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Although the governing equations of many systems, when derived from first principles, may be viewed
as known, it is often too expensive to numerically simulate all the interactions they describe. Therefore,
researchers often seek simpler descriptions that describe complex phenomena without numerically
resolving all the interacting components. Stochastic differential equations (SDEs) arise naturally as
models in this context. The growth in data acquisition, both through experiment and through simulations,
provides an opportunity for the systematic derivation of SDE models in many disciplines. However,
inconsistencies between SDEs and real data at short time scales often cause problems, when standard
statistical methodology is applied to parameter estimation. The incompatibility between SDEs and real
data can be addressed by deriving sufficient statistics from the time-series data and learning parameters
of SDEs based on these. Here, we study sufficient statistics computed from time averages, an approach
that we demonstrate to lead to sufficient statistics on a variety of problems and that has the secondary
benefit of obviating the need to match trajectories. Following this approach, we formulate the fitting
of SDEs to sufficient statistics from real data as an inverse problem and demonstrate that this inverse
problem can be solved by using ensemble Kalman inversion. Furthermore, we create a framework for non-
parametric learning of drift and diffusion terms by introducing hierarchical, refinable parameterizations
of unknown functions, using Gaussian process regression. We demonstrate the proposed methodology for
the fitting of SDE models, first in a simulation study with a noisy Lorenz ’63 model, and then in other
applications, including dimension reduction in deterministic chaotic systems arising in the atmospheric
sciences, large-scale pattern modeling in climate dynamics and simplified models for key observables
arising in molecular dynamics. The results confirm that the proposed methodology provides a robust and
systematic approach to fitting SDE models to real data.

Keywords: stochastic differential equation, inverse problem, ensemble Kalman inversion, Gaussian
process regression, hierarchical parameterization.

1. Introduction

1.1 Overview and literature review

The goal of this paper is to describe a straightforward ensemble-based methodology that facilitates
parameter estimation in ergodic stochastic differential equations (SDEs), using statistics derived from
time-series data. SDEs arise naturally as models in many disciplines, and the wish to describe complex
phenomena without explicitly representing all interacting components within the system makes them of
widespread interest. Additionally, the increasing data provide opportunities for the learning of stochastic
models in previously unforeseen application domains. However, SDE models, while often accurate at
providing statistical predictions, may not be compatible with available data at the small scales where
the Itô calculus model asserts very strong almost sure properties rarely found in real data; in particular,
the quadratic variation (variance for a pure Brownian motion) is such an almost sure property. For this
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2 T. SCHNEIDER ET AL.

reason, standard statistical methodology for parameter estimation in SDEs (see Kutoyants, 2013) is often
not suited to fitting models to real data. On the other hand, practical experience in the applied sciences
demonstrates the effectiveness of fitting Markovian stochastic processes to sufficient statistics, typically
derived from a long time series by averaging procedures.

Ensemble methods have demonstrable success in the solution of inverse problems, based on the
use of interacting particle systems driven by the parameter-to-observable map; furthermore, they are
robust to noisy evaluations of the map (Duncan et al., 2021). Choosing ergodic averages as observables
and viewing finite-time averages, or averages over different initializations, as noisy evaluations of the
ergodic average puts us in a setting where we may apply ensemble methods to effectively estimate
parameters in SDEs. These ensemble methods are derivative-free, side-stepping thorny technical and
computational issues arising in the parameter-to-observable map for SDEs. They are also inherently
parallelizable and scale well to the learning of high-dimensional parameter vectors, making them a very
attractive computational tool. Finally, the formulation of the inverse problem that we adopt, using time-
averaged data, avoids the need to determine the latent trajectory variables; the approach we employ is
described in Cleary et al. (2021) and Dunbar et al. (2021).

Data-driven methods for extracting simplified models are now ubiquitous (Brunton & Kutz, 2019;
Coifman et al., 2008; Ferguson et al., 2011; Froyland et al., 2014; Klus et al., 2018; Giannakis, 2019).
A guiding example that motivates the need for reduced models of various kinds is the Navier–Stokes
equation for fluid motion. It is often too expensive to numerically simulate all relevant degrees of
freedom—for example turbulence around an aircraft or convection in Earth’s atmosphere. Therefore,
stochastic descriptions become important (see, e.g., Majda & Harlim, 2012). In those reduced systems,
stochastic models help account for a lack of knowledge and for unresolved variability. Stochastic models
are widespread in applications, including in biology (see, e.g., Goel & Richter-Dyn, 2016; Wilkinson,
2018), chemistry (see, e.g., Leimkuhler & Reich, 2004; Tuckerman, 2010; Boninsegna et al., 2018),
engineering (see, e.g., Maybeck, 1982), the geophysical sciences (see, e.g., Majda & Kramer, 1999;
Palmer, 2001; Arnold et al., 2013) and the social sciences (see, e.g., Diekmann & Mitter, 2014); Gardiner
(2009), provides a methodological overview aimed at applications in the physical and social sciences.

The statistics literature concerning parameter estimation from continuous time series often starts
from the premise that the diffusion coefficient may be read off from small increments (see, e.g.,
Kutoyants, 2013), a property that only holds if the data are consistent with an SDE at arbitrarily fine
scales. The fact that data may be inconsistent with the SDE at small scales was understood in the finance
literature in the early part of this century, and new models were introduced to address this incompatibility
(see, e.g., Zhang et al., 2005). In subsequent papers (see, e.g., Pavliotis & Stuart, 2007; Papavasiliou
et al., 2009), the setting of multiscale SDEs was used to elucidate similar phenomena arising from
models in the physical sciences. Subsequent to these works, new methods were introduced to tackle
the inconsistency at small scales, based on subsampling and other multiscale uses of the data (see, e.g.,
Zhang, 2006; ; Pokern et al., 2009; Abdulle et al., 2021; Callaham et al., 2021; Papaspiliopoulos et al.,
2012); see Pavliotis et al. (2012) for an overview of some of this work. The potential applicability of
problems of this type ranges from applications in econometrics, finance and molecular dynamics, to
problems in the geophysical sciences (Cotter & Pavliotis, 2009; Kwasniok & Lohmann, 2009; Ying et
al., 2019).

A completely different approach to circumvent the use of fine-scale properties of the time series is
to compute sufficient statistics from the time-series and use these to learn parameters. This approach
was recently studied as a systematic methodology, and then applied, in a series of papers (see, e.g.,
Krumscheid et al., 2013, 2015; Kalliadasis et al., 2015), based on statistics computed from multiple
realizations and multiple initial conditions; alternatively, one can use a single very long timeseries. In
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 3

the community of modeling climate variability, using time averages as data to estimate a stochastic
model has been explored for decades (see, e.g., Hasselmann, 1976; Frankignoul & Hasselmann, 1977;
Penland & Magorian, 1993). Although most of them focused on linear SDEs, the possible extension to
nonlinear SDEs was discussed by Hasselmann (1988). The use of statistics of time series (e.g., moments,
autocorrelation functions or power spectral densities) for estimating model parameters is common for
discrete time series models, such as autoregressive (AR) or autoregressive moving average (ARMA)
models (see, e.g., Brockwell et al., 1991; Neumaier & Schneider, 2001; Lütkepohl, 2013). Another
approach to parameter estimation in dynamical systems is known as state augmentation (see, e.g.,
Anderson, 2001). These methods proceed by augmenting the state to include parameters, and then using
state estimation techniques such as the particle filter (see, e.g., Smith, 2013), the unscented Kalman filter
(see, e.g., Julier et al., 2000; Albers et al., 2017) and iterative ensemble Kalman smoothers (Evensen,
2019). However, the augmentation approach is notoriously sensitive in many practical settings (see, e.g.,
Doucet et al., 2001) and we do not pursue it here.

