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Unless they are furnished with an adequate blood supply and a means of disposing 
of their waste p r d u c t s  by a mechanism other than diffusion, solid tumours cannot 
grow beyond a few millimetres in diameter. It is now a wellestablished fact that, in 
order to  accomplish this neovascularization, solid tumours secrete a diffusable 
chemical compound known as tumour angiogenesis factor (TAF) into the surrounding 
tissue. This stimulates nearby blood vessels to migrate towards and finally penetrate 
the tumour. Once provided with the new supply of nutrient, rapid growth takes place. 
In this paper, a mathematical model is presented for the diffusion of TAF into the 
surrounding tissue. The complete process of angiogenesis is made up of a sequence 
of several distinct events and the model is an attempt to take into-account as many 
of these as possible. In the diffusion equation for the TAF, a decay term is included 
which models the loss of the chemical into the surrounding tissue itself. A threshold 
distance for the TAF is incorporated in an attempt to reflect the results from 
experiments on corneal implants in test animals. By formulating the problems in 
terms of a free boundary problem, the extent of the diffusion of TAF into the 
surrounding tissue can be monitored. Finally, by introducing a sink term representing 
the action of proliferating endothelial cells, the boundary of the TAF is seen to recede, 
and hence the position and movement of the capillaries can be. indirectly followed. 
The changing concentration gradient observed as the boundary r d e s  may offer a 
possible explanation for the initiation of anastomosis. Several functions are considered 
as possible sink terms and numerical results are presented. The situation where the 
tumour (i.e. the source of TAF) is removed is also considered. 
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1. Introduction 

The progress and development of a solid tumour from a small dormant mass of cells, 
a few millimetres in diameter, into an invading metastatic cancerous growth, depends 
upon its ability to induce endothelial cells of neighbouring capillaries in the 
surrounding tissue to sprout towards and eventually penetrate the tumour, thus 
providing it with an adequate blood supply and microcirculation. Unless this 
neovascularization is achieved, the solid tumour will remain in a diffusion-limited 
avascular state (i.e. without its own blood supply and network of blood vessels). 
During this initial avascular phase of its growth, nutrients are obtained and waste 
products are disposed of via diffusion processes alone. Cells at the centre of the 
tumour are starved of vital nutrients and so die. A central necrotic core is formed, 
surrounded by a thin outer layer of live, proliferating cells. Avascular nodules can 
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be cultivated in the laboratory (Folkman, 1976) or can be found in vivo (carcinomas 
in situ being a good example). Models describing this avascular growth can be found 
in, for example, Greenspan (1976), Chaplain (1990), and Adam & Maggelakis (1990), 
and references therein. 

It is now a wellestablished fact that, in order to initiate and make the transition 
from the avascular phase to the vascular phase, solid tumours secrete a diffusable 
chemical compound known as tumour angiogenesis factor (TAF) into the surrounding 
host tissue and extracellular matrix (ECM). Since initial research into the nature and 
effects of TAF by Folkman in the early 1970s, much subsequent work has been 
carried out. It has k e n  demonstrated that TAF is found in tissues and parts of the 
body other than those in the vicinity of the tumour itself. For example, in blood 
serum (Lisniak & Sopotinskaia, 1989; Pawlikowski et al., 1989), in cerebrospinal 
fluid (Romberger et al., 1990), in pleural and peritoneal fluids (Deshpande & Shetna, 
1989), in haematoma capsules (Nakamura & Tsubokawa, 1989), in ascitic fluid (Mills 
et al., 1990), in the kidney (Bard et a/., 1986), in ECM (Reilly & McAuslan, 1988), 
and in tissue and urine (Shahabuddin et al., 1984). Other related angiogenic 
compounds and growth factors are also known to exist (Shahabuddin & Kumar, 
1 q83; SShahLabuddin et a]., 1'9 85 Eaird LC'Walicke, '1'989). The processes of neoangio- 
genesis and neovascularization have also been extensively studied and the sequence 
of events which takes place during the formation, growth, and development of the 
capillaries is now well documented. However, many questions still remain unanswered, 
and there are still parts of the process which are either not fully understood or reasons 
for their happening are unknown (cf. Paweletz & Knierim, 1990). Currently, several 
angiogenic factors have been fully purified, their amino acid sequences determined 
and their genes cloned (Strydom et al., 1985; Folkman & Klagsbrun, 1987; Deshpande 
& Shetna, 1989). The current literature on the subject is extensive (see e.g. the reviews 
of Folkman & Klagsbrun, 1987, and Paweletz & Knierim, 1990). 

Research to date has led to the development of four main techniques for studying 
the various stages involved during angiogenesis. 

(i) Implantation of a section of solid tumour into the cornea of various test animals 
such as the rabbit (Gimbrone et al., 1974) or mouse (Muthukkaruppan et al., 
1982). The dorsal airsac of the rat (Folkman et al., 1971) and the cheek pouch 
of a hamster (Warren & Shubik, 1966; Eddy & Casarett, 1973) have also been 
used as implantation sites. 

(ii) Biocompatible polymers which release angiogenic factors in a sustained manner 
in uioo have been developed (Langer & Folkman, 1976). 

(iii) Observing the effect partially purified fractions from tumour extracts have on 
the chick embryo chorioallantoic membrane with regard to angiogenic activity 
(Ausprunk et al., 1974; Klagsbrun et al., 1976; Ishiwata et al., 1988). 

(iv) Vascular endothelial cells have been cultured from various sites of the body, e.g. 
the umbilical vein (Jaffe et al., 1973), the aorta (Birdwell et a/., 1977), capillaries 
(Madri & Pratt, 1986), and used to guide the purification of endothelial cell 
growth factors. 

These above techniques have made it possible to observe the following sequence 
of events taking place during the process of angiogenesis. In response to the 
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angiogenic stimulus (i.e. the TAF), which has been secreted into the surrounding host 
tissue by the tumour cells, the endothelial cells of neighbouring capillaries first release 
proteolytic and collagenolytic enzymes that degrade and disintegrate the basal lumina 
and intercellular matrix through which they must move. They then migrate towards 
the solid tumour, the source of the angiogenic stimulus. Solid sprouts are formed as 
the endothelial cells elongate and align with one another. As the cells immediately 
behind those at the tip proliferate and divide, the lumen is pushed forward and the 
development of inter- and intralumina occurs. Cell proliferation at the tip also 
increases the sprout length. Anastomosis (i.e. the process whereby reconnections and 
fusions form a closed network) occurs between the sprouts to form loops which 
connect with the blood circulation. Pericytes appear at the base of the loops and the 
endothelial cells form a basal lamina. New sprouts can now grow from the loops, 
thus continuing the angiogenic process until the endothelial cells finally penetrate 
the tumour. Neovascularization now takes place, and the tumour can then continue 
to grow. During this vascular phase of growth, invasion of the surrounding tissue 
by tumour cells and metastasis may now take place. A comprehensive description of 
all the above events can be found in the extensive review of Paweletz & Knierim 
(1990). There are thus three main events which go to make up the neoangiogenesis 
after the release of TAF. 

