎝
�̃� +

𝜙

(
�̃�√

𝐶(1+𝐶)

)
Φ

(
�̃�√

𝐶(1+𝐶)

)√
𝐶(1 + 𝐶)

⎞⎟⎟⎟⎟⎠
=∶ �̃�(�̃�, 𝐶).

Because 𝐷(∙, 𝐶) is nondecreasing, we deduce that√
𝓁𝛽((𝜌+) − 𝜃∗) ⩽ �̃�(|�̃�|, 𝐶).

Employing the same reasoning for(𝜌−), we obtain similarly√
𝓁𝛽((𝜌−) − 𝜃∗) ⩾ −�̃�(|�̃�|, 𝐶).

Using the fact that Φ(𝑥) ⩾ Φ(0) = 1∕2 for all 𝑥 ⩾ 0, and√
𝓁𝛽((𝜌−) − 𝜃∗) ⩽ �̃�𝛽(�̃�, 𝐶) ⩽

√
𝓁𝛽((𝜌+) − 𝜃∗),

we obtain the statement. ■

To establish Proposition 6, we prove the following technical result.
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Lemma 11 (Bound on the ratio of weighted moments). Let 𝑑 = 1 and 𝛽 > 0. If Assumptions 1 and
2 are satisfied, then there exists for all 𝜀 ∈ (0, 1) a constant 𝛾 = 𝛾(𝓁, 𝑢, 𝜀) > 0 such that

∀(�̃�, 𝐶) ∈ 𝐑 × 𝐑>0,
|�̃�𝛽(�̃�, 𝐶)|
𝐶𝛽(�̃�, 𝐶)

1

𝑟

⩽ max

(
𝛾,

|�̃�|
𝐶

1

𝑟

)
,

where 𝑟 = max(
𝑢

𝓁
, (2 + 𝜀)).

Proof. Using Lemma 6 and Lemma 10, we deduce

|||||||
�̃�𝛽(�̃�, 𝐶)

𝐶𝛽(�̃�, 𝐶)
1

𝑟

||||||| ⩽
||||||||||||
�̃�𝛽(�̃�, 𝐶)(

𝐶

1+
𝑢

𝓁
𝐶

) 1

𝑟

||||||||||||
⩽

|�̃�|
𝐶

1

𝑟

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎜⎜⎝
1 + 2

𝜙

( |�̃�|√
𝐶(1+𝐶)

)
|�̃�|√
𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎠
=∶ 𝐵(�̃�, 𝐶). (61)

If |�̃�| ⩾ 𝛾𝐶1∕𝑟 for some 𝛾 > 0, then it holds that

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎜⎜⎝
1 + 2

𝜙

( |�̃�|√
𝐶(1+𝐶)

)
|�̃�|√
𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎠
⩽

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎜⎜⎜⎝
1 + 2

𝜙

(
𝛾𝐶

1
𝑟√

𝐶(1+𝐶)

)
𝛾𝐶

1
𝑟√

𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎟⎠
(62)

because 𝜙(𝑧)∕𝑧 is nonincreasing. We claim that, for 𝛾 sufficiently large, the right-hand side of
this inequality is bounded from above by 1 for all 𝐶 > 0. Checking this claim is technical but not
difficult, so we postpone the proof to Lemma A.4 in the Appendix. For such a value of 𝛾, it holds
by (61) that if |�̃�| ⩾ 𝛾𝐶1∕𝑟, then

|�̃�𝛽(�̃�, 𝐶)|
𝐶𝛽(�̃�, 𝐶)

1

𝑟

⩽
|�̃�|
𝐶

1

𝑟

.

On the other hand, because 𝐵(∙, 𝐶) (because the function 𝑥 ↦ 𝑥 + 2𝜙(𝑥) is increasing), it holds
that, if |�̃�| ⩽ 𝛾𝐶1∕𝑟, then 𝐵(|�̃�|, 𝐶) ⩽ 𝐵(𝛾𝐶1∕𝑟, 𝐶) ⩽ 𝛾 by Lemma A.4 again, which proves the
result. ■

Proof of Proposition 5. Let us first assume that 𝛼 = 0. Then, by (23), because the moments of
successive iterates are related by

�̃�𝑛+1 = �̃�𝛽(�̃�𝑛, 𝐶𝑛) and 𝐶𝑛+1 = 𝐶𝛽(�̃�𝑛, 𝐶𝑛)



1116 CARRILLO et al.

for this value of 𝛼, it holds by Lemma 11 that

|�̃�𝑛+1|
𝐶
1∕𝑟
𝑛+1

⩽ max

(
𝛾,

|�̃�𝑛|
𝐶
1∕𝑟
𝑛

)
⩽ … ⩽ max

⎛⎜⎜⎝𝛾,
|�̃�0|
𝐶
1∕𝑟
0

⎞⎟⎟⎠, (63)

which gives directly the convergence of �̃�𝑛 to 0, in view of the fact that 𝐶𝑛 → 0 by Proposition 4.
In the case where 𝛼 ∈ (0, 1), the moments of successive iterates are related by the equations

�̃�𝑛+1 = (1 − 𝛼)�̃�𝛽(�̃�𝑛, 𝐶𝑛) + 𝛼�̃�𝑛,

𝐶𝑛+1 = (1 − 𝛼2)𝐶𝛽(�̃�𝑛, 𝐶𝑛) + 𝛼2𝐶𝑛,

so clearly

|�̃�𝑛+1| ⩽ (1 − 𝛼)|�̃�𝛽(�̃�𝑛, 𝐶𝑛)| + 𝛼|�̃�𝑛|
⩽ (1 − 𝛼)|�̃�𝛽(�̃�𝑛, 𝐶𝑛)| + 𝛼max

(|�̃�𝑛|, 𝛾𝐶1∕𝑟𝑛

)
=∶ �̂�𝑛+1.

We will now use the technical Lemma A.5 in the Appendix with parameters

(𝐶𝛽, 𝐶𝑛, �̂�𝛽, 𝑢) =
(
𝐶𝛽(�̃�𝑛, 𝐶𝑛), 𝐶𝑛, |�̃�𝛽(�̃�𝑛, 𝐶𝑛)|, max (|�̃�𝑛|, 𝛾𝐶1∕𝑟𝑛

))
.

Using Lemma 11, we check that the assumptions of Lemma A.5 are satisfied:

�̂�𝛽

𝐶
1∕𝑟

𝛽

=
|�̃�𝛽(�̃�𝑛, 𝐶𝑛)|

𝐶
1∕𝑟

𝛽

⩽ max

(
𝛾,

|�̃�𝑛|
𝐶
1∕𝑟
𝑛

)
=

𝑢

𝐶
1∕𝑟
𝑛

,

so we deduce that, for 𝑞 = 2𝑟,

|�̃�𝑛+1|
𝐶
1∕𝑞
𝑛+1

⩽
�̂�𝑛+1

𝐶
1∕𝑞
𝑛+1

⩽
𝑢

𝐶
1∕𝑞
𝑛

=
max

(|�̃�𝑛|, 𝛾𝐶1∕𝑟𝑛

)
𝐶
1∕𝑞
𝑛

= max

(|�̃�𝑛|
𝐶
1∕𝑞
𝑛

, 𝛾𝐶
1∕𝑟−1∕𝑞
𝑛

)
.

Because 𝐶𝑛 ⩽ 𝐶0 by Proposition 4, this implies

|�̃�𝑛+1|
𝐶
1∕𝑞
𝑛+1

⩽ max

(|�̃�𝑛|
𝐶
1∕𝑞
𝑛

, 𝛾𝐶
1∕𝑟−1∕𝑞
0

)
⩽ … ⩽ max

⎛⎜⎜⎝
|�̃�0|
𝐶
1∕𝑞
0

, 𝛾𝐶
1∕𝑟−1∕𝑞
0

⎞⎟⎟⎠,
implying the convergence of �̃�𝑛 → 0 with rate 𝑛−1∕𝑞.
A similar reasoning can be employed to show the convergence in continuous time ; the details

are omitted for conciseness. ■

Proof of Proposition 6. Let us now obtain a convergence rate in the case where 𝛼 = 0. To this
end, the main idea is to express that, close to equilibrium, i.e., when 𝐶𝑛 ≪ 1 and |𝑚𝑛 − 𝜃∗| ≪ 1,
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the algorithm behaves similarly to how it would in a quadratic potential. Employing the same
reasoning as in the derivation of (52a) and (52b), now using Taylor’s theorem up to higher orders,
we deduce

∫
𝐑

𝑔(𝜃;𝑚, 𝐶) e−𝛽𝑓(𝜃) d𝜃 = e−𝛽𝑓(𝑚)
(
1 +

(
𝛽2|𝑓′(𝑚)|2 − 𝛽𝑓′′(𝑚)

)𝐶
2

)
+ 𝑅0(𝑚, 𝐶), (64a)

∫
𝐑
(𝜃 − 𝑚) 𝑔(𝜃;𝑚, 𝐶) e−𝛽𝑓(𝜃) d𝜃 = −e−𝛽𝑓(𝑚) 𝛽𝐶𝑓′(𝑚) + 𝑅1(𝑚, 𝐶),

∫
𝐑
(𝜃 − 𝑚)2 𝑔(𝜃;𝑚, 𝐶) e−𝛽𝑓(𝜃) d𝜃 = e−𝛽𝑓(𝑚) 𝐶

(
1 +

(
𝛽2|𝑓′(𝑚)|2 − 𝛽𝑓′′(𝑚)

)3𝐶
2

)
(64b)

+𝑅2(𝑚, 𝐶),

with remainder terms (different from the ones in the proof of Theorem 1) satisfying

∀𝑚 ∈ (𝜃∗ − 1, 𝜃∗ + 1), ∀0 < 𝐶 ⩽ 1,

⎧⎪⎨⎪⎩
|𝑅0(𝑚, 𝐶)| ⩽ 𝐾|𝐶|2,|𝑅1(𝑚, 𝐶)| ⩽ 𝐾|𝐶|2,|𝑅2(𝑚, 𝐶)| ⩽ 𝐾|𝐶|3,

for an appropriate constant 𝐾. We claim that

𝑚𝛽(𝑚, 𝐶) − 𝜃∗ =
(
𝐶−1 + 𝛽𝑓′′(𝑚)

)−1
𝐶−1(𝑚 − 𝜃∗) + 𝑅𝑚(𝑚, 𝐶) (65a)

𝐶𝛽(𝑚, 𝐶) =
(
𝐶−1 + 𝛽𝑓′′(𝑚)