In this paper, we build on the approach pioneered in Krumscheid et al. (2013) and use finite-
time averaged data. As a consequence, viewing the perfect parameter-to-data map as being an ergodic
(infinite-time) average, we have access to only approximate, noisy evaluations of the desired parameter-
to-data map, computed from finite-time averages. For this reason, ensemble Kalman methods provide
a desirable methodology (Duncan et al., 2021) because they are black-box, derivative-free and robust
to noisy parameter-to-data evaluations. A central question when summarizing data, as we do when
computing time averages, is whether or not the summary statistics are sufficient to identify the
parameters of interest; the reader may refer to the literature on approximate Bayesian computation
(ABC) for discussion of this issue (Fearnhead & Prangle, 2012; Sisson et al., 2018). The paper by
Wood (2010) provides an example of related ideas applied in the context of learning chaotic dynamical
systems; as in our work, and the work by Krumscheid et al. (2013), it employs summary statistics that
eliminate problems arising from sensitive dependence on initial conditions. Links between ensemble
Kalman methods and ABC are discussed in Nott et al. (2012).

With the aim of setting our algorithmic approach in context, we now describe the specific form
of ensemble Kalman inversion (EKI) that we use in this paper, its relationship to other ensemble
Kalman methods that are widely used for both state and parameter estimation and the acronyms used
to describe those related algorithms. The methods were originally introduced for state estimation using
both filtering (the EnKF, see Evensen, 1994) and smoothing (the ES, see Van Leeuwen & Evensen,
1996). Ensemble methods are now also used to simultaneously estimate the trajectory of a dynamical
system, and its parameters. Furthermore, iterating within the ‘analysis’ step of the data assimilation
cycle has proven effective (see Gu & Oliver, 2007; Li & Reynolds, 2009; Bocquet & Sakov, 2012, 2014;
Sakov et al., 2012); the terminology ensemble randomized maximum likelihood (sequential-EnRML),
iterative ensemble Kalman filter (IEnKF) and iterative ensemble Kalman smoother (IEnKS) is adopted
to describe the algorithms used. These approaches have recently been used to learn about model error in
dynamical systems, or parameters describing the statistics of model error in dynamical systems (Bocquet
et al., 2020; Pulido et al., 2018). However, there are many inverse problems in which dynamics are not
present, or in which state estimation is not a desired goal of the computation. The papers (Chen &
Oliver, 2012; Emerick & Reynolds, 2013; Evensen, 2018) introduced ensemble Kalman methodologies
directly focussed on the solution of general inverse problems, without reference to state estimation in
a dynamical system; these methods go by various names, including the iterative ensemble smoother
(IES), batch ensemble randomized maximum likelihood (batch-EnRML) and multiple data-assimilation
ensemble smoother (ES–MDA). In the context of solving inverse problems, the methods IES, batch-
EnRML and ES–MDA adopt a Bayesian framework and iterate over a prescribed set of iterations,
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4 T. SCHNEIDER ET AL.

starting from prior samples, with goal being the generation of approximate posterior samples. The
seminal paper by Reich (2011) made an important step by connecting ensemble methods with sequential
Monte Carlo for Bayesian inverse problems and additionally remarks that ensemble Kalman methods
could be used for for optimization (classical rather than Bayesian inversion) and discusses possible
stopping criteria.

The ensemble Kalman methods are formulated and evaluated as an optimization approach to general
inverse problems in Iglesias et al. (2013) and the idea of incorporating constraints, widely useful in
applications, is described in Albers et al. (2019). Iglesias et al. (2013) demonstrate that, for a variety
of PDE inverse problems, ensemble Kalman methods implemented without localization perform well.
These methods may be viewed as minimizing the model-data misfit, and regularization is introduced
through the invariant subspace property of the algorithm: the minimization is confined to the space
spanned by the initial ensemble. We refer to this methodology, and its continuous time analogues (see
Schillings & Stuart, 2017), as EKI, recognizing that it is a variant on the creative ideas developed in
Chen & Oliver (2012) and Emerick & Reynolds (2013). We emphasize, however, that the goal of the
EKI approach is to solve an optimization formulation of the inverse problem, rather than the Bayesian
inverse problem that motivates the approaches in Chen & Oliver (2012) and Emerick & Reynolds
(2013). Overfitting can still be an issue for EKI methods and may be addressed by generalizing ideas
standard in the classical optimization approach to inverse problems (Engl et al., 1996), as anticipated in
Reich (2011); in particular, Levenberg–Marquadt analogues of EKI are studied in Iglesias (2015, 2016),
and a Tikhonov extension, TEKI, is described in Chada et al. (2020). Bayesian regularization is also
possible, leading to the ensemble Kalman sampler in Garbuno-Inigo et al. (2020b). In this paper, the
problems studied typically have free parameters with dimension smaller than or similar to the dimension
of the data-set; thus overfitting is not an issue and regularization is not employed. Other derivative-free
optimization methods could also be employed, such as the consensus-based optimization procedures
described in Carrillo et al. (2018). An important aspect of the success of the ensemble Kalman methods
we use is their affine invariance, a concept introduced in Goodman & Weare (2010) for Monte Carlo
methods; its significance for ensemble methods was identified in Garbuno-Inigo et al. (2020a) and
explains the problem-independent convergence rates obtained by the method, provably in the case of
linear problems Garbuno-Inigo et al. (2020b).

Within the EKI-based parameter estimation methodology, we employ ideas from Gaussian process
regression (GPR) (see, e.g., Rasmussen & Williams, 2006) to parameterize unknown functions; this
refinable, hierarchical approach to function representation leads to novel nonparametric methods for
function learning. Our approach builds on preceding, nonhierarchical approaches to inversion using
GPR such as that described in Xiao et al. (2016). The concept of learning the values at some fixed nodes
of a Gaussian process, known as the pilot point method (see, e.g., Doherty et al., 2010), has also been
extensively explored by the groundwater modeling community in the context of inverse problems.

1.2 Our contributions

Our contributions in this paper are as follows:

1. We formulate parameter estimation in ergodic SDEs as a classical inverse problem for the
parameter-to-data map defined by ergodic averaging.

2. We develop algorithms suited to the setting in which the parameter-to-data map is available only
through finite-time averages, which may be viewed as providing noisy approximations of the
ideal ergodic averages.
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 5

3. Through a sequence of examples described below, we demonstrate that a simple and straight-
forward implementation of ensemble Kalman methods, the EKI, is well-adapted to solving the
inverse problem in which only noisy approximate evaluations of the parameter-to-data map are
available.