(1) degradation of the basement membrane by enzymes. 
(2) migration of the endothelial cells. 
(3) proliferation of the endothelial cells. 

It should be noted that the second and third of these stages--endothelial cell 
migration and endothelial cell proliferation-are not linked together. They are 
distinct events and different types of stimuli are necessary for each of them. Indeed, 
the first steps of angiogenesis can be performed without any cell division at all 
(Sholley et al., 1984), and it is well known that mitotic figures can only be found 
once the sprouts have already started to grow. Thus cell division is a sine qua non 
event for the successful completion of angiogenesis. Endothelial cell migration 
together with endothelial cell proliferation are crucial to neovascularization. Angio- 
genic factors must therefore induce all of the above three events in a well-ordered 
sequence. 

Although neoangiogenesis may initially appear to be a particularly insidious facet 
of tumour growth, this apparent strength has been exploited in an attempt to control, 
or even stop altogether, any subsequent growth by developing an anti-angiogenesis 
strategy (Folkman, 1972). Drugs have been sought which act in such a way as to 
prevent the formation of any new capillary growth (Langer et al., 1980; Gross et al., 
1981). Indeed the clear differences between normal blood vessels and those present 
in neovascularized tumours (Kumar et al., 1985; Erroi et al., 1986) are now being 
exploited in order to develop drugs which can recognize and distinguish between 
normal tissue and the solid tumour. This specific targeting of the tumour itself has 
the potential to be of great value for patient chemotherapy (Willmott et al., 1991). 

The objective of this paper is to describe and evaluate a mathematical model for 
the diffusion of the TAF into the surrounding tissue and thereby to determine its 
effect on cell migration and proliferation; it is hoped that the results obtained will 
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stimulate further investigation of the TAF concentration profiles in the external tissue. 
In the following section, we describe the model which is formulated as a free boundary 
problem for the TAF concentration. New features that are included in the model are 
the consideration of finite boundaries and a critical distance between the turnour/ 
tumour implant and the neighbouring capillary vessels (e.g. in the limbus), a natural 
decay term for the TAF and a sink term for TAF, modelling the action of proliferating 
endothelial cells. Section 3 contains a description and discussion of the results 
obtained from numerical simulation of the model, and in Section 4 various concluding 
remarks are made. Finally, there are'three appendices containing various mathematical 
details omitted from the main text. 

2. The mathematical model 

In this section, we present a theoretical mathematical model for the diffusion of 
TAF into the surrounding tissue in which we attempt to reflect all of the main events 
associated with angiogenesis described in the introduction and offer an explanation 
for the occurrence of anastomosis. Attention is principally focused on the concentra- 
tion of TAF and its profile in the external tissue ajler it has been secreted into t.he 
surroundings by the tumour. We seek to model the changes in its concentration as 
the endothelial cells migrate toward the tumour, forming capillary sprouts and 
undergoing mitosis. Thus, we hope that this paper in some sense provides a link 
between two previous models dealing with tumour angiogenesis and neovasculariza- 
tion: those of Balding & McElwain (1985) and Chaplain & Sleeman (1990). In the 
former the modelling of the formation and growth of the capillaries was undertaken 
based on the fungal growth model of Edelstein (1982), while in the latter attention 
was focused primarily on the production of TAF within the tumour prior to its 
secretion into the host tissue. This utilized the recent results of Sekiya et al. (1986), 
Oosaki et al. (1987) and Lisniak & Sopotinskaia (1989), linking TAF concentration 
with tumour size and blood vessel formation and growth. 

The model is divided into two phases in order to take into account the experimental 
situation both in uitro and in vivo. In thefirst phase, TAF is secreted by the tumour 
from the thin layer of live cells at the tumour boundary and diffuses towards the 
limbal vessels. Following the findings and experiments of Gimbrone et al. (1974) and 
Muthukkaruppan et al. (1982) (where solid tumour extracts were placed at distances 
of 1-3 mm from the limbal vessels in  the cornea of test animals) and Folkman (1976), 
and also in view of the nature of solid tumours in situ, we consider finite boundaries 
for the extent of the TAF into the surrounding tissue, and these finite boundaries 
are allowed to advance or recede according to the behaviour of the TAF and the 
action of the proliferating endothelial cells on the TAF. As we have seen in the 
previous section, TAF has been found in tissues and parts of the body other than 
those in the vicinity of the tumour. Also, whenever the tumour extracts are removed 
(cf. Gimbrone et al., 1974), the capillary sprouts are seen to regress. In modelling the 
regression of the tips, Balding & McElwain (1985) assumed that the TAF concentra- 
tion level had decayed to zero. Thus, in this first phase of the model, a decay or sink 
term is included in a diffusion equation for the TAF concentration. The inclusion of 
this term models accurately the experimental evidence and observations. We note 

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

m
b.oxfordjournals.org/

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


TUMOUR GROWTH MODEL 195 

that the recent model of wound healing via a reaction-diffusion mechanism of 
Sherratt & Murray (1990) also includes a natural decay term for the chemoattractant. 
This is similar in nature to, and plays a similar role as, the TAF. We assume that 
this first phase of the problem continues, with the TAF being secreted, until a steady 
state has been reached. At steady state, the TAF extends. a finite distance into the 
external tissue and does not penetrate it any further. This models the situation and 
experimental results of Gimbrone et al. (1974) (see also Ausprunk & Folkman, 1977, 
and Balding & McElwain, 1985), where a critical distance for the TAF was found 
to exist, and also the hypothesis of Folkman (1976), where a parallel was drawn 
between the finite extent oxygen can diffuse into tissue and a proposed similar 
distance for TAF (see also Folkman & Klagsbrun, 1987). The critical distance is 
given in terms of the parameters involved in the model. Gimbrone et al. (1974) found 
that no vascularization of the tumour occurred or that the time for vascularization 
was substantially increased (3-4 weeks as opposed to 1&12 days) when the tumour 
implant was placed at a distance of more than 2.5 mm from the limbal vessels. 