)−1
+ 𝑅𝐶(𝑚, 𝐶), (65b)

with 𝑅𝑚 and 𝑅𝐶 satisfying

∀𝑚 ∈ (𝜃∗ − 𝑚, 𝜃∗ + 𝑚), ∀0 < 𝐶 < 𝐶

{|𝑅𝑚(𝑚, 𝐶)| ⩽ 𝐾
(
𝐶2 + 𝐶2|𝑚 − 𝜃∗| + 𝐶|𝑚 − 𝜃∗|2),|𝑅𝐶(𝑚, 𝐶)| ⩽ 𝐾|𝐶|3,

for a possibly different constant 𝐾 independent of 𝑚 and 𝐶 and appropriate positive constants
𝑚 and 𝐶. For completeness, let us present the details of the proof of (65a). To simplify the nota-
tion, we will write 𝑢(𝑚, 𝐶) = (𝑣(𝑚, 𝐶)) to mean that there exist constants 𝐾, �̃� and 𝐶 such that|𝑢(𝑚, 𝐶)| ⩽ 𝐾 𝑣(𝑚, 𝐶) for all 𝑚 ∈ (𝜃∗ − �̃�, 𝜃∗ + �̃�) and for all 0 < 𝐶 < 𝐶. It holds, by a Taylor
expansion of the function 𝑥 ↦ (1 + 𝑥)−1 around 𝑥 = 0,

(
𝐶−1 + 𝛽𝑓′′(𝑚)

)−1
𝐶−1(𝑚 − 𝜃∗) = 𝑚 − 𝜃∗ − 𝐶𝛽𝑓′′(𝑚)(𝑚 − 𝜃∗) + (𝐶2|𝑚 − 𝜃∗|)

= 𝑚 − 𝜃∗ − 𝐶𝛽𝑓′(𝑚) + (𝐶2|𝑚 − 𝜃∗| + 𝐶|𝑚 − 𝜃∗|2)
= 𝑚𝛽(𝑚, 𝐶) − 𝜃∗ + (𝐶2 + 𝐶2|𝑚 − 𝜃∗| + 𝐶|𝑚 − 𝜃∗|2).
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In the second line, we used that 𝑓′′(𝑚)(𝜃∗ − 𝑚) = 𝑓′(𝜃∗) − 𝑓′(𝑚) −
1

2
𝑓′′′(𝜉)|𝜃∗ − 𝑚|2 by Taylor’s

theorem, for some appropriate 𝜉. Moreover, the third line is a consequence of the estimate

|𝑚𝛽(𝑚, 𝐶) − 𝑚 + 𝐶𝛽𝑓′(𝑚)| = (𝐶2)
due to (64a) and (64b). Equation (65b) can be shown using a similar approach, so we will omit its
derivation. Combining (65a) and (65b), we deduce

𝐶𝛽(𝑚, 𝐶)
−1

(
𝑚𝛽(𝑚, 𝐶) − 𝜃∗

)
=

(
𝐶−1 + 𝛽𝑓′′(𝑚)

)−1
𝐶−1(𝑚 − 𝜃∗) + 𝑅𝑚(𝑚, 𝐶)

1

𝐶−1+𝛽𝑓′′(𝑚)
+ 𝑅𝐶(𝑚, 𝐶)

=
𝐶−1(𝑚 − 𝜃∗) +

(
𝐶−1 + 𝛽𝑓′′(𝑚)

)
𝑅𝑚(𝑚, 𝐶)

1 + (𝐶−1 + 𝛽𝑓′′(𝑚))𝑅𝐶(𝑚, 𝐶)

= 𝐶−1(𝑚 − 𝜃∗) + (𝐶 + 𝐶|𝑚 − 𝜃∗| + |𝑚 − 𝜃∗|2).
Now let (𝑚𝑛, 𝐶𝑛) denote the iterates of the optimization scheme. In view of the definition of the
notation, and because we already showed that 𝐶𝑛 ⩽ 𝐾𝑛−1 and |𝑚𝑛 − 𝜃∗| ⩽ 𝐾𝑛

−
1

𝑟 for some posi-
tive constant𝐾 and some 𝑟 > 2 due to (63), the previous equation implies that there exists another
constant 𝐾 and an index 𝑘 sufficiently large such that, for all 𝑛 ⩾ 𝑘,

|𝐶−1𝑛 (𝑚𝑛 − 𝜃∗) − 𝐶−1
𝑘
(𝑚𝑘 − 𝜃∗)| ⩽ 𝐾

𝑛−1∑
𝑖=𝑘

⎛⎜⎜⎜⎝𝐶𝑖 + 𝐶𝑖|𝑚𝑖 − 𝜃∗|
⏟⎴⎴⏟⎴⎴⏟
summable

+|𝑚𝑖 − 𝜃∗|2⎞⎟⎟⎟⎠. (66)

All the summands are bounded from above by the worst decay given by the last summand 𝑖−
2

𝑟 ,
up to a constant factor. Because

𝑛−1∑
𝑖=𝑘

𝑖
−
2

𝑟 ⩽ ∫
𝑛−1

𝑘−1

𝑥
−
2

𝑟 d𝑥 ⩽ 𝐾𝑛
1−

2

𝑟 , (67)

with 𝐾 a constant independent of 𝑛 changing from occurrence to occurrence, we deduce that the

right-hand side of (66) is controlled by 𝐾(1 + 𝑛
1−

2

𝑟 ). Therefore, using the fact that 𝐶𝑛 → 0 with
rate 1∕𝑛, we obtain

∀𝑛 ⩾ 𝑘, |𝑚𝑛 − 𝜃∗| ⩽ (
𝐾

𝑛

)
𝐶−1
𝑘
(𝑚𝑘 − 𝜃∗) + 𝐾

(
𝑛−1 + 𝑛

−
2

𝑟

)
.

We have thus upgraded the convergence rate to 𝑛−
2

𝑟 . This procedure can be repeated until only
the first term in the sum on the right-hand side of (66) is nonsummable, leading finally to the
estimate

|𝑚𝑛 − 𝜃∗| ⩽ 𝐾

(
log 𝑛

𝑛

)
,
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by a similar argument as in (67) applied to the decay 1∕𝑖. ■

5.5 Proof of Theorem 3

In this section, we analyze the mean-field dynamics eqns. (18, 16). We show, in the convex one-
dimensional case, the existence and uniqueness of a steady state close to the Laplace approxima-
tion of the Bayesian posterior at the MAP estimator. We begin by showing a version of Laplace’s
method, which is based on reducing all information about the objective function𝑓 into the unique
smooth and increasing function 𝜏 ∶ 𝐑 → 𝐑 satisfying

∀𝜃 ∈ 𝐑, 𝑓(𝜃∗ + 𝜏(𝜃)) = 𝑓(𝜃∗) + 𝜃2. (68)

with 𝜏(0) = 0. For details, see Lemma A.7.

Proposition 7 (Laplace’s method). Let 𝑑 = 1. Suppose Assumptions 1 and 4 hold, and assume
additionally that 𝜑 is a smooth function such that

∀𝑖 ∈ {0, … , 2𝑁 + 2}, ‖𝜑(𝑖)‖∞ ⩽ 𝑀𝜑 < ∞, (69)

for some𝑁 ∈ 𝐍 and some𝑀𝜑 ⩾ 0. Then, introducing the function 𝜓(𝜃) = 𝜑(𝜃∗ + 𝜏(𝜃)) 𝜏′(𝜃), where
𝜏 is the map provided by Lemma A.7, it holds

𝐼𝛽 ∶= ∫
𝐑

e−𝛽𝑓(𝜃) 𝜑(𝜃) d𝜃 = e−𝛽𝑓(𝜃∗)

(
𝑁∑
𝑛=0

𝜓2𝑛
Γ(𝑛 + 1∕2)

𝛽𝑛+1∕2
+ 𝑅𝛽

)
, 𝜓2𝑛 ∶=

𝜓(2𝑛)(0)

(2𝑛)!
,

and the remainder 𝑅𝛽 satisfies the bound

|𝑅𝛽| ⩽ 𝐾𝑀𝜑

(𝛽 − 𝛽0)𝑁+3∕2
,

for some constants 𝐾 = 𝐾(𝑓,𝑁) > 0 and 𝛽0 = 𝛽0(𝑓,𝑁) ⩾ 0.

Proof. Applying Lemma A.7, we can use the change of variable 𝜃 ↦ 𝜃∗ + 𝜏(𝜃) to obtain

∀𝜑 ∈ 𝐶∞(𝐑), ∫
𝐑

e−𝛽𝑓(𝜃) 𝜑(𝜃) d𝜃 = e−𝛽𝑓(𝜃∗) ∫
𝐑

e−𝛽𝜃
2
𝜑(𝜃∗ + 𝜏(𝜃)) 𝜏′(𝜃) d𝜃 =∶ e−𝛽𝑓(𝜃∗) �̃�𝛽.

By Faà di Bruno’s formula (generalized chain rule), we have

∀𝑛 ∈ 𝐍,
d𝑛

d𝜃𝑛
(
𝜑(𝜃∗ + 𝜏(𝜃)) 𝜏′(𝜃)

)
=

𝑛∑
𝑖=0

𝜑(𝑖)(𝜃∗ + 𝜏(𝜃)) 𝐵𝑛+1,𝑖+1
(
𝜏′(𝜃), … , 𝜏(𝑛−𝑖+1)(𝜃)

)
,
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where, for 𝑛 ∈ 𝐍, the functions {𝐵𝑛,𝑖}𝑖∈{0,… ,𝑛} are polynomials (more precisely, Bell polynomials)
of degree 0 to 𝑛. By Lemma A.7, there exists a constant 𝜆 = 𝜆(𝑓,𝑁) ⩾ 0 such that

∀𝑖 ∈ {0, … , 2𝑁 + 3}, ‖ e−𝜆𝜃2 𝜏(𝑖)(𝜃)‖∞ < ∞.

It is clear, therefore, that

∀𝑛 ∈ {0, … , 2𝑁 + 2}, ∀𝑖 ∈ {0, … , 𝑛},

‖e−(𝑖+1)𝜆𝜃2𝐵𝑛+1,𝑖+1 (𝜏′(𝜃), … , 𝜏(𝑛−𝑖+1)(𝜃)
) ‖∞ < ∞.

