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CONSISTENCY OF EMPIRICAL BAYES AND KERNEL FLOW

FOR HIERARCHICAL PARAMETER ESTIMATION

YIFAN CHEN, HOUMAN OWHADI, AND ANDREW M. STUART

Abstract. Gaussian process regression has proven very powerful in statistics,
machine learning and inverse problems. A crucial aspect of the success of this
methodology, in a wide range of applications to complex and real-world prob-
lems, is hierarchical modeling and learning of hyperparameters. The purpose
of this paper is to study two paradigms of learning hierarchical parameters:
one is from the probabilistic Bayesian perspective, in particular, the empirical
Bayes approach that has been largely used in Bayesian statistics; the other
is from the deterministic and approximation theoretic view, and in particular
the kernel flow algorithm that was proposed recently in the machine learn-

ing literature. Analysis of their consistency in the large data limit, as well
as explicit identification of their implicit bias in parameter learning, are es-
tablished in this paper for a Matérn-like model on the torus. A particular
technical challenge we overcome is the learning of the regularity parameter in
the Matérn-like field, for which consistency results have been very scarce in the
spatial statistics literature. Moreover, we conduct extensive numerical exper-
iments beyond the Matérn-like model, comparing the two algorithms further.
These experiments demonstrate learning of other hierarchical parameters, such
as amplitude and lengthscale; they also illustrate the setting of model misspec-
ification in which the kernel flow approach could show superior performance
to the more traditional empirical Bayes approach.

1. Introduction

1.1. Background and context. Gaussian process regression (GPR) is important
in its own right, and as a prototype for more complex inverse problems in which
there is a possibly indirect, nonlinear set of observations. An important reason for
the success of GPR in applications is its ability to learn hyperparameters, enter-
ing through a hierarchical prior, from data. Learning of these hyperparameters is
typically achieved through fully Bayesian (sampling) or empirical Bayesian (opti-
mization) methods. However, new approaches suggested in the machine learning
literature, particularly the kernel flow method [25], rely on approximation theoretic
criteria that can be traced back to the classical idea of cross-validation for model
selection. The primary goal of this paper is to study and compare these two ap-
proaches. Special attention will be paid to their large data consistency, implicit
bias, and robustness to model misspecification.
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1.2. Gaussian process regression. We start with a brief introduction to GPR;
for simplicity, we focus on the noise-free scenario. The target is to recover a function
u† : D �→ R from pointwise data yi = u†(xi) for 1 ≤ i ≤ N , where xi ∈ D ⊂
Rd and D is a compact domain. This problem often appears in fields such as
supervised learning in machine learning, non-parametric regression in statistics,
and interpolation in numerical analysis.

The GPR solution to this problem is as follows. Given a family of positive definite
covariance/kernel functions Kθ : D × D → R where θ ∈ Θ is a hyperparameter,
GPR approximates u† with the conditional expectation

(1.1) u(·, θ,X ) := E [ξ(·, θ) | ξ(X , θ) = u†(X )] = Kθ(·,X )[Kθ(X ,X )]−1u†(X ),

where ξ(·, θ) ∼ GP(0,Kθ) is a centered Gaussian process1 (GP) with covariance
function Kθ. We have used the following compressed notation:

X := (x1, . . . , xN )T and u†(X ) := (u†(x1), . . . , u
†(xN ))T .

Moreover, Kθ(X ,X ) denotes the N × N dimensional Gram matrix with (i, j)th

entry Kθ(xi, xj), and Kθ(·,X ) is a function mapping D to RN with ith component
Kθ(·, xi) : D �→ R.

Normally, every θ ∈ Θ produces a solution u(·, θ,X ) that agrees with u† on X .
Nevertheless, different choices may yield distinct out-of-sample errors, known as
generalization errors in the machine learning context. Therefore, it is of paramount
importance to learn a good hierarchical parameter θ adaptively from data.

1.3. Two approaches. In this paper, we study two approaches to the question
posed above, both based on selecting θ as the optimizer of a variational problem.

1.3.1. Empirical Bayes approach. The empirical Bayes (EB) approach addresses
the question by proposing a statistical model. It formulates a prior distribution on
the pair (ξ, θ) by assuming that θ is sampled from a prior distribution and ξ is then
sampled from the conditional distribution of ξ|θ; then, it finds the posterior distri-
bution of the pair (ξ, θ) conditioned on ξ(X ) = u†(X ), and selects the parameter θ
that maximizes the marginal probability of θ under this posterior. For simplicity,
we work with uninformative priors, which lead to the following objective function:

(1.2) LEB(θ,X , u†) = u†(X )T[Kθ(X ,X )]−1u†(X ) + log detKθ(X ,X ).

This is also twice the negative marginal log likelihood of θ given the data u†(X ).
Then, EB will choose θ by minimizing this objective function, namely

(1.3) θEB(X , u†) := argmin
θ∈Θ

LEB(θ,X , u†).

1.3.2. Approximation theoretic approach. Approximation theoretic considerations,
on the other hand, provide a different answer without proposing statistical models.
This methodology proceeds by asking for an ideal θ thatminimizes d(u†, u(·, θ,X ))

1Recall that the covariance function Kθ of a Gaussian process GP(0,Kθ) is the kernel of the
integral operator representation of Cθ in the covariance operator notation N (0, Cθ). Connections
between these perspectives are reviewed in Subsection 2.1. We will use the covariance operator
notation more frequently later in this paper.
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for some cost function d. Though in practice u† is not available, there are ideas
in cross-validation that split X into training data and validation data, and use the
approximation error in validation data to estimate the exact error. Inspired by this
idea, we could turn to optimize the following objective function:

(1.4) d(u(·, θ,X ), u(·, θ, πX )),

where we write πX for a subset of X obtained by subsampling a proportion, say
one-half, of X .

In this paper, we focus on a particular choice of d that originates from the
Kernel Flow (KF) approach [25]. To describe it, we denote by (Hθ, ‖ · ‖Kθ

) the
associated Reproducing Kernel Hilbert Space (RKHS) for the kernel Kθ; note that
‖Kθ(·, x)‖2Kθ

= Kθ(x, x). The objective function in KF is chosen as

(1.5) LKF(θ,X , πX , u†) :=
‖u(·, θ,X )− u(·, θ, πX )‖2Kθ

‖u(·, θ,X )‖2Kθ

.

This measures the discrepancy in the RKHS norm between the GPR solution using
the whole data X and using a subset of the data πX , normalized by the RKHS
norm of the former.

Remark 1.1. As explained above, we understand the numerator as an estimation
of the error ‖u† − u(·, θ,X )‖2Kθ

. Such error estimate, based on comparing solutions
obtained via different data resolutions, is a widely used idea in numerical analysis.

Based on Garlerkin orthogonality (see [25]), the objective function admits a finite
dimensional representation formula that is convenient for numerical computation:

(1.6) LKF(θ,X , πX , u†) = 1− u†(πX )T[Kθ(πX , πX )]−1u†(πX )

u†(X )T[Kθ(X ,X )]−1u†(X )
.

Then, the KF estimator is defined as

(1.7) θKF(X , πX , u†) := argmin
θ∈Θ

LKF(θ,X , πX , u†).

Remark 1.2. The existence of the finite-sample formula (1.6) is attributed to the
choice of the RKHS norm in comparing solutions. It is essentially a consequence
of the standard representer theorem. Additional motivations for using the RKHS
norm will be reviewed in Subsection 1.5.2.

1.3.3. Guiding observations and goals. The EB and KF algorithms estimate the
parameter θ from the observed data, the number of which can vary considerably.
Thus, a basic question to ask is whether the estimators attain meaningful limits as
data accumulate:

(1) Consistency: how do θEB and θKF behave in the large data limit, i.e., as
the number of data N goes to infinity?

Meanwhile, since we have two estimators, it is natural to compare their perfor-
mance. Indeed, we observe that EB and KF have distinct objectives: EB seeks
to estimate the most likely parameters of the distribution assumed to generate the
data, while KF chooses parameters to minimize an estimate of the approximation
error in a parameter-dependent RKHS norm, targeting at the approximation effi-
ciency of the underlying function. Moreover, EB is always probabilistic, while KF
need not be.
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These differences motivate the implicit bias question that has been popular in
the machine learning community, and the model misspecification question that is
common in mathematical modeling:

(2) Implicit bias: what is the selection bias of EB and KF, or, how should the
obtained estimators θEB and θKF be interpreted in practice?

(3) Model misspecification: how do θEB and θKF behave when there is a mis-
match between the data-generating mechanism and the model used to
regress the data?

The precise goal of this paper is to address these questions for certain concrete
models, either theoretically or experimentally.

1.4. Our contributions. Our contributions in this paper are twofold and ex-
plained in the following two subsections.

1.4.1. Consistency and implicit bias. The first part of this work is devoted to the
questions of consistency and implicit bias. We study a Matérn-like model on the
torus, in which u† is a sample drawn from the Matérn-like Gaussian process, with
three parameters θ = (σ, τ, s) that quantify the amplitude, inverse lengthscale and
regularity of the process. The detailed definition is in Subsection 2.1.

Our main analysis concerns learning the regularity parameter s using EB and
KF. When the sampled points X are equidistributed, we achieve the following
contributions:

• Consistency: we prove that the EB estimator converges to s in the large

data limit, while the KF estimator converges to s−d/2
2 , so that s is also

determined. Their variances are also computed and compared.
• Implicit bias: we characterize the selection bias of EB and KF algorithms,
in terms of the L2 error between u† and the GPR solution using learned
parameters — this is the so-called generalization error. It is found that EB
selects the parameter that achieves the minimal L2 error in expectation,
while KF selects the minimal parameter that suffices for the fastest rate of
convergence of the L2 error to 0 as the data density increases.

We can interpret these contributions from two perspectives. From the machine
learning side, we are able to show that KF, as a machine learning method, has
a well-defined large data limit for the Matérn-like model. Furthermore we can
characterize clearly its implicit bias in terms of L2 generalization errors. Thus, this
paper leads to a first theory for the KF learning algorithm.

From the spatial statistics side, our analysis contributes to a novel consistency
theory for estimating the regularity parameter of Matérn-like fields in general di-
mensions. Such results are scarce in the spatial statistics literature; the techniques
we use to prove consistency may be of independent interest and applicable beyond
the setting considered here.

We also include numerical studies concerning the learning of the amplitude pa-
rameter σ and the inverse lengthscale parameter τ ; these experiments contribute
to a more complete picture of GPR using the Matérn-like field with hierarchical
parameters. Moreover, we provide numerical experiments for several other well-
specified models beyond the Matérn-like model, thus further extending the scope
of discussions.
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1.4.2. Model misspecification. The second part of this work considers model mis-
specification: the data generating model for u† and the modelKθ used for regression
do not match. We adopt the following setting:

• We model the truth u† either as a GP, using a variety of covariance func-
tions, or as a deterministic function which solves a PDE.

• The kernel Kθ is chosen to be Green’s function of various differential op-
erators, where θ encodes information beyond the amplitude, lengthscale,
and regularity of the field. For example we choose θ to be the location of a
discontinuity within a conductivity field.

In this setting we observe distinct behavior distinguishing EB and KF. This raises
the discussion of how to choose which algorithm to use when solving practical
problems where misspecification is to be expected. Our numerical study explores
several misspecification possibilities, showing that KF could be competitive with
EB in certain scenarios.

1.5. Literature review. In this subsection, we review the related literature. Sev-
eral fields are of relevance, so we label them to help organize the review.

1.5.1. Regression and inverse problems. Regression is a form of inverse problem
[7], and if formulated in a Bayesian fashion, it falls within the scope of Bayesian
nonparametric estimation [11, 15]. In the paper [19] a simple class of linear in-
verse problems was studied from the perspective of posterior consistency, and it
was demonstrated that the rate of posterior convergence depends sensitively on the
relationship between regularity of the true function being sought and the regularity
of draws from the prior. This motivates the need for hierarchical procedures that
adapt, on the basis of the data, the regularity of draws from the prior. In [18]
the work in [19] was extended to cover the data-adapted learning of the regularity
parameter in the prior; as the authors note: theoretical work “that supports the
preference for empirical or hierarchical Bayes methods does not exist at the present
time, however. It has until now been unknown whether these approaches can indeed
robustify a procedure against prior mismatch. In this paper, we answer this question
in the affirmative.” This analysis, however, requires simultaneous diagonalization
of a self-adjoint operator formed from the forward model and the covariance op-
erator, for all values of the hyper-parameter. Consistency is studied without this
assumption in [42], and extended to the study of emulation within Bayesian in-
version in [35] and to empirical Bayesian procedures in [36]. The papers [18] and
[36] also use the EB loss function (1.2). In [9] estimation of hyper-parameters in
Gaussian priors is discussed in the context of MAP estimators.

1.5.2. Kernel flow and cross-validation. The KF loss function in (1.6) was originally
derived in [25] and motivated from the perspective of optimal recovery theory. It can
be interpreted, from a numerical homogenization perspective [24], as the relative
energy contained in the fine scales (in the unresolved part) of u†. In the paper [25],
the proposed loss function to be optimized (via SGD) has the form

(1.8) Eπ1
Eπ2

LKF(θ, π1X , π2π1X , u†),

where π1X is a subsampling of X and π2π1X is a further subsampling of π1X . This
choice reduces the dimension of the kernel matrix and enables fast computation
per iteration. Although the KF loss appears to be new, it can be seen as a variant
of cross-validation (CV), which is a commonly used model selection/parameter
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estimation criteria [1, 10, 20]. A theoretical understanding of the consistency of
CV “is very much of interest” [45] since its convergence rate can be shown to be
asymptotically minimax [34] or near minimax optimal [37,39] while having a lower
computational complexity [48] than MLE (maximum likelihood estimation). The
consistency of parameter estimation for the Ornstein-Uhlenbeck process has been
studied in [46] for MLE, and [4] for CV.

In the setting of hyperparameter estimation of GPs, comparing MLE with CV
can be traced back to Wahba and Wendelberger [40] and Stein [32] who compared
variants of these procedures2 for choosing the smoothing parameter of a smoothing
spline; they observed that while MLE is optimal when the model is well-specified,
CV may perform better (than MLE) under misspecification (see also [3] for the-
oretical analysis and [41] for a practical example involving real data) and has a
comparable rate of convergence when the model is correct (Stein [32] observed
that “both estimates are asymptotically normal with the CV estimate having twice
the asymptotic variance of the MLE estimate” and suggested that “The penalty
for using CV instead of MLE when the stochastic model is correct is greater for
higher-order smoothing splines, both in terms of the efficiency in estimating the
smoothing parameter and the impact on subsequent predictions”). We also refer
to [21] for a detailed numerical comparison between MLE and CV for estimating
spline smoothing parameters. As observed in [30], these comparisons “are relevant
for both numerical analysts and statisticians” since kernel interpolation can be
interpreted as both approximating a deterministic unknown function from quad-
rature points or as estimating a sample from a Gaussian process from pointwise
measurements.