Once a steady state has been reached, two possibilities arise. The first is that the 
distance between the tumour and the neighbouring vessels is below the critical 
threshold distance (Gimbrone et al. 1974), and so the endothelial cells cannot react 
to the angiogenic stimulus, and thus no cell migration and sprouting takes place. 
The second possibility, and the one which we shall concentrate upon, is that the 
tumour is within the critical distance and hence capillary growth can take place. This 
constitutes the second phase of the model. As described in the introduction, after 
degradation of the basement membrane, the initial response of the endothelial cells 
is to begin to migrate towards the source of angiogenic stimulus. Cells subsequently 
begin to proliferate and capillary sprouts are formed at a later stage. Initially, cell 
proliferation is seen only in the area of the parent vessel at the base of the outgrowing 
capillaries (cf. Paweletz & Knierim, 1990). However, once the capillary sprouts have 
formed, it is only cells at the tips of the sprouts that are actively migrating and 
reproducing. Ausprunk & Folkman hypothesized that the reason for this restricted 
proliferation was that these cells or vessels at the sprout tip were acting as sinks for 
the TAF. Balding & McElwain (1985) also suggested that a sink term could be 
included in their model of capillary growth. In order to account for this behaviour, 
we thus incorporate a further sink term for the TAF which comes into effect during 
this second phase of the model once the threshold distance has been reached. This 
has the effect of forcing the boundary of the TAF to recede towards the tumour. . 
Thus, the external tissue continues to absorb the TAF, but now so also do  the 
proliferating endothelial cells which initially may appear either near the parent vessel 
or at the sprout tips. The boundary, which marks the depth of penetration in the 
steady state, recedes towards the tumour surface as the sprouts begin to grow and 
the cells act as sinks. The problem is thus to track the movement of the boundary 
of the TAF, hence determining the distribution of the TAF concentration as a function 
of time. In the model, we consider several possible sink functions which could descrik 
the (spatially restricted) action of the proliferating endothelial cells. Since the results 
are qualitatively the same in each particular case, we give numerical solutions for 
one possible choice. By following the movement of the boundary of the TAF as it 
recedes, we also have a way of (indirectly) tracking the movement of the capillary 

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

m
b.oxfordjournals.org/

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


196 M. A .  J .  CHAPLAW AND A. M. STUART 

tips as they make their way across the extracellular matrix moving up the T A F  
concentration gradient towards the source of the angiogenic stimulus, the solid tumour 
itself. As this process continues, a second steady state for the TAF is reached. This 
corresponds well with the occurrence of an important but poorly studied event of 
angiogenesis-that of anastomosis. Initially, as we have seen, the capillary sprouts 
which arise from their parental vessels (e.g. the limbal vessels of the cornea) grow in 
a more or less parallel way to each other. They then incline towards each other at 
a definite distance from their origin. It is not known why anastomosis occurs only at 
a definite distance from the parental vessels or what signal 'decides' whether 
elongation of an existing loop or formation of new sprouts is realized. We hope that 
the results which arise from our model with regard to the changing T A F  concentration 
gradient may shed light upon this matter. Finally, we consider the effects of removing 
the tumour (i.e. the source of angiogenic stimulus) altogether. In this situation, 
changing concentration gradients may also play a role, helping to explain the 
regression of the capillary sprouts. 

Initially, our model is formulated in a general setting with an arbitrary geometry, 
as is the case in oiuo. Subsequently, following the example of previous papers on the 
sul5jEt (BZlding & McElwain, 1'985; Chaplain & Sleeman, 1990), we speciajize to 
geometries which are more amenable to straightforward numerical analysis but which 
capture the qualitative features of the model; we also present some numerical results 
and compare them with those of Balding & McElwain (1985). There is little 
experimental data on the profile of TAF concentration in the external tissue, and so 
we hope that this paper may stimulate some research into this aspect of angiogenesis, 
thus providing a more complete picture of this important process. 

We begin with some definitions for our model. Let R be an open bounded region 
in Rn denoting the exterior of the solid tumour, which we take to have a smooth 
boundary aR. We suppose that TAF, with concentration denoted by c(x, t), is being 
secreted by the solid tumoqr and diffuses into R. The concentration of TAF at the 
tumour surface, where there is assumed to be a thin layer of live proliferating cells 
(cf. Greenspan, 1976; Chaplain & Sleeman, 1990), is maintained at a constant level 
c,. In this first phase the TAF is absorbed only by the external tissue, while in the 
second phase absorption occurs not only through the external tissue but also by the 
endothelial cells at the tips of the sprouts which have formed as a result of the 
chemotactic stimulus of the TAF. The precise forms of the absorption rate by the 
tissue and the sink function, representing the action of the proliferating endothelial 
cells, will be discussed and given later. 

Phase 1 

The TAF is assumed to diffuse with rate constant D and to be absorbed by the 
surrounding host tissue at a rate g(c) (cf. oxygen diffusion in muscle tissue; Galib et 
al., 1981). On the boundary aR of the tumour, the concentration of TAF is assumed 
to be maintained at a constant level c, (cf. Balding & McElwain, 1985). The free 
boundary determining the furthest extent of the TAF outside the tumour into the 
surrounding tissue is denoted by and, at that boundary, the concentration and 
gradient of concentration are taken to  be zero (cf. Crank & Gupta, 1972). The free 
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boundary is allowed to move as the TAF advances or recedes into the tissue; such 
free or moving boundary problems are described in Crank (1984). We also present 
results (which show no qualitative differences) for the case where the TAF concentra- 
tion here is taken to be nonzero. Under these assumptions, the concentration satisfies 
the following equation: 

together with the boundary conditions 

and the initial conditions 

Here Vc is in the direction normal to the boundary of T. 
We first of all specialize to a one-dimensional geometry (cf. Balding & McElwain, 

1985; Chaplain & Sleeman, 1990). This will enable the steady state to be calculated 
in a straightforward manner and also facilitate the numerical solution of the equation 
when required. Thus, in this phase of the model, we take the boundary of the tumour 
to be situated at x = 0 and the capillary vessels (e.g. in the limbus) to be a distance 
L from the tumour. The free boundary T(t) is denoted by s(t). The above equations 
now become 

Various choices are possible for the function g(c), which represents the natural loss 
of TAF to the external tissue. However, we shall concentrate on the simple choice 
g(c) = m, where m is a constant (cf. Galib et al., 1981) since it captures the right 
qualitative features. This gives a linear decay with time in the absence of the diffusion 
term DV~C.  We also briefly examine the choice g(c) = kc + m, which gives exponential 
decay with time in the absence of the diffusion term (cf. Sherratt & Murray, 1990). 

Equations (2.1)-(2.3) are assumed to hold until a steady state is reached. Thus it 
is important to determine the maximum extent of TAF from the boundary of the 
tumour to discover whether the critical distance L is reached. To do this, we determine 
the extent of the free boundary s in the steady-state configuration which it is assumed 
to approach as the diffusion process governed by (2.1)-(2.3) occurs. The above 
equations then reduce to the following problems for the concentration c(x) and 
the extent of the boundary s: 
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From a qualitative analysis of the above solution, we can see that we have the 
following features in the steady-state solution. 

(i) The larger the value of c,, the greater the extent of TAF into the host tissue, 
which is not unexpected. A high value for c on the boundary of the tumour also fits 
in well with the proposed hypothesis of Chaplain & Sleeman (1990). Utilizing the 
experimental results of Sekiya et al. (1986), Oosaki et al. (1987), and Lisniak & 
Sopotinskaia (1989), which showed there to be a direct correlation between TAF 
activity, TAF concentration level, and tumour size, Chaplain and Sleeman (1990) 
formulated a mathematical model which linked a critical tumour size to a critical TAF 
concentration level. Thus, we assume that the tumour is larger than the critical size 
and is secreting TAF at a higher concentration than the critical level. This is also 
consistent with the experimental results of Gimbrone et al. (1974). 

