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A B S T R A C T

The macroscopic properties of materials that we observe and exploit in engineering application
result from complex interactions between physics at multiple length and time scales: electronic,
atomistic, defects, domains etc. Multiscale modeling seeks to understand these interactions by
exploiting the inherent hierarchy where the behavior at a coarser scale regulates and averages
the behavior at a finer scale. This requires the repeated solution of computationally expensive
finer-scale models, and often a priori knowledge of those aspects of the finer-scale behavior
that affect the coarser scale (order parameters, state variables, descriptors, etc.). We address this
challenge in a two-scale setting where we learn the fine-scale behavior from off-line calculations
and then use the learnt behavior directly in coarse scale calculations. The approach builds
on the recent success of deep neural networks by combining their approximation power in
high dimensions with ideas from model reduction. It results in a neural network approximation
that has high fidelity, is computationally inexpensive, is independent of the need for a priori
knowledge, and can be used directly in the coarse scale calculations. We demonstrate the
approach on problems involving the impact of magnesium, a promising light-weight structural
and protective material.

. Introduction

The macroscopic behavior of materials is the end result of mechanisms operating over a wide range of length and time
cales, where mechanisms at the larger scales both filter (average) and modulate (set the boundary condition) those at the lower
cales (Phillips, 2001). The development and optimization of new material/structural systems therefore require an understanding of
he various mechanisms and their interactions across the scales. While each mechanism has been studied by developing models at an
ndividual scale: density functional theory at the electronic scale (Giustino, 2014), molecular dynamics at the atomistic scale (Finnis,
010), defect models at the nanoscale (Bulatov and Cai, 2013), crystal plasticity at the sub-grain scale (Asaro, 1983), empirical
nelastic theories at the engineering scale (Gurtin et al., 2013) etc., recent work has focused on multiscale modeling that seeks to
nderstand the behavior across multiple scales (Fish, 2009; de Borst and Ramm, 2011). The entire range of material behavior is
irst divided into a hierarchy of scales (Van Der Giessen et al., 2020), the relevant mechanisms at each scale are identified and
nalyzed using theories/tools based on an individual scale, and the hierarchy is stitched together by passing information between
cales. While the mathematical theory of homogenization (Bensoussan et al., 2011; Pavliotis and Stuart, 2008) provides a concrete
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basis in specialized situations, the underlying conceptual framework has been adopted broadly. Importantly, multiscale modeling
has explained experimental observations where empirical models have failed (e.g. strength of solids in extreme conditions Barton
et al., 2011).

One widely used approach is the sequential multiscale or parameter passing method which extends the empirical approach by
valuating parameters in the coarse model using information from lower scale models (E, 2011). Examples include training atomistic
odels from first principles (Cheng et al., 2019), inferring defect kinetics from atomistic simulations (Fu et al., 2005), and fitting
acroscopic plasticity models from crystal plasticity calculations (Balasubramanian and Anand, 2002). While the coarse model

an be derived in some situations (e.g. linear elasticity Bensoussan et al., 2011), it has to be postulated a priori in most situations.
Another approach, with greater fidelity, is the concurrent multiscale method that evaluates mechanisms operating at different scales
in parallel so that the small and large scale models are computed concurrently. Examples include the Car–Parrinello molecular
dynamics (Car and Parrinello, 1985), the quasicontinuum method (Tadmor et al., 1996), and the FE2 approach (Feyel and Chaboche,
000). However, concurrently evaluating the mechanisms across scales is expensive and can exceed the present computational power
or analyzing practical engineering problems. Further, it is often necessary to postulate a priori the descriptors (state or internal

variables, order parameters) by which the coarser and finer scale models communicate. The existence and identification of such
descriptors are far from clear, especially in time-dependent phenomena (Bhattacharya, 1999).

In short, the practical implementation of the multiscale modeling of materials suffers from two challenges. The first is that one
often needs a priori or empirical knowledge about the interaction between models at various scales. The second, especially in the
concurrent multiscale approach, is the need to repeatedly solve the expensive finer scale model only to use a very small portion of
the information. This naturally raises the question: how can the data generated by repeatedly solving the finer scale model be utilized to
create a computationally efficient surrogate of its solution operator, that can directly be used at the coarser scale with no further modeling?

Machine-learning and especially deep neural networks have been extremely successful in image recognition (LeCun et al., 1995;
He et al., 2016) and natural language processing tasks (Goldberg, 2017; Collobert and Weston, 2008). There is also a growing
literature on the use of machine-learning methods in multiscale modeling of materials. It has been used in developing atomistic
models from quantum mechanical calculations significantly expanding the scope of parameter passing approaches (Marchand et al.,
2020; Cole et al., 2020; Wen and Tadmor, 2019). Within continuum models, machine learning has been used to identify a reduced
basis (using K-means clustering for example) which is then used to efficiently solve partial differential equations including unit
cell problems (Liu et al., 2016; E and Yu, 2018; Raissi et al., 2019). Machine-learning methods have also been used to learn the
homogenized behavior of unit cell problems in linear elasticity, and the homogenized properties have been used in larger scale
problems (Liu et al., 2019; Liu and Wu, 2019; Saha et al., 2021; Bessa et al., 2017). Similarly, unit cell properties have been learned
from atomistic (Xiao et al., 2020) and quantum mechanical calculations (Teh et al., 2021) and used in continuum calculations (Xiao
et al., 2020). Turning now to time-dependent phenomena, Mozaffar et al. (2019) have used a recurrent neural network to learn
the homogenized stress–strain relation of a representative volume element governed by standard isotropic plasticity for moderate
strains (up to 8%).

In this work, we develop a framework to answer the question raised above in problems involving the impact of a polycrystalline
inelastic solid in a two-scale setting. We introduce the two-scale problem, and describe our overall approach in Section 2. A critical
challenge is that material models are described as partial differential equations that map inputs from one function space (e.g. average
strain history) to outputs on another function space (correspondingly, the resulting stress history). While typical approaches use a
finite-dimensional subspace obtained by discretization to solve these problems, it is desirable for the learnt map to be independent
of the particular discretization or resolution.

We apply the framework to crystal plasticity adapted to include twinning motivated by the light-weight structural material
magnesium. Magnesium is the lightest of all structural materials, and has amongst the highest strength-to-weight ratio. Therefore,
it is of interest in bio-medical, automotive, and protective applications (Joost and Krajewski, 2017; Kulekci, 2008; Chen et al.,
2016). It is hexagonal-closed-packed with a variety of deformation modes including soft basal slip, a relative soft tensile twin,
hard pyramidal and prismatic slip systems. The diversity and complexity of the deformation modes make the overall response of
polycrystalline medium quite complex and of considerable interest to multiscale modeling (e.g., Chang and Kochmann, 2015; Ravaji
and Joshi, 2021; Yaghoobi et al., 2021).