1.5.3. Machine learning and kernel learning. Kernel methods and GPs have long
been used in machine learning [16, 27]. Learning a good kernel for a given task
is very important in practice. Many works have tried to learn a kernel from data
based on different criteria; for example, in [2], the kernel is modified to make the
model have a large margin in classification, and in [6], the kernel is selected to have
a small local Rademacher complexity. EB and KF loss functions in this paper have
also been used in [25, 27, 44].

The recent discovery of the neural tangent kernel regime for overparameterized
models [17] and the identification [23] of warping kernels [25, 26, 29, 31] as the in-
finite depth limit of residual neural networks [14] also suggest that a theoretical
understanding of kernel selections may lead to important insights for neural net-
work based machine learning. This line of work suggests that it may be fruitful to
consider machine learning directly as the problem of selecting an underlying kernel
(by minimizing nonlinear functionals of the empirical distribution such as (1.2) or
(1.6)) and learning based on this kernel; in this perspective one has hierarchical
GPR with kernel itself as the hyperparameter. This may be more effective than
simply fitting the data by minimizing a generalized moment, i.e., a linear functional,
of the empirical distribution, which is popularly used in empirical risk minimization.
Numerical experiments presented in [47] and [13], based on the KF methodology
in [25], provide evidence that (1) this point of view could improve test errors, gen-
eralization gaps, and robustness to distribution shifts in the training of ANNs, and
(2) kernel methods can be a simple and effective approach for learning dynamical

2Modified maximum likelihood estimation and generalized cross validation.
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systems and surrogate models, with the underlying kernel also learned from data
(using KF and its variants). This further motivates the desire to understand the
KF-based estimation of θ.

1.6. Organization. The rest of this paper is organized as follows. Section 2 is
devoted to learning the regularity parameter of the Matérn-like model, where the
large data consistency is proved and implicit bias is characterized. Most of the
detailed proofs are deferred to Section 6, and concise intuitive ideas are presented
in Section 2 for the sake of readability. Section 3 considers other well-specified
models, including the learning of the lengthscale and amplitude parameters in the
Matérn-like model, or beyond the Matérn-like model. Experiments are provided
concerning consistency and variance of these EB and KF estimators. Section 4 cov-
ers discussions on model misspecification through numerical studies. The purpose
of the numerical experiments is twofold: (i) to demonstrate the extent to which
the ideas learned through the analysis of consistency, which focuses primarily on
the regularity parameter, extends to other parameters; (ii) to compare the per-
formance of the EB and KF estimators quantitatively, since use of the latter is
somewhat new in this area and its potential pros and cons need to be evaluated.
Finally, we conclude this paper in Section 5.

2. Regularity parameter learning for the Matérn-like model

In this section, we study a Matérn-like model on the torus. We start with def-
initions of this model in Subsection 2.1, followed with definitions of EB and KF
estimators in this context in Subsection 2.2. Then, in Subsection 2.3, we present
our theory for the consistency of EB and KF estimators in learning the regularity
parameter, with experiments included to demonstrate the correctness and impli-
cations of the theory. In particular, the implicit bias of these two estimators is
explained. We outline the sketch of proofs for the theoretical result in Subsections
2.4, 2.5 and 2.6, and summarize several observations in Subsection 2.7. Subsection
2.8 provides additional experiments discussing the variance of these estimators.

2.1. The Matérn-like model. We follow the general set-up in Subsections 1.2
and 1.3, where we have mentioned all the abstract ingredients such as the physical
domain D, the truth u†, the kernel Kθ, and the data location X . In the current and
next subsections, we will specify the exact meaning of these terms for a Matérn-like
model on the torus. We will also make remarks to explain its connection to the
standard Whittle-Matérn process in the whole domain; see Remark 2.2.

2.1.1. The physical domain. We set D to be Td = [0, 1]dper, the d dimensional unit
torus; this will be the domain that we use for all our analysis. We need to introduce
some mathematical concepts related to functions defined on this torus Td. First,
the space of square integrable functions on T

d with mean 0 is denoted by

(2.1) L̇2(Td) :=
{
v : Td → R :

∫
Td

|v(x)|2 dx < ∞,

∫
Td

v(x) dx = 0
}
.

The L2 inner product and norm are denoted by [·, ·] and ‖ · ‖0 respectively.
In order both to define covariance operators and Sobolev spaces it is convenient

to introduce the Laplacian operator. Let −Δ be the negative Laplacian equipped
with periodic boundary conditions on Td and restricted to functions with zero mean.
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This operator has orthonormal eigenfunctions φm(x) = e2πi〈m,x〉 with correspond-
ing eigenvalues λm = 4π2|m|2, for every m ∈ Zd\{0}, where Zd denotes the d-fold
tensor product of Z, the set of non-negative integers. Here, i is the imaginary
number, and 〈m,x〉 denotes the Euclidean inner product between m,x ∈ Rd.

Now, we can write functions in L̇2(Td) as Fourier series:

(2.2) v(x) =
∑
m∈Zd

v̂(m)e2πi〈m,x〉 ,

where v̂ : Zd → R is the Fourier coefficient that satisfies v̂(0) = 0 and v̂(m) = [v, φm]
for m ∈ Zd\{0}. This representation can be used to define useful Sobolev-like

spaces. For every t > 0, the Sobolev-like space Ḣt(Td) ⊂ L̇2(Td) consists of
functions with bounded ‖ · ‖t norm:

(2.3) ‖v‖2t :=
∑
m∈Zd

(4π2|m|2)t|v̂(m)|2 < ∞ .

We note that Ḣ0(Td) = L̇2(Td). For t < 0, the space Ḣt(Td) is defined through
duality. The Hilbert scale of function spaces defined through varying t serves as
the basic ingredient to model the regularity of a function on Td.

2.1.2. The Matérn-like kernel and process. The Matérn-like covariance operator on
the torus is defined by

(2.4) Cθ = σ2(−Δ+ τ2I)−s,

where the parameter θ = (σ, τ, s). The roles of the three parameters are reviewed in
Remark 2.2. The orthonormal eigenfunctions of this operator are φm(x) = e2πi〈m,x〉

with corresponding eigenvalues σ2(4π2|m|2 + τ2)−s, for m ∈ Zd\{0}.
The Matérn-like kernel function Kθ is related to the operator Cθ via

(2.5) Kθ(x, y) = [δ(· − x), Cθδ(· − y)],

where δ(· − x) is the Dirac function centered at x. Equivalently, Kθ can be un-
derstood as the Green function of the differential operator C−1

θ . Note that by
Sobolev’s emdedding theorem, s > d/2 is required to make Kθ(x, y) pointwise well-
defined (See Section 7.1.3 and Lemma 7.2 in [7]): Kθ(·, y) then lies in the space of
continuous functions for any y ∈ Td.

Remark 2.1. We also have the Mercer decomposition of the kernel function:

(2.6) Kθ(x, y) =
∑

m∈Zd\{0}

σ2(4π2|m|2 + τ2)−sφm(x)φ∗
m(y),

where φ∗
m is the complex conjugate of φm.

Given these function spaces and operators, we can define the Matérn-like process
using the Gaussian measure notation:

(2.7) ξ ∼ N
(
0, σ2(−Δ+ τ2I)−s

)
.

This covariance operator viewpoint could be understood as follows: for any f ∈
L̇2(Td), the quantity [f, ξ] is a Gaussian random variable with mean 0 and variance
[f, σ2(−Δ + τ2I)−sf ]. We note that (2.7) is equivalent to the GP notation ξ ∼
GP(0,Kθ). For more details on how to define Gaussian measures using operators
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we refer to [5, 24]. A sample from this process can be realized by the Karhunen–
Loève expansion

(2.8) ξ(x) =
∑

m∈Zd\{0}
σ(4π2|m|2 + τ2)−s/2φm(x)ξm,

where ξm (m ∈ Z
d\{0}) are i.i.d. standard normal random variables; we have

E ξ(x)ξ(y) = Kθ(x, y). Numerically, we can draw a sample by truncating this series
and restricting to a grid of values on the torus. Alternatively it is possible to
discretize the differential operator C−1

θ on a grid first, and then compute the discrete
eigenfunctions to draw a sample. Such an idea is useful when the eigenvalues
and eigenfunctions of C−1

θ are not analytically known a priori. Indeed, when the
operator is discretized into a matrix, the infinite dimensional Gaussian measure
becomes a finite dimensional one with the covariance matrix being the discretization
of Cθ. Drawing samples is then straightforward. In this section, however, we work
on the torus and so the eigenvalues and eigenfunctions are known explicitly and the
truncated Karhunen–Loève expansion could be employed.

Remark 2.2. The three parameters σ, τ and s quantify the amplitude, inverse
lengthscale, and regularity of the process, respectively. This setting is similar to
that of the standard Matérn process [12,33], defined on the whole space Rd, whose
kernel function and associated covariance operator are both characterized by three
parameters; see [22] for links to the solution of stochastic PDEs, an approach at-
tributable to Whittle [12, 43]. The Matérn kernel function is

Kσ,l,ν(x, y) = σ2 2
1−ν

Γ(ν)

(
|x− y|

l

)ν

Bν

(
|x− y|

l

)
,

for x, y ∈ Rd, where Bν is the modified Bessel function of the second kind of order
ν. On Rd, this kernel function corresponds to the covariance operator

Cσ,l,ν =
σ2ldΓ(ν + d/2)(4π)d/2

Γ(ν)
(I − l2Δ)−ν−d/2.

From this formula, the connection between the Matérn covariance operator in R
d

and the Matérn-like kernel operator (2.4) on Td becomes apparent. We restrict
our analysis to the torus to exploit powerful Fourier series techniques. We will
also comment on other boundary conditions in Subsection 2.7. For related results
regarding the Matérn process in R

d or other bounded domains, we recommend
the book [33]. We note that [33, Sec. 6.7] also considers a periodic version of the
Matérn model and discusses (via the Fisher information matrix) the fixed domain
asymptotics of the maximum likelihood estimate of the three parameters. By using
the Mercer decomposition (2.6), the periodic case there is mathematically equivalent
to the Matérn-like model on the torus that is considered in this paper. In the next
subsection, we prove the consistency of estimators for the regularity parameter,
providing a rigorous theory for this periodic model. It would be interesting, in future
work, to combine this consistency with the properties of the Fisher information
matrix established in [33, Sec. 6.7] to obtain Bernstein-von-Mises type theorems
characterizing asymptotic normality of the estimator.

2.2. Regularity parameter learning. With the Matérn-like kernel and process
defined, we move to discuss the parameter learning problem in this subsection. We
fix σ = 1 and τ = 0 in the Matérn-like model and focus on the regularity parameter
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only. To proceed, we need to make precise the ground truth u†, the kernel, and the
data location X , of the learning problem.

2.2.1. The ground truth. Our theoretical results regarding the consistency of EB
and KF estimators will be based on the assumption that u† is drawn from the GP
N (0, (−Δ)−s) for some s > d/2.

Remark 2.3. We note some regularity properties of this GP here. The Cameron-
Martin space for ξ ∼ N (0, (−Δ)−s) is Ḣs(Td) (for readers not familiar with the
Cameron-Martin space, see Theorem 7.33 in [7]). However, ξ is not an element

of this space, almost surely. Indeed, it holds that ξ belongs to Ḣs−d/2−η(Td) for
any η > 0 almost surely (and to Hölder spaces with the same number of fractional
derivatives; see Theorem 2.12 in [7]). Furthermore, since the Laplacian operator is
homogeneous and thus the covariance operator is stationary in space, the regularity
of the path is spatially homogeneous (the measure is space translation-invariant).
Here, we refer, for this phenomenon, to ξ (as a function) having homogeneous
critical regularity s− d/2 across Td. If we drop the term “homogeneous”, we mean
the property holds without the requirement of spatial homogeneity. Such behavior
may occur for functions with spatial singularities.

Remark 2.4. We always require s > d/2, which ensures the continuity of the sam-

ple path of ξ almost surely and guarantees that Ḣs(T) is a RKHS, according to
discussions in Remark 2.3. Thus, the pointwise value of ξ makes sense.

2.2.2. The equidistributed data. We observe equidistributed pointwise values of u†

over the torus, i.e., the data lie on a lattice. To describe the data locations we
introduce a level parameter q ∈ N such that, for a given q, we have the data locations
Xq := {xj : j ∈ Jq}, where xj = (j1, j2, . . . , jd) · 2−q and Jq := {(j1, j2, . . . , jd) ∈
Nd : 0 ≤ jk ≤ 2q − 1, ∀ 1 ≤ k ≤ d}. We also use the simplified notation xj = j2−q

throughout the paper.

2.2.3. The EB and KF estimators. We follow the definitions in Subsection 1.3.
Here, the kernel function for the regularity learning problem will be

Kθ(x, y) = [δ(· − x), (−Δ)−tδ(· − y)],

where the parameter θ = {t}. Similar to Remark 2.1, it has the following Mercer
decomposition

(2.9) Kθ(x, y) =
∑

m∈Zd\{0}

(4π2|m|2)−sφm(x)φ∗
m(y).

Numerically, we can compute it by truncating this infinite series. Fast Fourier
Transform could be applied to speed up computation of the kernel matrix.

We adapt several notations from Subsection 1.3 to this specific problem, by
writing t instead of θ, and q instead of Xq, and K(t, q) instead of Kθ(Xq,Xq). These
simplified notations make the analysis cleaner to present. Under such convention,
the EB estimator for the regularity parameter is:

sEB(q, u†) = argmin
t∈[d/2+δ,1/δ]

LEB(t, q, u†), LEB(t, q, u†) := ‖u(·, t, q)‖2t + log detK(t, q) .

(2.10)

Here, u(·, t, q) is the GPR solution using the kernel function Kt and the observa-
tional data of u† at Xq.
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Remark 2.5. The formula (2.10) is the continuous formulation of the EB loss func-
tion, which is more convenient for theoretical analysis of consistency. The finite-
sample formula (1.2) is more useful in numerical computation, and it can be derived
from (2.10) by using the representer theorem.

Remark 2.6. As in Remark 2.4, we require the regularity parameter t > d/2. Here,
furthermore, we introduce a number δ > 0 and select the domain of the parameter
to be t ∈ [d/2+ δ, 1/δ]; δ can be any arbitrary positive number, and this compacti-
fication of the parameter domain will simplify the subsequent analysis. The reader
should not confuse real number δ with Dirac delta function δ.

For the KF loss function, we fix the subsampling operator to be equidistributed
subsampling so that πXq = Xq−1; for this choice, we can omit the dependence of
the estimator on the subsampling operator π in the notation and write:
(2.11)

sKF(q, u†) = argmin
t∈[d/2+δ,1/δ]

LKF(t, q, u†), LKF(t, q, u†) :=
‖u(·, t, q)− u(·, t, q − 1)‖2t

‖u(·, t, q)‖2t
.

2.3. Consistency and implicit bias. In this subsection, we present our theory
of consistency and characterize the implicit bias via numerical experiments. The
sketch of proofs is given in the next subsections.

2.3.1. Main theorem. We have Theorem 2.7 regarding the consistency of the two
statistical estimators in the large data limit:

Theorem 2.7. Fix δ > 0. Suppose u† is a sample drawn from the Gaussian process
N (0, (−Δ)−s). If s ∈ [d/2 + δ, 1/δ] then, for the Empirical Bayesian estimator,

lim
q→∞

sEB(q, u†) = s;

if s−d/2
2 ∈ [d/2 + δ, 1/δ] then for the Kernel Flow estimator,

lim
q→∞

sKF(q, u†) =
s− d/2

2
.