(ii) A large value of D also indicates that the TAF has penetrated the tissue to a 
large extent, while conversely a small value for D indicates a lesser penetration. 
Several TAFs with varying molecular weights have been isolated, and so we can see 
that different angiogenic factors will diffuse different distances (cf. Errol et al., 1986; 
Sekiya et al., 1986; Folkman & Klagsbrun, 1987; Ishiwata et al., 1987; Oosaki et al., 
1987; Ishiwata et al., 1988). 

(iii) As m decreases, s increases and vice versa. Once again, we see that this gives 
the correct qualitative behaviour. We note that s -+ cr, as m -+ 0; i.e. the smaller the 
absorption rate, the greater the extent of the TAF penetration. In the limit m -+ 0, 
we retrieve the solution of Balding & McElwain (1985). At the opposite extreme, 
s -+ 0 as m -+ cr,, which can be thought of as modelling the effect of an anti- 
angiogenesis strategy, whereby the effect of the TAF is countered by a drug which 
neutralizes it. 

We note that a similar solution, with similar qualitative features, is obtained when 
the decay term g(c) = kc + m is used: 

Solutions for circular and spherical geometries can be found in Appendix 1. 

Phase 2 

At steady state, the extent of the TAF penetration into the surrounding tissue is 
given by (2.4). There are thus two possibilities which can now arise. It is possible 
that the tumour is situated at a distance less than the critical distance for stimulating 
angiogenesis (Gimbrone et al., 1974), and so consequently s is not large enough for 
the TAF to have reached the limbus and act as a chemoattractant for the endothelial 
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cells. Alternatively the tumour may be sufficiently close for s to have just reached or 
be beyond the boundary of the neighbouring vessels (e.g. at the limbus), thus 
providing a suprathreshold concentration of TAF to the vessels and allowing the 
endothelial cells to be stimulated chemotactically by the TAF (Gimbrone et al., 1974). 
The process of angiogenesis can then begin. We now focus our attention on this latter 
possibility and assume for simplicity that the free boundary s has just reached the 
limbal vessels, so that we may write 

Having degraded their basal lamina, the endothelial cells migrate across the 
extracellular matrix, moving up the gradient of TAF. Proliferation occurs some time 
after migration and, following the hypothesis of Ausprunk & Folkman (1977) and 
Balding & McElwain (1985), we assume that the proliferating endothelial cells act as 
sinks for the TAF. This necessitates the inclusion of an extra sink term in our equation 
to model the uptake of TAF by the proliferating cells and vessels in the sprouts, and 
as our model we take 

together with the boundary conditions 

and the initial conditions 

The function f(x/s, c) is the corrective sink term representing the action of the 
proliferating endothelial cells and the initial condition c(x, t) = co(x) is taken to be 
the configuration of the TAF boundary in its steady state from phase 1 given by (2.4). 

In formulating the function representing the sink term in equation (2.6), we have 
incorporated two aspects-first, the dependence of the rate at which the TAF is being 
removed by the cells and vessels in the capillary tips on the TAF concentration itself; 
second, the fact that this removal rate is spatially dependent (cf. Ausprunk & Folkman, 
1977; Balding & McElwain, 1985; Paweletz & Knierim, 1990) and occurs predomin- 
antly near the capillary tips. The sink function f is thus proportional to the spatial 
concentration of the proliferating endothelial cells, as hypothesized by Ausprunk & 
Folkman (1977). 

We assume that the sink term f(x/s, c) may be written as the product of two 
functions: the first dependent only on the concentration c of TAF, and the second 
dependent only on the distance from the tumour as a proportion of distance of the 
free boundary from the tumour, XIS. Hence, 

For p(c) we consider three possible functions which might model the uptake rate of 
the TAF by the proliferating cells and which have been used in previous models of 
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this nature for the (nonlinear) uptake of chemicals by cells (cf. Lin, 1976; McElwain, 
1978; Hiltman & Lory, 1983; Balding & McElwain, 1985; Murray, 1989). 

(i) Michaelis-Menten kinetics: 

(ii) A logarithmic law: 

P(c> = xol(1 + c). 

(iii) A receptor kinetic law: 

To  allow for the spatial dependence of j (i.e. to model the fact that this sink term 
should in some way be proportional to the spatial concentration of the proliferating 
endothelial cells in the capillary sprouts), we take 

For d large, the function q(X) is a continuous approximation to'the delta-function 
6(X - a) (cf. Adam, 1991% b). Thus the removal of TAF occurs predominantly at 
and near X = a, that is, where x = as(t). We assume that 0 < a < 1; the choice a = 1 
corresponds to the assumption that the boundary marking the maximum extent of 
the TAF coincides exactly with the position of the proliferating endothelial cells as 
they migrate across the extracellular matrix. The choice a < 1 corresponds to the 
assumption that the proliferating endothelial cells are closer to the tumour than is 
the boundary marking the maximum extent of the TAF into the external tissue. Both 
these cases are consistent with experimental observations. Initial endothelial cell 
proliferation has been observed both in the parent vessel (Paweletz & Knierim, 1990) 
and also at some distance from the parent vessel, at the tips of the capillary 
sprouts (Ausprunk & Folkman, 1977). Thus a choice a = 1 corresponds to the case 
whereby proliferating endothelial cells appear initially in the parent vessel and in the 
subsequent motion the extent of the TAF boundary coincides exactly with their 
position. A choice of a < 1 corresponds to the endothelial cells initially proliferating 
at some distance in from the parent vessel (e.g. at or near the capillary sprout tips), 
and then subsequently remaining 'slightly ahead' of the boundary marking the extent 
of the TAF into the external tissue, as the tips migrate towards the tumour. The 
precise choice of the value for a does not affect the qualitative results in this paper 
(i.e. the TAF boundary recedes in each case) and gives the model a degree of flexibility 
in the choice of the exact position of the sink term modelling the action of the 
proliferating endothelial cells. The important feature to capture is that the qualitative 
shape of the sink function f is spatially restricted, thus mirroring the profile of the 
proliferating endothelial cells. 

For convenience and simplicity, we now nondimensionalize the variables in the 
previous equations (cf. Balding & McElwain, 1985). As reference variables, we choose 
the following: 
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(i) 

(ii) 

reference TAF concentration: c,, the value of the TAF concentration at the 
tumour boundary; 
reference length: L, the distance from the tumour boundary to the limbal vessels; 

(iii) reference time unit: r = L2/D. 