4. Within the EKI we demonstrate the utility of hierarchical parameterizations of unknown
functions, using GPR.

We demonstrate the methodology when applied to a variety of examples:

• A simulation study that employs a noisy (SDE) version of the Lorenz ’63 model.

• Reduction of the Lorenz ’63 ODE model to a two-dimensional SDE in coordinates computed by
applying PCA to the ODE data.

• The multiscale Lorenz ’96 ODE model, seeking an SDE closure in the slow variables alone.

• To fit a stochastic delay differential equation (SDDE) to El Niño–Southern Oscillation data.

• To fit an SDE that describes fluctuations in the dihedral angle of a butane molecule.

In considering these simulation studies and real-data examples, we demonstrate the effectiveness
of the methodology to find parameters, and we evaluate the accuracy of various stochastic models
derived from data. In section 2, we formulate the inverse problem of interest and introduce four
example problems to which we will apply our methodology. Section 3 describes the ensemble Kalman
methodology we employ to solve the inverse problem, as well as a discussion of the novel hierarchical
Gaussian process based representation that we employ to represent, and learn, unknown functions. In
section 4, we describe numerical results relating to each of the four example problems. We conclude in
section 5.

2. Problem formulation

The aim of this work is to estimate parameters θ ∈ Θ in the SDE

dx

dt
= f (x; θ) + √

Σ(x; θ)
dW

dt
(2.1)

where x ∈ R
n, f : Rn × Θ �→ R

n and Σ : Rn × Θ �→ R
n×n. For all of the examples Θ ⊆ R

p, but the
algorithms we use extend to include the nonparametric setting in which p = ∞. However, in the specific
applications considered here, p is small, of O(10); and in many other applications envisaged, p may be
considerably smaller than the dimension n of the state space. Among several parameterizations used in
this paper, we showcase a GPR based method for hierarchical function representation that is refinable.

We assume that the SDE is ergodic and let E denote expectation with respect to the stationary process
resulting from this ergodicity. If x(·; θ) ∈ X := C(R+;Rn) denotes a solution of the SDE started in a
statistical stationary state and F : X �→ R

q is a function on the space of solution trajectories, where q
denotes the dimension of data space, then define G : Θ �→ R

q by

G (θ) = EF (x(·; θ)).
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6 T. SCHNEIDER ET AL.

We wish to solve the inverse problem of finding θ from noisy approximate evaluations of G (θ).
The noisy approximate evaluations arise from the fact that we will use finite-length trajectories to
approximate the expectation defining G (θ); averages over initial conditions and/or realizations of the
noise could also be used. The following remark highlights the various observables F that we will use
in this paper.

Remark 1 We will use mth−moments of vector x at time t = 0:

Fm(x(·)) = Πj∈Mxj(0),

where xj denotes the jth element of vector x, and M is a subset of cardinality m comprising indices
(repetition allowed) from {1, · · · , n}, leading to the ergodic average Gm. We will also use Fac(x(·)) =
x(t) ⊗ x(0), leading through ergodic averaging to the auto-correlation function Gac of the stationary
process. And finally we will use Gpsd to denote parameters of a polynomial fit to the logarithm of
the power spectral density (PSD); recall that the PSD is the Fourier transform of the auto-correlation
function of the stationary process. All of the functions Gm, Gac and Gpsd can be approximated by time-
averaging.

It is instructive to think of G (θ) as the infinite-time average of the quantities of interest so that,
assuming ergodicity, the dependence of the initial condition of the trajectory generating the data
disappears. By doing so, we obtain an inverse problem in which the latent variable, the trajectory
itself, disappears from the inference problem. This is distinct from many other approaches to parameter
estimation in which trajectories and parameters are jointly inferred (Bocquet et al., 2020; Pulido
et al., 2018). In practice, we have only finite time averages available, which means that G (θ) is only
available to us through approximate, noisy evaluations, with noise entering through the dependence
on the initial condition and through sensitive dependence on initial conditions. The ensemble methods
described in the next section are demonstrably and provably effective in dealing with the setting in
which only approximate, noisy evaluations of G (θ) are available (Duncan et al., 2021).

We now describe four examples that will be used to illustrate the methodology.

Example 1 (Lorenz 63 System). The Lorenz equations (see, e.g., Lorenz, 1963) are a system of three
ordinary differential equations taking the form

ẋ = f (x), (2.2)

where x = [x1, x2, x3]	 and f : R3 �→ R
3 is given by

f1(x) = α(x2 − x1),

f2(x) = x1(ρ − x3) − x2,

f3(x) = x1x2 − βx3.

(2.3)

We are interested in the noisy version of these equations, in the form

ẋ = f (x) + √
σ Ẇ. (2.4)

This SDE will be used in a simulation study to illustrate our methodology.
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 7

We will also use the Lorenz 63 model (2.2), (2.3) written in a new coordinate system computed by
means of PCA, as introduced in Selten (1995) and Palmer (2001). This amounts to introducing new
coordinates a = Ax, in which we obtain

ȧ = g(a), (2.5)

where x = [x1, x2, x3]	 and g : R3 �→ R
3 is given by

g1(a) = 2.3a1 − 6.2a3 − 0.49a1a2 − 0.57a2a3,

g2(a) = −62 − 2.7a2 + 0.49a2
1 − 0.49a2

3 + 0.14a1a3,

g3(a) = −0.63a1 − 13a3 + 0.43a1a2 + 0.49a2a3.

(2.6)

The coordinate a3 contains around 4% of the total variance of the system. In Palmer (2001), this was
used as an argument to seek a stochastic dimension reduction of the model, in discrete time, in the
variables a1, a2 alone. We reinterpret this idea in continuous time and use our methodology to evaluate
the idea, using data from (2.5), (2.6) to study the fidelity possible when fitting an SDE of the form

ȧ1 = 2.3a1 − 0.49a1a2 + ψ1(a2) + √
σ1(a2)Ẇ,

ȧ2 = −62 − 2.7a2 + 0.49a2
1 + ψ2(a1) + √

σ2(a1)Ẇ,
(2.7)

where the functions ψ1(·), ψ2(·), σ1(·), σ2(·) are represented by GPR as described in detail subsection
3.2.

Example 2 (Lorenz 96 System). The Lorenz 96 multiscale system (see, e.g., Lorenz, 1996) describes
the evolution of two sets of variables, denoted by xk (slow variables) and yj,k (fast variables):

dxk

dt
= −xk−1(xk−2 − xk+1) − xk + F − hcyk, k ∈ {1, . . . , K},

1

c

dyj,k

dt
= −byj+1,k(yj+2,k − yj−1,k) − yj,k + h

J
xk, (j, k) ∈ {1, . . . , J} × {1, . . . , K}

xk+K = xk, yj,k+K = yj,k, yj+J,k = yj,k+1.

(2.8)

The coupling term hcyk describes the impact of fast dynamics on the slow dynamics, with yk being the
average

yk = 1

J

J∑
j=1

yj,k. (2.9)

We work with the parameter choices as in Schneider et al. (2017), which are the same parameter choices
as in Lorenz (1996). Specifically, we choose K = 36, J = 10, h = 1 and F = c = b = 10. By assuming
a spatially homogeneous (with respect to j) equilibrium in the fast dynamics, fixing k and xk as in
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8 T. SCHNEIDER ET AL.