In both cases the convergence is in probability with respect to randomly chosen u†.

Remark 2.8. Strictly speaking this theorem shows that EB consistently estimates
the regularity parameter, whilst KF does not. However we make two observations
about this. Firstly, the true value of s can be recovered from the KF estimator by
a simple linear transformation. And, secondly, the value selected by KF is optimal
with respect to minimizing a specific measure of generalization error (as we will
show in the discussion of implicit bias in Subsection 2.3.3), and is of clear interest
from this perspective.

Remark 2.9. The use of δ in the proof (and hence statement) of this theorem helps
by compactifying the parameter space. In practice, numerics demonstrate that it
is not intrinsic to the problem. We leave for future work the problem of a more
refined theorem, and proof, which does not rely on it.

Remark 2.10. For economy of notation we will drop explicit reference to the de-
pendence of the loss functions and the estimators on u† in what follows; we will
simply write LEB(t, q), LKF(t, q), sEB(q), sKF(q).
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The remainder of this subsection is devoted to numerical experiments illustrating
the theory, discussion of the implications of the theory (i.e. implicit bias), and an
overview of the proof techniques we adopt.

2.3.2. Numerical illustration of theory. We present a numerical example to demon-
strate the main theorem, and its consequences for regression. Consider the one

dimensional case, i.e., d = 1. We set the ground truth s = 2.5 and so s−d/2
2 = 1.

The domain is discretized with N = 210 equidistributed grid points. For our first
set of experiments we fix the resolution level of the data points to be q = 9, i.e.,
we have 29 equidistributed observations of the unknown function u†. In what fol-
lows the Laplacian is as defined in Subsection 2.1.2. Given a sample of u† from
N (0, (−Δ)−s), we form the loss function for the EB and the KF estimators. We
draw this sample using the formula (2.8) with σ = 1 and τ = 0; we truncate the
series to the grid resolution. A single realization of these loss functions is then
shown in Figure 1.
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Figure 1. Left: EB loss; right: KF loss

We observe that the minimizer of the EB loss function is very close to t = 2.5,
while the minimizer of the KF loss function is very close to t = 1, matching the
predictions of Theorem 2.7. Furthermore, the loss functions exhibit some interesting
features. Specifically, the EB loss function behaves as a linear function of t, for t
less than s, and then blows up rapidly when t exceeds s. The KF loss function is

more symmetric with respect to the minimizer t = s−d/2
2 in the logarithmic scale.

We will make remarks that explain these observations in our theoretical analysis.

2.3.3. Implicit bias. We present here a second set of numerical experiments looking
at the effect of the parameter value s selected by EB and KF on the approximation
of the function u†, which is (typically) the primary goal of hierarchical parameter
estimation. The experimental set-up is the same, but now we vary the resolution
of the data points q = 3, 4, . . . , 9. We focus on the L2 error between u† and the
GPR solution using learned parameters, i.e.,

‖u†(·)− u(·, t, q)‖20 .
We start, in Figure 2, by considering the error as a function of q, for different

t. As we increase t, the regularity of the GP used for regression increases. In
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Figure 2. L2 error: averaged over the GP

order to illustrate clear trends, the L2 error is averaged over the random draw
of u† ∼ N (0, (−Δ)−s), so the effective error is Eu†‖u†(·) − u(·, t, q)‖20. From the
figure, we can see that when t increases from 0.5 to 1, the convergence rate of the
L2 approximation error increases. Then, if we increase t further from 1 to 3, the
slope of the convergence curve remains nearly the same. This demonstrates the fact

that 1 = s−d/2
2 is the minimal t that suffices to achieve the fastest rate of L2 error

convergence. We have observed that this phenomenon is very stable with respect
to the specific random draw: the general shape of the curves seen in Figure 2 is still
observed when one specific draw of the true random process is used, although the
resulting figure contains fluctuations and is not as clear as the average case that we
show.

On the other hand, we can compute Eu†‖u†(·)−u(·, t, q)‖20 for q = 9 as a function
of t; see Figure 3. The optimality of the value s = 2.5 is clear. However, unlike the
experiments in Figure 2, this result is not stable with respect to the random instance
of the GP: the minimizer of the L2 error fluctuates wildly in our experiments.

In summary, the second set of numerical experiments indicates the following
implications for the regression accuracy of the EB and KF approaches to hierarchical
parameter estimation. The KF estimator selects the minimal t that suffices to
achieve the fastest rate of approximation error in the L2 norm for a given fixed
truth; in contrast, the EB estimator converges to the t that achieves the minimal
L2 error, averaged over the draw u† ∈ N (0, (−Δ)−s). Note that KF is based on
purely approximation theoretic considerations whilst EB is founded on statistical
considerations — they attain very different implicit bias in selecting parameters.

2.3.4. Further discussion of the theory. We provide some further discussions of the
implications of Theorem 2.7 in this subsection. The theory shows that the EB
estimator recovers the ground truth parameter s of the statistical model. This is in
line with expectations since the methodology is designed to recover the most likely
value of s, given the data, and since the Gaussian measures occurring for different
s are mutually singular. In the literature, such consistency results are primarily for
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Figure 3. L2 error: averaged over the GP, for q = 9

observational data in the Fourier domain; thus, the observation operator commutes
with the prior. Here, our data model is in the physical domain, which leads to the
need for considerably more sophisticated analysis, due to the noncommutativity of
the observation operator and the prior operator, and yet is a much more practically
useful setting, justifying the investment in the somewhat involved analysis. Our
proof provides a novel sharp upper and lower bound on the terms ‖u(·, t, q)‖2t and
log detK(t, q), based on techniques in approximation theory and the multiresolu-
tion analysis developed in [24]. Our techniques may have broader applications in
analyzing the observational model in the physical domain.

Another interesting phenomenon shown in Theorem 2.7 is that the KF estimator,
first proposed in [25] as a method to learn kernels for machine learning tasks,
achieves a rather different consistency behavior, with the large data limit being
s−d/2

2 . This fact has the following consequence: if the ground truth function u†

has homogeneous critical regularity s − d/2, then the KF estimator will converge
to half the critical regularity in the large data limit.

To understand the mechanism behind this effect, we observe that the KF loss is a
surrogate for the (relative) ‖·‖t-norm approximation error between u† and u(·, t, q).
Furthermore, approximation theory implies that the GP regressor u(·, t, q) is also
the optimal ‖ · ‖t-norm approximant of u† in the linear span of the basis functions
{(−Δ)−tδ(x − xj)}j∈Jq

. Under this perspective, we see the KF loss incorporates
two competing factors in the approximation: increasing t improves the approxima-
tion error by increasing the regularity of the basis functions while worsening the
measurement of that approximation error by using a stronger norm. The balance
between these two competing factors is achieved when t is half the critical regular-
ity, which is the parameter that KF eventually picks. Our proof provides a detailed
demonstration of this phenomenon.

In short, EB learns hierarchically based on statistical principles, whilst KF learns
based on approximation theoretic ones. The consistency results presented here
provide evidence that the interplay between statistical estimation and numerical
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approximation can be very useful for parameter estimation and kernel learning in
general, thus suggesting new ways of thinking hierarchically. This perspective is
one of the main messages that we convey in this paper.

2.3.5. Proof strategy. Subsections 2.4, 2.5, 2.6 are devoted to proving Theorem 2.7.
For the sake of understanding, we provide a high-level view of our proof strategies in
this subsection. Fourier analysis plays an important role in the proof. It allows us
to analyze the approximation error in a very precise way under this equidistributed
design setting.

In our proof, we begin by establishing tight bounds on the terms that appear
in the objective functions, i.e., ‖u(·, t, q)‖2t , log detK(t, q) and ‖u(·, t, q)−u(·, t, q−
1)‖2t , using the toolkit we develop in Subsection 2.4. The norms ‖u(·, t, q)‖2t and
‖u(·, t, q)− u(·, t, q − 1)‖2t are expressed as random (as a function of u†) series and
we carefully analyze the dependencies of the random variables to establish the con-
vergence in probability. For log detK(t, q), we employ the multiresolution approach
introduced in [24] to establish a tight estimate of the spectrum of the Gram matrix
from below and above. Given these estimates, we provide an intuitive understand-
ing of how the loss functions behave and how the minimizers converge in Subsections
2.5, 2.6. In the rigorous treatment, the sharp bounds on the different components
of the objective functions will be combined with the uniform convergence result of
random series in [38] to obtain the convergence of minimizers.

2.3.6. Notations. In many parts of the analysis, we need to develop tight estimates
on the terms appearing in the loss functions. Some useful notation for comparing
different terms are introduced here. We write A  B if there exists a constant C
independent of q, t such that

1

C
B ≤ A ≤ CB.

The constant may depend on the dimension d and on δ. Correspondingly, if we use
A � B or A � B, then only one side of the above inequality holds.

Fourier analysis plays a critical role in the analysis. We always use u† for the
ground truth function, while we omit the † symbol for ease of notation when dis-
cussing its Fourier transform, and write û; we will also use û, with more arguments,
to denote the Fourier transform of the Gaussian process mean; see the discussion
following Theorem 2.13. In the Fourier domain, we let Bq := {m ∈ Z : −2q−1 ≤
m ≤ 2q−1 − 1} and Bd

q = Bq ⊗ Bq ⊗ · · · ⊗ Bq be the tensor product of d multiples

of Bq. We have that Bd
q is a box concentrating around the origin, so only the

low-frequency part of the Fourier coefficients is considered.

2.4. Toolkit: Fourier series characterization. In this subsection, we prepare
the necessary tools that are used to prove the main theorem of this paper.

We start by establishing a Fourier series characterization for u(·, t, q). This is
a key ingredient in expressing the terms in the loss functions as random series.
Our approach, using Fourier series, is motivated by the papers [8, 28], where the
approximation power of shift-invariant subspaces of L2(Rd) is studied; in our case

we use related ideas in the L̇2(Td) setting.
To find the representation of the term u(·, t, q), we invoke its definition, i.e.

u(·, t, q) is obtained by GP regression with the q-level data and the covariance
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function (−Δ)−t. We use the representer theorem from GPR. Concretely, let the
set of basis functions be

Ft,q = spanj∈Jq
{(−Δ)−tδ(· − xj)},

then, u(·, t, q) is the best approximation in Ft,q to the true function under the ‖ · ‖t
norm. Let us define

F̂t,q := {g : Zd → C, there exists an f ∈ Ft,q such that g = f̂},
the Fourier coefficients of functions in Ft,q. A quick observation is that for every

g ∈ F̂t,q, we must have g(0) = 0 because of the mean zero property of f ∈ Ft,q.

Proposition 2.11 gives a complete characterization of the basis functions in F̂t,q, for
t > d/2.

Proposition 2.11. For any g ∈ F̂t,q, there exists a 2q-periodic function p on Z
d,

such that

g(m) =

{
|m|−2tp(m), m �= 0

0, m = 0 .

The proof is in Subsection 6.1. Next, we define a 2q-periodization operator,
which will be used to compute the representation of û(m, t, q).

Definition 2.12. The operator Tq is defined as a mapping from the space of
functions on Zd to itself, such that

(Tqg)(m) :=
∑
β∈Zd

g(m+ 2qβ), m ∈ Z
d,

whenever the right hand side series converges for the function g : Zd → R. We also
define

(2.12) M t
q(m) :=

{∑
β∈Zd\{0} |2qβ|−2t, if m = j · 2q for some j ∈ Zd∑
β∈Zd |m+ 2qβ|−2t, else.

Both Tqg and M t
q are 2q-periodic functions on Zd. Based on this definition,

Theorem 2.13 presents the explicit form of the Fourier transform of u(·, t, q); the
proof is in Subsection 6.2. The proof relies on the Galerkin orthogonality property
of u(·, t, q) due to its being the optimal approximate solution.

Theorem 2.13. Let û(·, t, q) be the Fourier coefficients of u(·, t, q), then for m ∈
Zd, we have

û(m, t, q) =

{
0, if m = 0

|m|−2t (Tq û)(m)
Mt

q(m) , else,

where û denotes the Fourier coefficients of u†.

This above representation is very useful for analyzing the terms ‖u(·, t, q)‖2t and
‖u(·, t, q)− u(·, t, q − 1)‖2t . As well as studying the Fourier coefficients of u(·, t, q),
which we denote by û(·, t, q), we will also need to study the Fourier coefficients of
u†(·) which, for ease of notation, we will denote by û(·), henceforth, omitting the †
symbol. It is thus important to look at the number of arguments of û to determine
which object it is the Fourier transform of. Note also that u(·, t, q) is determined
by u†; hence if u† is random, so is u(·, t, q).

We will use the above Fourier analysis toolkit to study the consistency of EB
and KF in the following two subsections.
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2.5. Proof for the Empirical Bayesian estimator. In this subsection, we prove
the consistency of the EB estimator. As explained before, our roadmap is to give
a tight estimate of the loss functions first and then analyze the minimizers. For
the norm term ‖u(·, t, q)‖2t , we invoke Theorem 2.13, based on which this term is
expressed as a random series:

Proposition 2.14. The Ḣt(Td) norm of u(·, t, q) has the representation

‖u(·, t, q)‖2t = (4π2)t
∑

m∈Bd
q

|Tqû(m)|2
M t

q(m)
.

Moreover, suppose u† ∼ N (0, (−Δ)−s) for s > d
2 , then

‖u(·, t, q)‖2t = (4π2)t−s
∑

m∈Bd
q

Ms
q (m)

M t
q(m)

ξ2m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables.

Proof. Using Theorem 2.13, we get

‖u(·, t, q)‖2t =
∑

m∈Zd\{0}

(4π2)t|m|2t|û(m, t, q)|2

=(4π2)t
∑

m∈Zd\{0}

|m|−2t |Tqû(m)|2
|M t

q(m)|2

=(4π2)t
∑

m∈Bd
q

M t
q(m)

|Tqû(m)|2
|M t

q(m)|2

=(4π2)t
∑

m∈Bd
q

|Tqû(m)|2
M t

q(m)
,

where in the third equality, we use the periodicity of the function
|Tq û(m)|2
|Mt

q(m)|2 .

If we further assume u† ∼ N (0, (−Δ)−s), then û(m) ∼ N (0, (4π2)−s|m|−2s). For
different m, these Gaussian random variables are independent. Thus, for different
m ∈ Bd

q , we have Tqû(m) ∼ N (0, (4π2)−sMs
q (m)), and they are independent. So

we can write ∑
m∈Bd

q

|Tqû(m)|2
M t

q(m)
= (4π2)−s

∑
m∈Bd

q

Ms
q (m)

M t
q(m)

ξ2m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables. �

The independence of the random variables established in the preceding represen-
tation is crucial for the analysis. The termsMs

q (m),M t
q(m) appear in the preceding;

to analyze them we present a useful lemma below. The proof is in Subsection 6.3.