Combining this inequality with (69), we deduce that there exists 𝐾 = 𝐾(𝑓,𝑁) such that

∀𝑛 ∈ {0, … , 2𝑁 + 2}, ‖e−((2𝑁+3)𝜆)𝜃2 d𝑛
d𝜃𝑛

(
𝜑 (𝜃∗ + 𝜏(𝜃)) 𝜏′(𝜃)

) ‖∞ ⩽ 𝐾𝑀𝜑 < ∞.

It follows that, in particular, the assumptions of Lemma A.6 are satisfied for the function 𝜓(𝜃),
with the parameters𝑀 = 𝐾𝑀𝜑 and 𝛽0 = (2𝑁 + 3)𝜆. By Lemma A.6, it holds that

�̃�𝛽 =

𝑁∑
𝑛=0

𝜓2𝑛
Γ(𝑛 + 1∕2)

𝛽𝑛+1∕2
+ 𝑅𝛽, 𝜓2𝑛 ∶=

𝜓(2𝑛)(0)

(2𝑛)!
,

where the remainder 𝑅𝛽 satisfies the bound

|𝑅𝛽| ⩽ 𝑀

(2𝑁 + 2)!

Γ(𝑁 + 3∕2)

(𝛽 − 𝛽0)𝑁+3∕2
,

which concludes the proof. ■

To prove Theorem 3, let us now introduce the following map on 𝐑 × 𝐑>0:

Φ𝛽 ∶

(
𝑚

𝐶

)
↦

(
𝑚𝛽(𝑚, 𝐶)

𝜆−1 𝐶𝛽(𝑚, 𝐶)

)
, 𝜆 = (1 + 𝛽)−1. (70)

In view of Lemma 1, existence of a fixed point of Φ𝛽 implies the existence of a steady-state solu-
tion both for the iterative scheme (16) with any 𝛼 ∈ [0, 1) and for the nonlinear Fokker–Planck
equation eq. 18. To prove the existence of a fixed point ofΦ𝛽 wewill apply Laplace’smethod Propo-
sition 7, and therefore need to calculate the coefficients 𝜓2𝑛, which requires the calculation of the
derivatives of the smooth function 𝜏 at 0. This can be achieved by implicit differentiation of the
Equation (68). For example, differentiating twice, we obtain

𝜏′(0) = ±

√
2

𝑓′′(𝜃∗)
.
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Because, 𝜏 refers here to the unique increasing function such that (68) holds, only the positive
solution is retained. Differentiating (68) again we obtain

𝜏′′(0) = −
𝑓′′′(𝜃∗)

3𝑓′′(𝜃∗)
|𝜏′(0)|2.

The following result therefore implies the existence of steady state close to the Laplace approx-
imation of the target distribution both for the iterative scheme (16) with any 𝛼 ∈ [0, 1) and for the
nonlinear Fokker–Planck equation eq. 18.

Proposition 8 (Existence of a fixed point of Φ𝛽). Let 𝑑 = 1 and assume that Assumptions 1 and
4 hold. Then there exist 𝑘 = 𝑘(𝑓) and 𝛽 = 𝛽(𝑓) such that, for all 𝛽 ⩾ 𝛽, there exists a fixed point
(𝑚∞(𝛽), 𝐶∞(𝛽)) of Φ𝛽 satisfying

|𝑚∞(𝛽) − 𝜃∗|2 + |𝐶∞(𝛽) − 𝐶∗|2 ⩽ |||||𝑘𝛽
|||||
2

.

Proof. It is clear from the definitions of𝑚𝛽 and 𝐶𝛽 that the map Φ𝛽 is continuous. Our approach
to show the existence of a fixed point is to use Brouwer’s fixed point theorem. To this end, let us
define

𝜑𝑗(𝜃) = (𝜃 − 𝜃∗)
𝑗 𝑔(𝜃;𝑚, 𝐶), 𝑗 = 0, 1, … , 𝐽.

Introducing the function �̂� ∶ 𝐑 ∋ 𝑢 ↦ 𝑚 +
√
𝐶𝑢, and using the notation 𝑔(𝑢) ∶= 𝑔(𝑢; 0, 1) for

conciseness, we calculate

�̂�𝑗(𝑢) ∶= 𝜑𝑗

(
�̂�(𝑢)

)
=

1√
𝐶

(
𝑚 − 𝜃∗ +

√
𝐶𝑢

)𝑗
𝑔(𝑢; 0, 1)

= 𝐶
𝑗−1

2

(
𝑚 − 𝜃∗√

𝐶
+ 𝑢

)𝑗

𝑔(𝑢; 0, 1) = 𝐶
𝑗−1

2

𝑗∑
𝑘=0

(𝑗
𝑘

)(𝑚 − 𝜃∗√
𝐶

)𝑘

𝑢𝑗−𝑘𝑔(𝑢; 0, 1),

so we deduce

‖‖‖�̂�(𝑛)𝑗
‖‖‖∞⩽ 𝐾𝑗,𝑛 𝐶

𝑗−1

2

⎛⎜⎜⎝1 +
||||||
𝑚 − 𝜃∗√

𝐶

||||||
𝑗⎞⎟⎟⎠ = 𝐾𝑗,𝑛

(
𝐶

𝑗−1

2 + 𝐶
−
1

2 |𝑚 − 𝜃∗|𝑗),
for some constant𝐾𝑗,𝑛 independent of𝑚 and𝐶. Because𝜑(𝑛)

𝑗
(𝜃) = 𝐶−𝑛∕2�̂�

(𝑛)
𝑗

(
𝐶−1∕2(𝜃 − 𝑚)

)
, this

directly implies

‖‖‖𝜑(𝑛)𝑗
‖‖‖∞ ⩽ 𝐾𝑗,𝑛

(
𝐶

𝑗−𝑛−1

2 + 𝐶
−
𝑛+1

2 |𝑚 − 𝜃∗|𝑗). (71)
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Let us take any 𝑅 ∈ (0, 𝐶∗) and introduce the notation 𝑢(𝛽,𝑚, 𝐶) = 𝑅(𝑣(𝛽)) for any functions
𝑢(𝛽,𝑚, 𝐶) and 𝑣(𝛽) to mean that there exist constants 𝑐 and 𝛽 such that

∀(𝑚, 𝐶) ∈ 𝐵𝑅(𝜃∗, 𝐶∗), ∀𝛽 > 𝛽, |𝑢(𝛽,𝑚, 𝐶)| ⩽ 𝑐𝑣(𝛽),

where𝐵𝑅(𝜃∗, 𝐶∗) denotes the closed ball of radius𝑅 centered at (𝜃∗, 𝐶∗). Because𝑅 < 𝐶∗, it is clear
that, for all 𝑗 ∈ 𝐍 and 𝑁 ∈ 𝐍, the right-hand side of (71) is bounded from above by a constant
over 𝐵𝑅(𝜃∗, 𝐶∗), uniformly in𝑚, 𝐶 and 𝑛 ∈ {0, … , 2𝑁 + 2}. Thus, we can apply Laplace’s method,
Proposition 7. Letting 𝜓𝑗(𝜃) = 𝜑𝑗(𝜃∗ + 𝜏(𝜃))𝜏′(𝜃), we calculate

𝜓𝑗(0) = 𝜑𝑗(𝜃∗)𝜏
′(0) = 𝜑𝑗(𝜃∗)

√
2

𝑓′′(𝜃∗)
,

𝜓′′
𝑗
(0) = 𝜑′′

𝑗
(𝜃∗)𝜏

′(0)3 + 3𝜑′
𝑗
(𝜃∗) 𝜏

′′(0) 𝜏′(0) + 𝜑𝑗(𝜃∗) 𝜏
′′′(0).

Note that only the first term in the expression of 𝜓′′2 (0) is nonzero. Therefore, Laplace’s method
applied with 𝑁 = 0 or 𝑁 = 1 gives

e𝛽𝑓(𝜃∗) ∫
𝐑

e−𝛽𝑓 𝑔(𝜃;𝑚, 𝐶) d𝜃 = 𝑔(𝜃∗;𝑚, 𝐶) Γ(1∕2)
𝜏′(0)

𝛽1∕2
+ 𝑅

(
1

𝛽3∕2

)
, (73a)

e𝛽𝑓(𝜃∗) ∫
𝐑

(𝜃 − 𝜃∗) e
−𝛽𝑓 𝑔(𝜃;𝑚, 𝐶) d𝜃 = 𝑅

(
1

𝛽3∕2

)
, (73b)

e𝛽𝑓(𝜃∗) ∫
𝐑

(𝜃 − 𝜃∗)
2 e−𝛽𝑓 𝑔(𝜃;𝑚, 𝐶) d𝜃 = 𝑔(𝜃∗;𝑚, 𝐶) Γ(3∕2)

𝜏′(0)3

𝛽3∕2
+ 𝑅

(
1

𝛽5∕2

)
. (73c)

Further, 𝑔(𝜃∗;𝑚, 𝐶) is bounded above and below on 𝐵𝑅(𝜃∗, 𝐶∗) by positive constants. Hence,
Equation (73b) leads to

𝑚𝛽(𝑚, 𝐶) =
∫
𝐑
𝜃 e−𝛽𝑓(𝜃) 𝑔(𝜃;𝑚, 𝐶) d𝜃

∫
𝐑
e−𝛽𝑓(𝜃) 𝑔(𝜃;𝑚, 𝐶) d𝜃

= 𝜃∗ + 𝑅

(
𝛽−1

)
. (74)

For the covariance term, note that

𝐶𝛽(𝑚, 𝐶) =
∫
𝐑
(𝜃 − 𝜃∗)

2 e−𝛽𝑓(𝜃) 𝑔(𝜃;𝑚, 𝐶) d𝜃

∫
𝐑
e−𝛽𝑓(𝜃) 𝑔(𝜃;𝑚, 𝐶) d𝜃

−
(
𝑚𝛽(𝑚, 𝐶) − 𝜃∗

)2
,

which by (73c) and the equality Γ(1∕2) = 2Γ(3∕2), leads to

𝜆−1𝐶𝛽(𝑚, 𝐶) =
1 + 𝛽

𝛽

(
Γ(3∕2)

Γ(1∕2)
|𝜏′(0)|2 + 𝑅(𝛽

−1)

)
+ 𝑅(𝛽

−2) =
1

𝑓′′(𝜃∗)
+ 𝑅(𝛽

−1).
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Consequently, we deduce by definition of 𝑅 that there exist constants 𝛽† and 𝑘 such that

∀𝛽 > 𝛽†, sup
(𝑚,𝐶)∈𝐵𝑅(𝜃∗,𝐶∗)

|Φ𝛽(𝑚, 𝐶) − (𝜃∗, 𝐶∗)| ⩽ 𝑘

𝛽†
,

where |∙| for any 𝛽 ⩾ 𝛽†. If additionally 𝛽 ⩾ 𝑘∕𝑅, we have 𝐵𝑘∕𝛽(𝜃∗, 𝐶∗) ⊂ 𝐵𝑅(𝜃∗, 𝐶∗) and so

Φ𝛽

(
𝐵𝑘∕𝛽(𝜃∗, 𝐶∗)

)
⊂ Φ𝛽(𝐵𝑅(𝜃∗, 𝐶∗)) ⊂ 𝐵𝑘∕𝛽(𝜃∗, 𝐶∗).