We show the ability of our machine-learned approximation to learn the overall behavior of a representative volume over a wide
range of trajectories leading up to strains as large as 50%. We also show how the machine-learned approximation can learn physics
like material symmetry and causality from the underlying data. We use the machine-learned approximation to study macroscopic
impact problems in Section 4. We show that it is possible to solve macroscopic problems with the fidelity of concurrent multiscale
modeling and beyond (because we do not need a priori identification of state variables) at a computational cost that is a only few
times greater than that of solving the problem with an empirical model and orders of magnitude smaller than solving the problem
with concurrent multiscale modeling. We conclude with a brief discussion in Section 5.

2. Broad overview of our approach

Consider a heterogeneous body occupying the region 𝛺 ⊂ R𝑑 , 𝑑 = 2, 3 in the reference configuration. We are interested in
situations where the ratio 𝜀 of the scale of the heterogeneity to that of the body is small. Let 𝑢 ∶ 𝛺 → R𝑑 denote the deformation
nd 𝐹 = ∇𝑢 the deformation gradient. The state of the body is described by a set of internal variables 𝜉 ∶ 𝛺 → R𝑚 and the

𝜀 𝑑×𝑑 𝑚 𝑑×𝑑
2

deformation gradient. The constitutive relation is described by the (Piola–Kirchhoff) stress function 𝑆 ∶ R ×R ×𝛺 → R and
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a kinetic relation 𝐾𝜀 ∶ R𝑑×𝑑 × R𝑚 × R𝑚 ×𝛺 → R𝑚 that describes the evolution of the internal variables. Let 𝜌𝜀 ∶ 𝛺 → R denote the
(referential) density.

Given 𝑢0, 𝑣0, 𝑢∗, 𝑠∗, the displacement 𝑢𝜀 and internal variables 𝜉𝜀 are given by the solution of the system

∇ ⋅ 𝑆𝜀 = 𝜌𝜀𝑢𝜀𝑡𝑡 on 𝛺 (1)

𝐾𝜀 = 0 on 𝛺 (2)

𝑢𝜀(𝑥, 0) = 𝑢0(𝑥), 𝑢𝜀𝑡 (𝑥, 0) = 𝑣0(𝑥), 𝜉𝜀(𝑥, 0) = 𝜉0 on 𝛺 (3)

𝑢𝜀(𝑥, 𝑡) = 𝑢∗(𝑥, 𝑡) on 𝜕1𝛺 (4)

𝑆𝜀(∇𝑢𝜀, 𝜉𝜀, 𝑥)𝑛(𝑥) = 𝑠∗(𝑥, 𝑡) on 𝜕2𝛺 (5)

where 𝜕1𝛺 ∪ 𝜕1𝛺 = 𝜕𝛺. (1) is the equation of motion, (2) the kinetic relation that describes the evolution of the internal
variables, (3) the initial condition and (4), (5) the boundary conditions. Note that the displacement and internal variables oscillate
on a scale smaller than 𝜀 and we emphasize this with the superscript. In this work, we consider an almost periodic medium
where 𝑆𝜀(𝐹 , 𝜉, 𝑥) = 𝑆(𝐹 , 𝜉, 𝑥, 𝑥∕𝜀), 𝐾𝜀(𝐹 , 𝜉, 𝜉𝑡, 𝑥) = 𝐾(𝐹 , 𝜉, 𝜉𝑡, 𝑥, 𝑥∕𝜀), 𝜌𝜀(𝑥) = 𝜌(𝑥, 𝑥∕𝜀) where 𝑆 ∶ R𝑑×𝑑 × R𝑚 × 𝛺 × 𝑌 → R𝑑×𝑑 ,
𝐾 ∶ R𝑑×𝑑 × R𝑚 × R𝑚 ×𝛺 × 𝑌 → R𝑚, 𝜌 ∶ 𝛺 × 𝑌 → R are periodic with period 𝑌 (|𝑌 | = 1) in their last variable.

We now show that the solution to this problem which has to be resolved on the fine scale 𝜀 may be approximated with that of
the macroscopic problem

∇ ⋅ �̄� = �̄�𝑢𝑡𝑡 on 𝛺 (6)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑣0(𝑥) on 𝛺 (7)

𝑢(𝑥, 𝑡) = 𝑢∗(𝑥, 𝑡) on 𝛤1 (8)

�̄�𝑛(𝑥) = 𝑠∗(𝑥, 𝑡) on 𝛤2 (9)

where the stress �̄� and displacement 𝑢 are smooth on the scale of 𝜀, for an appropriate macroscopic constitutive behavior or closure
relation

 ∶ {𝐹 (𝜏) ∶ 𝜏 ∈ (0, 𝑡)} ↦ �̄�(𝑡) 𝑡 ∈ (0, 𝑇 ) (10)

that describes how the macroscopic stress �̄� depends on the history of the macroscopic deformation gradient consistent with the
fine scale problem.

To do so, we rewrite (1), (4), (5) as

∫𝛺
𝑆𝜀 ⋅ ∇𝑤𝑑𝑥 − ∫𝜕2𝛺

𝑠∗ ⋅𝑤 = ∫𝛺
𝜌𝜀𝑢𝜀𝑡𝑡 ⋅𝑤𝑑𝑥 ∀ 𝑤 (11)

and make the two-scale ansatz1

𝑢𝜀(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝜀𝑢1(𝑥, 𝑥∕𝜀, 𝑡) + 𝜀2𝑢2(𝑥, 𝑥∕𝜀, 𝑡) +… (12)

𝜉𝜀(𝑥, 𝑡) = 𝜉0(𝑥, 𝑥∕𝜀, 𝑡) + 𝜀𝜉1(𝑥, 𝑥∕𝜀, 𝑡) +… (13)

where 𝑢𝑗 (𝑥, 𝑦, 𝑡) is periodic in 𝑦 with period 𝑌 for any 𝑗 = 1, 2,… . Note that

𝑆𝜀 = 𝑆(∇𝑥𝑢0 + ∇𝑦𝑢1, 𝜉0, 𝑥, 𝑦) +… , 𝐾𝜀 = 𝐾(∇𝑥𝑢0 + ∇𝑦𝑢1, 𝜉0, 𝜉0𝑡 , 𝑥, 𝑦) +… . (14)