Lemma 2.15. For t ∈ [d/2 + δ, 1/δ] and q ≥ 0, we have

M t
q(m) 

{
2−2qt, if m = 0

|m|−2t, if m ∈ Bd
q \{0}.

Moreover, for m ∈ Bd
q\{0}, we have M t

q(m)− |m|−2t  2−2qt.
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Now, we are ready to get the estimates of the loss function. Proposition 2.16
shows an upper and lower bound on the norm term.

Proposition 2.16 (Bound on the norm term). Suppose u† is a sample drawn from
the Gaussian process N (0, (−Δ)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t, q)‖2t  2−q(2s−2t)ξ20 +
∑

m∈Bd
q \{0}

|m|2t−2sξ2m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables.

Proof. According to Lemma 2.15, for m ∈ Bd
q\{0}, we have M t

q(m)  |m|−2t; for

m = 0, we have M t
q(m)  2−2tq. Thus,

‖u(·, t, q)‖2t = (4π2)t−s
∑

m∈Bd
q

Ms
q (m)

M t
q(m)

ξ2m

= (4π2)t−s

⎛
⎝ ∑

m∈Bd
q \{0}

Ms
q (m)

M t
q(m)

ξ2m +
Ms

q (0)

M t
q(0)

ξ20

⎞
⎠

 2−q(2s−2t)ξ20 +
∑

m∈Bd
q \{0}

|m|2t−2sξ2m .

This completes the proof. �

Proposition 2.16 states that the behavior of the norm term is nothing but
a weighted sum of squares of independent Gaussian random variables, which is
amenable to analysis. With this in mind, we state a lemma useful in the analysis
of such random series, with proof deferred to Subsection 6.4.

Lemma 2.17. Suppose {ξm}m∈Zd are independent unit Gaussian random vari-
ables.

• For r > 0, define the random series

α(r, q) = 2−qr
∑

m∈Bd
q \{0}

|m|r−dξ2m .

Fix ε > 0, then there exists a function γ(r) > 0 such that limq→∞ α(r, q) =
γ(r) > 0 uniformly for r ∈ [ε, 1/ε], where the convergence is in probability.

• For r = 0, define

α(0, q) =
1

q

∑
m∈Bd

q \{0}

|m|−dξ2m ,

then there exists γ(0) ∈ (0,∞) such that limq→∞ α(0, q) = γ(0) in proba-
bility.

We then move to the second term in the loss function, i.e., the log determinant
term. It is deterministic and to study it we need a way of analyzing the spectrum
of the Gram matrix. Proposition 2.18 gives upper and lower bounds on this term.
The proof is in Subsection 6.5 and is motivated by analysis developed in the paper
[24]. The idea is to use the Schur complement of the Gram matrix and rely on the
variational characterization of the Schur complement to get a tight control on the
spectrum. This technique is quite general and has been used in [24] to characterize
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the spectrum of heterogeneous Laplacian operators; here we adapt it to fractional
operators. On the other hand, for the homogeneous fractional Laplacian operators
in this paper, it is also possible to calculate an explicit formula for the spectrum
of K(t, q), as has been used in Section 6.7 of [33]. We describe this simple proof in
Subsection 6.5 but retain the proof employing the more general methodology as it
may be useful for other problems.

Proposition 2.18 (Bound on the log det term). For d/2 + δ ≤ t ≤ 1/δ, we have

(2t−d)g1(q)−Cg2(q)+K(t, 0) ≤ log detK(t, q) ≤ (2t−d)g1(q)+Cg2(q)+K(t, 0),

where g1(q) =
∑q

k=1(2
kd − 2(k−1)d)(−k log 2) and g2(q) = (2qd − 1)(2t − d). The

constant C is independent of t, q. Moreover, g1(q)  −q2qd.

With the loss function analyzed by the above results, the consistency of the EB
estimator is readily stated as follows.

Theorem 2.19 (Consistency of Empirical Bayesian estimator). Fix δ > 0. Suppose
u† is a sample drawn from the Gaussian process N (0, (−Δ)−s). If s ∈ [d/2+δ, 1/δ]
then

lim
q→∞

sEB(q) = s in probability.

The detailed proof is in Subsection 6.6. We can understand the theorem intu-
itively by using the established results above. Recall there are two terms in the loss
function: (1) the norm term ‖u(·, t, q)‖2t ; (2) the log det term. For the norm term,
from Proposition 2.16 and Lemma 2.17, its behavior for q → ∞ is roughly

• Growing like 2q(2t−2s+d) if t > s− d/2;
• Growing like q if t = s− d/2;
• Remaining bounded if t < s− d/2.

The log det term decreases like −(2t−d)q2qd according to Proposition 2.18. Notic-
ing that the EB loss function has the form

LEB(t, q) = ‖u(·, t, q)‖2t + log detK(t, q),

we arrive at the following intuitive observations:

• When t < s, the dominant behavior of LEB(t, q) is controlled by the log
determinant term, since the growth rate of the norm term 2q(2t−2s+d) =
o(q2qd). As a consequence, LEB(t, q) exhibits the overall behavior −(2t −
d)q2qd. Therefore, the loss function decreases linearly with t in this regime.
This is consistent with what is observed in Figure 1.

• When t ≥ s, the increasing speed of the norm term beats the decreasing rate
of the log det term, so the norm term dominates the behavior of LEB(t, q).
Overall, it is like 2q(2t−2s+d), which increases exponentially with t; again
this is consistent with what is observed in Figure 1.

According to the above observations, the minimizer of LEB(t, q) will converge to s.
To make the intuition leading to this conclusion rigorous, we need to use techniques
of uniform convergence for random series. For details we refer to Subsection 6.6.

2.6. Proof for the Kernel Flow estimator. In this subsection, we establish the
consistency of the KF estimator. As before, we start by estimating the growth
behavior of terms that appear in the loss function. We begin with the interaction
term ‖u(·, t, q) − u(·, t, q − 1)‖2t . Similar to the analysis of the norm term in the
preceding subsection, we represent it by using Fourier series.
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Proposition 2.20. The Ḣt(Td) norm of u(·, t, q)− u(·, t, q − 1) has the represen-
tation

(2.13) ‖u(·, t, q)−u(·, t, q−1)‖2t = (4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

.

Proof. By Theorem 2.13, we have

û(m, t, q)− û(m, t, q − 1) =

{
0, if m = 0

|m|−2t
(

Tqû(m)
Mt

q(m) − Tq−1û(m)
Mt

q−1(m)

)
, else.

Thus,

‖u(·, t, q)− u(·, t, q − 1)‖2t =(4π2)t
∑

m∈Zd\{0}

|m|2t|û(m, t, q)− û(m, t, q − 1)|2

=(4π2)t
∑

m∈Zd\{0}
|m|−2t

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

=(4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

. �

By carefully studying the correlation between the random variables appearing in
the preceding proposition, we obtain lower and upper bounds in the following two
propositions; proofs can be found in Subsections 6.7 and 6.8.

Proposition 2.21 (Lower bound on the interaction term). Suppose u† is a sample
drawn from the Gaussian process N (0, (−Δ)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t, q)− u(·, t, q − 1)‖2t �
∑

m∈Bd
q−1\{0}

2−2tq|m|4t−2sξ2m ,

where {ξm}m∈Bd
q−1\{0} are independent unit scalar Gaussian random variables.

The upper bound has a more complex form. We introduce the notation Z
d
2 =

{0, 1}d comprising d dimensional vectors with each component being in {0, 1}. In
Proposition 2.22, we also use the convention that |m|α = 0 for m = 0 and any
α ∈ R to make the notation more compact.

Proposition 2.22 (Upper bound on the interaction term). Suppose u† is a sample
drawn from the Gaussian process N (0, (−Δ)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t, q)− u(·, t, q − 1)‖2t �
∑
k∈Z

d
2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq|m|4t−2s)ξ2k,m,

where for a fixed k ∈ Zd
2, {ξk,m}m∈Bd

q−1
are independent unit scalar Gaussian ran-

dom variables.

We remark that in the upper bound, the random variables for different k may ex-
hibit correlation. However, since the term

∑
m∈Bd

q−1
(2−q(2s−2t)+2−2tq|m|4t−2s)ξ2k,m

has the same form for each k, and the number of different k is finite, it suffices to
analyze the random series for a single k, in which we have the independence of
random variables. The theorem is stated below.
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Theorem 2.23 (Consistency of the Kernel Flow estimator). Fix δ > 0. Suppose u†

is a sample drawn from the Gaussian process N (0, (−Δ)−s). If s−d/2
2 ∈ [d/2+δ, 1/δ]

then for the Kernel Flow estimator,

lim
q→∞

sKF(q) =
s− d/2

2
in probability.

The idea behind the proof of the theorem is to combine Propositions 2.21, 2.22
and Lemma 2.17. Together they imply the growth behavior of the loss function

LKF(t, q) =
‖u(·, t, q)− u(·, t, q − 1)‖2t

‖u(·, t, q)‖2t
as follows:

• When t < s−d/2
2 , the numerator decays like 2−2tq since 4t − 2s < −d, in

which case the summation
∑

m∈Bd
q \{0} |m|4t−2sξ2m remains bounded. The

denominator remains bounded. So the overall behavior is 2−2tq.
• When s−d/2

2 < t < s−d/2, the numerator decays like 2−2tq ×2q(4t−2s+d) =

2q(2t−2s+d) according to Lemma 2.17. The denominator remains bounded,
The overall behavior is 2q(2t−2s+d).

• When t > s − d/2, the numerator behaves like 2q(2t−2s+d), while the de-
nominator behaves like 2q(2t−2s+d). The overall behavior is of order 1.

These observations are consistent with what is observed in Figure 1. Based on

them we deduce that the minimizer converges to s−d/2
2 . The loss function exhibits

symmetric behavior with respect to s−d/2
2 for t ∈ (d/2, s−d). The detailed rigorous

treatment is presented in Subsection 6.9.

2.7. Discussions. In the preceding three subsections, we have presented the con-
sistency theory, its implication for implicit bias, as well as the tools and strategies
underlying our proofs. This subsection adds to several discussions on the theory
and proofs.

First, our theory applies to the torus domain. One may wonder whether these
techniques can be applied to boundary conditions beyond the periodic ones. The
main tool used in the proofs is Fourier’s series (based on the eigenfunctions of the
Laplacian operator). These are used to characterize the norm term and determinant
term. We expect these techniques to generalize to other problems, such as the
box with Dirichlet or Neumann boundary conditions in which the Fourier sine or
cosine series are natural; the detailed analysis is left as future work. However, we
need to point out that the limitation of this proof idea is that it requires a clear
analytic understanding of the spectral properties of the kernel operator, i.e., its
eigenfunctions. In Subsection 3.2.1, we present numerical experiments beyond this
setting, which involves more challenging Laplacians with discontinuous coefficients
that can model more complicated heterogeneous random fields.

Second, this section considers the regularity parameter only. In spatial statistics
literature, consistency results on this parameter (for general Matérn type model)
are very scarce and difficult. Here, we obtain a proof for the torus model, which is
the main technical contribution of this paper. We will discuss the learning of other
parameters in the next section, to make the story of the Matérn-like model on the
torus more complete.
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Finally, as we get two algorithms that can “consistently” learn the information
of the regularity parameter when the number of data is large, a natural question is
when to choose which. To answer this question, we present numerical study of the
variances of both estimators for the Matérn-like model in the next subsection.

2.8. Variance of regularity parameter estimation. In this subsection, we com-
pare the variance of the two estimators for recovering the regularity parameter s.
We return to the experimental set-up in Subsection 2.3.2. We form the EB and KF
estimators for 50 instances of different draws of the GP, normalized by the limiting

optimum values s and s−d/2
2 respectively. The statistics of the two estimators are

summarized in the histogram (see Figure 4). Clearly, EB exhibits smaller variance
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Figure 4. Histogram of the regularity estimators for the Matérn-
like process. Left: EB; right: KF.

than KF. We compute the estimated variance using the 50 instances. Finally we
get

Var(sEB)

s2
≈ 1.44× 10−5 and

Var(sKF)

((s− d/2)/2)
2 ≈ 3.6× 10−3.

Since the variance of EB is smaller, if our target is to estimate s for the exact GP
model, then this suggests that the EB method is preferable.

3. More well-specified examples

The setting in Section 2 concerns regularity parameter of the Matérn-like model
only. This section aims to extend this discussion to a wider range of settings by
means of numerical experiments. First, we study the learning of lengthscale and
amplitude parameters in the Matérn-like model in Subsection 3.1; these experiments
lead to a more complete story for the Matérn-like model on the torus. Then,
in Subsection 3.2, we consider other well-specified models, extending beyond the
Matérn-like process example. In Subsection 3.3, we also discuss some computational
aspects of the EB and KF approaches.

3.1. Recovery of amplitude and lengthscale. We start with the learning of
amplitude and lengthscale parameters in the Matérn-like model, via either EB or
KF method.
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In spatial statistics, an important general principle in looking at the recovery
of hyperparameters via EB is to determine whether or not the family of measures
are mutually singular with respect to changes in the parameter to be estimated;
learning parameters which give rise to mutually singular families is usually easy,
since different almost sure properties can often be used to distinguish measures and
this can be achieved without an abundance of data; in contrast those parameters
that do not give rise to mutually singular measures typically require an abundance
of realizations to be accurately learned. We illustrate this issue in the context of
estimating one parameter by EB, the changing of which leads to mutually singular
measures, and estimating two parameters by EB, changing one of which leads to
mutual singularity, and the other to equivalence, for the Matérn-like process. We
also study analogous questions about identifiability for the KF method. In all cases
we work with loss functions that are natural generalizations of (2.10), (2.11).

3.1.1. Recovery of σ. A first observation is that the KF loss function is invariant
under change of σ, so it cannot recover this parameter. We also note that measures
are mutually singular with respect to changes in σ, and so we do expect to be able
to recover σ by EB. For the EB estimator, we design the experiment as follows.
We study whether the EB method can recover σ while s, τ are fixed. In detail, we
consider a problem with domain the one dimensional torus T

1. The Matérn-like
kernel has regularity s = 2.5, amplitude σ = 1 and lengthscale τ = 0. We assume
the values of s, τ are known, but not σ. We want to recover σ by seeing a single
discretized realization u† ∼ N (0, σ2(−Δ + τ2I)−s). The domain T1 is discretized
into N = 210 equidistributed grid points. The data we observe is the values of u† in
29 equidistributed points. We build the EB loss function (see equation (3.1)) and
plot the figure for a single instance; see Figure 5. We introduce ς as the variable

-1.5 -1 -0.5 0 0.5 1 1.5
log 
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Figure 5. EB loss function for recovering σ

to be maximized over to determine our estimate of σ. In our experiments we work
with the parameterization ς = exp(ς ′) in order to ensure that the estimated σ is
positive. Hence, the x-axis of Figure 5 is ς ′. The figure shows that the minimizer of
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the loss function is close to the point ς ′ = 0 (ς = 1), so the estimator σEB is close
to the ground truth σ.