Consequently, in this case Brouwer’s theorem implies the existence of a fixed point of Φ𝛽

in 𝐵𝑘∕𝛽(𝜃∗, 𝐶∗). This proves the statement with 𝛽 = max(𝛽†, 𝑘∕𝑅). ■

Next, we show that the map Φ𝛽 given in (70) is a contraction for sufficiently large 𝛽.

Proposition 9 (Φ𝛽 is a contraction). Under the same assumptions as in Proposition 8 and for any
𝑅 ∈ (0, 𝐶∗), there exists a constant 𝛽 = 𝛽(𝑓, 𝑅) and 𝑘 = 𝑘(𝑓, 𝑅) such that, for all 𝛽 ⩾ 𝛽, the mapΦ𝛽

is a contraction with constant 𝑘∕𝛽 for the Euclidean norm over the closed ball of radius 𝑅 centered
at (𝜃∗, 𝐶∗): for all (𝑚1, 𝐶1) and (𝑚2, 𝐶2) in 𝐵𝑅(𝜃∗, 𝐶∗), it holds that

|||Φ𝛽(𝑚1, 𝐶1) − Φ𝛽(𝑚2, 𝐶2)
||| ⩽ 𝑘

𝛽

|||||
(
𝑚2

𝐶2

)
−

(
𝑚1

𝐶1

)||||| .
Proof. We assume without loss of generality that 𝜃∗ = 0, which is justified because the method is
affine invariant, discussed in Section 2.3, and we recall that Φ𝛽 relates the moments of successive
iterates from (5) with 𝛼 = 0when this scheme is initialized at a Gaussian density. Let us introduce
the notation

𝐽𝛽(𝜑) = ∫
𝐑

𝜑(𝜃) exp

(
−
|𝜃 − 𝑚|2

2𝐶

)
e−𝛽𝑓(𝜃) d𝜃.

Using the fact that

𝑚𝛽(𝑚, 𝐶) =
𝐽𝛽(𝜃)

𝐽𝛽(1)
, 𝐶𝛽(𝑚, 𝐶) =

𝐽𝛽(𝜃
2)|𝐽𝛽(1)| − |𝑚𝛽(𝑚, 𝐶)|2 = 𝐽𝛽(𝜃

2)𝐽𝛽(1) − |𝐽𝛽(𝜃)|2|𝐽𝛽(1)|2 ,

and noting that

𝜕𝑚𝐽𝛽(𝜑) =
𝐽𝛽(𝜑(𝜃)(𝜃 − 𝑚))

𝐶
, 𝜕𝐶𝐽𝛽(𝜑) =

𝐽𝛽
(
𝜑(𝜃)|𝜃 − 𝑚|2)

2𝐶2
,

we calculate

𝜕𝑚𝑚𝛽 =
1

𝐶|𝐽𝛽(1)|2 (𝐽𝛽(𝜃2)𝐽𝛽(1) − |𝐽𝛽(𝜃)|2) ,
𝜕𝐶𝑚𝛽 =

1

2𝐶2|𝐽𝛽(1)|2 (𝐽𝛽(𝜃|𝜃 − 𝑚|2)𝐽𝛽(1) − 𝐽𝛽
(|𝜃 − 𝑚|2)𝐽𝛽(𝜃))
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=
1

2𝐶2|𝐽𝛽(1)|2
[
𝐽𝛽

(
𝜃3

)
𝐽𝛽(1) − 𝐽𝛽

(
𝜃2

)
𝐽𝛽(𝜃) − 2𝑚

(
𝐽𝛽

(
𝜃2

)
𝐽𝛽(1) − 𝐽𝛽(𝜃)

2
)]
,

𝜕𝑚𝐶𝛽 =
1

𝐶|𝐽𝛽(1)|2 (𝐽𝛽(𝜃3)𝐽𝛽(1) − 𝐽𝛽(𝜃)𝐽𝛽(𝜃
2)
)
− 2𝑚𝛽 𝜕𝑚𝑚𝛽 ,

𝜕𝐶𝐶𝛽 =
1

2𝐶2|𝐽𝛽(1)|2 (𝐽𝛽(𝜃2|𝜃 − 𝑚|2)𝐽𝛽(1) − 𝐽𝛽
(|𝜃 − 𝑚|2)𝐽𝛽(𝜃2)) − 2𝑚𝛽 𝜕𝐶𝑚𝛽

=
1

2𝐶2|𝐽𝛽(1)|2
[
𝐽𝛽

(
𝜃4

)
𝐽𝛽(1) − 𝐽𝛽(𝜃

2)2 − 2𝑚
(
𝐽𝛽

(
𝜃3

)
𝐽𝛽(1) − 𝐽𝛽(𝜃

2)𝐽𝛽(𝜃)
)]
− 2𝑚𝛽 𝜕𝐶𝑚𝛽 .

Applying Laplace’smethod, and noting that d𝑛

d𝜃𝑛
(𝜃𝑗𝑔(𝜃;𝑚, 𝐶)) vanishes at 𝜃 = 𝜃∗ = 0 for all 𝑛 < 𝑗,

we obtain that

e𝛽𝑓(𝜃∗) ∫
𝐑

𝜃3 e−𝛽𝑓 𝑔(𝜃;𝑚, 𝐶) d𝜃 = 𝑅

(
1

𝛽5∕2

)
,

e𝛽𝑓(𝜃∗) ∫
𝐑

𝜃4 e−𝛽𝑓 𝑔(𝜃;𝑚, 𝐶) d𝜃 = 𝑅

(
1

𝛽5∕2

)
.

Combining these estimates with eqns. (73a), (73b), (73c) and (74), and using the same notation as
in the proof of Proposition 8, we deduce

𝜕𝑚𝑚𝛽(𝑚, 𝐶) = 𝑅(𝛽
−1), 𝜕𝐶𝑚𝛽(𝑚, 𝐶) = 𝑅(𝛽

−1),

𝜕𝑚𝐶𝛽(𝑚, 𝐶) = 𝑅(𝛽
−2), 𝜕𝐶𝐶𝛽(𝑚, 𝐶) = 𝑅(𝛽

−2).

It easily follows that

𝐷Φ𝛽 ∶=

(
𝜕𝑚Φ

𝑚
𝛽
𝜕𝐶Φ

𝑚
𝛽

𝜕𝑚Φ
𝐶
𝛽
𝜕𝐶Φ

𝐶
𝛽

)
=

(𝑅(𝛽
−1) 𝑅(𝛽

−1)

𝑅(𝛽
−1) 𝑂𝑅(𝛽

−1)

)
. (75)

Therefore, for all (𝑚1, 𝐶1) ∈ 𝐵𝑅(𝜃∗, 𝐶∗) and (𝑚2, 𝐶2) ∈ 𝐵𝑅(𝜃∗, 𝐶∗), it holds

|Φ𝛽(𝑚1, 𝐶1) − Φ𝛽(𝑚2, 𝐶2)| = |||||∫
1

0

𝐷Φ𝛽 (𝑚𝑡, 𝐶𝑡)

(
𝑚2 −𝑚1

𝐶2 − 𝐶1

)
d𝑡

|||||
⩽ ∫

1

0

‖𝐷Φ𝛽 (𝑚𝑡, 𝐶𝑡) ‖ d𝑡
|||||
(
𝑚2

𝐶2

)
−

(
𝑚1

𝐶1

)||||| ,
where (𝑚𝑡, 𝐶𝑡)

𝖳 =
(
𝑚1 + 𝑡(𝑚2 − 𝑚1), 𝐶1 + 𝑡(𝐶2 − 𝐶1)

)𝖳
. Since ‖𝐷Φ𝛽‖ = 𝑅(𝛽

−1), by (75), this
concludes the proof of the statement. ■

Theorem 3 is now a simple consequence of Propositions 8 and 9.
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Proof of Theorem 3. Let 𝛽 and 𝛽, as well as 𝑘 and 𝑘, be as given in the statements of Propositions
8 and 9, respectively. Let 𝛽(𝑓, 𝑅) and 𝑘(𝑓, 𝑅) be defined by

𝛽 = max

(
𝛽(𝑓), 𝛽(𝑓, 𝑅),

𝑘

𝑅

)
, 𝑘(𝑓, 𝑅) = max

(
𝑘(𝑓), 𝑘(𝑓, 𝑅)

)
.

By Proposition 8, there exists for all 𝛽 ⩾ 𝛽 a fixed point ofΦ𝛽 in𝐵𝑘∕𝛽(𝜃∗, 𝐶∗) ⊂ 𝐵𝑅(𝜃∗, 𝐶∗). Because
Φ𝛽 is a contraction over 𝐵𝑅(𝜃∗, 𝐶∗) for such value of 𝛽 by Proposition 9, this fixed point is unique
in 𝐵𝑅(𝜃∗, 𝐶∗). Let us now show the convergence to the fixed point in the discrete and continuous-
time cases.

(i) Case 𝛼 ∈ [0, 1). We consider the iteration (10),

𝑚𝑛+1 = 𝛼𝑚𝑛 + (1 − 𝛼)𝑚𝛽(𝑚𝑛, 𝐶𝑛),

𝐶𝑛+1 = 𝛼2𝐶𝑛 + (1 − 𝛼2)𝜆−1𝐶𝛽(𝑚𝑛, 𝐶𝑛).