Taking a test function of the form

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + 𝜀𝑤1(𝑥, 𝑥∕𝜀, 𝑡) + 𝜀2𝑤2(𝑥, 𝑥∕𝜀, 𝑡) +… (15)

where 𝑤𝑗 (𝑥, 𝑦, 𝑡) is periodic in 𝑦 with period 𝑌 for any 𝑗 = 1, 2,… , we obtain

∫𝛺
𝑆𝜀 ⋅ (∇𝑥𝑤0 + ∇𝑦𝑤1)𝑑𝑥 − ∫𝜕2𝛺

𝑠∗ ⋅𝑤0 = ∫𝛺
𝜌𝜀𝑢0𝑡𝑡 ⋅𝑤

0𝑑𝑥 ∀ 𝑤0, 𝑤1. (16)

Integrating this over 𝑌 , we obtain

∫𝛺
⟨𝑆𝜀⟩ ⋅ ∇𝑥𝑤0𝑑𝑥 − ∫𝜕2𝛺

𝑠∗ ⋅𝑤0 = ∫𝛺
⟨𝜌𝜀⟩𝑤0

𝑡𝑡 ⋅𝑤
0𝑑𝑥 ∀ 𝑤0, (17)

∫𝛺 ∫𝑌
𝑆𝜀 ⋅ ∇𝑦𝑤1𝑑𝑦 𝑑𝑥 = 0 ∀ 𝑤1 (18)

where ⟨⋅⟩ denotes the average over the unit cell 𝑌 . The first Eq. (17), initial conditions (3)2,3, and boundary conditions (4), (5)
define the macroscopic problem (6)–(9). We treat 𝑥, 𝐹 = ∇𝑥𝑢0, and 𝑡 as parameters in the second Eq. (18) and obtain the unit cell
problem:

∇ ⋅ 𝑆(𝐹 + ∇𝑣, 𝜉, 𝑥, 𝑦) = 0 on 𝑌 (19)

1 We ignore the displacement boundary condition (4) to simplify the treatment, but can incorporate it using a boundary layer.
3
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𝐾(𝐹 + ∇𝑣, 𝜉, 𝜉𝑡, 𝑥, 𝑦) = 0 on 𝑌 (20)

𝜉(𝑦, 0) = 𝜉0(𝑦) on 𝑌 (21)

𝑣 periodic. (22)

Now, given 𝜉0, the solution to this unit cell problem defines the requisite macroscopic closure relation (10) with �̄� = ⟨𝑆𝜀⟩ for the
macroscopic problem.

It is common to specify the stress function in terms of the Cauchy stress 𝜎 = (det 𝐹 )−1𝑆𝐹 𝑇 which is symmetric. Further, the
underlying physical models 𝑆,𝐾 are invariant under a change of frame and so is the map (10). It follows that  ∶ {𝑅(𝜏)𝐹 (𝜏), 𝜏 ∈
(0, 𝑡)} ↦ 𝑅(𝑡)⟨𝑆⟩(𝑡) for any time-dependent rotation 𝑅(𝑡). According to the polar decomposition theorem, the deformation gradient
𝐹 = 𝑅𝑈 where 𝑅 is a rotation and 𝑈 is positive definite-symmetric. Therefore, it suffices to specify the equivalent constitutive
behavior or closure relation

̄ ∶ {𝑈 (𝜏) ∶ 𝜏 ∈ (0, 𝑡)} ↦ ⟨𝜎⟩(𝑡) 𝑡 ∈ (0, 𝑇 ). (23)

Now, the implementation of the multiscale problem above requires the calculation of the map ̄ , and therefore the unit cell
problem at each macroscopic point 𝑥 and at each instant 𝑡; this is extremely expensive. Our idea is to learn the macroscopic constitutive
behavior using model reduction and deep neural networks following the approach of Bhattacharya et al. (2020) by utilizing data
generated by solutions of the unit cell problem over various strain histories obtained from an appropriate probability distribution in
the space of strain histories. To do so, we observe that the unit cell problem in fact specifies the map

𝛹 ∶ {𝑈 (𝑡) ∶ 𝜏 ∈ (0, 𝑇 )} ↦ {⟨𝜎⟩(𝑡) ∶ 𝑡 ∈ (0, 𝑇 )}. (24)

for some 𝑇 > 0. Further, the underlying equations and therefore this map is causal, i.e., ⟨𝑆⟩(𝑡) depends only on {𝐹 (𝜏) ∶ 𝜏 ∈ (0, 𝑡)}.
inally, any map of the form (24) that is causal uniquely defines a map of the form (23). Therefore, we learn 𝛹 which maps one
unction to another.

The map 𝛹 ∶ 𝐿2((0, 𝑇 );R𝑑(𝑑+1)∕2) → 𝐿2((0, 𝑇 );R𝑑(𝑑+1)∕2) is one between infinite dimensional Hilbert spaces. However, the data is
iscretized and standard neural networks are defined as maps between finite-dimensional spaces. Thus we seek a finite dimensional
pproximations of these infinite-dimensional spaces. Further, we want our approximation and our architecture to be independent
f any specific discretization. To that end, we seek maps 𝑝𝑖 ∶ 𝐿2 → R𝑑𝑖 and 𝑝𝑜 ∶ 𝐿2 → R𝑑𝑜 that reduces (project) the input and

output spaces and maps 𝓁𝑖 ∶ R𝑑𝑖 → 𝐿2 and 𝓁𝑜 ∶ R𝑑𝑜 → 𝐿2 that lift them back up such that 𝑝𝑖◦𝓁𝑖 ≈ 𝑖𝑑, 𝑝𝑜◦𝓁𝑜 ≈ 𝑖𝑑. We then find an
pproximate map 𝜓 ∶ R𝑑𝑖 → R𝑑𝑜 such that

𝛹 ≈ 𝓁𝑜◦𝜓◦𝑝𝑖. (25)

In this work, we use principal component analysis (PCA) (Wold et al., 1987) to specify the maps 𝑝𝑖, 𝑝𝑜 and a fully-connected
eep neural network with 𝑀 layers to approximate 𝜓 :

𝜓(𝑠) = 𝑊𝑀 ...𝜔(𝑊2𝜔(𝑊1(𝑠) + 𝑏1) + 𝑏2)... + 𝑏𝑀 , 𝑠 ∈ R𝑑𝑖 , (26)

here 𝑊1,… ,𝑊𝑀 are the weight matrices, 𝑏1,… , 𝑏𝑀 are the bias vectors, and 𝜔 is the scaled exponential linear unit (SELU) (Klam-
auer et al., 2017) with scaling constants 𝜒 = 1.67 and 𝛽 = 1.05. We approximate the PCA specified maps by a standard
VD algorithm and the weight and bias parameters of the neural network with standard stochastic gradient based minimization
echniques (Bhattacharya et al., 2020).