We can theoretically analyze the convergence. The same set-up in Subsection 2.1
is adopted, except now we assume the function is drawn from N (0, σ2(−Δ)−s) with
s known and we want to recover σ by seeing the equidistributed spatial samples on
the torus. After calculating the likelihood in such a case, we get the EB estimator
below. Here we abuse the notation to write

(3.1)

σEB(q, u†) = argmin
ς>0

LEB(ς, q, u†),

LEB(ς, q, u†) :=
σ2‖u(·, s, q)‖2s

ς2
+ log detK(s, q) + 2qd log ς2.

The definition of u(·, s, q),K(s, q) is the same as in Subsection 2.1. Recall that
u(·, s, q) is the mean of the GP found by conditioning a prior measure N (0, (−Δ)−s)
on observations of u† at the observation data with level q. The definition of ‖ · ‖s
also follows from Subsection 2.1. We abuse notation to write LEB(ς, q, u†) for the
EB loss function used in the estimation of σ; the reader should not confuse this with
LEB(t, q, u†) in Subsection 2.1 which is used for recovering the regularity parameter
s.

In this setting we have the following consistency result:

Theorem 3.1. Fix δ > 0. Suppose u† is a sample drawn from the Gaussian process
N (0, σ2(−Δ)−s) for some s ∈ [d/2 + δ, 1/δ]. Then, for the Empirical Bayesian
estimator of σ, it holds that

lim
q→∞

σEB(q, u†) = σ,

where the convergence is in probability with respect to randomly chosen u†.

Proof. By taking the derivative of LEB(ς, q, u†) with respect to ς and setting it to
0, we get the explicit formula:

(3.2) σEB(q, u†) = σ

√
‖u(·, s, q)‖2s

2qd
.

Due to Proposition 2.14, we get our ‖u(·, s, q)‖2s =
∑

m∈Bd
q
ξ2m. By the Law of Large

Numbers, we have

lim
q→∞

‖u(·, s, q)‖2s
2qd

= 1 ,

from which the consistency follows. �

Remark 3.2. We note that consistency results for the amplitude parameter have
been well studied in the literature; see [33]. The purpose of this subsection is to
tie those results to the rather explicit setting of our paper. One important feature
of the torus model is that we are able to get an explicit and simple formula for
σEB, so the consistency results are very clear. Moreover, since σEB is the average
of i.i.d. Gaussian random variables, one can also easily read off other statistical
properties of this estimator (although the result of asymptotic distribution is also
not completely new; see for example the discussion on page 201 in [33]).
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3.1.2. Recovery of s, σ simultaneously. We now build on the previous experiment to
study whether the EB method can recover s, σ simultaneously when τ is fixed. We
reemphasize that since the measures are mutually singular with respect to changes
in σ and s we do expect to be able to recover (σ, s) by EB. The basic set-up is the
same as the last subsection, and now we minimize the EB loss function to recover
s, σ where, again, σ = exp(σ′). We run 50 instances (each instance corresponds
to a random draw of ξ), and collect the estimators (sEB, log σEB) of the EB loss
function for each instance. We present the histogram of the two values obtained in
the experiments as follows (Figure 6).
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Figure 6. Left: histogram of the sEB; right: histogram of the log σEB.

From the figure, we observe that in the 50 runs, the minimizer (sEB, σEB) is close
to the ground truth (2.5, 1). We conclude that the EB method can recover the two
parameters simultaneously in such a context.

3.1.3. Recovery of τ . We consider whether EB and KF can recover the inverse
lengthscale parameter τ . We assume that σ is fixed at 1, s is chosen to be 2.5, and
sample u† ∼ N (0, (−Δ+ τ2I)−s) with τ = 1. As in the preceding experiments we
consider the one dimensional torus example, and the same discretization precision
and data acquisition setting as before. We draw 50 instances of u†, and for each
of them, calculate the minimizers of the EB and KF loss function. We write τ =
exp(τ ′) and the estimator is log τEB for τ ′, which we constrain to be in the interval
[−2, 2]. In the EB loss function we fix t = s within the loss function; for the KF

method, we select t = s (case 1) and t = s−d/2
2 (case 2) respectively within the loss

function. The histograms of the minimizers of the resulting EB loss function and
KF loss functions (in both cases) are presented in Figure 7, expressed in terms of
log τEB and log τKF. In the 50 runs, the EB estimator takes many different values
with no apparent pattern. For both case 1 and case 2, the KF estimator of τ ′

takes the value 2 very often, which is the maximal value of the constrained decision
variable. None of the estimators recover the true τ ′ = 0.

The behavior of the KF estimator can be explained by the observation that when
τ increases, the function drawn from the Gaussian prior becomes smoother, and
hence the subsampling step in the KF loss does not sacrifice too much informa-
tion. Therefore, the KF loss exhibits a tendency to get smaller as τ increases. We
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Figure 7. Histogram of the log τEB or log τKF. Upper left: EB
loss; upper right: KF loss (case 1); bottom: KF loss (case 2).

can understand why EB cannot recover τ by studying the equivalence of Gauss-
ian measures. As shown in [9], when dimension d ≤ 3, the Gaussian measures
N (0, (−Δ + τ2I)−s) for different τ are equivalent; thus one cannot expect to re-
cover τ using the information from one sample.

We can also consider the problem of recovering s, τ simultaneously, i.e., we solve
a joint minimization problem to get sEB, log τEB and sKF, log τKF. The set-up is
the same as above, with the sample drawn from N (0, (−Δ + τ2I)−s) for τ = 1
and s = 2.5. We form the EB and KF loss for 50 instances of different draws and
find the minimizers as corresponding estimators. The histograms of the estimators
are shown in Figures 8 and 9. These figures show that in this joint optimization,
the EB method picks the correct value sEB = 2.5 for estimating s, and exhibit no
patterns for log τEB; the KF method finds values close to 1 for sKF, as it would in
the absence of simultaneous estimation of τ ′, and selects the largest possible value
in the constraint for log τKF, here being 2. The conclusion is that the fact that
τ ′ cannot be learned accurately does not influence the estimation of the regularity
parameter s in a context in which the two are learned simultaneously. Indeed,
this conclusion also holds when we are recovering the three parameters (s, σ, τ )
simultaneously.
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Figure 8. EB approach. Left: histogram of the sEB; right: his-
togram of the log τEB.
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Figure 9. KF approach. Left: histogram of sKF; right: histogram
of the log τKF.

3.2. Other well-specified examples. In this subsection, we consider numerical
examples for recovering parameters of a random field in the well-specified case,
going beyond the Matérn process studied thus far.

3.2.1. Recovery of regularity parameter for variable coefficient elliptic operator. Set
D = [0, 1] so that d = 1. The theoretical result in Section 2 assumes the function
observed u† is drawn from N (0, (−Δ)−s) on a torus. In this subsection, we assume
u† is drawn from N (0, (−∇ · (a∇·))−s) for some non-constant function a, and that
the elliptic operator implicit in this definition of a Gaussian measure is equipped
with homogeneous Dirichlet boundary condition on D. We observe its values on
the 29 equidistributed points of the total 210 grid points used for discretization.

Here we select a coefficient a(x) that exhibits a discontinuity at x = 1/2:

(3.3) a(x) =

{
1 x ∈ [0, 1/2]

2 x ∈ (1/2, 1].

As a consequence the induced operator is not the Laplacian. We pick s = 2.5 to
draw a sample u†.
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In the well-specified case, the GP used in defining the EB and KF estimators
is parameterized by N (0, (−∇ · (a∇·))−t) and we aim to learn parameter t given
a data calculated using a draw from the same measure with t = s. We consider
the well-specified case here (the misspecified case will be considered in Subsection
4.1). We output the histogram of the EB and KF estimators for 50 different draws
of u† in Figure 10. The experiments show that for the variable coefficient elliptic
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Figure 10. Histogram of the regularity estimators for the variable
coefficient covariance case. Left: EB; right: KF.

operator model, EB and KF succeed in converging to the correct limits. We can
calculate the (normalized) variance of the two estimators based on the histograms:

Var(sEB)

s2
≈ 7.8× 10−5 and

Var(sKF)

((s− d/2)/2)2
≈ 4× 10−3.

The relative magnitude is similar to the one in Subsection 2.8.

3.2.2. Recovery of discontinuity position for conductivity field. Define the conduc-
tivity field aθ : [0, 1] �→ R, and parameterized by θ ∈ [0, 1], via

(3.4) aθ(x) =

{
1 x ∈ [0, θ]

2 x ∈ (θ, 1].

In this subsection, we assume that our data u† is obtained by solving the SPDE

−∇ · (a1/2∇u†) = ξ,

subject to a homogeneous Dirichlet boundary condition on [0, 1]. We choose ξ as
a random draw from N (0, (−Δ)−1). We can view u† as a sample drawn from
N (0, Ca) where

(3.5) Ca = (−∇ · (a1/2∇·))−1(−Δ)−1(−∇ · (a1/2∇·))−1.

We observe the value of u† on the 29 equidistributed points of the total 210 grid
points used for discretization. We use EB and KF to estimate θ from the partial
observation of the function u† based on the GP model N (0, Ca,s) where

(3.6) Ca,s = (−∇ · (aθ∇·))−1(−Δ)−s(−∇ · (aθ∇·))−1.
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The model is well-specified for s = 1 and misspecified for s �= 1. Here consider the
well-specified case in this subsection, i.e., s = 1, and Ca,s = Ca; the misspecified
case is covered in Subsection 4.2.

We let the domain for θ be [0.3, 0.7] in the definition of EB and KF estimators.
We compute the estimators for 50 different draws of u†. The histograms of the
EB and KF estimators are shown in Figure 11. The loss functions for one random
instance are shown in Figure 12.
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Figure 11. Histogram of the discontinuity position estimators
(well-specified). Left: EB; right: KF.
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Figure 12. Loss function for recovering the discontinuity (well-
specified). Left: EB; right: KF.

Our experiments show that both EB and KF can recover θ = 1/2, and the
recovery is very stable with respect to different draws of u† from the SPDE. We
conclude that the EB and KF can go beyond the Matérn-like kernel model in
practice; recovering the point of discontinuity of the conductivity field is an example
of this fact.

3.3. Computational aspects. In this subsection, we add some discussions about
the computational aspects. We start by remarking on how to compute the kernel
function and sample the GP realization generally. Every kernel operator we consider



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2556 YIFAN CHEN ET AL.

involves certain differential operators. We discretize these differential operators and
perform an eigenfunction decomposition of the obtained matrix. Then we use these
eigenfunctions and eigenvalues to compute approximation of the kernel matrix, and
draw samples from the GP with the covariance matrix being the kernel matrix; see
also discussions in Remark 2.2. This is similar to the spectral expansion of a kernel
function and the Mercer decomposition of a GP.

Practical applications of hierarchical GPR require weighing statistical efficiency
against computational complexity. Although the regularity models covered in this
paper appear to produce well-behaved EB and KF loss functions with easily iden-
tifiable global minimizers, models with high dimensional parameter space typically
require using algorithms such as gradient descent which do not come with theoret-
ical guarantees on the identification of global minimizers. Furthermore, when the
size of the data is large, computation becomes a limiting factor, and subsampling
offers a traditional remedy when combined with gradient descent, but again theoret-
ical guarantees are not typically to be expected. The stochastic algorithm presented
in [25] for KF can be interpreted as an SGD algorithm aimed at minimizing the
average loss

Eπ1
Eπ2

LKF(θ, π1X , π2π1X , u†) ,

via draws from the distribution of π1 and π2 (π1X is a random subsampling of X ,
and π2π1X is a further random subsampling of π1X ). The efficacy of an analogous
strategy for EB remains unclear due to the presence of the log determinant term
in the loss. It is of future interest to explore further the computational aspects of
the EB and KF approaches to hierarchical learning.

4. Model misspecification

All our preceding experiments are focused on the well-specified case: the function
u† is drawn from the GP model assumed in the estimation, or equivalently, the
model for u† and for the kernel family Kθ in defining the loss functions are matched.
This subsection studies model misspecification. We consider two possible ways to
misspecify the model: (1) the function u† is drawn from a GP which is different from
that used in defining the loss function; (2) the function u† is a fixed deterministic
function. The second case may arise, for example, if the function comes from a
solution of a PDE with some physical data, and there is no natural stochastic
context for its provenance. The aim of this subsection is to study the behavior of
the EB and KF estimators to compare their robustness to model misspecification.

4.1. Stochastic model misspecification for recovering regularity. In this
subsection, we assume u† is drawn from N (0, (−∇ · (a∇·))−s), while the GP used
in defining the EB and KF estimators is still N (0, (−Δ)−t). This results in a model
misspecification corresponding to the well-specified model in Subsection 3.2.1. As
in Subsection 3.2.1, we select a as in (3.3) and we set s = 2.5 to draw the sample
u†. Figure 13 shows the histograms of the minimizers of the EB and KF loss
functions obtained from 50 independent draws from the Gaussian Process. Despite
misspecification, the EB and KF estimators are still concentrated around 2.5 and
1, respectively. We also calculate the variance:

Var(sEB)

s2
≈ 5.9× 10−4 and

Var(sKF)

((s− d/2)/2)2
≈ 6.8× 10−4 .
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In this example, the (normalized) variances of KF of EB are of similar magnitude.
This is different from the well-specified case in Subsection 3.2.1 where the variance
of EB is much smaller than KF.
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Figure 13. Histogram of the regularity estimators under model
misspecification. Left: EB; right: KF.

4.2. Stochastic model misspecification for recovering discontinuity. In this
subsection, we consider the model misspecifications that correspond to the well-
specified case in Subsection 3.2.2. For the GP defining the EB and KF estimators
we use the centred Gaussian with covariance operator given by (3.6) with s = 5;
meanwhile u† is drawn from the centred Gaussian with covariance operator given
by (3.5); thus we are in a misspecified version of the setting arising in Subsection
3.2.2 and, as there, our aim is to recover the point of discontinuity. We illustrate
the loss functions for a single draw of u† in Figure 14. These plots are not sensitive
to the particular draw of u† and illustrate the robustness of KF (and the lack of
robustness of EB) to this misspecification. Indeed, the EB estimator gives 0.3 which
is the lower boundary of the compact parameter space used in the minimization,
while the KF estimator picks the true parameter 0.5. The loss function of KF,
shown in Figure 14, exhibits a sharp global minimizer at θ = 0.5.
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Figure 14. Loss function for estimating the discontinuity param-
eter under model misspecification. Left: EB; right: KF.
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4.3. Deterministic model. In this subsection, we consider the EB and KF esti-
mators for the parameter t in the GP model N (0, (−Δ)−t) where Δ is equipped
with homogeneous Dirichlet boundary conditions on [0, 1]. However, rather than
choosing u† that is drawn from the GP N (0, (−Δ)−s) for some s (as we did in
Section 2), we choose it be the solution to the equation (−Δ)su†(·) = δ(· − 1/2),
i.e., u† is the Green function corresponding to the differential operator (−Δ)s and
evaluated at y = 1/2. Since u† has no stochastic background, we understand this
situation as a deterministic model misspecification.

We observe the value of u† on the 29 equidistributed points of the total 210

grid points used for discretization. We conduct numerical experiments to find the
value of the EB and KF estimators. Our experiments show that the EB estimator
returns 2s and the KF estimator returns s for this one dimensional example. The
loss function in the case s = 1.2 is shown in Figure 15.