Denoting the fixed point by (𝑚∞, 𝐶∞)
𝖳, we rewrite this system as

𝑚𝑛+1 − 𝑚∞ = 𝛼(𝑚𝑛 − 𝑚∞) + (1 − 𝛼)
(
𝑚𝛽(𝑚𝑛, 𝐶𝑛) − 𝑚𝛽(𝑚∞,𝐶∞)

)
,

𝐶𝑛+1 − 𝐶∞ = 𝛼2(𝐶𝑛 − 𝐶∞) + (1 − 𝛼2)𝜆−1
(
𝐶𝛽(𝑚𝑛, 𝐶𝑛) − 𝐶𝛽(𝑚∞, 𝐶∞)

)
,

and so, by the triangle inequality,

|||||
(
𝑚𝑛+1

𝐶𝑛+1

)
−

(
𝑚∞

𝐶∞

)||||| ⩽ 𝛼
|||||
(
𝑚𝑛

𝐶𝑛

)
−

(
𝑚∞

𝐶∞

)||||| + (1 − 𝛼2)|Φ𝛽(𝑚𝑛, 𝐶𝑛) − Φ𝛽(𝑚∞, 𝐶∞)|
⩽

(
𝛼 + (1 − 𝛼2)

𝑘

𝛽

) |||||
(
𝑚𝑛

𝐶𝑛

)
−

(
𝑚∞

𝐶∞

)||||| ,
from where the statement follows easily.

(ii) Case 𝛼 = 1. Similarly, in the continuous-time setting, we can rewrite Equations (22) for the
moments as

�̇�(𝑡) = −(𝑚(𝑡) − 𝑚∞) +
(
𝑚𝛽(𝑚(𝑡), 𝐶(𝑡)) − 𝑚𝛽(𝑚∞,𝐶∞)

)
,

�̇�(𝑡) = −2(𝐶(𝑡) − 𝐶∞) + 2𝜆−1
(
𝐶𝛽(𝑚(𝑡), 𝐶(𝑡)) − 𝐶𝛽(𝑚∞, 𝐶∞)

)
.

Therefore

1

2

d

d𝑡

|||||
(
𝑚(𝑡)

𝐶(𝑡)

)
−

(
𝑚∞

𝐶∞

)|||||
2

⩽ −
|||||
(
𝑚(𝑡)

𝐶(𝑡)

)
−

(
𝑚∞

𝐶∞

)|||||
2

+ 2|Φ𝛽(𝑚𝑛, 𝐶𝑛) − Φ𝛽(𝑚∞, 𝐶∞)| |||||
(
𝑚(𝑡)

𝐶(𝑡)

)
−

(
𝑚∞

𝐶∞

)|||||
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⩽ −

(
1 −

2𝑘

𝛽

) |||||
(
𝑚𝑛

𝐶𝑛

)
−

(
𝑚∞

𝐶∞

)|||||
2

,

which leads to the statement by Grönwall’s inequality. ■
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APPENDIX A: AUXILIARY TECHNICAL RESULTS
Lemma A.1. Let (𝑢𝑛, 𝑣𝑛) denote the solution to the recurrence relation (26)

𝑢𝑛+1 =
[
𝛼 + (1 − 𝛼)(1 + 𝑣𝑛)

−1
]
𝑢𝑛, (A.1a)

𝑣𝑛+1 =
[
𝛼2 + (1 − 𝛼2)𝜆−1(1 + 𝑣𝑛)

−1
]
𝑣𝑛, (A.1b)

with initial condition (𝑢0, 𝑣0) and 𝑣0 > 0. Denote 𝑣∞ = (1 − 𝜆)∕𝜆. We separate the sampling and
optimization cases.

(i) Case 𝜆 ∈ (0, 1). It holds, for all 𝑛 ∈ 𝐍, that

min

(
1,
𝑣∞
𝑣0

) 1

1+𝛼

((1 − 𝛼)𝜆 + 𝛼)
𝑛
⩽

||||𝑢𝑛𝑢0 |||| ⩽ max

(
1,
𝑣∞
𝑣0

) 1

1+𝛼

((1 − 𝛼)𝜆 + 𝛼)
𝑛
, (A.2a)

min

(
1,
𝑣∞
𝑣0

)(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛
⩽

||||𝑣𝑛 − 𝑣∞
𝑣0 − 𝑣∞

|||| ⩽ max

(
1,
𝑣∞
𝑣0

)(
(1 − 𝛼2)𝜆 + 𝛼2

)𝑛
; (A.2b)

(ii) Case 𝜆 = 1. For all 𝑛 ∈ 𝐍, it holds that

(
1

1 + 𝑣0(1 − 𝛼2)𝑛

) 1

1+𝛼

⩽
|||𝑢𝑛𝑢0 ||| ⩽

(
1 + 𝑣0

1 + 𝑣0 + 𝑣0(1 − 𝛼2)𝑛

) 1

1+𝛼

(A.3a)

and (
1

1 + 𝑣0(1 − 𝛼2)𝑛

)
⩽
𝑣𝑛
𝑣0

⩽

(
1 + 𝑣0

1 + 𝑣0 + 𝑣0(1 − 𝛼2)𝑛

)
. (A.3b)

Proof. Case 𝜆 ∈ (0, 1). Rearranging the equation for {𝑣𝑛}𝑛=0,… , we obtain

𝑣𝑛+1 − 𝑣∞ = 𝛾(𝑣𝑛)(𝑣𝑛 − 𝑣∞), 𝛾(𝑠) ∶=
1 + 𝛼2𝑠

1 + 𝑠
. (A.4)

https://doi.org/10.1111/sapm.12470


1130 CARRILLO et al.

If 𝑣0 ⩾ 𝑣∞, then clearly 𝑣0 ⩾ 𝑣𝑛 ⩾ 𝑣∞ for all 𝑛 ∈ 𝐍. Therefore, because 0 < 𝛾(∙) < 1, it holds that
0 ⩽ 𝑣𝑛+1 − 𝑣∞ ⩽ 𝛾(𝑣∞)(𝑣𝑛 − 𝑣∞), which leads directly to the convergence estimate

|𝑣𝑛 − 𝑣∞| ⩽ 𝛾(𝑣∞)
𝑛|𝑣0 − 𝑣∞|.

Similarly, for 𝑣0 < 𝑣∞, we obtain 𝑣0 < 𝑣𝑛 < 𝑣∞ for all 𝑛 ∈ 𝐍, which leads to the lower bound|𝑣𝑛 − 𝑣∞| ⩾ 𝛾(𝑣∞)
𝑛|𝑣0 − 𝑣∞|. For the opposite bounds, we calculate using (A.4) that

𝑣−1𝑛+1(𝑣𝑛+1 − 𝑣∞)

𝑣−1𝑛 (𝑣𝑛 − 𝑣∞)
=

(
1 + 𝛼2𝑣𝑛
1 + 𝑣𝑛

)
𝑣𝑛

𝑣∞ +
1+𝛼2𝑣𝑛

1+𝑣𝑛
(𝑣𝑛 − 𝑣∞)

=
1 + 𝛼2𝑣𝑛

(1 − 𝛼2)𝑣∞ + 1 + 𝛼2𝑣𝑛
=
1 + 𝛼2𝑣∞ + 𝛼2(𝑣𝑛 − 𝑣∞)

1 + 𝑣∞ + 𝛼2(𝑣𝑛 − 𝑣∞)
.

Hence, if 𝑣0 > 𝑣∞, then

𝑣−1𝑛+1(𝑣𝑛+1 − 𝑣∞)

𝑣−1𝑛 (𝑣𝑛 − 𝑣∞)
⩾ 𝛾(𝑣∞) ⟹

|𝑣𝑛+1 − 𝑣∞|
𝑣𝑛+1

⩾ 𝛾(𝑣∞)
|𝑣𝑛 − 𝑣∞|

𝑣𝑛
,

with the inequalities reversed in the case 𝑣0 < 𝑣∞. Iterating the last inequality, combining the
above estimates and noting that 𝛾(𝑣∞) = (1 − 𝛼2)𝜆 + 𝛼2 gives (A.2b).
Next, notice that the equation for 𝑢𝑛 can be rewritten as

𝑢𝑛+1 = �̃�(𝑣𝑛)𝑢𝑛 , 𝛾(𝑠) ∶=
1 + 𝛼𝑠

1 + 𝑠
, (A.5)

where 𝛾 is strictly decreasing on [0,∞). Clearly, if 𝑣0 ⩾ 𝑣∞, then we have

|𝑢𝑛| ⩽ 𝛾(𝑣∞)
𝑛|𝑢0| , (A.6)

with the reversed inequality holding for 𝑣0 < 𝑣∞. Noting that 𝑢𝑛 and 𝑣𝑛 − 𝑣∞ do not change sign
with 𝑛, we calculate by analogy with the continuous-time case Lemma A.2 that

|𝑢𝑛+1||𝑢𝑛|
( |𝑣𝑛 − 𝑣∞||𝑣𝑛+1 − 𝑣∞|

) 1

1+𝛼

=
𝑢𝑛+1
𝑢𝑛

(
𝑣𝑛 − 𝑣∞
𝑣𝑛+1 − 𝑣∞

) 1

1+𝛼

=

(
1 + 𝛼𝑣𝑛
1 + 𝑣𝑛

)(
1 + 𝑣𝑛
1 + 𝛼2𝑣𝑛

) 1

1+𝛼

=∶ ℎ𝛼(𝑣𝑛). (A.7)

Because ℎ′𝛼(𝑠) ⩾ 0 for all 𝛼 ∈ (0, 1) and all 𝑠 > 0, we deduce for 𝑣0 < 𝑣∞,

|𝑢𝑛+1||𝑢𝑛|
( |𝑣𝑛 − 𝑣∞||𝑣𝑛+1 − 𝑣∞|

) 1

1+𝛼

⩽ ℎ𝛼(𝑣∞),
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and iterating this inequality, then using (A.2b), we have

|𝑢𝑛| ⩽ |𝑢0|ℎ𝛼(𝑣∞)𝑛(|𝑣𝑛 − 𝑣∞||𝑣0 − 𝑣∞|
) 1

1+𝛼

⩽ |𝑢0|(𝑣∞
𝑣0

) 1

1+𝛼
(
ℎ𝛼(𝑣∞)𝛾(𝑣∞)

1

1+𝛼

)𝑛

= |𝑢0|(𝑣∞
𝑣0

) 1

1+𝛼

𝛾(𝑣∞)
𝑛 .

with reversed inequality of 𝑣0 > 𝑣∞. Because 𝛾(𝑣∞) = (1 − 𝛼)𝜆 + 𝛼, this concludes the proof
of (A.2a).
Case 𝜆 = 1. Rearranging the equation for 𝑣𝑛, we have

𝑣−1𝑛+1 =

(
1 + 𝑣𝑛
1 + 𝛼2𝑣𝑛

)
𝑣−1𝑛 = 𝛾(𝑣𝑛)

−1𝑣−1𝑛 . (A.8)

Because clearly

∀(𝑥, 𝑦) ∈ 𝐑2
+,

1 + 𝑥

1 + 𝑦
⩽ 1 + |𝑥 − 𝑦|, (A.9)

we have

𝑣−1𝑛+1 ⩽
(
1 + (1 − 𝛼2)𝑣𝑛

)
𝑣−1𝑛 ⩽ 𝑣−1𝑛 + (1 − 𝛼2),

so we obtain a lower bound on 𝑣𝑛:

∀𝑛 ∈ 𝐍, 𝑣−1𝑛 ⩽ 𝑣−10 + (1 − 𝛼2)𝑛 =∶ 𝑣−1
𝑛
. (A.10)

To obtain an upper bound for 𝑣𝑛, we note that

𝑣𝑛+1 =

(
1 + 𝛼2𝑣𝑛
1 + 𝑣𝑛

)
𝑣𝑛 ⩽

(
1 + 𝛼2𝑣

𝑛

1 + 𝑣
𝑛

)
𝑣𝑛 =

(
𝑣−10 + 𝑛(1 − 𝛼2) + 𝛼2

𝑣−10 + 𝑛(1 − 𝛼2) + 1

)
𝑣𝑛.