This learnt approximate map replaces the constitutive relation in a macroscopic integrator. The approach is summarized in
lgorithm 1.

emarks

. The proposed approach does not require any explicit macroscopic constitutive relation. Instead, the constitutive behavior is
mplicitly defined by the unit cell problem (19)–(22). We learn the solution of this problem using a neural network, and this neural
etwork acts as the constitutive relation in macroscopic problems. Similarly the proposed approach does not require any macroscopic
nternal variable (descriptor of the macroscopic state of the material) (Rice, 1971). These aspects are distinct from almost all other
pproaches, traditional and multiscale.

In the traditional approach, we do not consider the full problem but postulate the existence of an empirical macroscopic internal
ariable 𝜁 ∶ 𝛺 → R𝑚′ and macroscopic constitutive relations �̃� ∶ R𝑑×𝑑 ×R𝑚′ ×𝛺 → R𝑑×𝑑 , �̃� ∶ R𝑑×𝑑 ×R𝑚′ ×R𝑚′ ×𝛺 → R𝑚′ , and to solve
he macroscopic problem (6)–(9) supplemented with the macroscopic kinetic relations �̄� = 0, 𝜁(𝑥, 0) = 0 on 𝛺. It is computationally
nexpensive, but relies on limited empirical knowledge and makes no explicit use of the micro-scale physics.

Such an approach can be justified using homogenization theory in linear elasticity and with limitations (away from long
avelength instabilities) in finite elasticity, i.e. in theories where we do not have any internal variables. However, the rigorous

ustification remains an open problem in models with internal variables including plasticity. Indeed, the strict statement, in
articular, the existence of a properly defined macroscopic internal variable, is likely false with pinning, memory effects, mixing of
nergetic and kinetic terms etc., but may hold in some approximate sense. Further, even if the original full problem depends on the
ate of change of the internal variable, the macroscopic constitutive functions may depend on the history of the deformation.

In the parameter passing multiscale approach, we solve the unit cell problem under various conditions and use the solutions to
̃ ̃
4

omplement empirical data in the development of 𝑆,𝐾. This is an exercise in regression, and well-suited for machine learning (Liu
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Algorithm 1: Overview of the learning based multiscale modeling.
Off-line (once for any material)
Solve the unit cell problem for various trajectories 𝑈 (𝑡), 𝑡 ∈ (0, 𝑇 )
Use this data to train the approximation (25)

Online (for each simulation)
Initialize
Discretize the macroscopic problem in space using finite elements.
Discretize the macroscopic problem in time and use an explicit macroscopic integrator.
while 𝑡𝑛 ≤ 𝑇 do

At each quadrature point:
The integrator provides the deformation history {𝐹𝑚}𝑚≤𝑛.
Use the polar decomposition theorem 𝐹𝑚 = 𝑄𝑚𝑈𝑚, 𝑚 = 1,… , 𝑛.
Generate a trajectory 𝑈 (𝑡) consistent with the history {𝑢𝑚}𝑚≤𝑛.
Use the learnt approximation (25) to obtain the Cauchy stress history ⟨𝜎⟩(𝑡).
Return the appropriately oriented stress 𝑄𝑛⟨𝜎⟩(𝑡𝑛)𝑄𝑇𝑛 to the integrator.

Update the deformation using the macroscopic integrator.
end

et al., 2019). This approach can be relatively computationally inexpensive and it incorporates some microscale physics. However,
it still relies on limited empirical knowledge and postulates the existence and identification of the macroscopic internal variable
(descriptors) 𝜁 and constitutive functions �̃�, �̃�.

In the concurrent multiscale approach, we integrate the macroscopic problem as in our proposed method, but solve the unit problem
at each quadrature point for every point in the time interval of interest with initial data 𝜉0 based on the macroscopic internal variable
. Thus, it does not postulate the existence of �̃�, �̃�, but requires the a priori identification of a macroscopic internal variable 𝜁
nd the relation between 𝜉 and 𝜁 . This can be challenging because the approach entails the ‘inverse homogenization’ problem of
enerating a representative state of the microscopic internal variables given a macroscopic internal variable. Although the method
akes extensive use of the microscopic physics with little need for empirical input, it is extremely computationally expensive.
. We can, in principle, learn 𝛹 directly from experimental data (e.g. Jordan et al., 2020 for the viscoelastic response of
olypropylene) rather than the solution of a lower scale model on a unit cell if sufficient experimental data were available. Similarly,
e do not need to solve the unit cell problem, but use an approximate method at that scale. We demonstrate this later by replacing

he unit cell problem with a Taylor model i.e. assuming that 𝑣 = 0 in the unit cell problem.
3. We use PCA for our model reduction 𝑝𝑖, 𝑝𝑜 and a deep neural network for the approximate map 𝛹 . We can replace these with
ther model reduction (e.g. auto-encoders, k-means clustering) and machine learning architectures (e.g. convolutional networks,
andom features).
. The model-reduction step, implemented in this work with PCA, is an essential component of the proposed framework for a
umber of reasons. The first is conceptual. We seek to approximate 𝛹 in (24) that is a mapping from one infinite dimensional
unction space to another. Since neural nets is a map from one finite dimensional space to another, there is an essential need for a
odel reduction step. Indeed, any discretization would be a model reduction. The question then is to find a good finite dimensional

pace (discretization) for given data, and PCA is a natural choice.
The second reason is that we want the approximation to be independent of the discretization that is used to generate the data to

rain the approximation. We may want to accumulate training data from multiple sources and they may not all be generated using
he same discretization. More importantly in the current work, we want to use the approximation in macroscale simulations, and we
ant to choose the discretization (time-step) of the macroscale simulation to be relevant to that calculation and not be limited to the
iscretization (time-step) used to generate the data. It is shown in Bhattacharya et al. (2020) that when a neural network is trained
irectly from the discretized data without using the PCA, the quality of the approximation is discretization dependent and there can
e large errors when a neural network trained at one discretization is used at another (Figures 4.3(a) and 4.6(a) in Bhattacharya
t al., 2020). In contrast, the approach presented above with the PCA leads to a discretization-independent approximation as we
how in Fig. 1(d).

Third, the size of training data required for accurately training a neural network depends on the input and output dimensions.
onversely, for a given size of the data set, the error of the neural network approximation increases with the dimensions. So model
eduction through PCA actually helps control the overall error of the approximation when the size of the training data is fixed. It
s shown in Figures 4.3(a) and 4.6(a) in Bhattacharya et al. (2020) that while the error initially decreases with increasing reduced
imension, it eventually increases beyond a certain size when the size of the training data is held fixed.