0.5 1 1.5 2 2.4 2.8 3
t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
ss

105 Loss function: Empirical Bayesian

minimizer

0.5 1 1.2 1.5 2 2.5 3
t

10-5

10-4

10-3

10-2

10-1

100

lo
ss

Loss function: Kernel Flow

minimizer

Figure 15. Loss function for estimating the regularity parameter
under deterministic u†. Left: EB; right: KF.

We now describe some regularity considerations in order to understand the
observed phenomenon. In this one dimensional example, δ(· − 1/2) belongs to
Hη([0, 1]) for any η < −1/2, so the solution u ∈ H2s+η([0, 1]) for any η < −1/2. It
is of critical regularity 2s−1/2, but this criticality is not homogeneous: it is caused
by the presence of a singularity induced by the Dirac function.

The discussion in Section 2 implies KF will recover s − 1/4 while EB recovers
2s for a function with homogeneous critical regularity 2s − 1/2. However, the
experiments here show that KF recovers s while EB recovers 2s, for this function
with critical regularity 2s−1/2; unlike the setting in Section 2, here the ground truth
lacks spatial homogeneity. This suggests that the KF estimator for the regularity
parameter is sensitive to whether the regularity of the target function is spatially
homogeneous or not. This fact is not surprising, considering the vast literature on
adaptive approximation for functions with singularities, which implies the presence
of a singularity will exert considerable influence on the approximation error resulting
from minimizing the KF loss function. In this example, the optimal approximation
in KF error comes at t = s. We can understand this phenomenon as follows. Recall
u† = (−Δ)−sδ(· − 1/2). Using N (0, (−Δ)−t) in the GPR is equivalent to using the
basis functions spanj∈Jq

{(−Δ)−tδ(·−xj)} (as in Section 2.1) with xi being the data

points indexed by j ∈ Jq, to approximate u†. When t = s and one of the xj = 1/2,
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the ground truth will just be in the basis functions set, so it is straightforward to
imagine t = s leads to the smallest approximation error, and KF picks this value.

We understand the fact that EB still picks t = 2s by making the following
observation: there are only two terms in the EB loss function. The log determinant
term remains the same for each t when u† changes. For the norm term ‖u(·, t, q)‖2t ,
the blow-up rate depends on the regularity of u†. Here, it makes no difference
whether the regularity of u† is spatially homogeneous or not.

4.4. Discussions. The above numerical experiments reveal complicated behavior
of EB and KF with respect to model misspecification. In the second experiment,
we found that KF is robust while EB is not, for a certain type of GP model mis-
specification. This appears natural since EB is based on probabilistic modeling
whilst KF is purely based on approximation theoretic criteria. In Subsection 4.2
the prior used in EB is mutually singular with respect to the GP that u† is drawn
from and it is not surprising that EB is fragile. On the other hand, KF does not
require probabilistic modeling to motivate it, and so its robustness to misspecifica-
tions behaves differently. Indeed, in the second experiment, the discontinuity point
influences the approximation accuracy a lot, and even the kernel used in defining
KF is misspecified, KF still succeeds in selecting the correct parameter, as it focuses
on the approximation accuracy rather than statistical inference.

In the well-specified cases, e.g. experiments in Section 2, EB outperforms KF in
terms of the variance of estimators. Therefore, if u† is a random object and we know
the prior correctly, then EB should be a preferable choice for estimating parameters.
If this is not the case and misspecification occurs, EB might be vulnerable and KF
could be a potential alternative.

5. Concluding remarks

In this paper, we have studied the Empirical Bayes and Kernel Flow approaches
to hyperparameter learning. The first approach is based on statistical consid-
erations, while the second approach originates from an approximation theoretic
viewpoint. Their distinct objectives lead them to different behaviors and different
interpretations of optimality.

For the Matérn-like process model, we made a detailed theoretical study of the
recovery of the regularity parameter. We proved the EB estimator converges to s,

while the KF estimator converges to s−d/2
2 , both results holding in probability in the

large data limit if the regularity of the GP that u† draws from is s. Our experiments

illustrate that, in terms of the L2 error ‖u(·, t, q)− u†‖20, the parameter t = s−d/2
2

relates to the minimal t that achieves the fast error rate while t = s relates to the
t that achieves the smallest error, averaged over the GP u† ∼ N (0, (−Δ)−s). This
demonstrates the different drivers that guide the EB and KF methods in selecting
the parameters. The statistical and approximation theoretic principles behind them
lead to the differences between them.

In the theoretical study, we developed a Fourier analysis toolkit for this problem,
and as a byproduct, we showed the consistency of recovering σ in the Matérn-like
process for the EB method. Recovery of the lengthscale parameter and recovery of
several parameters simultaneously was studied via numerical experiments. It is of
future interest to perform theoretical studies explaining these empirically observed
phenomena. Furthermore, the theory in this paper is based on an equidistributed
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design for the data location, and the generalization to randomized design remains
a potential further direction. Also, our focus in this paper is on the noiseless
observation setting, and an extension to the noisy case is of future theoretical
interest.

Our numerical experiments for additional well-specified and misspecified mod-
els extend the scope of this paper beyond the Matérn-like kernels. Both the two
estimators work very well in the well-specified models we consider; we would like
to explore this more in the future, both theoretically and numerically, potentially
in more complex models that are present in machine learning. The variance and
robustness of the estimators behave differently for the misspecified models. The
variabilities in robustness are in line with our expectation since these estimators
follow from different decision rules; these rules can vary considerably in sensitivity
to model mismatches of different kinds. In practice, users should choose the correct
approach to avoid high sensitivity to likely model errors present.

As a summary, this paper demonstrates some basic aspects of the difference
between Bayesian and approximation theoretic approaches for hierarchical learning.
Generally, it is of interest to study EB and KF for other types of models and to study
other parameter selection criteria based on the two principles beyond EB and KF,
such as a fully Bayesian approach or another choice of d for the approximation, and
identify their pros and cons under different scenarios. We are interested in exploring
the theoretical and practical performance of methods under such a framework, and
we believe that a diversity in such methods will enable users to deal with the model
misspecification that is to be expected in many applications.

6. Appendix: Proofs

6.1. Proof of Proposition 2.11.

Proof. Let ϕj(x) = (−Δ)−tδ(x − xj) and in particular ϕ0(x) = (−Δ)−tδ(x). We
have for m ∈ Zd,

ϕ̂0(m) =

{
(4π2)−t|m|−2t, m �= 0

0, m = 0 .

We introduce the translation operator τj2−q which acts on function u : Td → R and
is defined by

(τj2−qu)(x) = u(x1 − j12
−q, x2 − j22

−q, . . . , xd − jd2
−q)

for j = (j1, j2, . . . , jd) ∈ Zd and x = (x1, x2, . . . , xd) ∈ Rd. Then, for j ∈ Jq, we
have the relation δ(·−xj) = τj2−qδ(·). Using the property of the Fourier coefficients,
we obtain

ϕ̂j(m) = ϕ̂0(m)e−2πi〈j2−q,m〉 =
{
(4π2)−t|m|−2te−2πi〈j2−q,m〉, m �= 0

0, m = 0 .

By definition, F̂t,q is the span of such ϕ̂j for j ∈ Jq. Hence, for any g ∈ F̂t,q , it can
be written as a linear combination of these functions. Equivalently, there exists a
2q-periodic function p such that

g(m) =

{
|m|−2tp(m), m �= 0

0, m = 0 .

This gives the desired representation of g. �
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6.2. Proof of Theorem 2.13.

Proof. By Proposition 2.11, there exists a 2q-periodic function p1(m) on Zd, such
that

û(m, t, q) =

{
|m|−2tp1(m), m �= 0

0, m = 0 .

By the definition of GPR, we have [u†(·) − u(·, t, q), δ(· − xj)] = 0 for every data

point xj . In the Fourier domain, according to the characterization of F̂t,q , this
orthogonality leads to

(6.1)
∑
m∈Zd

(û(m)− û(m, t, q))p(m) = 0

for p : Zd → C being any 2q-periodic function. Recalling Definition 2.12, we have

(6.2) (Tqû)(m) =
∑
β∈Zd

û(m+ 2qβ).

The fact that the above sum converges may be seen as a consequence of the Cauchy–
Schwarz inequality and the regularity of u (recall t ≥ d/2+ δ). Using (6.2) and the
representation of û(m, t, q), we reformulate (6.1) as∑

m∈Bd
q

(
(Tqû)(m)−M t

q(m)p1(m)
)
p(m) = 0 .

The above formula holds for any 2q-periodic function p. Let g(m) = (Tqû)(m) −
M t

q(m)p1(m), then we get that g is a 2q-periodic function on Zd and that∑
m∈Bd

q

g(m)p(m) = 0

holds for any 2q-periodic function p. This implies that g(m) = 0. Hence, we get

p1(m) =
(Tqû)(m)

M t
q(m)

.

Plugging this expression into the above representation formula for û(m, t, q) leads
to

û(m, t, q) =

{
0, if m = 0

|m|−2t (Tqû)(m)
Mt

q(m) , else.

This completes the proof. �

6.3. Proof of Lemma 2.15.

Proof. Recall the definition

M t
q(m) :=

{∑
β∈Zd\{0} |2qβ|−2t, if m = j · 2q for some j ∈ Z

d∑
β∈Zd |m+ 2qβ|−2t, else.

Because of the periodicity of M t
q , we need only to study m ∈ Bd

q . We split it into
two cases.

(1) If m = 0, then M t
q(m) =

∑
β∈Zd\{0} |2qβ|−2t = 2−2qt

∑
β∈Zd\{0} |β|−2t 

2−2qt.
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(2) Ifm ∈ Bd
q \{0}, thenM t

q(m) =
∑

β∈Zd |m+2qβ|−2t = |m|−2t+
∑

β∈Zd\{0} |m
+ 2qβ|−2t. Since Bd

q = [−2q−1, 2q−1 − 1]⊗d, each component of m ∈ Bd
q is

bounded by 2q−1 in amplitude, and therefore each component of 2−qm is
bounded by 1/2 in amplitude. So, it follows that∑

β∈Zd\{0}

|m+ 2qβ|−2t = 2−2qt
∑

β∈Zd\{0}

|2−qm+ β|−2t  2−2qt.

Then, we get |m|−2t ≤ M t
q(m) � |m|−2t + 2−2qt � |m|−2t where we have

used the fact that |m| � 2q. Therefore, it holds that M t
q(m)  |m|−2t.

As a byproduct of the above proof, we also get M t
q(m)− |m|−2t  2−2qt. �

6.4. Proof of Lemma 2.17.

Proof. First, we prove the pointwise convergence (i.e., for each fixed r), then move
on to prove uniform convergence. To achieve this, we calculate the variance:

Var(α(r, q))  2−2rq
∑

m∈Bd
q \{0}

|m|2r−2d

� 2−2rq

∫ 2q

1

x2r−2d+d−1 dx = 2−2rq

∫ 2q

1

x2r−d−1 dx.

For r = d/2, the integral gives log(2q) = q log 2; for r �= d/2, it is 1
2r−d(2

q(2r−d)−1).

In both cases, we have limq→∞ Var(α(r, q)) = 0. Thus, α(r, q) converges in L2 to
the limit of its expectation, which we may calculate as follows:

lim
q→∞

Eα(r, q) = lim
q→∞

∑
m∈Bd

q \{0}
(2−q)d|2−qm|r−d =

∫
[−1/2,1/2]d

|y|r−d dy := γ(r) > 0.

Hence, we get limq→∞ α(r, q) = γ(r) > 0 in L2 for every r ∈ [ε, 1/ε], and the conver-
gence also holds in probability. We may now proceed to show uniform convergence.
We rely on Exercise 3.2.3 in [38]. Based on that, it suffices to prove α(r, q) is uni-
formly Lipschitz continuous as a function of r for q ∈ N. Pick any r1, r2 ∈ [ε, 1/ε],
then

|α(r1, q)− α(r2, q)|

=
∑

m∈Bd
q \{0}

2−qd|(|2−qm|r1−d − |2−qm|r2−d)|

≤
∑

m∈Bd
q \{0}

2−qd|r1 − r2|(|2−qm|ε−d + |2−qm|1/ε−d)| log(2−qm)|ξ2m ,

where in the last step we have used the fact that ||2−qm|r1−d − |2−qm|r2−d| =
||2−qm|η−d log(2−qm)(r1 − r2)| for some η that lies between r1 and r2, and we use
the bound r1, r2 ∈ [ε, 1/ε]. Now, we define the random series:

L(q) := 2−qd
∑

m∈Bd
q \{0}

(|2−qm|ε−d + |2−qm|1/ε−d)| log(2−qm)|ξ2m .
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We calculate its variance as follows:

Var(L(q))  2−2dq
∑

m∈Bd
q \{0}

(|2−qm|2ε−2d + |2−qm|2/ε−2d) log2 |2−qm|

� 2−qd

(∫ 1

2−q

t2ε−2d+d−1 log2 t dt+

∫ 1

2−q

t2/ε−2d+d−1 log2 t dt

)

= 2−qd

∫ 1

2−q

(t2ε−d−1 + t2/ε−d−1) log2 t dt

� 2−qd

∫ 1

2−q

(tε−d−1 + t1/ε−d−1) dt � 2−qε.

The last term will go to 0 as q goes to infinity. Thus, L(q) converges in L2 (and
thus in probability) to L∗ = limq→∞ EL(q), which is

lim
q→∞

EL(q) = lim
q→∞

2−qd
∑

m∈Bd
q \{0}

(|2−qm|ε−d + |2−qm|1/ε−d) log2 |2−qm|

=

∫
[−1/2,1/2]d

(|y|ε−d + |y|1/ε−d) log2 |y| dy

�
∫
[−1/2,1/2]d

(|y|ε/2−d + |y|1/(2ε)−d) dy < ∞ .

Using Markov’s inequality we deduce that, for any ε′ > 0, it holds that

P(|L(q)− L∗| ≥ ε′) ≤ E|L(q)− L∗|2
(ε′)2

≤ 2−qε

(ε′)2
.

Thus,
∞∑
q=1

P(|L(q)− L∗| ≥ ε′) ≤
∞∑
q=1

2−qε

(ε′)2
< ∞ .

From the Borel-Cantelli lemma it follows that limq→∞ L(q) = L∗ almost surely, and
therefore L(q) is bounded uniformly for q almost surely. Since |α(r1, q)−α(r2, q)| ≤
L(q)|r1 − r2|, it follows that α(r, q) is uniformly Lipschitz continuous as a function
of r for q ∈ N. Invoking Exercise 3.2.3 in [38] concludes this case.