Fig. 1. Illustration of ENSO data (Rayner et al., 2003) from year 1870 to 2019 (the time interval between two adjacent data points
is one month), where SST stands for sea surface temperature. It should be noted that although the left-hand shows a time series,
only time-averaged statistics are used as training data in this work.

Fatkullin & Vanden-Eijnden (2004), we obtain

yk = h

J
xk. (2.10)

We will seek a stochastic closure for the slow variables {xk} encapsulating systematic deviations from,
and random fluctuations around, this simple balance:

Ẋk = −Xk−1(Xk−2 − Xk+1) − Xk + F − h2c

J
Xk + ψ(Xk) + √

σ Ẇ,

Xk+K = Xk.

(2.11)

Using data from (2.8), we will fit a parameterized ψ(·) and the noise level σ .

Example 3 (El Niño–Southern Oscillation). The El Niño–Southern Oscillation (ENSO) (see, e.g.,
Rayner et al., 2003) is a well-documented phenomenon, which describes irregularly recurring changes
in central and eastern tropical Pacific Ocean temperatures. Figure 1 (time series and histogram) shows
Pacific sea surface temperature (SST) data (mean value has been removed) for years 1870 to 2019. The
temperature data are averaged within 5S-5N and 170-120W, a region known as Niño 3.4. It is postulated
that the mechanism of ENSO can be illustrated by a delayed oscillator model with two time delays
determined by properties of the dynamics of the central tropical Pacific Ocean. Specifically, the two
time delays are often interpreted as associated with an eastward traveling Kelvin wave and a westward
traveling Rossby wave (which also becomes an eastward traveling Kelvin wave after being reflected by
the western coastline) (see, e.g., Tziperman et al., 1994). Thus, the time delays can be viewed as known
and estimated quantitatively from the corresponding wave speeds.

The aim is to fit a SDDE (see, e.g., Buckwar, 2000; Erneux, 2009) to the ENSO data shown in Fig. 1
(time-series and histogram). To be concrete, we will fit a model of the following form (Tziperman et al.,
1998):

dx

dt
(t) = a tanh(x(t − τ1)) − b tanh(x(t − τ2)) − cx(t) + √

σ
dW

dt
(t). (2.12)
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 9

Fig. 2. The definition of butane molecule dihedral angle.

Fig. 3. Illustration of the true butane dihedral angle data (the time interval between two adjacent data points is 10−6 ns).

Here delay τ1 represents the effect of the eastward traveling Kelvin wave, and delay τ2 represents the
effect of the westward traveling Rossby wave. Since good estimates for τ1 (1.15 months) and τ2 (5.75
months) exist, we will simply fit the four parameters a, b, c, σ to time-averaged data computed from the
time-series shown in the left-hand panel in Fig. 1.

Example 4 (Butane molecule dihedral angle). In many problems arising in molecular dynamics, it is
of interest to determine reduced models describing the behavior of certain functionals derived from the
molecular conformation. An example of such a functional is the dihedral angle in a simple model of a
butane molecule (see, e.g., Schlick, 2010). Figure 2 shows how the dihedral angle is defined from the
four carbon atoms that comprise the butane molecule. Figure 3 shows the time series and histogram for
this angle, derived from a molecular dynamics model that we now describe. The model comprises a
system of 12 second-order SDEs for the four atomic positions in R

3, of Langevin type:

m0
d2x

dt2
+ γ0

dx

dt
+ ∇V(x) =

√
2γ0

β0

dW

dt
. (2.13)

The potential V , mass m0, damping γ0 and inverse temperature β0 characterize the molecule. From the
time series of x ∈ C(R+;R12) generated by this model we fit a simplified model for the the dihedral
angle. This simplified model for φ ∈ C(R+;R) takes the form

d2φ

dt2
+ γ (φ)

dφ

dt
+ ∇Ψ (φ) = √

2σγ (φ)
dW

dt
. (2.14)
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10 T. SCHNEIDER ET AL.

We will fit parameterized versions of γ and Ψ to data for φ generated by studying the time series for
the dihedral angle defined by x from (2.13). Related work, fitting SDE models for the dihedral angle,
may be found in Papaspiliopoulos et al. (2012) and Pokern et al. (2009). For a broader introduction to
the subject of finding Markov models for bimolecular dynamics see Djurdjevac et al. (2010); Ferguson
et al. (2011); Schütte & Sarich (2013); Zhang et al. (2017).

3. Algorithms

In subsection 3.1, we describe the ensemble-based derivative-free optimization method that we use to fit
parameters. The approach is based on the algorithms pioneered in Chen & Oliver (2012) and Emerick
& Reynolds (2013) but is aimed at solving an optimization formulation of the parameter estimation
problem, rather than a Bayesian formulation; we refer to the specific iterated form of the algorithm
used here as an EKI algorithm. In subsection 3.2, we discuss how we use GPR to design hierarchical,
refinable parameterizations of unknown functions that we wish to learn from data.

3.1 Ensemble Kalman inversion

Recall that we view the data that we are given, y ∈ R
J , as a noisy evaluation of the function G (θ)

defined by ergodic averages. We use the notation Gτ (θ ; x0) to denote this noisy evaluation, which
arises from finite-time averaging of duration τ , started at initial condition x0; this finite-time averaging
approximates the ergodic average (τ = ∞) in which dependence on x0 disappears. Appealing to central
limit theorem results that quantify rates of convergence towards ergodic averages, the inverse problem
can be formulated as follows: given y ∈ R

J , find θ ∈ Θ so that

y = Gτ (θ ; x0) ≈ G (θ) + η, η ∼ N
(
0, Γ (θ)

)
. (3.1)

Although this central limit theorem argument leads to a Γ which is θ−dependent, in practice we make
the approximation that it is constant and solve the resulting Bayesian inverse problem

y = G (θ) + η, η ∼ N
(
0, Γ

)
. (3.2)

In this formulation, the trajectory initial condition x0 disappears from the inference problem. However,
G (θ) is not computable and only available to us through noisy approximate evaluations. We address this
issue after introducing the EKI algorithm below. Estimating Γ may be achieved by using time-series of
different lengths, as explained in Cleary et al. (2021) in the specific case of G derived from moments,
Fm.