The final reason is practical. We are interested in highly nonlinear phenomena like crystal plasticity where one needs fine time-
teps for accuracy. This means that the data have very high dimensions. In the example we study subsequently, we use a temporal
esolution of 105 to generate the data, and it is simply not practically feasible to obtain the data necessary to train a neural network
etween R105 and R105 . More importantly, it is not necessary, as we shall show in our example, since the PCA error is small compared
5

o the overall error.
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We refer the reader to Theorems 3.1, 3.4 and 3.5 of Bhattacharya et al. (2020) for a characterization of the relative errors.
. The proposed approach requires that we train a neural network over the entire duration 𝑇 of any simulation, and this may be

unknown a priori. There are two reasons for this requirement. First, we do not carry any information about the state of the material,
but only the average deformation gradient versus the average stress. Second, we do not make any assumption on fading memory.
Learning these aspects from the data gathered by the simulations of the unit cell is interesting, but beyond the scope of the current
work.
6. The cost of the approach has two components. The first is the one-time off-line cost of generating the data and training the
neural network. This typically scales linearly with the period over which the neural network needs to be trained, the number of
simulations in the training data set, and the number of epochs of training required. The latter two may also depend on the first, and
this remains to be understood. In the examples we study, the number of simulations required to train a neural network is similar
to the number of quadrature points in a typical sample. For this reason, our off-line cost is similar to that of a single simulation
of the concurrent multiscale approach. The second is the online cost of evaluating the neural network during the simulation. This
is typically small compared to the cost of the macroscopic time integration, but can scale quadratically with the period of the
simulation since the evaluation of the stress at any instant requires the evaluation of the entire trajectory. Our examples show that
the cost of the evaluation is a few times the cost of evaluating an empirical constitutive relation; however, we are able to take large
time steps with the macroscopic integrator since we know the entire trajectory in our approach.
7. Our approach requires us to store the history of deformation. However, since we use model reduction, we do not need to store
the trajectory for every time step but only require sampling it sufficiently to reconstruct the history. This enables us to manage
memory.

3 Learning crystal plasticity

We demonstrate our approach by studying the inelastic deformation of polycrystalline solids.

3.1 The unit cell problem: crystal plasticity with twinning

A polycrystal is a medium made of a collection of disjoint subdomains or grains. Each grain is made of the same material, but
the orientation of the grain may differ with respect to a reference frame. We specify the texture (number, size and orientations) of
the grains in the unit cell by a (piece-wise) rotation-valued orientation function 𝑄 ∶ 𝑌 → 𝑆𝑂(𝑑). The behavior of the material at a
oint 𝑦 is given by that of a reference material rotated by 𝑄(𝑦): 𝑆(𝐹 , 𝜉, 𝑥, 𝑦) = 𝑆𝑟(𝐹𝑄(𝑦), 𝜉𝑄(𝑦)), 𝐾(𝐹 , 𝜉, �̇�, 𝑥, 𝑦) = 𝐾𝑟(𝐹𝑄(𝑦), 𝜉𝑄(𝑦), �̇�𝑄(𝑦))
here 𝜉𝑄 is the action of the rotation 𝑄 on the internal variable 𝜉, and 𝑆𝑟, 𝐾𝑟 describe the behavior in the reference material.

Crystalline solids can undergo plastic or inelastic deformation governed by slip on one of 𝑛𝑠 slip systems and twinning on one of
𝑡 twin systems. The kinetic relation 𝐾𝑟 describes how the internal variables — the crystallographic orientation 𝑄, the total inelastic
eformation gradient 𝐹in ∈ R𝑑×𝑑 , the slip activity 𝛾 = {𝛾𝛼}

𝑛𝑠
𝛼=1 in the 𝑛𝑠 slip systems, and the twin volume fractions 𝜆 = {𝜆𝛽}

𝑛𝑡
𝛽=1 in

he 𝑛𝑡 twin systems that satisfy 𝜆𝛽 ∈ [0, 1],
∑

𝛽 𝜆𝛽 = 1 – evolve. The details of the model following Chang and Kochmann (2015) are
rovided in Appendix. We study two versions of this model.

DFFT The first is in two dimensions, has two slip systems and no twinning i.e., 𝑛𝑠 = 2, 𝑛𝑡 = 0 (details in Appendix). The initial
exture consists of 16 grains generated using periodic Voronoi tessellation (Fritzen et al., 2009). The corresponding full-field unit
ell problem is solved using a fast Fourier transformation scheme following Vidyasagar et al. (2017).

DTaylor The second is in three dimensions and motivated by magnesium which is of current interest as a lightweight structural
aterial. The detailed slip and twin systems, and the associated parameters are given in Appendix. We do not solve the unit cell
roblem, but use the Taylor averaging assumption that the deformation gradient is uniform in the unit cell (𝑣 = 0) (Kocks et al.,
000). We use an initial texture of 128 randomly oriented grains.

.2 Learning crystal plasticity

The first task is to generate the data, and this requires sampling 𝐿2((0, 𝑇 );R𝑑(𝑑+1)∕2). We seek a strain path that is smooth but
changes direction arbitrarily. To that end, we divide (0, 𝑇 ) into 𝑁 intervals 𝛥𝑡𝑛 = 𝑡𝑛− 𝑡𝑛−1, 𝑛 = 1,…𝑁 where 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇
nd set (𝑈𝑖𝑗 )𝑛 = (𝑈𝑖𝑗 )𝑛−1 + 𝜈𝑛𝑈𝑚𝑎𝑥

√

𝛥𝑡𝑛, 𝑖, 𝑗 = 1,… , 𝑑, 𝑖 ≤ 𝑗 where 𝜈𝑛 ∈ {−1, 1} follow a Rademacher distribution. We take 𝑈𝑖𝑗 (𝑡) to be
he cubic Hermite interpolation of {(𝑡𝑛, (𝑈𝑖𝑗 )𝑛)}. We take 𝑁 = 10 and study both fixed and random time intervals.

We begin with 2DFFT. We generate 6000 strain paths 𝑈 (𝑡) using random time steps and solve the unit cell problem for the
verage stress ⟨𝜎⟩(𝑡) for each of these paths using a spatial resolution of 64 × 64 and 1000 time steps. We then down sample the
ata to 200 time steps. A single sample of data consists of the pair {𝑈 (𝑡), ⟨𝜎⟩(𝑡)}. We reserve 2000 samples for testing and use
arious parts of the remaining 4000 for training. We use a PCA dimension of 32 × 3 for both the input and output spaces (here
(𝑑 + 1)∕2 = 3). We define the test error as the 𝐿2 norm of the error in predicted stress history normalized by the 𝐿2 norm of the
tress history.