Therefore, we deduce

𝑣𝑛 ⩽

𝑛−1∏
𝑘=0

(
1 −

1 − 𝛼2

𝑣−10 + 𝑘(1 − 𝛼2) + 1

)
𝑣0 =∶ Π𝑛−1𝑣0.

Using log(1 − 𝜖) ⩽ −𝜖 for all 𝜖 ∈ (0, 1), we have

logΠ𝑛−1 ⩽ −

𝑛−1∑
𝑘=0

1 − 𝛼2

𝑣−10 + 𝑘(1 − 𝛼2) + 1
⩽ −∫

𝑛

0

1 − 𝛼2

𝑣−10 + 𝑥(1 − 𝛼2) + 1
d𝑥

= − log

(
𝑣−10 + 𝑛(1 − 𝛼2) + 1

𝑣−10 + 1

)
,
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so we conclude that the upper bound in (A.3b) holds. A similar reasoning with the inequality

|𝑢𝑛+1| ⩽ (1 + 𝛼𝑣
𝑛

1 + 𝑣
𝑛

)|𝑢𝑛|
can be employed to show the upper bound on 𝑢𝑛 in (A.3a). To obtain the lower bound on 𝑢𝑛, we
use the fact that ℎ𝛼 is increasing to estimate from (A.7) that

|||𝑢𝑛+1𝑢𝑛

||| ||| 𝑣𝑛

𝑣𝑛+1

||| 1

1+𝛼 = ℎ𝛼(𝑣𝑛) ≥ ℎ𝛼(0) = 1 ⇔
|𝑢𝑛+1|
𝑣

1

1+𝛼

𝑛+1

≥ |𝑢𝑛|
𝑣

1

1+𝛼
𝑛

.

By iterating this inequality and using (A.10), we conclude

|||𝑢𝑛𝑢0 ||| ≥ ||| 𝑣𝑛𝑣0 ||| 1

1+𝛼 ≥
(

1

1 + 𝑣0(1 − 𝛼2)𝑛

) 1

1+𝛼

,

which is the result. ■

Lemma A.2. Let 𝜆 ∈ (0, 1], and let (𝑢(𝑡), 𝑣(𝑡)) denote the unique global solution to the ODE sys-
tem (46) with initial condition (𝑢0, 𝑣0) and 𝑣0 > 0.

(i) Case 𝜆 ∈ (0, 1). It holds that

min

(
1,

(
𝑣∞
𝑣0

)𝜆∕2
)
e−(1−𝜆)𝑡 ⩽

||||𝑢(𝑡)𝑢0

|||| ⩽ max

(
1,

(
𝑣∞
𝑣0

)𝜆∕2
)
e−(1−𝜆)𝑡, (A.11a)

min

(
1,

(
𝑣∞
𝑣0

)𝜆
)
e−2(1−𝜆)𝑡 ⩽

||||𝑣(𝑡) − 𝑣∞
𝑣0 − 𝑣∞

|||| ⩽ max

(
1,

(
𝑣∞
𝑣0

)𝜆
)
e−2(1−𝜆)𝑡 . (A.11b)

(ii) Case 𝜆 = 1. For all 𝑡 ⩾ 0, it holds that

(
1

1 + 2𝑣0𝑡

) 1

2

⩽
||||𝑢(𝑡)𝑢0

|||| ⩽
(

1 + 𝑣0
1 + 𝑣0 + 2𝑣0𝑡

) 1

2

(A.12a)

and

1

1 + 2𝑣0𝑡
⩽
𝑣(𝑡)

𝑣0
⩽

1 + 𝑣0
1 + 𝑣0 + 2𝑣0𝑡

. (A.12b)

Proof. Note that solutions to (46) are unique, and exist globally in time.
Case 𝜆 ∈ (0, 1). We begin with the sampling case (i) when 𝜆 ≠ 1, The second equation in (46)

can be rewritten as

d

d𝑡
(𝑣 − 𝑣∞) = −2

( 𝑣

𝑣 + 1

)
(𝑣 − 𝑣∞).
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For 𝑥 = 𝑣∕𝑣∞, we obtain

�̇� = −2

(
(𝑥 − 1)𝑥

𝑣−1∞ + 𝑥

)
= −2

(
1 + 𝑣−1∞
𝑥 − 1

−
𝑣−1∞
𝑥

)−1

= −2(1 − 𝜆)

(
−1

1 − 𝑥
−
𝜆

𝑥

)−1

.

We can rewrite this equation as

d

d𝑡
(log (1 − 𝑥(𝑡)) − 𝜆 log (𝑥(𝑡))) = −2(1 − 𝜆), (A.13)

leading to

|1 − 𝑥(𝑡)| = (
𝑥(𝑡)

𝑥(0)

)𝜆

e−2(1−𝜆)𝑡 |1 − 𝑥(0)|.
Because 𝑣(𝑡) is decreasing if 𝑣0 > 𝑣∞ and increasing if 𝑣0 < 𝑣∞, estimate (A.11b) directly follows.
Next, we consider the first equation in (46), and note that it can be rewritten as

�̇�

𝑢
=
1

2

(
1

𝑣 − 𝑣∞

)
d

d𝑡
(𝑣 − 𝑣∞).

This implies

log

(
𝑢(𝑡)

𝑢0

)
=
1

2
log

(
𝑣(𝑡) − 𝑣∞
𝑣0 − 𝑣∞

)
, (A.14)

where it is not difficult to verify that the arguments of the logarithms are positive for all times.
Applying (A.11b), we conclude that (A.11a) holds.
Case 𝜆 = 1. The argument follows analogously; the second equation in (46) reads

�̇� = −2
( 𝑣

𝑣 + 1

)
𝑣, (A.15)

Because the right hand is bounded from below by −2𝑣2, we directly deduce that

∀𝑡 > 0, 𝑣(𝑡) ⩾
1

𝑣−10 + 2𝑡
∶= 𝑣(𝑡). (A.16)

Now, because the function 𝑠 ↦ 𝑠

1+𝑠
is increasing, it is clear that 𝑣(𝑡) satisfies

�̇�(𝑡) ⩽ −2

(
𝑣(𝑡)

𝑣(𝑡) + 1

)
𝑣(𝑡).

Using Grönwall’s inequality, we obtain the upper bound in (A.12b).
The bounds on 𝑢(𝑡) are then obtained from (A.14) and the bounds on 𝑣(𝑡). ■

Remark A.1. Notice that, by letting 𝛼 = e−𝑡∕𝑛 in the bounds obtained in Lemma A.1 and taking
the limit 𝑛 → ∞, we recover the bounds in Lemma A.2.
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Remark A.2. It is possible to slightly improve the upper bounds in (A.3b) and (A.12b).

∙ In the discrete-time case, rearranging the equation for 𝑣𝑛+1 and using that log(1 + 𝜀) ⩾
𝜀

1+𝜀
for

all 𝜀 > 0, we have

𝑣−1𝑛+1 − log(𝑣𝑛+1) − 𝑣−1𝑛 + log(𝑣𝑛)

=
1 − 𝛼2

1 + 𝛼2𝑣𝑛
+ 𝛼2 log

(
1 + 𝑣𝑛
1 + 𝛼2𝑣𝑛

)
=

1 − 𝛼2

1 + 𝛼2𝑣𝑛
+ log

(
1 +

(1 − 𝛼2)𝑣𝑛
1 + 𝛼2𝑣𝑛

)
⩾

1 − 𝛼2

1 + 𝛼2𝑣𝑛
+
(1 − 𝛼2)𝑣𝑛
1 + 𝑣𝑛

⩾ (1 − 𝛼2)

(
1

1 + 𝛼2𝑣𝑛
+

𝑣𝑛
1 + 𝑣𝑛

)
⩾ 1 − 𝛼2. (A.17)

Because 𝑣𝑛 is decreasing with 𝑛, this directly implies, using the lower bound (A.10),

𝑣−1𝑛 ⩾ 𝑣−10 + 𝑛(1 − 𝛼2) + log

(
𝑣𝑛
𝑣0

)
⩾ 𝑣−10 + (1 − 𝛼2)𝑛 − log

(
1 + 𝑣0(1 − 𝛼2)𝑛

)
.

so we deduce the following inequality:

𝑣𝑛
𝑣0

⩽
1

1 + 𝑣0(1 − 𝛼2)𝑛 − 𝑣0 log (1 + 𝑣0(1 − 𝛼2)𝑛)

which holds for 𝑛 ∈ 𝐍 large enough to ensure that the right-hand side is strictly positive.
∙ In the continuous-time case, one may rewrite (A.15) as

d

d𝑡

(
log 𝑣(𝑡) −

1

𝑣(𝑡)

)
= −2.

Integrating, rearranging, and taking reciprocals, we obtain

𝑣(𝑡) =
1

𝑣−10 + 2𝑡 + log
(
𝑣

𝑣0

) .
Using the lower bound (A.16) to bound the argument of the logarithm, we obtain

𝑣(𝑡) ⩽
𝑣0

1 + 2𝑣0𝑡 − 𝑣0 log(1 + 2𝑣0𝑡)
.

Though slightly better in the long time limit, these bounds aremore cumbersome tomanipulate
than the ones presented in Lemmas A.1 and A.2.