The natural objective function associated with the inverse problem (3.2) is

1

2

∥∥Γ − 1
2
(
y − G (θ)

)∥∥2. (3.3)

The two primary reasons for using EKI to find approximate minimizers of this objective function are the
following: (a) it does not require derivatives, which can be difficult to compute for SDEs; (b) it is robust
to noisy evaluations of the forward map. The method behaves (provably in the linear case, approximately
in the nonlinear case) like a projected gradient descent (Schillings & Stuart, 2017; Garbuno-Inigo et al.,
2020b), despite not computing derivatives, and the use of differences promotes a desirable averaging
making it robust to noisy evaluations of the forward map (Duncan et al., 2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab003/6460773 by C

alifornia Institute of Technology user on 08 February 2022



LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 11

The EKI algorithm we employ is described in Iglesias et al. (2013) and Albers et al. (2019). The
algorithm propagates a set of J parameter estimates {θ(j)

n }J
j=1 through algorithmic time n, using the

update formula

θ
(j)
n+1 = θ(j)

n + CθG
n

(
CGG

n + Γ
)−1 (

y − G (θ(j)
n )

)
. (3.4)

The matrix CGG
n is the empirical covariance of {G (θ

(j)
n )}J

j=1, while matrix CθG
n is the empirical cross-

covariance of {θ(j)
n }J

j=1 with {G (θ
(j)
n )}J

j=1.
We implement the preceding algorithm with two modifications. The first reflects the benefits that

can accrue from randomizing the data, helping to expand the search through parameter space, analogous
to stochastic gradient descent (Goodfellow et al., 2016). The second reflects the fact that the forward
model G represents ergodic averages, but is only available to us approximately through finite time
averages which depend on initial condition. Thus, the algorithm we implement has form

θ
(j)
n+1 = θ(j)

n + CθG
n

(
CGG

n + Γ
)−1 (

y(j)
n − G(j)

n )
)

. (3.5)

We now detail exactly how y(j)
n and G(j)

n are defined. In the experiments reported in this paper, we
add i.i.d. (w.r.t. j and n) random mean zero Gaussian noise with covariance Γ to the data y to obtain y(j)

n ;
however, we have verified that near identical parameter estimates are obtained in the same number of
iterations, without adding any random noise to y, for several of the experiments reported. Randomization
should be interpreted in the same way that stochastic gradient descent is beneficial in the optimization
of neural networks (Goodfellow et al., 2016); this is distinct from its use in the work of Chen & Oliver
(2012); Emerick & Reynolds (2013) where it is used to facilitate posterior sampling, not optimization.
Regarding the forward model we set G(j)

n (·) = GT(·; x(j,n)

0 ). This approximate evaluation of G , G(j)
n ,

is found from choosing the initial condition x(j,n)

0 at random and i.i.d with respect to both ensemble
member j and iteration step n. Details are given for each example in what follows. Note that the finite
time T in G(j)

n is typically different from τ arising in the time-averaged data.
Here we use the algorithm in settings where the number of parameters is small or similar to the

dimension of the data, and regularization is not needed to prevent overfitting. The EKI algorithm as
stated preserves the linear span of the initial ensemble {θ(j)

0 }J
j=1 for each n and thus operates in a finite

dimensional vector space (Iglesias et al., 2013, Theorem 2.1), even if Θ is an infinite dimensional vector
space; this form of regularization may be useful for high-dimensional unknown parameters. Other types
of regularization can also be incorporated into EKI if needed, as detailed in the introduction; in addition
sparsity can be used to regularize as demonstrated in Schneider et al. (2020).

3.2 Gaussian process regression

Throughout this paper, we apply the EKI algorithm in a finite-dimensional vector space Θ ⊆ R
p.

In some cases, we use GPR to estimate unknown functions appearing in our SDE. More precisely,
we will use the mean m(x) of a Gaussian process conditioned on noisy observations at a fixed set
of design points; we will then optimize over the observed values of the process at the design points,
over the standard deviations of the noise in these observations and over the parameters describing the
covariance function of the Gaussian process. This leads to a parameter dependent function m(x; θGP),
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12 T. SCHNEIDER ET AL.

the construction of which we now detail. Note that the construction involves probabilistic considerations
but, once completed, leads to a class of deterministic functions m(x; θGP) over θGP ∈ ΘGP. The key
advantage of the GPR construction is that it leads to a hierarchical parameterization that has proved
very useful in many machine learning tasks (see, e.g., Bernardo et al., 1998; Rasmussen & Williams,
2006). Adapting it to statistical estimation more generally is potentially very fruitful and is one of the
ideas we use here. We are essentially proposing to use Gaussian process parameterizations beyond the
simple regression setting, into more general function learning problems.

The function m is defined as the minimizer of

L(m) := 1

2
‖m‖2

K +
R∑

r=1

1

2σ 2
(r)

|m(x(r)) − m′
r|2

over K, the reproducing kernel Hilbert space associated with covariance function k(x, x′; a, �); here a
and � represent and amplitude and lengthscale parameter of the covariance function. By the representer
theorem (see, e.g., Rasmussen & Williams, 2006), it follows that the minimizer lies in the linear span of
{k(x, x(r); a, �)}R

r=1} and may be found by solving a linear system of dimension equal to R. The solution
of this linear system depends on the {m(x(r)), σ(r)}R

r=1.
As a consequence, the set of parameters θGP defining our parameterized function m(x; θGP) contains

the following elements:

(i) noisily observed values of {m(x(r))}, at some fixed nodes x(r), comprising the vector {m′
r};

(ii) observation error variances Σobs = diag{(σ(r))
2} at the fixed nodes x(r);

(iii) hyper-parameters (a, �) that represents an amplitude and a length-scale of the kernel k(x, x′; a, �)
used in the GP regression.

In this setting m′ and Σobs each contain R elements. Thus, ΘGP = R
2R+2. The result of the

minimization is a complex nonlinear function of θGP = (m′, Σobs, σ , �) ∈ ΘGP. We use EKI to learn
θGP together with other unknown parameters in the modeled systems using time-averaged statistics
as data. The linear span of {k(x, x(r); a, �)}R

r=1} comprises a set of adaptive basis functions, which, via
the parameters a and �, may be adapted to the observed finite-time average data. The setting may be
generalized or simplified in different ways: for example Σobs can be chosen to be an arbitrary symmetric
positive-definite matrix to be learned or, as we do in the numerical examples in this paper, can be chosen
as Σobs = σ 2I where σ is optimized over and I denotes the identity matrix. The detailed settings of
numerical experiments are described at the beginning of each sub-section in Section 4. Since we take
Σobs to be a constant diagonal matrix throughout this paper, ΘGP simplifies to R

R+3.

4. Numerical results

To demonstrate the capability of the proposed methodology, we apply it to four different exam-
ples, including classical chaotic systems (Lorenz 63 system in subsection 4.1, Lorenz 96 system in
subsection 4.2), climate dynamics (ENSO in subsection 4.3) and molecular dynamics (butane molecule
dihedral angle in subsection 4.4). All these numerical studies confirm that the proposed methodology
serves well as a systematic approach to the fitting of SDE models to data. In particular, the data we use
appears to lead to identifiable parameter estimation problems in every example presented. In all cases,
the data are initially presented in two figures, one showing the ability of the EKI method to fit the data,
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 13

and a second showing how well the fitted SDE performs in terms of reproducing the invariant measure
of the true system. The ensemble size is chosen as 100 by default. The noise Γ is estimated based on
the ensemble of time-averaged data from the system with random initial conditions. It should be noted
that the time-averaged data (which serve as training data) are obtained from a relatively short trajectory,
and the invariant measures (which serve as testing data) are obtained by simulating the modeled system
for a much longer time. We then show other figures that differ from case to case and are designed to
illustrate the quality and nature of the fitted SDE model.

4.1 Lorenz 63 system

4.1.1 Noisy Lorenz 63: simulation study. The first sets of experiments are simulation studies in
which data from (2.4) are used to fit parameters within the following model:

dx1

dt
= α(x2 − x1) + √

σ
dW1

dt

dx2

dt
= x1(ρ − x3) − gL(x2) + √

σ
dW2

dt

dx3

dt
= x1x2 − βx3 + √

σ
dW3

dt
.