For the case r = 0, we follow the same strategy as in the previous case. First,
we calculate the corresponding variance:

Var(α(0, q))  1

q2

∑
m∈Bd

q \{0}

|m|−2d

� 1

q2

∫ 2q

1

x−2d+d−1 dx � 1

q2
,

where the last term goes to 0 as q goes to infinity. Then, we calculate the expecta-
tion:

Eα(0, q) =
1

q

∑
m∈Bd

q \{0}

|m|−d.
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The limit when q → ∞ is identified through the following calculations:

lim
q→∞

1

q

∑
m∈Bd

q \{0}

|m|−d = lim
q→∞

∑
m∈Bd

q+1\Bd
q

|m|−d

= lim
q→∞

2−qd
∑

m∈Bd
q+1\Bd

q

|2−qm|−d

=

∫
[−1,1]d\[−1/2,1/2]d

|x|−d dx < ∞;

here we have used the definition of the Riemann integral. Finally, we conclude that
limq→∞ α(0, q) = γ(0) in probability for γ(0) ∈ (0,∞). �

6.5. Proof of Proposition 2.18.

Proof. First, we have the relation

log detK(t, q) = log detK(t, q − 1) + log det(K(t, q)/K(t, q − 1)),

where K(t, q)/K(t, q − 1) is the Schur complement of K(t, q − 1) in K(t, q). Due
to the variational property of the Schur complement (see Lemma 13.24 in [24]),
the smallest and largest eigenvalues of K(t, q)/K(t, q− 1) satisfy (in the dual norm
‖ · ‖−t)

(6.3)

λmin(K(t, q)/K(t, q − 1)) ≥ inf
y∈R

|Jq |

‖
∑

j∈Jq
yjδ(x− xj)‖2−t

|y|2 , and

λmax(K(t, q)/K(t, q − 1))

= sup
y∈R

|Jq |
inf

z∈R
|Jq−1|

‖
∑

j∈Jq
yjδ(x− xj)−

∑
j′∈Jq−1

zj′δ(x− xj′)‖2−t

|y|2 .

These two formulae will be crucial in the subsequent analysis. We start by esti-
mating the smallest and largest eigenvalues of the Schur complement. Let w =
(−Δ)−t

∑
j∈Jq

yjδ(x− xj), whose Fourier coefficients are

(6.4) ŵ(m) =

{
0, if m = 0

(4π2)−t|m|−2tg(m), else,

where the function g(m) is defined by

(6.5) g(m) =
∑
j∈Jq

yj exp(2πi〈j2−q,m〉).

For the smallest eigenvalue, we write

‖
∑
j∈Jq

yjδ(x− xj)‖2−t = ‖w‖2t = (4π2)t
∑

m∈Zd\{0}

|m|2t|ŵ(m)|2

= (4π2)−t
∑

m∈Zd\{0}

|m|−2t|g(m)|2.

Notice that∑
m∈Zd\{0}

|m|−2t|g(m)|2 =
∑

m∈Bd
q

M t
q(m)|g(m)|2 � 2−2tq

∑
m∈Bd

q

|g(m)|2
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and

(6.6)

∑
m∈Bd

q

|g(m)|2 =
∑

m∈Bd
q

|
∑
j∈Jq

yj exp(2πi〈j2−q,m〉|2

=
∑

m∈Bd
q

∑
j∈Jq

∑
l∈Jq

yjyl exp(2πi〈(j − l)2−q,m〉

=
∑
j∈Jq

∑
l∈Jq

yjyl
∑

m∈Bd
q

exp(2πi〈(j − l)2−q,m〉

 2qd|y|2.
In the last line we have used the fact that∑

m∈Bd
q

exp(2πi〈(j − l)2−q,m〉 =
{
0, if j − l �= 0∑

m∈Bd
q
1  2qd, if j − l = 0 .

Thus, combining the above results, we obtain the bound on the smallest eigenvalue

λmin(K(t, q)/K(t, q − 1)) � 2−q(2t−d).

We then move to consider the largest eigenvalue. First, notice that

inf
z∈R

|Jq−1|
‖
∑
j∈Jq

yjδ(x− xj)−
∑

j′∈Jq−1

zj′δ(x− xj′)‖2−t = inf
v∈Ft,q−1

‖w − v‖2t .

Naturally, one can express the optimal v in the above variational formulation using
the Fourier series representation explained before. However, this will lead to many
interactions between different frequencies. To make the analysis cleaner, we adopt
another strategy. We first approximate the function w by a band-limited function,
whose projection into Ft,q−1 will be more concise. Precisely, define a band limited
version of w, written as wh, by

(6.7) ŵh(m) =

{
ŵ(m), if m ∈ Bd

q−1

0, if m ∈ (Bd
q−1)

c.

To estimate infv∈Ft,q−1
‖w − v‖2t , we follow the two steps below:

Step 1. We prove ‖w−wh‖2t � 2−q(2t−d)|y|2. Let us calculate the quantity directly:

‖w − wh‖2t = (4π2)−t
∑

m∈(Bd
q−1)

c

|m|−2t|g(m)|2

= (4π2)−t

⎛
⎝ ∑

m∈Zd\{0}

|m|−2t|g(m)|2 −
∑

m∈Bd
q−1

|m|−2t|g(m)|2
⎞
⎠

= (4π2)−t

⎛
⎝ ∑

m∈Bd
q

M t
q(m)|g(m)|2 −

∑
m∈Bd

q−1

|m|−2t|g(m)|2
⎞
⎠

� 2−2qt
∑

m∈Bd
q

|g(m)|2 � 2−q(2t−d)|y|2.

Here we have used the fact that M t
q(m) − |m|−2t � 2−2qt for m ∈ Bd

q−1 and

M t
q(m) � 2−2qt for m ∈ Bd

q \Bd
q−1, according to the results in Lemma 2.15. In the

last line, the bound (6.6) is applied.
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Step 2. We prove infv∈Ft,q−1
‖wh − v‖2t � 2−q(2t−d)|y|2. Based on Theorem 2.13,

we know the optimal v for this variational problem has the Fourier coefficients

v̂(m) =

{
0, if m = 0

|m|−2t (Tq−1ŵh)(m)
Mt

q−1(m)
, else.

Then, using the Fourier representation of the norm, we get

‖wh − v‖2t


∑
m∈Zd\{0}

|m|2t|ŵh(m)− v̂(m)|2

=
∑

m∈Bd
q−1\{0}

|m|−2t|g(m)− (Tq−1ŵh)(m)

M t
q−1(m)

|2 +
∑

m∈(Bd
q−1)

c

|m|−2t| (Tq−1ŵh)(m)

M t
q−1(m)

|2.

For the first term, since wh is band-limited, we know if m ∈ Bd
q−1\{0}, then

(Tq−1ŵh)(m) = |m|−2tg(m). Thus, we can write this term as∑
m∈Bd

q−1\{0}

|m|−2t|g(m)|2
(
1− |m|−2t

M t
q−1(m)

)2

=
∑

m∈Bd
q−1\{0}

|m|−2t|g(m)|2
(M t

q−1(m)− |m|−2t

M t
q−1(m)

)2

(a)

�
∑

m∈Bd
q−1\{0}

|m|−2t|g(m)|2
( 2−4tq

|m|−4t

)
(b)

�
∑

m∈Bd
q−1\{0}

2−2tq|g(m)|2 � 2−q(2t−d)|y|2,

where in (a), we have used the fact that M t
q−1(m)−|m|−2t  2−2tq and M t

q−1(m) 
|m|−2t for m ∈ Bd

q−1\{0} based on Lemma 2.15. In (b), we have used |m| � 2q.
The last inequality is obtained by recalling (6.6).

For the second term, we write∑
m∈(Bd

q−1)
c

|m|−2t| (Tq−1ŵh)(m)

M t
q−1(m)

|2

=
∑

m∈Zd\{0}

|m|−2t| (Tq−1ŵh)(m)

M t
q−1(m)

|2 −
∑

m∈Bd
q−1\{0}

|m|−2t| (Tq−1ŵh)(m)

M t
q−1(m)

|2

(c)
=

∑
m∈Bd

q−1\{0}

(M t
q−1(m)− |m|−2t)| (Tq−1ŵh)(m)

M t
q−1(m)

|2

=
∑

m∈Bd
q−1\{0}

(M t
q−1(m)− |m|−2t)| |m|−2tg(m)

M t
q−1(m)

|2

� 2−2tq
∑

m∈Bd
q−1\{0}

|g(m)|2 � 2−q(2t−d)|y|2,

where in (c), we have used the periodicity of the function
(Tq−1ŵh)(m)
Mt

q−1(m)
.
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Now, combining Steps 1 and 2 leads to the conclusion

inf
v∈Ft,q−1

‖w − v‖2t � 2−q(2t−d)|y|2,

and in particular, it implies

λmax(K(t, q)/K(t, q − 1)) � 2−q(2t−d).

As a consequence of the upper and lower bounds for the eigenvalues of the matrix
K(t, q)/K(t, q − 1), we deduce that they are all on the scale of 2−q(2t−d). Let C
be a constant independent of t, q such that C−12−q(2t−d) � K(t, q)/K(t, q − 1) �
C2−q(2t−d). Then,

(2qd − 2(q−1)d)((2t− d)(−q) log 2− C) ≤ log detK(t, q)/K(t, q − 1)

≤ (2qd − 2(q−1)d)((2t− d)(−q) log 2 + C).

Using the implied bounds on the recursion relation, we get

(2t−d)g1(q)−Cg2(q)+K(t, 0) ≤ log detK(t, q) ≤ (2t−d)g1(q)+Cg2(q)+K(t, 0),

where g1(q) =
∑q

k=1(2
kd−2(k−1)d)(−k log 2) and g2(q) = (2qd−1)(2t−d). Summing

the series in g1(q) leads to g1(q)  −q2qd log 2  −q2qd. The proof of Proposition
2.18 is completed.

Remark 6.1. The above technique of using the Schur complements is quite gen-
eral and could be potentially applied to other operators such as heterogeneous
Laplacians; see [24]. However, for the homogeneous Laplacian on the torus in this
paper, we may also prove the result via a simpler approach. The key observation
is that there is an explicit formula for the spectrum of K(t, q), as also exploited in
[33, Sec. 6.7]. Indeed, using the formula for the spectrum given in Lemma 6.2, we
get

log detK(t, q) =
∑

m∈Bd
q

log
(
2qd(4π2)−tM t

q(m)
)

= qd2qd log 2− 2qdt log(4π2) +
∑

m∈Bd
q

logM t
q(m).

By Lemma 2.15, it holds that

M t
q(m) 

{
2−2qt, if m = 0

|m|−2t, if m ∈ Bd
q\{0}.

That is, there exists a constant C independent of t such that

−2t log |m| − logC ≤ logM t
q(m) ≤ −2t log |m|+ logC

for m ∈ Bd
q \{0}, and −2qt log 2− logC ≤ logM t

q(0) ≤ −2qt log 2 + logC. Since

∑
m∈Bd

q \{0}

log |m| 
∫ 2q

0

rd−1 log r dr  q2qd,

and 2qd = o(q2qd), we get

−(2t− d)q2qd − C2qd � log detK(t, q) � −(2t− d)q2qd + C2qd.

This completes the alternative proof of Proposition 2.18. �
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Lemma 6.2. The eigenvalues of K(t, q) are 2qd(4π2)−tM t
q(m) for m ∈ Bd

q , where

M t
q(m) is defined in (2.12), with the corresponding eigenfunctions φm(Xq) ∈ R2qd .

Proof. We can prove this claim using Mercer’s decomposition as follows. First, for
xi, xj ∈ Xq, it holds that

K(t, q)i,j =
∑

m∈Zd\{0}

(4π2)−t|m|−2tφm(xi)φ
∗
m(xj)

=
∑

m∈Bd
q

(4π2)−tM t
q(m)φm(xi)φ

∗
m(xj),

where we have used the fact that φm+2qβ(xi) = φm(xi) for any β ∈ Z
d and xi ∈ Xq.

Thus, for every n ∈ Bd
q , we get∑

xj∈Xq

K(t, q)i,jφn(xj) =
∑

m∈Bd
q

(4π2)−tM t
q(m)φm(xi)

∑
xj∈Xq

φ∗
m(xj)φn(xj)

=
∑

m∈Bd
q

(4π2)−tM t
q(m)φm(xi)2

qdδmn

= 2qd(4π2)−tM t
q(m)φn(xi),

where in the second equality we used the property of Fourier series. This implies
φn(Xq) is an eigenfunction. The proof of the lemma is completed. �

6.6. Proof of Theorem 2.19.

Proof. Recall the definition,

sEB(q) = argmin
t

LEB(t, q) := ‖u(·, t, q)‖2t + log detK(t, q).

Define a rescaled version of the loss function by

L̃EB(t, q) =
1

|g1(q)|
LEB(t, q) =

1

|g1(q)|
‖u(·, t, q)‖2t︸ ︷︷ ︸
1

+
1

|g1(q)|
log detK(t, q)︸ ︷︷ ︸

2

.

We note that by Proposition 2.18, we have |g1(q)| ∼ q2qd. Now, we estimate the

growth rate of 1 and 2 separately. From Propositions 2.16 and 2.18, we get

1  1

q
2−q(2s−2t+d)ξ20︸ ︷︷ ︸

3

+
1

q
2−q(2s−2t)

∑
m∈Bd

q \{0}

2−q(2t−2s+d)|m|2t−2sξ2m

︸ ︷︷ ︸
4

,

and for the log det part, it holds that

d− 2t+
−Cg2(q) +K(t, 0)

|g1(q)|
≤ 2 ≤ d− 2t+

Cg2(q) +K(t, 0)

|g1(q)|
.

It follows that limq→∞ 2 = d− 2t. Thus, our remaining task is to analyze terms

3 , 4 in 1 . We split the problem into four cases.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EMPIRICAL BAYES AND KERNEL FLOW 2569

Case 1 (t = s). It is easy to see limq→∞ 3 = 0 and

4 =
1

q
2−qd

∑
m∈Bd

q \{0}

ξ2m =
1

q
α(d, q),

so that limq→∞ 4 = 0. Here we use the definition of α in Lemma 2.17. Therefore,

limq→∞ L̃EB(s, q) = d− 2s.

Case 2 (1/δ ≥ t ≥ s+ ε). We have 3 ≥ 0. The term 4 can be written as

4 =
1

q2−q(2t−2s)
α(2t− 2s+ d, q),

where we recall the definition of the function α in Lemma 2.17. According to this
lemma, we get the uniform convergence

lim
q→∞

α(2t− 2s+ d, q) = γ(2t− 2s+ d) > 0

in probability. In the meantime, limq→∞ q2−q(2t−2s) = 0. So, limq→∞ 4 = ∞ in

probability, and uniformly in 1/δ ≥ t ≥ s+ε. In terms of L̃EB(t, q), this corresponds

to limq→∞ L̃EB(t, q) = ∞.

Case 3 (s− ε ≥ t ≥ s− d/2 + ε). In this case, 2t− 2s+ d ≥ ε so Lemma 2.17 can
be applied. We write the term

4 =
2−q(2s−2t)

q
α(2t− 2s+ d, q).

This will converge to 0 as q goes to infinity, since limq→∞
2−q(2s−2t)

q = 0 and

limq→∞ α(2t − 2s + d, q) = γ(2t − 2s + d) ∈ (0,∞). The term 3 also con-

verges to 0. Thus, limq→∞ L̃EB(t, q) = d − 2t in probability, and uniformly for
s− ε ≥ t ≥ s− d/2 + ε.