Lemma A.3. Assume that 𝜇 is a probability measure on (𝐑,(𝐑)), with (𝐑) the Borel 𝜎-algebra
on 𝐑, and that 𝑓 ∶ 𝐑 → 𝐑 is a positive and nondecreasing (resp. nonincreasing) function. Let 𝜇 be
the probability measure defined by

𝜇 ∶ (𝐑) ∋ 𝐴 ↦
∫
𝐴
𝑓(𝑥)d𝜇(𝑥)

∫
𝐑
𝑓(𝑥) d𝜇(𝑥)

.
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Then it holds 𝐄𝑋∼𝜇(𝑋) ⩾ 𝐄𝑋∼𝜇(𝑋) (resp. 𝐄𝑋∼𝜇(𝑋) ⩽ 𝐄𝑋∼𝜇(𝑋)).

Proof. Let us assume that 𝑓 is nondecreasing, and let us denote the cumulative distribution func-
tions (CDFs) by 𝐹(𝑥) ∶= 𝐏𝑋∼𝜇(𝑋 ⩽ 𝑥) and 𝐹(𝑥) ∶= 𝐏𝑋∼𝜇(𝑋 ⩽ 𝑥). For any probability measure 𝜈
with CDF 𝐹𝜈, it holds

𝐄𝑋∼𝜈(𝑋) = ∫
∞

0

1 − 𝐹𝜈(𝑥) − 𝐹𝜈(−𝑥) d𝑥,

so it is sufficient to show 𝐹(𝑥) ⩽ 𝐹(𝑥) for all 𝑥 ∈ 𝐑. If 𝐹(𝑥) = 0, this inequality is clearly satisfied,
so let us verify the inequality for any 𝑥 such that 𝐹(𝑥) > 0. For such a value of 𝑥, employing the
fact that 𝑓 is nondecreasing, we obtain

1 − 𝐹(𝑥)

𝐹(𝑥)
=

∫
(𝑥,∞)

𝑓(𝑦) d𝜇(𝑦)

∫
(−∞,𝑥]

𝑓(𝑦) d𝜇(𝑦)
⩾

∫
(𝑥,∞)

𝑓(𝑥) d𝜇(𝑦)

∫
(−∞,𝑥]

𝑓(𝑥) d𝜇(𝑦)
=

𝜇((𝑥,∞))

𝜇((−∞, 𝑥])
=
1 − 𝐹(𝑥)

𝐹(𝑥)
.

Applying the function 𝑦 ↦ 1

1+𝑦
to both sides of this inequality, and flipping the direction of the

inequality accordingly (because this function is decreasing over [0,∞)), we obtain the desired
inequality 𝐹(𝑥) ⩽ 𝐹(𝑥). ■

Lemma A.4. Let 𝑟 > 2 be given. There exists 𝛾 > 0 sufficiently large such that

∀𝐶 > 0, ℎ(𝐶; 𝛾) ∶=

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎜⎜⎜⎝
1 + 2

𝜙

(
𝛾𝐶

1
𝑟√

𝐶(1+𝐶)

)
𝛾𝐶

1
𝑟√

𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎟⎠
⩽ 1,

where 𝜙 denotes the density of the standard normal distribution, i.e., 𝜙 = 𝑔(∙; 0, 1).

Proof. If 𝐶 ⩾ 1, then

ℎ(𝐶, 𝛾) ⩽

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎜⎜⎝
1 + 2

𝜙(0)

𝛾𝐶
1
𝑟√

𝐶(1+𝐶)

⎞⎟⎟⎟⎟⎠
⩽

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶
+
2𝜙(0)

𝛾

(
1 + 𝑟𝐶

) 1

𝑟

𝐶
1

𝑟

√
𝐶

1 + 𝐶
.

By concavity of 𝐶 ↦ (1 + 𝑟𝐶)
1

𝑟 , and the fact that the first term is strictly decreasing, we have

ℎ(𝐶, 𝛾) ⩽
(1 + 𝑟)

1

𝑟

2
+
2𝜙(0)

𝛾

⎛⎜⎜⎝
1 + (𝑟𝐶)

1

𝑟

𝐶
1

𝑟

⎞⎟⎟⎠ ⩽
(1 + 𝑟)

1

𝑟

2
+
2𝜙(0)

𝛾

(
1 + 𝑟

1

𝑟

)
.

Because the first term is strictly less than 1, there exists 𝛾 sufficiently large such that the right-hand
side is bounded from above by 1.
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If 0 < 𝐶 < 1, on the other hand, we have

ℎ(𝐶, 𝛾) ⩽

(
1 + 𝑟𝐶

) 1

𝑟

1 + 𝐶

⎛⎜⎜⎝1 +
4

𝛾
𝜙
⎛⎜⎜⎝
𝛾𝐶

1

𝑟√
2𝐶

⎞⎟⎟⎠
⎞⎟⎟⎠.

Therefore,

log
(
ℎ(𝐶, 𝛾)

)
⩽
1

𝑟
log(1 + 𝑟𝐶) − log(1 + 𝐶) + log

⎛⎜⎜⎝1 +
4

𝛾
𝜙
⎛⎜⎜⎝
𝛾𝐶

1

𝑟√
2𝐶

⎞⎟⎟⎠
⎞⎟⎟⎠.

The sum of the first two terms is bounded as follows (where we employ that 𝐶 ⩽ 1):

1

𝑟
log(1 + 𝑟𝐶) − log(1 + 𝐶) = ∫

𝐶

0

(
1

1 + 𝑟𝑥
−

1

1 + 𝑥

)
d𝑥

⩽ −(𝑟 − 1)∫
𝐶

0

𝑥

2(1 + 𝑟)
d𝑥 = −

1

4

(
𝑟 − 1

𝑟 + 1

)
𝐶2.

Employing this estimate together with the elementary bound log(1 + 𝜀) ⩽ 𝜀, we have

log
(
ℎ(𝐶, 𝛾)

)
⩽ −

1

4

(
𝑟 − 1

𝑟 + 1

)
𝐶2 +

4

𝛾
𝜙

(
𝛾√
2
𝐶
−
𝑟−2

2𝑟

)
.

Clearly, there exists 𝐾 such that 𝜙(𝑥) ⩽ 𝐾(1 + 𝑥)
−

4𝑟

𝑟−2 uniformly, so we deduce

log
(
ℎ(𝐶, 𝛾)

)
⩽ −

1

4

(
𝑟 − 1

𝑟 + 1

)
𝐶2 +

4𝐾

𝛾

(√
2

𝛾

) 4𝑟

𝑟−2

𝐶2.

It is possible to choose 𝛾 sufficiently large such that the right-hand side of this equation is bounded
from above by 0 for 𝐶 ∈ (0, 1], and the statement then follows easily. ■

Lemma A.5. Assume that 𝛼 ∈ [0, 1] and that 𝐶𝛽 , 𝐶𝑛, �̂�𝛽 , and 𝑢 are nonnegative real numbers
satisfying 0 < 𝐶𝛽 ⩽ 𝐶𝑛 and

�̂�𝛽

𝐶
1∕𝑟

𝛽

⩽
𝑢

𝐶
1∕𝑟
𝑛

for some 𝑟 ⩾ 2. Then (�̂�𝑛+1, 𝐶𝑛+1) defined by

�̂�𝑛+1 = (1 − 𝛼)�̂�𝛽 + 𝛼𝑢,

𝐶𝑛+1 = (1 − 𝛼2)𝐶𝛽 + 𝛼2𝐶𝑛
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satisfy

�̂�𝑛+1

𝐶
1∕2𝑟
𝑛+1

⩽
𝑢

𝐶
1∕2𝑟
𝑛

.

Proof. Letting 𝑚𝑛+1 = �̂�𝑛+1∕𝑢, 𝐶𝑛+1 = 𝐶𝑛+1∕𝐶𝑛, 𝑚𝛽 = �̂�𝛽∕𝑢, and 𝐶𝛽 = 𝐶𝛽∕𝐶𝑛, we can rewrite
the equations for �̂�𝑛+1 and 𝐶𝑛+1 as

𝑚𝑛+1 = (1 − 𝛼)𝑚𝛽 + 𝛼,

𝐶𝑛+1 = (1 − 𝛼2)𝐶𝛽 + 𝛼2.

By the assumptions, it holds that 𝐶𝛽 ⩽ 1 and𝑚𝛽 ⩽ 𝐶
1∕𝑟

𝛽
, and so

𝑚2𝑟
𝑛+1

𝐶𝑛+1
=

(
(1 − 𝛼)𝑚𝛽 + 𝛼

)2𝑟
(1 − 𝛼2)𝐶𝛽 + 𝛼2

⩽
((1 − 𝛼)𝑥 + 𝛼)

2𝑟

(1 − 𝛼2)𝑥𝑟 + 𝛼2
=∶ ℎ(𝑥, 𝛼), 𝑥 ∶= 𝐶

1∕𝑟

𝛽
∈ (0, 1].

We claim that

∀(𝑦, 𝛼) ∈ (0, 1] × [0, 1), 𝜕𝑥ℎ(𝑦, 𝛼) ⩾ 0. (A.18)

This will imply that ℎ(𝑥, 𝛼) = ℎ(1, 𝛼) − ∫ 1

𝑥
𝜕𝑥ℎ(𝑦, 𝛼) d𝑦 ⩽ ℎ(1, 𝛼) = 1 and thus𝑚2𝑟

𝑛+1 ⩽ 𝐶𝑛+1, giv-
ing the statement. Let us now prove (A.18). A simple calculation gives

sign (𝜕𝑥ℎ(𝑦, 𝛼)) = sign
(
2𝑟(1 − 𝛼)

(
(1 − 𝛼2)𝑦𝑟 + 𝛼2

)
− 𝑟(1 − 𝛼2)𝑦𝑟−1((1 − 𝛼)𝑦 + 𝛼)

)
= sign

(
2
(
(1 − 𝛼2)𝑦𝑟 + 𝛼2

)
− (1 + 𝛼)𝑦𝑟−1((1 − 𝛼)𝑦 + 𝛼)

)
= sign

(
𝛼2

(
2 − 𝑦𝑟 − 𝑦𝑟−1

)
− 𝛼𝑦𝑟−1 + 𝑦𝑟

)
=∶ sign (𝑔(𝑦, 𝛼)).