(4.1)

Unlike the other examples in this paper, this initial simulation study involves data that come
directly from an SDE within the model class being fitted, enabling a clear verification of the proposed
methodology, and confirming that the time-averaged data lead to an identifiable model. Specifically, the
data are obtained by simulating the model with a given set of parameters: α = 10, ρ = 28, β = 8/3,
and σ = 10, as well as the choice gL(x2) = x2. Using EKI, we will fit θ defined in two different ways:

(i) Fix gL(x2) = x2 and learn θ = (α, σ). The initial ensemble of α and
√

σ are uniformly drawn
from [1, 20] and [0.1, 15].

(ii) Parameterize gL(x) by θ1, as a GP, and learn θ = (θ1, σ). The initial ensemble of
√

σ is uniformly
drawn from [0.1, 15]. The fixed GP nodes are five points uniformly distributed in [−30, 30]. The
initial ensemble of noisily observed values on those nodes are uniformly drawn from [−20, 20].
The initial ensemble of GP observation error is uniformly drawn from [0.1, 10], and the initial
ensemble of GP hyper-parameters a and � are uniformly drawn from [0.1, 10] and [5, 10]. Results
are presented in Figs 8 to 10.

The trajectory initial condition is uniformly drawn from [0, 1) for each state variable. 20 EKI
iterations is used. Results are presented in Figs 4 to 5. The data in this case are a finite-time average
approximation of {G1(x), G2(x)}, i.e., the first and second moments of the state vector x are used as
observational data. Therefore, the data vector y has nine elements in total. In case (i), we fit both an
ODE (constrain σ = 0 and learn α) and an SDE (learn both α and σ ) to the given data. We are fitting
one parameter in the ODE case and two parameters in the SDE setting, in both cases using a data vector
y of dimension 9. The comparison of the output of the EKI algorithm with the true data, in the case of
both ODE and SDE fits, is presented in Fig. 4. In the ODE case, the algorithm fails to match one second
moment (left panel), while in the SDE case all moments are well-matched. This has a significant effect
on the ability to reproduce the invariant measure (Fig. 5). In the upper row (ODE), the fit is very poor
whereas in the lower row (SDE) it is excellent. The fit of the SDE is not surprising since the data are
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14 T. SCHNEIDER ET AL.

Fig. 4. First two moments of state x for the Lorenz 63 system found by using EKI to estimate α (ODE case) and σ , α (SDE case).

generated directly from within the model class to be fit; the behavior of the fit to an ODE gives insight
into the method when the model is misspecified.

Figure 6 presents the trajectory of x1 and the RMSE calculated using all state variables. To facilitate
the comparison against the true system, we use the same initial condition, and the same random seed
for the stochastic process, for both true and modeled systems. It should be noted that the training of the
modeled systems does not make use of trajectory information from the true system. As shown in Fig. 6,
the modeled system with the stochastic term demonstrates better performance in matching the trajectory
of the true system.

The comparison of the PSD is presented in Fig. 7. Although the PSD is not used as data in this
example, both fitted models capture the general pattern of the PSD of the true system. For more complex
systems, PSD can provide additional information to help better identify the modeled system, and we
demonstrate the use of PSD as part of data in Sections 4.3 and 4.4.

We now perform exactly the same set of experiments, fitting both an ODE and an SDE, but allowing
the function gL to be learnt as well. The function gL is parameterized by the mean of a GP (with unknown
values specified at five fixed nodes, and unknown constant observation error and two unknown hyper-
parameters). Thus we are fitting eight parameters for the ODE and nine parameters for the SDE, using
a data vector y of dimension 9. When we do this, we are able to obtain a good fit for the ODE in both
data space, seen in Fig. 8a, and as measured by the fit to the invariant measure, as seen in Fig. 9(a–
c). Nonetheless, the fit achieved by using an SDE remains substantially better, as seen in Fig. 8(b)
and Fig. 9(d–f). The ensemble means of the Gaussian process learnt in the ODE and SDE models are
presented in Fig. 10. Both GPs successfully capture the linear trend in the middle range of x2, while the
GP learnt in the ODE model exhibits more oscillations around the middle part and more rapid deviation
from the linear trend at both ends.

4.1.2 Deterministic Lorenz 63: dimension reduction. We fit a two-dimensional SDE model of the
form (2.7) to data generated from the first two components of the three-dimensional ODE model
(2.5), (2.6). The four unknown functions (ψ1(·), ψ2(·), σ1(·), σ2(·)) are parameterized by the mean

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab003/6460773 by C

alifornia Institute of Technology user on 08 February 2022



LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 15

Fig. 5. Invariant measures of fitted models compared with those of the true noisy Lorenz 63 system: ODE case, fit α; SDE case,
fit σ , α.

of GPR. Each GPR involves the mean values at five fixed nodes, a stationary observation error, and the
stationary hyper-parameters (σG P , �). The precise form of the data in this case is a finite time average
approximation of {Gm(a), Gac(a)}. Specifically, the first four moments of the state vector a are used in
this case. In addition, nine equally spaced data points are used from a finite time average approximation
of the autocorrelation function Gac(a) for both states a1 and a2, from an interval of 10 time units, and
we obtain 18 data points in total from the autocorrelation function. Thus we are fitting 32 parameters
for the SDE by using a data vector y of dimension 27. The fixed GP nodes are five points uniformly
distributed in [−30, 30]. The initial ensemble of noisily observed values on those nodes is uniformly
drawn from [−20, 20]. The initial ensemble of GP observation error is uniformly drawn from [0.1, 10],
and the initial ensemble of GP hyper-parameters a and � is uniformly drawn from [0.1, 10] and [5, 10].
The trajectory initial condition is uniformly drawn from [0, 1) for each state variable. We use 30 EKI
iterations. The true moment data and autocorrelation data are presented in Fig. 11, alongside the results
obtained by using EKI to fit the SDE model to this data, showing a relatively good match to the data.
When measured by the ability to reproduce the invariant measure, the results demonstrate a strong
match between the marginal invariant densities on a1 and a2 from the original three-dimensional ODE
and from the fitted two-dimensional SDE (Fig.12). The fit to the autocorrelation functions of a1 and a2 is
also quite good (Fig. 13). It should be noted that Fig. 11 presents the autocorrelation at discretized time
shifts where we have training data, and Fig. 13 presents the autocorrelation which also extends beyond
the time shifts used in training. Figure 14 compares the trajectories of the three-dimensional ODE (2.5),
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16 T. SCHNEIDER ET AL.

Fig. 6. State trajectory and RMSE of fitted models compared with those of the true noisy Lorenz 63 system: ODE case, fit α;
SDE case, fit σ , α. The results are obtained by fitted models with ensemble mean of estimated parameters.

(2.6), projected on a1 and a2, with those of the fitted SDE (2.7); the difference in smoothness of the
solutions of ODEs and SDEs is apparent at that level, although it can be seen that the fitted SDE model
shows a similar pattern of irregular switching between the two distinct components of the attractor in
the true system.