We thus define new variables: 

Dropping the tildes and noting that L is given by (2.5), equations (2.6)-(2.8) now 
become 

The sink function is also suitably nondimensionalized and the exact details of this 
are given in Appendix 1. Figure 1 shows the profile of the (dimensionless) sink 
function f ,  with a = 1 and a = 0.8, at time t = 0 and initial conditions given by (2.16) 
(the profile is similar in the subsequent evolution of the free boundary). In each case, 
the dependence of the function f on the spatial concentration of the proliferating 
endothelial cells is clearly shown. The removal of the TAF occurs along a small 
'band' corresponding to the spatial distribution of the proliferating endothelial cells 
which agrees well with experimental evidence (cf. Paweletz & Knierim, 1989). We 
note that in approximating the delta-function, an exact zero value for the sink term 
outside this band of proliferating cells is not obtained. However, the actual nonzero 
values obtained are sufficiently small compared with the dimensionless 'background' 
tissue absorption rate of unity. Using the values described in the following results 
section (with a = I), we have f(0) = 0.008, f(0.25) = 0.016, f(0.5) = 0.04, f(0.75) = 
0.17, f(0.9) = 1.1. It is thus clearly seen that the nonzero values outwith those 
representing the endothelial cells are of at least an order of magnitude smaller than 
unity and hence can be neglected (this also remains true in the subsequent evolution 
of the free boundary). The results of solving the above system numerically are given 
in the following section. In the numerical simulations, we shall also modify (2.1 5) to 
allow a nonzero value for the concentration (c  = 0.5) on x = s(t). 

Circular and Spherical Geometries 

We also consider the case of the problem in two and three dimensions, since in 
the experiments carried out by Gimbrone et al. (1974) and Muthukkaruppan et al. 
(1982) the tumour implant grew as a flat circular mass of cells and, in consideration 
of the in oivo situation, it is realistic to consider three-dimensional geometries also. 
Once again in order to simplify the problem, we assume radial symmetry for both 
cases and assume that the tumour boundary is at a radial distance b; we thus have 
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Strength of Sink Funaion Versus I)lstana 

Snength of Sink Function Versus Distance 

FIG. 1 .  (a) Profile of the sink function f representing the action of the proliferatingendothelial cclls (a = 1). 
(b) Profile of the sink function f representing the action of the proliferating endothelid ah (a = 0.8). 
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the following system to solve: 

Removal of Angiogenic Source 

When the tumour implant is removed, the TAF diffuses away naturally over a 
certain period of time (Balding & McElwain, 1985). The main result of this on the 
model is to change the boundary condition at x = 0.  Instead of the TAF concentration 
here being kept constant, we now adopt the condition that there is no flux of TAF 
at x = 0 ,  since, once the tumour has been removed, TAF is no longer produced. This 
now gives us the following equations: 

In this case, the initial conditions co(x) and so are taken to be the steady-state 
profile obtained from the numerical solution of equations (2.14)-(2.16). Equations 
(2.20)-(2.22) are only a valid model for a short time after initialization because the 
assumption that the capillary tips and the position of the free boundary move together 
becomes invalid for this boundary condition modelling removal of angiogenic source. 
This is discussed further in Section 3. 

All of the above equations are solved numerically and the results are presented in 
the following section. 

3. Results 

I n  this section, we present results from numerical simulations of the models 
(2.14)-(2.16), (2.1 7)-(2.19), and (2.20)-(2.22). The numerical method employed is 
based on a front-tracking finite-difference scheme and is described in Appendix 2. 
Throughout this section, the choice of p(c) is given by (2.1 l ) ,  a logarithmic law. The 
results are qualitatively the same if either a Michaelis-Menten (2.10) law or a receptor 
kinetic (2.12) law is used for the choice of p(c). The only differences are that the 
boundary denoting the maximum extent of the TAF into the external tissue at the 
second steady state changes slightly and the precise shape of the concentration profiles 
is also modified slightly. 

In Appendix 3, it is proved that equations (2.14)-(2.16) have a steady solution and 
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that the boundary of this steady solution is closer to the tumour surface than the 
boundary of the steady solution from phase 1. This is to be expected and indicates 
that the capillary tips move towards the tumour during phase 2 of the angiogenic 
process and eventually reach an equilibrium position close to the tumour. Similar 
results can be proved for equations (2.17)-(2.19) and (2.20)-(2.22). 

In nondimensionalizing the model, we followed Balding & McElwain and chose 
for our reference length L a value of 2 mm, while the value for 7 was taken to be 14 
days, the average time for vascularization to occur. This gives an approximate value 
of 3.3 x lo-' cm2/s or 0.29 mm2/day as a value for D. 

Figure 2(a) shows the results obtained by solving (2.14)-(2.16) numerically and 
then plotting the profile of TAF concentration in the external host tissue at regular 
intervals of time with the function p(c) as given above. The value x = 0 denotes the 
tumour surface, while the value x = 1 denotes the position of the parent vessel (e.g. 
the limbus). The value chosen for a here was 1. Figure 3(a) shows the results obtained 
when the value for a is taken to be 0.8. We can see that the results obtained in each 
case are qualitatively the same, with the boundary of TAF moving farther in when 
a = 0.8, as is to be expected. As explained in the previous section, a value of a = 1 - - -. 
denotes the initial appearance of  proi$erating -endothelid &lls at ilie parent vessel' 
(e.g. the limbus) and then subsequently their position and the extent of the TAF 
coincide. A value of a = 0.8 denotes the initial appearance of the proliferating 
endothelial cells at or near the tips of the capillary sprouts, once these have formed. 
In the subsequent motion in this case, therefore, the capillary tips will be slightly 
ahead of the extent of the TAF boundary. The important feature in both cases (a = 1, 
a c 1) is that the boundary, marking the extent of TAF into the external tissue, 
recedes. Thus, both proximal and distal endothelial cell proliferation can be accounted 
for in the model (cf. Muthukkaruppan et al., 1982). Figures 4(a) and 5(a) show the 
results obtained from (2.17)-(2.19) when circular (i.e. 2-D) and spherical (i.e. 3-D) 
geometries are considered, respectively. In each case, the tumour is assumed to have 
radius 0.25, a t  which the layer of proliferating tumour cells is situated. Thus r = 0.25 
is the edge of the tumour. Figure 6(a) shows the results of having a nonzero boundary 
condition on'the concentration c(x, t) at x = s(t). 

In each case considered above, we can see that the qualitative result is the 
same-the TAF boundary recedes and moves towards the tumour, thus depriving 
the cells in the vicinity of the parent vessel of TAF and hence no mitotic figures are 
observed once the sprouts have appeared and a steady state has been reached. This 
corresponds well with the experimental observations and hypothesis of Ausprunk & 
Folkman (1977). As the TAF boundary recedes, we also note the changes in the TAF 
concentration gradient. The endothelial cells which are migrating in the sprout tips 
(Ausprunk & Folkman, 1977) may, through their position, detect these changes in 
gradients, and hence may provide a signal for the beginning of anastomosis. The 
steady state also occurs a t  a definite distance from the parent vessels and this is in 
agreement with the in oioo situation. We propose that it is this change in TAF gradient 
which may be responsible for initiating anastomosis and then the subsequent 
formation of the brush border of blood vessels (this phenomenon was reported by 
both Gimbrone et al. (1974), who noted that the initial sprouts were converted into 
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'dense vascular brushes' and Muthukkaruppan et al. (1982), who observed the 
formation of a 'brush border of red blood cells'). Indeed, after anastomosis, the 
whole angiogenic process repeats itself once more, with the formation of new capillary 
loops and sprouts from the anastomoses. These can now move up the increased 
TAF concentration gradient and penetrate the tumour which becomes vascular- 
ized. 