The argument of the sign function in the last line, i.e., 𝑔(𝑦, 𝛼), is a quadratic function of 𝛼 with
a minimizer at 𝛼∗(𝑦) =

1

2
𝑦𝑟−1(2 − 𝑦𝑟 − 𝑦𝑟−1)−1. If 𝛼∗(𝑦) ⩾ 1, then 𝑔(𝑦, 𝛼) ⩾ 𝑔(𝑦, 1) ⩾ 0. On the

other hand, for any 𝑦 such that 𝛼∗(𝑦) ⩽ 1, it holds

∀𝛼 ∈ [0, 1], 𝑔(𝑦, 𝛼) ⩾ 𝑔(𝑦, 𝛼∗) = 𝑦𝑟
⎛⎜⎜⎝1 −

1

2𝑦

⎛⎜⎜⎝
1

2
𝑦𝑟−1

2 − 𝑦𝑟 − 𝑦𝑟−1

⎞⎟⎟⎠
⎞⎟⎟⎠.

If 𝑦 ∈ (0,
1

2
], a direct bound of the right-hand side of the previous equation shows that

𝑔(𝑦, 𝛼∗) ⩾ 0, and if 𝑦 ⩾ 1∕2 we have by the constraint 𝛼∗(𝑦) ⩽ 1 that

𝑔(𝑦, 𝛼) ⩾ 𝑔(𝑦, 𝛼∗) ⩾ 𝑦𝑟
(
1 −

1

2𝑦

)
⩾ 0,

which concludes the proof of (A.18). ■
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Lemma A.6 (Generalization of Watson’s lemma with bound on remainder). Assume that 𝜙 is a
smooth function satisfying

𝑀 ∶= ‖ e−𝛽0𝜃2 𝜙(2𝑁+2)(𝜃)‖∞ < ∞. (A.19)

for some constant 𝛽0 ∈ 𝐑 and𝑁 ∈ 𝐍. Then for 𝛽 > 𝛽0 it holds

𝐼𝛽 ∶= ∫
∞

−∞

e−𝛽𝜃
2
𝜙(𝜃) d𝜃 =

𝑁∑
𝑛=0

𝜙2𝑛
Γ(𝑛 + 1∕2)

𝛽𝑛+1∕2
+ 𝑅𝛽, 𝜙2𝑛 ∶=

𝜙(2𝑛)(0)

(2𝑛)!
,

where the remainder 𝑅𝛽 satisfies the bound

|𝑅𝛽| ⩽ 𝑀

(2𝑁 + 2)!

Γ(𝑁 + 3∕2)

(𝛽 − 𝛽0)𝑁+3∕2
.

Proof. We follow here the approach of Ref. [72, Chapter 2]. We first notice that

𝐼𝛽 = 2 ∫
∞

0

e−𝛽𝜃
2

(
𝜙(𝜃) + 𝜙(−𝜃)

2

)
d𝜃 =∶ 2∫

∞

0

e−𝛽𝜃
2
𝜓(𝜃) d𝜃 .

The function 𝜓 is even and smooth, all its odd derivatives vanish at 𝜃 = 0. Therefore, by Taylor’s
theorem, for any 𝜃 ⩾ 0 there exists 𝜉(𝜃) ∈ [0, 𝜃] such that

𝜓(𝜃) =

𝑁∑
𝑛=0

𝜙2𝑛 𝜃
2𝑛 +

𝜓(2𝑁+2)(𝜉(𝜃))

(2𝑁 + 2)!
𝜃2𝑁+2.

With a change of variables 𝜎 = 𝜃2, this leads to

𝐼𝛽 =

𝑁∑
𝑛=0

𝜙2𝑛 ∫
∞

0

e−𝛽𝜎 𝜎𝑛−1∕2 d𝜎 + 𝑅𝛽 =

𝑁∑
𝑛=0

𝜙2𝑛
Γ(𝑛 + 1∕2)

𝛽𝑛+1∕2
+ 𝑅𝛽,

where, by (A.19) and for 𝛽 > 𝜆0, the remainder term is bounded from above as follows:

|𝑅𝛽| ⩽ 𝑀

(2𝑁 + 2)! ∫
∞

0

e−(𝛽−𝛽0)𝜎 𝜎𝑁+1∕2 d𝜎 =
𝑀

(2𝑁 + 2)!

Γ(𝑁 + 3∕2)

(𝛽 − 𝛽0)𝑁+3∕2
,

which concludes the proof. ■

Lemma A.7. Suppose that Assumptions 1 and 4 are satisfied. Then there exists a unique smooth
and increasing function 𝜏(𝜃) such that

∀𝜃 ∈ 𝐑, 𝑓(𝜃∗ + 𝜏(𝜃)) = 𝑓(𝜃∗) + 𝜃2.
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In addition, the function 𝜏 and all its derivatives are bounded from above by the reciprocal of a Gaus-
sian, in the sense that for all 𝑖 ∈ {0, 1, 2, … } there exists 𝜇𝑖 ∈ 𝐑 such that

‖e−𝜇𝑖𝜃2𝜏(𝑖)(𝜃)‖∞ < ∞.

Proof. Introducing 𝑔(𝜃) ∶= 𝑓(𝜃 + 𝜃∗) − 𝑓(𝜃∗), we must prove the existence of a function 𝜏 satis-
fying

∀𝜃 ∈ 𝐑, 𝑔(𝜏(𝜃)) = 𝜃2. (A.20)

By assumption 𝑔′′(𝜃) ⩾ 𝓁, so 𝑔(𝜃) ⩾ 𝓁 𝜃2∕2 and |𝑔′(𝜃)| ⩾ 𝓁|𝜃| for all 𝜃 ∈ 𝐑. This implies that the
preimage set 𝑔−1(𝜃2) contains exactly two elements for any value of 𝜃 ≠ 0, a positive one 𝑔−1+ (𝜃2)

and a negative one 𝑔−1− (𝜃2). Further, the preimage 𝑔−1(0) is simply {0}. If 𝜏 satisfies (A.20) and is
increasing, then it holds necessarily that

𝜏(𝜃) =

⎧⎪⎨⎪⎩
𝑔−1− (𝜃2) if 𝜃 < 0,

0 if 𝜃 = 0,

𝑔−1+ (𝜃2) if 𝜃 > 0.

By the inverse function theorem, we observe that 𝑔−1+ and 𝑔−1− are smooth on (0, +∞), because 𝑔 is
smooth and strictly monotonic over (−∞, 0) and (0,∞), and consequently 𝜏 is smooth on (−∞, 0)

and (0,∞). Therefore, to show that 𝜏 is a smooth function over 𝐑, it is sufficient to verify that 𝜏
is also infinitely differentiable in a neighborhood of 𝜃 = 0. To this end, we define, analogously to
Ref. [72, Chapter 3],

𝐺(𝑢, 𝜃) =

⎧⎪⎨⎪⎩
𝑔(𝑢𝜃)

𝜃2
− 1 if 𝜃 ≠ 0,

𝑢2

2
𝑔′′(0) − 1 if 𝜃 = 0.

The function 𝐺 is smooth over 𝐑2 and it is simple to verify that 𝐺(𝑢∗, 0) = 0 for 𝑢∗ =
√
2∕𝑔′′(0)

and 𝜕𝑢𝐺(𝑢∗, 0) = 𝑢∗𝑔′′(0) > 0. Therefore, the implicit function theorem implies the existence of a
unique smooth function �̂�(𝜃), defined on an interval (−𝜀, 𝜀), such that �̂�(0) = 𝑢∗ and𝐺(�̂�(𝜃), 𝜃) =
0 for any 𝜃 ∈ (−𝜀, 𝜀). Because the function �̂� ∶ (−𝜀, 𝜀) ∋ 𝜃 ↦ �̂�(𝜃)𝜃 satisfies 𝑔(�̂�(𝜃)) = 𝜃2 by con-
struction, and because it is increasing for 𝜀 sufficiently small because �̂�(0) > 0, this functionmust
necessarily coincide with 𝜏 on the interval (−𝜀, 𝜀), implying that 𝜏 is indeed smooth over 𝐑.
Now note that, because the function 𝑓 and its derivatives are bounded by the reciprocal of

a Gaussian by assumption, then clearly so are the function 𝑔 and its derivatives; for any 𝑖 ∈
{0, 1, 2, … }, there exists 𝑟𝑖 such that

‖e−𝑟𝑖𝜃2𝑔(𝑖)(𝜃)‖∞ < ∞.

Differentiating (A.20) repeatedly, we obtain

𝑔′(𝜏(𝜃)) 𝜏′(𝜃) = 2𝜃 (A.21a)
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𝑔′′(𝜏(𝜃)) |𝜏′(𝜃)|2 + 𝑔′(𝜏(𝜃)) 𝜏′′(𝜃) = 2, (A.21b)

𝑝𝑖
(
𝑔′(𝜏(𝜃)), … , 𝑔(𝑖)(𝜏(𝜃)), 𝜏′(𝜃), … , 𝜏(𝑖−1)(𝜃)

)
+ 𝑔′(𝜏(𝜃)) 𝜏(𝑖)(𝜃) = 0, 𝑖 = 3, … (A.21c)

where 𝑝𝑖 are polynomials. Recalling that |𝑔′(𝜃)| ⩾ 𝓁|𝜃| for all 𝜃 ∈ 𝐑, we can therefore divide the
equations in appendix A.21 by 𝑔′(𝜏(𝜃)) to obtain expressions for the derivatives 𝜏(𝑖)(𝜃), which
are valid when 𝜃 ≠ 0. From these expressions, it is then easy to obtain the desired bounds. For
example, if we have already shown that ‖ e−𝜇1𝜃2 𝜏′‖∞ < ∞, which follows from (A.21a), then
from (A.21b) we obtain, using the fact that 𝜃2 = 𝑔(𝜏(𝜃)) ⩾

𝓁

2
|𝜏(𝜃)|2,

|𝜏′′(𝜃)| ⩽ 2 + |𝑔′′(𝜏(𝜃)) |(𝜏′(𝜃))2|𝑔′(𝜏(𝜃))| ⩽
2 + 𝐶 e𝑟2|𝜏(𝜃)|2 e2𝜇1𝜃2

𝓁|𝜏(𝜃)|
⩽
2 + 𝐶 e

2𝑟2
𝓁
𝜃2
e2𝜇1𝜃

2

𝓁|𝜏(𝜃)| ⩽ 𝐶 e

(
2𝑟2
𝓁
+2𝜇1

)
𝜃2 if |𝜃| ⩾ 1,

where 𝐶 is a constant changing from occurrence to occurrence. The last inequality is justified
because max|𝜃|⩾1 |𝜏(𝜃)| > 0. Because 𝜏′′ is continuous and the set {𝜃 ∶ |𝜃| ⩽ 1} is compact, this
shows the existence of 𝜇2 ∈ 𝐑 that ‖𝜏′′(𝜃) e−𝜇2𝜃2‖∞ < ∞. ■
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