Despite the seemingly simple formulation of this example as outlined in section 2, it is a rather
difficult problem. On the one hand, the transformed Lorenz 63 system (2.5), (2.6) is well known as a
classical chaotic system. On the other hand, chaos cannot arise in the reduced-order two-dimensional
model of the form (2.7) in a deterministic setting where the noise levels σi are set to zero, by the
Poincaré–Bendixson theorem. Palmer (2001) showed that a reduced-order two-dimensional model
of the Lorenz 63 system in discrete time could exhibit qualitative features of the original three-
dimensional system, if subjected to additive noise, but it remained an unsolved problem to fit a stochastic
two-dimensional model that quantitatively captures detailed chaotic behavior of the original three-
dimensional chaotic system. This motivated us to introduce both more unknown parameters and more
observed statistics as data, compared to the previous simulation study presented in (4.1.1). In so doing,
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 17

Fig. 7. Power spectral density of fitted models compared with those of the true noisy Lorenz 63 system: ODE case, fit α; SDE
case, fit σ , α. The results are obtained by fitted models with ensemble mean of estimated parameters.

Fig. 8. First two moments of state x for the Lorenz 63 system by using EKI to estimate σ and the linear function gL(x2).

we have demonstrated some success in fitting an SDE model to data from the ODE. We face similar
challenges in the remaining examples in this section, where the data are generated from a more complex
model than the model that it is fitted, or indeed is actual observed data.

4.2 Lorenz 96 system

We generate data from the slow variable {xk}K
k=1 in (2.8) and use it to fit a parameterized function ψ(·)

and parameter σ appearing in (2.11). In the experiments presented below, we take K = 36. The form
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18 T. SCHNEIDER ET AL.

Fig. 9. Invariant measures of fitted models (with linear function gL(x2) and σ as unknowns) and the true noisy Lorenz 63 system.

Fig. 10. The linear function gL(x2) learnt in (a) ODE model and (b) SDE model.

of the data in case (a) is finite-time averaged approximations of {G1(x), G2(x)}, i.e., observations of the
first and second moments of the state vector x = {xk}n

k=1. The model discrepancy term ψ(Xk) in (2.11)
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LEARNING STOCHASTIC CLOSURES USING ENSEMBLE KALMAN INVERSION 19

Fig. 11. Comparison of observation data between the true system and the EKI-fitted SDE model for the deterministic Lorenz 63
system.

is parameterized by the mean of a GP with mean values at 7 fixed nodes, and constant observation error
and hyper-parameters. Thus, we are fitting 10 parameters for the ODE and 11 for the SDE, using a data
vector y of dimension 44 (when only observing the first 8 slow variables). The form of the data in case
(b) is finite-time averaged approximations of moments up to fourth order (only evaluating for each single
slow variable and thus providing 144 data points) and 11 points on the averaged autocorrelation, leading
to a data vector y of dimension 155. The model discrepancy term ψ(Xk) in (2.11) is parameterized by the
mean of a GP with mean values at 11 fixed nodes, and constant observation error and hyper-parameters.
It should be noted that we also learn h2c/J in case (b). Thus, we are fitting 15 parameters for the ODE
and 16 for the SDE. The ensemble size is chosen as 300 for case (b). Our numerical results illustrate
several interesting properties of stochastic closures for the Lorenz 96 multiscale system:
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20 T. SCHNEIDER ET AL.

Fig. 12. Invariant measures of the deterministic Lorenz 63 system and the fitted reduced-order SDE model.

Fig. 13. Autocorrelation of the deterministic Lorenz 63 system and the fitted reduced-order SDE model.

(a) we show that for the relatively large time scale separation of c = 10 it is possible to fit both an
accurate ODE (σ = 0) and SDE (σ > 0), in the sense that both ODE and SDE fitted models
(2.8) accurately reproduce the invariant measure of the full system (2.8), using only n = 8;

(b) we show that with weaker scale separation of c = 3, the ODE fit is very poor, but for the SDE
it becomes excellent. In this case, we still set h = 1 in the dynamics of fast variables for the full
system.
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Fig. 14. Time series of the deterministic Lorenz 63 system and the fitted reduced-order SDE model.

In case (a), the fixed GP nodes are seven points uniformly distributed in [−15, 15]. The initial
ensemble of noisily observed values on those nodes is uniformly drawn from [−1, 1]. The initial
ensemble of GP observation error is uniformly drawn from [0.1, 1], and the initial ensemble of GP
hyper-parameters a and � is uniformly drawn from [0.1, 1] and [5, 20]. In the SDE case, the initial
ensemble of

√
σ is drawn from [0.01, 10]. The trajectory initial condition is uniformly drawn from

[0, 1) for each state variable. 20 EKI iterations is used. Results for case (a) are presented in Figs 15
and 16. It can be seen in Fig. 15 that both the fitted ODE model and SDE model show almost perfect
agreements with the true system in data space. Furthermore, both fitted ODE model and SDE model
agree well with the true system when we compare the invariant measure with that of the underlying
data-generating model, in Fig. 16. Although the agreement is slightly better for the fitted SDE model in
Fig. 16b, the performances of fitted ODE and SDE models are quantitatively close to each other. The
good performance of the fitted ODE model can be explained by invoking the averaging hypothesis, as
proposed in Fatkullin & Vanden-Eijnden (2004), suggesting a closed ODE model of the form (2.11).
The data implying the form of the closure ψ is as presented in Fig. 17a. Specifically, the scattering of
the true closure term is narrower for c = 10, indicating that a deterministic closure of slow variables can
achieve good agreement with the true system.

In case (b), the fixed GP nodes are 11 points uniformly distributed in [−15, 15]. The initial ensemble
of noisily observed values on those nodes are uniformly drawn from [−1, 1]. The initial ensemble of
GP observation error is uniformly drawn from [0.1, 1], and the initial ensemble of GP hyper-parameters
a and � is uniformly drawn from [0.1, 1] and [1, 10]. The initial ensemble of h2c/J is uniformly drawn
from [1/3, 20/3]. In the SDE case, the initial ensemble of

√
σ is drawn from [0.01, 10]. The trajectory

initial condition is uniformly drawn from [0, 1) for each state variable. Twenty EKI iterations are used.
Results for case (b) are presented in Figs 18 to 20. The averaging hypothesis does not apply so cleanly
in this case where c = 3, as can be seen by comparing the moderate scattering in the data when c = 10
(Fig. 17a), with that obtained when c = 3 (Fig. 17b). In the second setting, it turns out that the fitted
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Fig. 15. Comparison of observation data between the true Lorenz 96 system (c = 10) and the fitted ODE and SDE models.

Fig. 16. Comparison of invariant measures between the true Lorenz 96 system (c = 10) and the fitted ODE and SDE models.