Figures 2(b)-6@) show the corresponding profiles of the farthest extent of TAF 
into the external tissue plotted against time, showing how the boundary recedes under 
the action of the proliferating endothelial cells which behave as sinks. In all cases, a 
steady state is reached in a dimensionless time of t z 0.2-0.3, which corresponds to 
a real time of approximately 3 4  days. When the time for mitotic figures to appear 
is also taken into account (36 hours; cf. Paweletz & Knierim, 1990), we see that 
steady state is reached approximately 5 or 6 days after the TAF has reached the 
neighbouring vessels (in the limbus, for example) and stimulated the angiogenic 
process. This timescale is in good agreement with the experimental evidence for the 
appearance of sprouts and the onset of anastomosis. We also note that the average 
speed of the receding boundary (which may be used as an indication of the speed of 
the migrating cells and the sprout tips) is approximately 0.36 mm/day. Once again 
this compares favourably with the experimental data available. 

Finally, Fig. 7 gives the profile of TAF concentration in the external tissue and 
the farthest extent of the boundary of TAF plotted against time, once the tumour 
has been removed altogether (these are obtained from the numerical solution of 
(2.20)-(2.22)). The initial configuration for the TAF concentration profile is taken 
to be the steady state reached in Fig. 2(a). As can be seen from Fig. 7(a), initially, 
the boundary of the TAF moves towards the parent vessel (e.g. the limbus) at the 
boundary x = 1, with corresponding decreases in the TAF concentration gradient 
and TAF concentration level. Just as the endothelial cells and capillary sprouts 
reacted to the initial chemotactic stimulus by moving up the TAF concentration 
gradient (which increased as the TAF boundary receded) so, as the concentration 
gradient falls with the removal of the tumour, the tips begin to recede in response 
to the jalling gradient. Under the same assumption that the initial capillary tip 
movement towards the tumour could be indirectly monitored in Figs. 2(a)-6(a) by 
following the extent of the TAF boundary as it receded (producing an increased TAF 
concentration gradient), so from Fig. 7(a) we can indirectly follow the initial 
regression of the capillary tips via the motion of the TAF boundary. However, as 
can be seen from Fig. 7(a), at t z 0.03, the TAF boundary begins to recede towards 
the tumour, in this case with falling concentration gradient, and the above assumption 
about the relationship ktween the free boundary and the capillary tips is no longer 
valid. Hence our model breaks down for t z 0.03. The profile of the TAF and its 
free boundary can still be monitored as it decays to zero, using the model of Crank 
& Gupta (1972) for the oxygen diffusion problem, but the position of the capillary 
tips can no longer be monitored under the above assumption. At this stage of the 
problem, a new approach would have to be tried in order to achieve this and we do 
not concern ourselves with this problem here. It is hoped that this can be investigated 
in a future paper. 
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4. Conclusions 

The complete process of angiogenesis is a complicated one, involving several 
distinct, and not necessarily related, events. This in turn requires several separate 
mechanisms which can stimulate each event, e.g vasodilation, endothelial cell 
migration, endothelial cell proliferation (both proximal, in the limbus, for example, 
and distal, at the tips of the capillary sprouts and the brush border of new blood 
vessels), and loop formation (anastomosis), to name a few. Despite much research 
and many advances, many questions still remain unanswered (cf. Paweletz & Knierim, 
1990). To formulate a single mathematical model which would include all of these 
processes would be very difficult indeed. In this paper, therefore, we have chosen to 
focus our attention on the profile of the TAF concentration in the external host 
tissue, after it has been secreted by the tumour cells. This is a novel approach to 
modelling angiogenesis, and we have been able to include in the model several 
important features from the experimental observations which are biologically relevant 
but which have not previously been used in other models of this kind. These are: 

0 finite boundaries, i.e. finite distance between the tumour and the neighbouring 
vessels (e.g. the limbus); 

0 critical distance between tumour and neighbouring vessels; 
0 natural decay term for the TAF; 

sink term for TAF to model the action of the proliferating endothelial cells, whether 
initially seen in the parent vessel or at the sprout tips; a feature of this sink function 
is that it is proportional to the spatial concentration of the proliferating endothelial 
cells. 

The model is, in essence, a qualitative one since any relevant experimental data 
(e.g. TAF concentration, rate of uptake of TAF by both the host tissue and the 
proliferating endothelial cells) is difficult to obtain. As we have already stressed in 
the preceding sections, it is the qualitative shape of the profile of the sink function 
f that is important and we note that this is also the case in other successful qualitative 
models where experimental data has been difficult to find (cf. Liotta et al., 1977; 
Balding & McElwain, 1985). Indeed we hope that our results may stimulate research 
into measurement of those parameters which remain unknown in our model. 
However, when parameter values are chosen to correspond with the experimental 
data that is available, the results obtained in the model are in good agreement with 
those observed experimentally. In addition to this, the model also offers a solution 
to an important, unanswered question-a possible explanation for a crucial event 
which occurs during angiogenesis (anastomosis) arises naturally from the results of 
the model. Although this is a well-known and welldocumented event in angiogenesis, 
little research has been carried out into what stimulus causes it and the reason why 
it always occurs at a definite distance from the parent vessels (e.g. limbal vessels) is 
still unknown. As we have seen, the results of the model suggest that a possible 
explanation could be to do with changing TAF concentration gradients and the 
formation of a second steady state for the TAF concentration profile, occurring at 
a definite distance from the parent vessels. 

One weakness of the model is that it does not consider explicitly any equation for 
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the endothelial cell density or tip density, for example. However, as we have noted, 
information concerning these variables can be obtained indirectly from the concentra- 
tion profile of the TAF in the external host tissue, while the underlying relative 
simplicity of the model is still retained. Encouraged by the results of the present 
model, a more comprehensive model is currently being developed which includes a 
population balance term for the endothelial cells. When coupled with the present 
model for the TAF concentration, this will give a better overall view of the 
complicated process of angiogenesis. We also hope that our (theoretical) results may 
stimulate and encourage experiments to investigate our hypothesis concerning 
anastomosis. 

Glossary 

Angiogenesis the formation of blood vessels arising during processes such as 
embryonic development and solid tumour growth. 

Neoangiogenesis the process whereby blood vessels arise where vessels have previ- 
ously existed, e.g. during solid tumour growth and wound healing. 

Vascularization the formation of all types of vessel within a tissue which has never 
previously developed vessels. 

Neovascularization the formation of new vessels in tissues in. which previously 
existing vessels have stopped functioning completely or are no longer sufficient. 