The results are shown in Fig. 1. Fig. 1(a) shows that the test error (averaged over all test specimens) decreases with increasing
mounts of training data and training epochs reaching an average of 5% for a training size of 3200 in 400 epochs. Figs. 1(b,c) shows
6

he input and output (both truth and approximation) for typical test and training samples with a neural network trained over 3200
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Fig. 1. Deep learning approximation of 2D crystal plasticity. (a) Average test error for various training sample sizes and training epochs. (b) Typical sample
from training set. (c) Typical sample from test set, (d) Test error vs. resolution of the input and output. (e) Test for uniaxial strain loading. (f) Test for uniaxial
strain load–unload. (g) Test for shear (cavity expansion).

samples and 500 epochs. We conclude that our model reduction approach is able to learn a very accurate approximation of the map
𝛹 .

Fig. 1(d) shows that we learn the behavior of the continuum model and is not tuned to any specific discretization used at the
micro level. For a given continuous input 𝑈 (𝑡), we generate additional test samples (both input and output) with various time
discretization from 50 to 1000 steps, and compare the error of the approximation trained with the original training set. The figure
shows that the error is independent of this resolution. The figure also shows that the error depends on the dimension of the PCA
reduction, decreasing with increasing dimension till it saturates at the dimension of the training data. Finally, the figure shows the
error due to PCA alone, and shows that the error of the learnt model is a few times that of the error of PCA.

Figs. 1(e–g) show that the network trained using our protocol with random time steps provides a very accurate approximation of
the map 𝛹 in strain paths commonly encountered in practice. These include uniaxial strain 𝑈11 = 𝑓 (𝑡), 𝑈22 = 1∕𝑓 (𝑡) and 𝑈23 = 0 in
Fig. 1(e) for loading only when 𝑓 (𝑡) = 𝑐𝑡, 𝑐 ∈ (0, 1) and Fig. 1(f) for loading unloading where 𝑓 (𝑡) = 𝑐𝑡, 𝑡 ∈ (0, 0.5); 𝑓 (𝑡) = 𝑐(𝑡−0.5), 𝑡 ∈
(0.5, 1) and for Fig. 1(g) shear 𝑈11 = (𝑈22)−1 = 1∕

√

1 + 𝑐𝑡2 (that we encounter in cavity expansion).
We use the same sampling of strain paths to obtain data in 3D, but using Taylor averaging.
7
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Table 1
Table of all training we have conducted.

Table 2
Comparison of computation cost (wall-clock time in seconds)

We have conducted various tests of both the 2DFFT and 3DTaylor and the results are gathered in Table 1. Cases 1–5, 11–12, 22–24
show that training with random time-steps is effective even when tested against other strain paths in both 2DFFT and 3DTaylor.
Fixed time step does well against data with fixed time step but poorly against other data (case 5–7. 13–14). Comparison between
case 11 and 19 shows that we need more training data as the maximum strain increases. Cases 19–21 shows that increasing the PCA
dimension reduces the error. Putting these together, we conclude that using random time steps is effective even when tested against
other strain paths, while using fixed time steps only performs well on data generated with the same fixed time step but poorly on
different data.

Finally cases 9 and 23 show that the approximation error is independent of the rate exponent.

Causality Recall that causality is essential to specify the necessary constitutive information (23) from mapping (24) that we
approximate. While our model and the resulting data is causal, the architecture we use is not restricted to be causal. Fig. 2
8
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Fig. 2. Causality. (a) Test against five strain paths that diverge at 𝑡 = 0.5. (b) Test against five strain paths that diverge at different instances of time.

Fig. 3. Isotropy. (a) Schematic of the boundary condition. (b) Tensile stress at local coordinate with 𝜃 in the range of [0, 30◦ , 60◦ ,… , 360◦].

demonstrates that the approximation trained from data that is causal automatically learns causality in the stress–strain relationship.
We consider two sets of test samples. In the first set, we consider five strain paths that are identical for 𝑡 ∈ (0, 0.5) and distinct for
𝑡 ∈ (0.5, 1). We observe in Fig. 2(a) that the approximation returns an identical stress response for 𝑡 ∈ (0, 0.5) and distinct stress
responses for 𝑡 ∈ (0.5, 1). In the second set, we consider five (uniaxial) strain paths where the strain increases linearly for 𝑡 ∈ (0, 𝑡𝑖)
for varying 𝑡𝑖, 𝑖 = 1,…5 and is then held constant. Fig. 2(b) shows that in all cases, the stress in the 𝑖th path follows identical paths
to those seeing the same data until time 𝑡𝑖, and then diverges.

Isotropy We have chosen 128 randomly oriented grains to generate our 3DTaylor data, and therefore we expect the overall behavior
to be almost isotropic. However, our architecture does not impose this. We now show that the approximation automatically learns
the isotropy from the data. We test the neural network trained with the 3D Taylor model (case 19 in Table 1) by applying uniaxial
tensile loading in the local (material coordinate) 𝑥′1−𝑥

′
3 formulated by rotating the global coordinate system 𝑥1−𝑥3 with an angle 𝜃

perpendicular to the 𝑥2 direction. Fig. 3 shows the stress–strain relation predicted by the trained approximation for various rotation
angles, and these are almost identical. Thus, the trained approximation learns isotropy from the data.

4 Application to impact problems

We now use the trained neural network for macroscopic calculations of two classical impact problems, both in three dimensions.
We implement the network trained using the 3DTaylor unit cell calculations (case 19 of Table 1) as a material model (‘‘VUMAT’’)
in the commercial finite element package (ABAQUS, 2014). We emphasize that the neural network is only trained once for all the
calculations presented below.

4.1 Taylor anvil test

A magnesium cylindrical impactor (of height 𝐻𝑇 = 5 mm and diameter 𝐷𝑇 = 1 mm) traveling with an initial velocity 𝑉 =
200 m/s impacts a rigid friction-less wall at time 𝑡 = 0 as shown schematically in Fig. 4(a). Fig. 4(c) shows the von Mises stress 𝜎 =
9
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Fig. 4. Typical results of a Taylor anvil test (a) Schematic. (b) Deformation of the impactor at t = 1 μs. (c–e) Snapshots an axial cross-section with the von
Mises stress measure (c), deviatoric strain measure (d) and volumetric strain measure (e).

√

3∕2|𝜎 − (tr𝜎)∕3𝐼| (where | ⋅ | denotes the Fröbenius matrix norm), Fig. 4(d) the deviatoric strain measure 𝑒𝑑 = |𝐹 𝑇𝐹∕(det𝐹 )2 − 𝐼|∕2
that indicates the evolution of the plastic deformation, and Fig. 4(e) the volumetric strain measure 𝑒𝑣 = det(𝐹 ) − 1 that indicates
the longitudinal elastic wave. Since the material is isotropic and geometry axisymmetric, the results are shown for an axial section.
Upon impact, an elastic wave first propagates into the impactor followed by a region of plastic deformation. We also have a release
wave moving in radially from the sides, leading to a complex radial distribution of the plastic deformation.