ODE model is far less satisfactory than the fitted SDE model. Figure 18 shows that the SDE fit achieves
similar agreement as the ODE fit in data space. As presented in Fig. 19, the fitted ODE model still tends
to concentrate toward a small number of discrete values in the long-time behavior, while the invariant
measure of fitted SDE model demonstrates excellent agreement with the true system. The issue of the
fitted ODE model in failing to maintain correct chaotic behavior for a long time can be more clearly
seen in the time series presented in Fig. 20. More specifically, Fig. 20 demonstrates that the fitted ODE
model is able to maintain the chaotic behavior within the time range [0, 100] that is used to evaluate
time-averaged statistics as data. Beyond that time range, the fitted ODE model is attracted to a quasi-
periodic regime and then stays in that regime afterwards.
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Fig. 17. True closure term of slow variables with different temporal scale separations between slow and fast variables.

Fig. 18. Comparison of data between the true Lorenz 96 system (c = 3) and the fitted ODE and SDE models. All 36 slow
variables are used to compute the moments as data (only the first moment data are presented here).

4.3 El Niño–Southern oscillation

In this subsection we use the time-series data (Rayner et al., 2003) for SST T shown in Fig. 1(a) to fit
an SDDE of the form (2.12), learning the four parameters a, b, c, σ . Recall that the delays τ1 and τ2
may be viewed as known properties. The precise form of the data in this case is a finite-time average
approximation of {{Gm(T)}4

m=1, Gac(T), Gpsd(T)}. Thus, we are fitting four parameters in the SDDE by
using a data vector y of dimension 16. The initial ensemble of a, b, c are drawn uniformly from [0.1, 10].
The initial ensemble of log(

√
σ) is drawn uniformly from [log(0.1), log(10)]. The trajectory initial

condition is uniformly drawn from [0, 1) for each state variable. 10 EKI iterations is used. The true
moment data are presented in Fig. 21(a). To use the autocorrelation function Gac(T) as data, we sample
nine points from it with an interval of six months as presented in Fig. 21(b). We also use the coefficients
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Fig. 19. Comparison of invariant measures between the true Lorenz 96 system (c = 3) and the fitted ODE and SDE models.

Fig. 20. Comparisons of time series of slow variable X1 by using (a) the fitted ODE model and (b) the fitted SDE model. The
time range over which we collect data for EKI is [0, 100].

of a second-order polynomial fit to the logarithm of the PSD; the three coefficients are presented in
Fig. 21(c). Results demonstrating the fit are presented in Figs 21 to 22.

It can be seen in Fig. 21 that the fitted SDE model shows a good agreement with true ENSO statistics
at first and second order, but not a higher order. Looking at the invariant measures presented in Fig. 22,
we see evidence that the fitted SDE model can capture the long-time behavior of ENSO. The fitted SDE
model does not provide a good agreement with data especially in the fourth-order moment, indicating
the limitation of the current SDE model, which could be addressed by introducing a more sophisticated
model.

4.4 Butane molecule dihedral angle

We fit the second-order Langevin equation (2.14) model to data derived from (2.13). The precise form of
the data in this case is a finite-time average approximation of {{Gm(φ)}4

m=1, Gac(φ), Gpsd(φ)}, where φ
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Fig. 21. The comparison of observed quantities, including (a) the first four moments, (b) the autocorrelation function and (c) the
coefficients of fitted second-order polynomial of power spectrum density.

Fig. 22. The comparison of the invariant measures of SST between true ENSO data and fitted SDE model.

denotes the dihedral angle. Thus, similarly to the previous subsection, we use the first four moments of
φ, and the true moment data are presented in Fig. 23(a). Furthermore, Gac(φ) is approximated using nine
points sampled from the autocorrelation function with an interval of 50 fs (‘fs’ stands for femtosencond,
and 1 fs = 10−15 s), and these sampled data points are presented in Fig. 23(b). Finally, we also use the
coefficients of a second-order polynomial that fits to the logarithm of the PSD, and the three coefficients
are presented in Fig. 23(c). On the other hand, we are learning scalars γ and σ in (2.13), together with
the potential Ψ constructed from Gaussian basis functions (with length scale fixed as 0.5) centered at
nine points evenly distributed in [−π , π ]. Thus, we are fitting 11 parameters for the SDE by using a
data vector y of dimension 16. The initial ensemble of γ and log(

√
2σγ ) are drawn uniformly from

[0.1, 2] and [log(0.1), log(3)]. The trajectory initial condition is uniformly drawn from [0, 1) for each
state variable. 10 EKI iterations is used. Results showing the fitted SDE are presented in Figs 23 to 26.

Figure 23 shows that the fitted SDE model achieves very good agreement with all the statistics of
true dihedral angle data. More importantly, we can see in Fig. 24 that the fitted SDE model also leads to
an invariant measure that agrees well with that of the true dihedral angle data.
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Fig. 23. The comparison of observed quantities of dihedral angle φ, including (a) the first four moments, (b) autocorrelation
function and (c) coefficients of fitted second order polynomial of power spectral density.

Fig. 24. Invariant measures of butane molecule dihedral angle.

In order to further validate the fitted SDE model, and in particular to show that it successfully
captures the transition behavior and frequency information of the true data, we further study the time
series (Fig. 25) and autocorrelation function (Fig. 26) by simulating the fitted SDE model for a long
time. Figs. 25 and 26 clearly show that the fitted SDE model successfully reproduces the statistical
behavior of the true dihedral angle computed from the much more expensive full molecular dynamics
simulation.

5. Conclusions

Although computing power has increased dramatically in the past several decades, so too has the
complexity of models that scientists wish to simulate. It is still infeasible to resolve all the interactions
within the true system in many applications. SDEs arise naturally as models in many disciplines, even
if the first principles governing equations are deterministic, because stochasticity can effectively model
unresolved variables. However, standard statistical methodology for parameter estimation is not always
suitable for fitting SDE models to real data, due to the frequently observed inconsistency between SDEs
and real data at small time scales. In this work, we exploit the idea of using sufficient statistics found by
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Fig. 25. Time series of butane molecule dihedral angle.

Fig. 26. Autocorrelation of butane molecule dihedral angle.

finite-time averaging time series data. Using these statistics, we demonstrated that an SDE model, with
the unknown functions being parameterized by GPR, can be fitted to the data using EKI methods built
as optimization-based variants of the Bayesian sampling algorithms proposed in Chen & Oliver (2012)
and Emerick & Reynolds (2013).

Ensemble methods are particularly well-suited to this problem for several reasons: they are
derivative-free, thereby sidestepping computational and technical issues that arise from differentiating
SDEs with respect to parameters; they are inherently parallelizable; they are robust to the use of approx-
imate, noisy forward model evaluations; and they scale well to high-dimensional problems. Although
differentiating SDEs with respect to parameters does not cause issues in special settings, e.g., when the
diffusion coefficient is constant so that the stochastic process is not state-dependent, differentiation is
more problematic when the diffusion coefficient is state-dependent. Unlike derivative-based optimiza-
tion methods, ensemble methods avoid differentiating SDEs with respect to parameters and thus are
applicable to more general settings. High-dimensional parameter learning would require regularization
in combination with the basic EKI algorithm used here, as discussed in the introduction. The novel
hierarchical GPR-based function approximation that we use meshes well with the EKI methodology.

Future directions of interest in this area include the derivation of a systematic approach to the
determination of sufficient statistics, analysis of the EKI algorithm for learning in the context of these
problems, and analysis of the use of GPR-based function representation in nonlinear inverse problems
and the further use of the methodology to new problems arising in applications.
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