Appendix 1 

Steady States from Phase 1 

The steady-state solution in circular and spherical geometries, with radial symmetry, 
requires the solution of the following equation: 

with boundary conditions 

where r = a is the tumour radius and r = R(t)  is the extent of the boundary of the 
TAF into the external tissue (here R(t) corresponds to s(t)  in the one-dimensional 
problem). 

For n = 2, this has the solution 

m 
c = - [(r  - R2) + R2 ln(R2/r2)], 

40 

with 
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For n = 3, we have 

M. A. J. CHAPLAW AND A. M. STUART 

with 

Nondimensionalization 

When nondimensionalized, the three functions given in equations (2.10)-(2.12) 
reduce to the following forms: 

(i) Michaelis-Menten kinetics: 

ac/@ + c), where a = K,,/m, 8 = K J2cb. 

(ii) .kog~rithmic law: 

y/(6 + c), where y = x0/2mcb, 6 = 1/2cb. 

(iii) Receptor kinetic law: 

E/ ( [  + c ) ~ ,  where e = xok/4mc:, [ = k/2cb. 

The function q ( X )  in the sink term in equation (2.13) is unaffected by the non- 
dimensionalization since it involves only the ratio of x and s which are both 
scaled in the same way. In the numerical calculations, the value for d was chosen to 
be 250, while the parameters y and 6 were taken to be 3 and 1 respectively. 

Appendix 2 

In this appendix, we briefly describe the numerical method employed for the 
solution of the implicit free boundary problem (2.14)-(2.16). Similar methods are 
employed for the solution of the equations (2.17)-(2.19) and (2.20)-(2.22). The 
problem is termed implicit since there is no explicit equation for the evolution of 
s(t)--see, for example, Crank & Gupta (1972) and Crank (1984). We can state the 
free boundary problem as follows: find c(x, t )  E C2' '((0 , S) x (0 , T)) and s(t) E C1(O , T) 
satisfying 

together with an initial condition on c(x, 0), which determines s(0). 
The numerical method for the solution of (A.l, A.2) is based on a coordinate 

transformation. This idea was introduced for the Stefan problem (which is an explicit 
free boundary problem) by Landau (1950); its application to a problem involving 
implicit free boundaries is described in Stuart & Floater (1990). We introduce a 
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coordinate change which maps 0 < x < s ( t )  onto 0 < y < 1 .  The use of a fixed spatial 
grid in the variable y corresponds to a moving mesh in the variable x. We define 

Under this transformation the problem becomes: find u(y, t )  E C2'  ' ( ( 0 ,  1) x ( 0  , T ) ) ,  

s ( t )  E C 1 ( O ,  T )  satisfying, for S = dsldt ,  

together with initial conditions in v(y ,  0 )  and s(0). 
The numerical method is as follows. First, assume that s( t)  is a known function of 

time. Equations (A.3,  A.4) are discretized by a finite-difference scheme which is 
centred in space and employs backward Euler time-stepping on the differential 
operator, together with explicit treatment of the source term. The two boundary 
conditions enforced are v(0, t )  = c ,  and u,(l, t )  = 0 .  Using this algorithm, we may 
advance from t  = nAt to t  = (n + 1)At given s(nAt) and s ( (n  + ] ) A t ) .  However, in 
general, such a solution will not satisfy u(1, (n + 1)At)  = 0 .  Thus, the problem 
reduces to a single nonlinear equation for the determination of s ( (n  + ] ) A t )  at each 
time-step to enforce the third boundary condition in space. We solve this one- 
dimensional shooting problem at each time-step. This problem is solved by a secant 
iteration to obtain rapid convergence and avoid the calculation of Jacobians. The 
value of s at nAt is taken as the initial guess for the value at (n + 1)At. In the 
simulations contained in this paper, a maximum of three iterations is required per 
time-step. 

Appendix 3 

Here, we prove the existence of a solution to the free boundary problem 

We seek a solution with ( s ,  c ( x ) )  E 88 x C 2 ( [ 0 ,  s ] ) .  Recall that m,cb > 0 .  It is x m ~ m e d  
that 

(i) f ( y , c ) ~ C l ( R ~ , R ) v y ~ [ O ,  I] a n d V c a 0 ;  
(ii) 0 < f ( y ,  c )  < K uniformly for y E [O , I]  and V c > 0 .  

We note that the hypotheses of Theorem A.2 are satisfied by a function f defined 
by (2.9) together with any of the functions (2.10)-(2.12). The hypotheses of Theorem 
A.3 are satisfied by a function f defined by (2.9)  together with the function (2.10). 

We employ a shooting method. Let y = x/s  and define v ( y )  = c(x) .  Then u(y)  
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satisfies the equations 

The shooting method is to introduce the function u(y; s) satisfying 

subject to 

It is then necessary to prove the existence of zeros of the function 

To do this, we show that G(s) is well defined for s > 0 and demonstrate that it takes 
the value 0 for some positive s at least once. Under an additional assumption on 
f ( y ,  c), we show tha t the  s.~lution is unique- The results, involve compa~son  ,with, 
solutions of the problem 

where b = ( 2 ~ d r n ) ' ~ ~ .  In the coordinate x, this solution represents the steady solution 
from phase 1 of the evolution, before the sink term modelling the action of the 
proliferating endothelial cells is introduced. 

LEMMA A.1 Under assumptions ( i )  and (ii) ,  the function G(s) exists for s 2 0 and 
satisfies G(s) E C1([O ,  a)). 

Proof. Let s 3 0. If u(y; s) is defined on  y E [0 , 11 it must be nonnegative since any 
solution of the initial value problem cannot have a positive maximum in [ 0 ,  11 by 
(ii). Thus, in ( 0 ,  I), we obtain the inequality 

0 < u,, ,< s2(m + K ) ,  

and integration yields 

Thus G(s) exists and is defined for s 2 0. Applying Theorem 7.5 in Coddington & 
Levinson (1955: Chap. I), we deduce that G E C1([O,  a)). 0 

THEOREM A.2 Under assumptions ( i )  and (ii), there exists a solution of (AS, A.6) with 
free boundary s satisfying 0 < s < i. 

Proof: Since u(y; 0 )  = 0, we deduce that G(0) = -c, < 0. Now consider G(9. We 
have, for s = i, 
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Integrating twice we obtain 

By the positivity of u, and  hence off; we deduce that u(0; 5) > w(0) and  thus G ( 3  > 0. 
Hence continuity of G(s) implies that G(s) = 0 for a t  least one s E ( 0 , i ) .  0 

THEOREM A.3 In addition to ( i )  and (ii), assume that f , (y ,  c )  2 0 for y E [0  , 1) and 
c 2 0 .  Then the solution constructed in Theorem A.2 is unique. 