We repeat the calculation with various impact velocities and impactor geometries. Fig. 5(a) shows the effect of the initial velocity
𝑉 on the deformation of the impactor. The elastic wave propagates with similar velocity but increasing intensity, while the plastic
deformation increases with increasing velocity. The effect of changing the radius while keeping the height the same is shown in
Fig. 5(b) for an impact velocity of 𝑉 = 200 m/s. We see that the difference in the release wave from the sides changes the stress
and plastic deformation distributions.

4.2 Projectile impact on a plate

A cylindrical projectile of radius 𝐷𝑝 = 2 mm traveling at a velocity 𝑉 = 200 m/s impacts a large magnesium plate of thickness
𝐻𝑝 = 1 mm which is simply supported far away from the point of impact — see Fig. 6(a). The impacting cylinder is assumed to
be rigid and infinitely dense compared to the plate and thus unaffected by the impact. The deviatoric strain measure 𝑒𝑑 and the
von Mises strain 𝜎 are shown in Fig. 6(c) and (d) respectively. An elastic wave followed by a plastic wave propagates into the
10
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Fig. 5. Parametric study of the Taylor anvil test. Axial cross-section with the von Mises stress measure at 𝑡𝑠 = 1 for (a) different impact velocities 𝑉 and (b)
various aspect ratios �̂�𝑝 = 𝐻𝑇 ∕𝐷𝑇 .

plate and is reflected from the free-face. Subsequently, the plate becomes a wave guide with a radially expanding elastic and plastic
waves as the impactor penetrates into the plate.

Fig. 7 shows the results when we repeat the simulation with various impact velocities (Fig. 7(a)) and plate thicknesses (Fig. 7(b)).
The radially propagating elastic wave has the same velocity but increases in intensity with increasing impact velocity and decreasing
plate thickness. As the plate becomes thinner, we observe a change in the deformation mode with thin plates deforming in bending.
In particular, the plate begins to separate from the impactor at the center and the amount of plastic deformation is reduced.

4.3 Computational effort

The computational cost of the proposed method is compared with other approaches for the examples studied above in Table 2.
All calculations were preformed on a single core of Intel Skylake CPU (2.1 GHz) except the neural network training which was done
on a NVIDIA P100 GPU with 3584 CUDA cores with a 1.3 MHz clock (roughly, the Skylake CPU cost is bounded from above by 103

times the GPU cost). We do not conduct concurrent multiscale simulations, but we may estimate the cost as a product of the cost
of a unit cell problem, the number of elements and the number of time steps of the macroscopic problem.

We find that the online cost of our method is only about ten times that of the computational cost of using an empirical constitutive
law but orders of magnitude smaller than that of a concurrent multiscale method (with Taylor averaging). Further, the one-time
off-line cost of generating and training our approximation is comparable to that of a single calculation using a concurrent multiscale
method.

5 Discussion

We have presented a framework that enables the specification of the macroscopic constitutive behavior (or closure relation)
using microscopic computations combined with machine learning. In this framework, data is generated by the solution of a fine
scale model and is then used to train a surrogate which emulates the model’s solution operator. The surrogate is then directly
incorporated into coarse scale calculations. We have demonstrated in problems involving the impact of polycrystalline inelastic
solids that this approach can solve macroscopic problems with the fidelity of concurrent multiscale modeling and beyond (because
11
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Fig. 6. Typical results of a projectile impact on a plate (a) Schematic. (b) Deformation in 3D. (c–e) Snapshots an axial cross-section with the von Mises stress
measure (c), deviatoric strain measure (d) and volumetric strain measure (e).

Fig. 7. Parametric study of the plate impact test. Axial cross-section with von Mises stress measure at 𝑡 = 1 s for various (a) impact velocities 𝑉 and (b) plate
thicknesses �̂�𝑝 = 𝐻𝑝∕𝐷𝑝.

we do not need a priori identification of state variables) at a few times the computational cost of solving the problem with an
empirical model.

We demonstrated the framework using crystal plasticity, but it can easily be extended to other continuum multiscale phenomena
including composite materials, phase transitions, stress-assisted diffusion, and discrete dislocation dynamics. We can use our
framework in an iterated manner to study hierarchical phenomena involving multiple scales (Liu et al., 2021).

We conclude with a discussion of ideas to build on this framework. Our approach requires us to generate data over the
entire interval of time to capture the memory of multiscale systems, and this may prove limiting in very long-time computations.
12
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However, in typical phenomena, this memory fades and therefore one may only need a limited history. Such fading memory may
be incorporated using a recurrent neural network (RNN) structure (Medsker and Jain, 2001). This eliminates the need to track the
entire history, but potentially adds to the cost of training. This is similar to the approach of Mozaffar et al. (2019).

A closely related question is whether RNN and related methods can use the data to discover an underlying Markovian
acroscopic model by identifying appropriate macroscopic internal variables, delay kernels etc., which accurately describe the
istory-dependence. This would be exciting because it not only reduces computational cost but provides new insights into the
hysics.

We have studied examples where the microscopic model can be studied in the long-wavelength limit so that the unit cell problem
s over-damped. The extension to situations like granular materials and molecular dynamics where inertia is critical at the microscale
emains open.

Our proposed approach requires training a new approximation for every starting material. In our example of crystal plasticity,
e need to generate data and perform training for every initial texture, every set of parameters in the single crystal model. It will
e useful if we can learn this as a part of the training, i.e., extend the map ̄ ∶ {{𝑈 (𝜏) ∶ 𝜏 ∈ (0, 𝑡), 𝜉0}} ↦ ⟨𝜎⟩(𝑡) 𝑡 ∈ (0, 𝑇 ). This has
een successfully demonstrated in simple problems like Darcy flow (Bhattacharya et al., 2020), and remains a work in progress.

An important question is the inverse problem of inferring single crystal properties based on polycrystalline response. This has
ecently been addressed in Liu et al. (2021) using the framework of uncertainty quantification. A key step in that approach is
odeling the polycrystalline response, and that work used parameter passing. We can replace the parameter passing with the neural
etwork approximation proposed here for improved fidelity. A deeper approach is to include the single crystal parameters in the
ist of input variables, approximate the map from the single crystal parameters and deformation history to the stress history and use
his as the basis for the inverse problem. This remains a work in progress.