Proof: We show that G(s)  is monotone increasing in s > 0 .  Let E = s2 and define 
z ( y ;  s )  = u,(y; s). Then z satisfies the equation 

subject to  

From the defining equation, we see that z,,(l; s )  > 0 .  Hence there exists 6 > 0 such 
that z is positive for some interval (1 - 6 ,  1). Furthermore, z ( y ;  s) can have no 
positive maxima for y E [0  , 11 since z,, > 0 for z 2 0 and y E [0  , 11. Hence z(0; s )  > 0. 
From this, it is clear that G(s) is monotone increasing for s > 0 and uniqueness 
follows. 0 
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Forthcoming Meetings 

The Sixth IMA Conference on 
The Mathematical Theory of the Dynamics of Biological Systems 

1-3 July, 1992, University of Oxford 

This conference will include sessions on Epidemiology and immunology of infectious 
diseases (Organizers: A. McLean and R. M. Anderson F.R.S.); Developmental 
biology, physiological and medical systems (Organizers: P. L. Maini and J. D. 
Murray F.R.S.); Evolutionary dynamics of biological systems (Organizers: A. 1. 
Houston and J. R. Krebs F.R.S.); and Harvesting, control and regulation of biological 
populations and systems (Organizers: J .  W .  Honvood and R. M. May F.R.S.). 

Each session will include three or four invited papers and a larger number of 
shorter contributed papers. There will also be posters for those who wish to contribute 
in this way. Abstracts of contributed papers should be sent for consideration by the 
organizing committee by 29 February 1992 at the latest. 

Decision on acceptance will be made by 21 March 1992. All papers read at the 
meeting, whether invited or contributed, will be considered for publication in this 
journal and subject to normal refereeing: manuscripts should be available at the time 
of the meeting so that the proceedings may appear in the first issues of the journal 
in 1993. 

Further particulars are available from the Conference Secretary, IMA, 16 Nelson 
Street, Southend-on-Sea, Essex SS1 1EF (Telephone 0702-354020, Fax 0702-3541 11) 
or from the Editor by e-mail: hiorns@uk.ac.ox.vax. 

European Congress of Mathematics (CEMIECM) 
6-10 July, 1992, Paris 

The first congress of the newly formed European Mathematical Society will include 
sessions on pure and applied mathematics as well as a round table on mathematics 
in biology and medicine. 

Further particulars from CEM, College de France, 3 rue d'Ulm, Paris (5e) or 
e-mail: EUCMaFRMAP7 1 1 .BITNET. 

3rd International Conference on Mathematical Population Dynamics 
1-5 June, 1992, University of Pau, France 

The 3rd International Conference on Mathematical Population Dynamics will take 
place in Pau (France) from 1-5 June, 1992. It is intended to be an interdisciplinary 
meeting of biologists and mathematicians concerned with populations of biomolecules, 
genes and cells, as well as other topics of mathematical population biology and 
epidemiology. The meeting will be of interest to applied mathematicians, probabilists 
and statisticians, ecologists, epidemiologists and biomedical scientists. Mathematical 
theories and analysis of models will be included, together with quantitative data from 
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cell and molecular biology, epidemiology and cancer research. The Scientific Com- 
mittee consists of: S. Busenberg, 0. Diekmann, K. Hadeler, M. Iannelli, P. Tauty 
and G. Webb. A small selection of topics covered by the conference is: Structured 
populations (Differential- and integral equations, semigroups of operators, dynamical 
systems, mathematical epidemiology,...); Stochastic models (Branching processes, ran- 
dom walks, spatial processes, cellular automata, biostatistical methods,...); Molecular 
biology (Genome instability, gene amplification, RNA splicing, oncogenes/anti- 
oncogenes, mutation, replication,...); Cell biology (Cell cycle control, cell kinetics, cell 
differentiation, malignant transformation, senescence, metabolic control, adaptive 
systems,...); Biomedicine (AIDS, long latency syndromes, cancer, stem cell dynamics, 
normal blood cell production and leukemia, pharmacokinetics, ...). 

Proceedings of reviewed and selected papers will be published. Previous conferences 
in this series were held in 1986 (University of Mississippi, USA, the proceedings were 
published as a special issue of 'Computers & Mathematics', Vol. 18, no. 1011 1, 1989), 
and 1989 (Rutgers University, New Jersey, USA, proceedings published in the Marcel 
Dekker series 'Lecture Notes in Pure and Applied Mathematics'). 

Persons interested can contact: 0. Arino, I.P.R.A. Mathematiques, Universite de 
P a y  64000 Pau France, (e-mail(bitnet): Arino@FRUPPA51, tel.: (33)59923058; 
teTefax: (33)59841696. 
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IMA CONFERENCE INFORMATION 
For further de t i l s  and application forms for the following forthcoming IMA 
meetings please contact: Miss Pamela Irving, Conference Officer, The Institute 
o f  Mathematics and i ts Applications, 16 Nelson Street, Southend-on-Sea, 
Essex, SS 1 1 EF. 

1991 
September 17th Workshop: A n  Introduction to Oxford 

Parallel Computing for Numerical 
Applications 

September 
18th t o  20th 

Parallel Computation Oxford 

September 
23rd to  25th 

International Conference on Un~versity of Bristol 
Mathematical Modelling of 
Materials Processing 

Credit- Scoring ,and. Credit- Control. ll University of 
Edinburgh 

September 
25th to  27th 

Royal Agricultural 
College, Cirencester 

December 
16th to 18th 

Third IMA Conference on 
Cryptography and Coding 

7992 
March Mathematics for Engineers and 

Scientists 
Coventry Polytechnic 

March 
30th and 31st 

March/Apr~l 

July 1st to 4th 

University of 
Edinburgh 

Glasgow Colleges 

University of Oxford 

Mathematics in lndustr~al 
Maintenance 

Business Modellmg 

S~x th  IMA Conference on 
Mathemat~cs and Biology 

September 
1st to 4th 

September 
7th to 10th 

September 
21st to 23rd 

December 14th 
to  16th 

Sixth IMA Conference on Control 
Theory 

Manchester 

Aerospace Vehicle Dynamics and 
Control 

Cranfield lnstitute of 
Technology 

Fourth IMA Conference on Stably 
Stratified Flow and Turbulence 

Third IMA Conference on 
Mathematcs in Signal Processing 

University of Surrey 

Un~versity of 
Warwick 

7993 
April 14th to 
16th 

The Mathematics of Food 
Production and Preservation 

Belfast 

Conferences which the IMA are co-sponsoring 
7997 
November International Conference on 
26th and 27th Computation in Electromagnetics 

IEE, London 

7992 
June Third European Conference on the 
16th to 19th Mathematics of Oil Recovery 

Delft University 
of Technology, 
The Netherlands 
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in the broad Bekh of medicine and biology k m m h g l y  depeods upon the mes of mathemndcal models As 
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1 .  Submission of manuscn'pts. Four copies of each manuscript should be sent to the Editor, together 
with the originals and three photocopies of any illustrations. Only the originals of illustrations 
will be returned to authors if a paper is not accepted for publication. 
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