Finally, in this work we have generated our training data on strain paths that are smoothed random walks in strain space. This
as motivated by the fact that we expect strain paths to be fluctuating but relatively smooth in time in the problems we study. We
ave also shown that this sampling is in fact effective in the problems we study. However, the optimal distribution from which one
hould sample training data is an open question and an active subject of research. An alternate approach is to use active learning
here new training data is introduced on-line as the macroscopic calculation proceeds. It is unclear how effective the approach we
ropose in this work would be with active learning since the architecture depends on the data through the model reduction step.
o extending the approach to active learning is an important issue for the future.
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Appendix. Crystal plasticity with twinning

We consider the constitutive framework developed by Chang and Kochmann (2015). The internal variables are the crystallo-
raphic orientation 𝑄 ∈ 𝑆𝑂(𝑑), total inelastic deformation gradient 𝐹in ∈ R𝑑×𝑑 , the slip activity 𝛾 = {𝛾𝛼}

𝑛𝑠
𝛼=1 in the 𝑛𝑠 slip systems

and twin volume fractions 𝜆 = {𝜆𝛽}
𝑛𝑡
𝛽=1 in the 𝑛𝑡 twin systems that satisfy 𝜆𝛽 ∈ [0, 1],

∑

𝛽 𝜆𝛽 = 1. We introduce secondary internal
variables (accumulated plastic activity) {𝑒𝛼}

𝑛𝑠
𝛼=1 by integrating

�̇�𝛼 = |�̇�𝛼|. (A.1)

To specify the constitutive functions 𝑆 and 𝐾, we specify a stored energy density

𝑊 (𝐹 , 𝐹in, 𝑒, 𝜆, 𝑦) = 𝑊𝑒(𝐹𝐹−1
in ) +𝑊𝑝(𝑒) +𝑊𝑡(𝜆) where (A.2)

𝑊𝑒(𝐴) =
𝐺
2

(

tr𝐴𝑇𝐴
(det 𝐴)2∕3

− 3
)

+ 𝜆𝑒(det 𝐴 − 1)2, (A.3)

𝑊𝑝(𝑒) =
1
2
𝑒 ⋅𝑒 +

𝑛𝑠
∑

𝛼=1
𝜎∞𝛼 (𝑒𝛼 +

𝜎∞𝛼
ℎ𝛼

exp(
−ℎ𝛼𝑒𝛼
𝜎∞𝛼

)), (A.4)

𝑊𝑡(𝜆) = 𝜆 ⋅𝜆 +
𝑛𝑡
∑

𝛽=1

1
2
ℎ𝛽𝜆

2
𝛽 (A.5)

and dissipation functions

𝐷𝑝(�̇�) =
𝑛𝑠
∑

𝛼=1

𝜏0,𝛼 �̇�0,𝛼
𝑚𝛼 + 1

(
�̇�𝛼
�̇�0,𝛼

)𝑚𝛼+1, (A.6)

𝐷𝑡(�̇�) =
𝑛𝑡
∑

𝛽=1

𝜏0,𝛽 �̇�0,𝛽
𝑚𝛽 + 1

(
�̇�𝛽
�̇�0,𝛽

)𝑚𝛽+1. (A.7)

The stress function is specified as

𝑆(𝐹 , 𝐹in, 𝑒, 𝜆) =
𝜕𝑊
𝜕𝐹

(𝐹 , 𝐹in, 𝑒, 𝜆) =
𝜕𝑊𝑒
𝜕𝐴

|

|

|

|𝐹 ,𝐹in ,𝑒,𝜆,𝑦
𝐹−1

in . (A.8)

Note that we have chosen an isotropic elastic law for convenience and it does not explicitly depend on position 𝑦.
The kinetic relations are specified as

�̇�in𝐹in = 𝐿𝑝 + 𝐿𝑡 where (A.9)

Table A.1
Parameters used for magnesium in the crystal-plasticity model.

Parameter Value Unit

Basal ⟨𝑎⟩

ℎ𝛼 7.1 GPa
𝜎∞𝛼 0.7 MPa
ℎ𝑖𝑗 0 MPa
𝑚𝛼 0.5 –
�̇�0,𝛼 1.0⋅105 s−1

Prismatic ⟨𝑎⟩

ℎ𝛼 40 GPa
𝜎∞𝛼 170 MPa
ℎ𝑖𝑗 20 MPa
𝑚𝛼 0.5 –
�̇�0,𝛼 1.0⋅105 s−1

Pyramidal ⟨𝑐 + 𝑎⟩

ℎ𝛼 30 GPa
𝜎∞𝛼 200 MPa
ℎ𝑖𝑗 25 MPa
𝜏0,𝛼 50.5 MPa
𝑚𝛼 0.5 –
�̇�0,𝛼 1.0⋅105 s−1

Tensile twin

ℎ𝛽 7 MPa
𝑘𝑖𝑗 40 GPa
𝑚𝛽 0.5 –
�̇�0,𝛽 1.0⋅105 s−1
𝛾𝑡 0.129 –

Elastic Lame Moduli 𝜆𝑒 24 GPa
𝐺 25 GPa

Density 𝜌 1.0 ⋅ 104 kg m−3
14
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𝐿𝑝 =
𝑛𝑠
∑

𝛼=1
�̇�𝛼[(1 −

𝑛𝑡
∑

𝛽=1
𝜆𝛽 )𝑠𝛼 ⊗𝑚𝛼 +

𝑛𝑡
∑

𝛽=1
𝜆𝛽𝑠𝛼𝛽 ⊗𝑚𝛼𝛽 ], (A.10)

𝐿𝑡 = 𝛾𝑡
𝑛𝑡
∑

𝛽=1
�̇�𝛽𝑠𝛽 ⊗𝑚𝛽 , (A.11)

0 ∈ 𝜕
𝜕𝛾𝛼

(𝑊 +𝐷𝑝), (A.12)

0 ∈ 𝜕
𝜕𝜆𝛽

(𝑊 +𝐷𝑡). (A.13)

Crucially 𝑠𝛼 , 𝑚𝛼 , 𝑏𝛼 , 𝑚𝛼 depend on position. Note that the final two kinetic relations are written as differential inclusions because the
derivative is not smooth (𝑊𝑝 is specified in terms of 𝑒).

In the 2D calculations, we consider two orthogonal slip systems 𝑠1 = (1, 0, 0), 𝑚1 = (0, 1, 0) and 𝑠2 = (0, 1, 0), 𝑚2 = (0,−1, 0) and
no twinning. The shear modulus 𝐺 and Lame’s constant 𝜆 is chosen to be 19 GPa and 24 GPa respectively, while the initial yield
strength 𝜏0 and reference slip rate 𝛾0 is 100 MPa and 1 s−1. The strain rate sensitivity are chosen to be 𝑚 = 0.5.

We list the parameters that we use for the 3D calculations in Table A.1.
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