Case 4 (s− d/2+ ε ≥ t ≥ d/2+ δ). We still have that 3 converges to 0. For term

4 , we have

4 =
2−qd

q

∑
m∈Bd

q \{0}

|m|2t−2sξ2m ≤ 2−qd

q

∑
m∈Bd

q \{0}

|m|2(s−d/2+ε)−2sξ2m,

where we have used the monotonicity of the function |m|2t−2s with respect to t.
Then, it reduces to the case t = s − d/2 + δ, which is covered by Case 3. Hence,

we have limq→∞ 4 = 0 uniformly for s− d/2 + δ ≥ t ≥ d/2 + δ. Therefore, we get

limq→∞ L̃EB(t, q) = d−2t in probability, and uniformly for s−d/2+δ ≥ t ≥ d/2+δ.

Let us make a summary of the arguments above. We have established that,
for any small ε > 0, limq→∞ L̃EB(t, q) = ∞ uniformly for 1/δ ≥ t ≥ s + ε, and

limq→∞ L̃EB(t, q) = d−2t uniformly for s−ε ≥ t ≥ d/2+δ, and limq→∞ L̃EB(s, q) =
d − 2s. All the convergence is in probability. Note that sEB is the minimizer of
LEB(t, q), hence also of L̃EB(t, q). The above convergence results for L̃EB(t, q) imply
that sEM ∈ (s−ε, s+ε) with probability 1 as q goes to infinity, for any ε > 0. Thus,
we must have

lim
q→∞

sEB(q) = s.

The proof is complete. �
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6.7. Proof of Proposition 2.21.

Proof. In order to write the interaction terms as a random series with some desired
independence pattern for the random variables involved, we need to consider the
geometry of the lattice carefully. We introduce another set Sq := {m ∈ Z : −2q−2 ≤
m ≤ 3× 2q−2 − 1} and let Sd

q = Sq ⊗ Sq ⊗ · · · ⊗ Sq denote the tensor product of d

multiples of Sq. The set Sq is a shift of Bq, and Sd
q is a shift of Bd

q .

Define the set Bd
q−1 + 2q−1k := {m + 2q−1k : m ∈ Bd

q−1} for k ∈ Z
d. We have

the relation

Sd
q =

⋃
k∈Z

d
2

(Bd
q−1 + 2q−1k),

where Zd
2 = {0, 1}d. Note that for k1 �= k2, the intersection between Bd

q−1 +2q−1k1
and Bd

q−1 + 2q−1k2 is empty.
Using (2.13) and the periodicity of the functions involved, we get

‖u(·, t, q)− u(·, t, q − 1)‖2t

=(4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

=(4π2)t
∑

m∈Sd
q

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

=(4π2)t
∑
k∈Z

d
2

∑
m∈(Bd

q−1+2q−1k)

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

.

Recall the relation

Tq−1û(m) =
∑
l∈Z

d
2

Tqû(m+ 2q−1l),

based on which we get

Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

=(
1

M t
q(m)

− 1

M t
q−1(m)

)Tqû(m)− 1

M t
q−1

∑
l∈Z

d
2\{0}

Tqû(m+ 2q−1l).

Since u† ∼ N (0, (−Δ)−s), it holds û(m) ∼ N (0, (4π2)−s|m|−2s). Moreover, for
different m, these Gaussian random variables are independent from each other.
Thus, for a fixed k and for m ∈ (Bd

q−1 + 2q−1k), the Gaussian random variables

Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)
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are independent from each other. Furthermore, by calculating their variance, we
can write

M t
q(m)

(
Tqû(m)

M t
q(m)

− Tq−1û(m)

M t
q−1(m)

)2

=(4π2)−s

⎡
⎢⎣( 1

M t
q(m)

− 1

M t
q−1(m)

)2M t
q(m)Ms

q (m) +
M t

q(m)

(M t
q−1(m))2

∑
l∈Zd

2\{0}

Ms
q (m+ 2q−1l)

⎤
⎥⎦ ξ2k,m

=(4π2)−s

⎡
⎢⎣Ms

q (m)(M t
q(m)−M t

q−1(m))2

M t
q(m)(M t

q−1(m))2
+

M t
q(m)

(M t
q−1(m))2

∑
l∈Zd

2\{0}

Ms
q (m+ 2q−1l)

⎤
⎥⎦ ξ2k,m

= : Ak,mξ2k,m,

where {ξk,m}m are independent unit scalar Gaussian random variables. Clearly, we
have the lower bound

Ak,m ≥ (4π2)−s
M t

q(m)

(M t
q−1(m))2

Ms
q (m− 2q−1k).

Thus, denoting e1 = (1, 0, . . . , 0) ∈ Zd, we get

‖u(·, t, q)− u(·, t, q − 1)‖2t

≥(4π2)t−s
∑
k∈Z

d
2

∑
m∈(Bd

q−1+2q−1k)

M t
q(m)

(M t
q−1(m))2

Ms
q (m− 2q−1k)ξ2k,m

≥(4π2)t−s
∑

m∈(Bd
q−1+2q−1e1)

M t
q(m)

(M t
q−1(m))2

Ms
q (m− 2q−1e1)ξ

2
e1,m

=(4π2)t−s
∑

m∈(Bd
q−1+2q−1e1)

M t
q(m)

(M t
q−1(m− 2q−1e1))2

Ms
q (m− 2q−1e1)ξ

2
e1,m

�
∑

m∈(Bd
q−1\{0}+2q−1e1)

2−2qt

|m− 2q−1e1|−4t
|m− 2q−1e1|2sξ2e1,m

=
∑

m∈Bd
q−1\{0}

2−2qt|m|4t−2sξ2e1,m+2q−1e1
.

In the above derivation, we have used the fact that for m ∈ Bd
q−1, it holds that

Ms
q (m)  |m|−2s,M t

q−1(m)  |m|−2t, and in particular, M t
q(m)  |m|−2t  2−2qt

for m ∈ (Bd
q−1\{0} + 2q−1e1). Renaming the subscripts in ξe1,m+2q−1e1 completes

the proof. �

6.8. Proof of Proposition 2.22.

Proof. We need to upper bound Ak,m for k ∈ Zd
2,m ∈ Bd

q−1 + 2q−1k, which is
defined in the proof of Proposition 2.21. First, we have∑

l∈Z
d
2\{0}

Ms
q (m+ 2q−1l) = Ms

q−1(m)−Ms
q (m),

and the estimate 0 ≤ M t
q−1(m) −M t

q(m) ≤ M t
q−1(m) for any d/2 + δ ≤ t ≤ 1/δ.

Based on this observation, for k ∈ Zd\{0} and m ∈ Bd
q−1\{0}+2q−1k, we have the
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bound

Ak,m �
Ms

q (m)

M t
q(m)

+M t
q(m)

Ms
q−1(m)

(M t
q−1(m))2

� 2−q(2s−2t) + 2−2tq|m− 2q−1k|4t−2s,

where we have used the fact that for m ∈ Bd
q−1\{0}+2q−1k, it holds that Ms

q (m) 
2−2sq,M t

q(m)  2−2tq,Ms
q−1(m)  |m − 2q−1k|−2s,M t

q−1(m)  |m − 2q−1k|−2t,

according to Lemma 2.15. For m = 2q−1k, we get Ak,m � 2−q(2s−2t). So in general,

we can write Ak,m � 2−q(2s−2t)+2−2tq|m−2q−1k|4t−2s for m ∈ Bd
q−1+2q−1k where

we use the convention that |m|α = 0 for m = 0 and any α ∈ R to make the notation
more compact.

When k = 0, using Lemma 2.15 again, we get for m ∈ Bd
q−1\{0},

Ak,m �
Ms

q (m)(M t
q(m)−M t

q−1(m))2

M t
q(m)(M t

q−1(m))2
+

M t
q(m)

(M t
q−1(m))2

(Ms
q−1(m)−Ms

q (m))

� |m|−2s2−4tq

|m|−6t
+

|m|−2t

|m|−4t
2−2sq

= |m|6t−2s2−4tq + |m|2t2−2sq

� 2−2tq|m|4t−2s + 2−q(2s−2t),

where in the last line we used the relation |m| � 2q. For m = 0, based on the
above calculation, we can get Ak,m � 2−q(2s−2t). Thus, generally, we can write

Ak,m � 2−2tq|m|4t−2s+2−q(2s−2t) for m ∈ Bd
q−1 by using the notational convention

above.
Combining these estimates, we arrive at

‖u(·, t, q)− u(·, t, q − 1)‖2t
�

∑
k∈Z

d
2

∑
m∈(Bd

q−1+2q−1k)

Ak,mξ2k,m

�
∑
k∈Z

d
2

∑
m∈(Bd

q−1+2q−1k)

(2−q(2s−2t) + 2−2tq|m− 2q−1k|4t−2s)ξ2k,m

=
∑
k∈Z

d
2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq|m|4t−2s)ξ2k,m+2q−1k.

After a change of notation, we get the desired estimate. �

6.9. Proof of Theorem 2.23.

Proof. Recall

sKF(q) = argmin
t∈[d/2+δ,1/δ]

LKF(t, q) :=
‖u(·, t, q)− u(·, t, q − 1)‖2t

‖u(·, t, q)‖2t
.

We analyze the denominator and numerator separately. We start with the numer-
ator. Let

V1(t, q) =
1

q
2q(s−d/2)‖u(·, t, q)− u(·, t, q − 1)‖2t .
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Case 1 (t = s−d/2
2 ). We derive an upper bound on V1. By Proposition 2.22,

‖u(·, t, q)− u(·, t, q − 1)‖2t �
∑
k∈Z

d
2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq|m|4t−2s)ξ2k,m.

Take t = s−d/2
2 . For each k ∈ Zd

2, consider the term

V k
1 (t, q) =

1

q
2q(s−d/2)

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq|m|4t−2s)ξ2k,m

=
1

q
2q(s−d/2)

∑
m∈Bd

q−1

(2−q(s+d/2) + 2−q(s−d/2)|m|−d)ξ2k,m

=
1

q

∑
m∈Bd

q−1

(2−qd + |m|−d)ξ2k,m

� 1

q

∑
m∈Bd

q−1

|m|−dξ2k,m.

By Lemma 2.17, limq→∞
1
q

∑
m∈Bd

q−1
|m|−dξ2k,m = γ(0) ∈ (0,∞). Thus, V k

1 (t, q)

remains bounded for q ∈ N. Since V1(t, q) =
∑

k∈Z
d
2
V k
1 (t, q), it follows that V1(t, q)

remains bounded for q ∈ N, in the case t = s−d/2
2 .

Case 2 (1/δ ≥ t ≥ s−d/2
2 + ε). We provide a lower bound of V1 here. Using

Proposition 2.21, we get

V1(t, q) �
1

q
2q(s−d/2)

∑
m∈Bd

q−1\{0}

2−2tq|m|4t−2sξ2m

=
1

q
2q(s−d/2−2t)

∑
m∈Bd

q−1\{0}

|m|4t−2sξ2m

=
1

q
2q(s−d/2−2t)2(q−1)(4t−2s+d) ·

⎛
⎝2−(q−1)(4t−2s+d)

∑
m∈Bd

q−1\{0}

|m|4t−2sξ2m

⎞
⎠

=
1

q
2(q/2−1)(4t−2s+d)α(4t− 2s+ d, q − 1).

By Lemma 2.17, limq→∞ α(4t−2s+d, q−1) = γ(4t−2s+d) > 0 uniformly for 1/δ ≥
t ≥ s−d/2

2 + ε. Since limq→∞
1
q2

(q/2−1)(4t−2s+d) = ∞, we get limq→∞ V1(t, q) = ∞
and its growth rate is � 1

q 2
(q/2−1)(4t−2s+d).

Case 3 ( s−d/2
2 − ε ≥ t ≥ d/2+ δ). We provide a lower bound on V1 here. Similarly

to our analysis in Case 2, we have

V1(t, q) �
1

q
2q(s−d/2−2t)

∑
m∈Bd

q−1\{0}

|m|4t−2sξ2m

� 1

q
2q(s−d/2−2t)ξ21 .
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Then, it holds that

P(
1

q
2q(s−d/2−2t)ξ21 ≥ 2q(s−d/2−2t)/2) = P(ξ21 ≥ q2−q(s−d/2−2t)/2) → 1

as q → ∞. Thus, we get limq→∞ V1(t, q) = ∞ uniformly for this range of t and the

growth rate is � 2q(s−d/2−2t)/2. We have finished the analysis of the numerator.
Now we proceed to analyze the denominator, which comprises the norm term. From
Proposition 2.16, we have

(6.8) ‖u(·, t, q)‖2t  2−q(2s−2t)ξ20 +
∑

m∈Bd
q \{0}

|m|2t−2sξ2m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables. Recall

that our final target in this theorem is to show that, for any ε > 0,

lim
q→∞

P[sKF(q) ∈ (
s− d/2

2
− ε,

s− d/2

2
+ ε)] = 1.

Let Iε = [d/2 + δ, 1/δ]/[ s−d/2
2 − ε, s−d/2

2 + ε]. By rewriting the loss function, it
suffices to show

lim
q→∞

P[
V1(

s−d/2
2 , q)

‖u(·, s−d/2
2 , q)‖2s−d/2

2

≥ inf
t∈Iε

V1(t, q)

‖u(·, t, q)‖2t
] = 0 .

Let us write

(6.9) r(t, q) =
V1(t, q)

V1(
s−d/2

2 , q)
·
‖u(·, s−d/2

2 , q)‖2s−d/2
2

‖u(·, t, q)‖2t
,

then all we need is to show

lim
q→∞

P[ inf
t∈Iε

r(t, q) ≤ 1] = 0.

For t ∈ I1ε = [d/2 + δ, s−d/2
2 − ε], according to the analysis for the numerator, we

have that for some constant C independent of q,

(6.10) lim
q→∞

P[ inf
t∈I1

ε

V1(t, q)

2q(s−d/2−2t)/2
≥ C] = 1 ,

and also, V1(
s−d/2

2 , q) remains uniformly bounded for q ∈ N. Furthermore, equation
(6.8) implies the following relation:

(6.11) inf
t∈I1

ε

‖u(·, s−d/2
2 , q)‖2s−d/2

2

‖u(·, t, q)‖2t
� 1,

due to the inequality t ≤ s−d/2
2 − ε. Combining the above two estimates in (6.10)

and (6.11), and recalling the expression for r(t, q) in (6.9), we get

(6.12) lim
q→∞

P[ inf
t∈I1

ε

r(t, q) ≤ 1] = 0.

Then, let I2ε = [ s−d/2
2 + ε, 1/δ]. We also need to show limq→∞ P[inft∈I2

ε
r(t, q) ≤

1] = 0, or equivalently,

lim
q→∞

P[
‖u(·, s−d/2

2 , q)‖2s−d/2
2

V1(
s−d/2

2 , q)
≤ sup

t∈I2
ε

‖u(·, t, q)‖2t
V1(t, q)

] = 0 .
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Since V1(
s−d/2

2 , q) remains bounded according to the result in Case 1, it suffices to
show

lim
q→∞

sup
t∈I2

ε

‖u(·, t, q)‖2t
V1(t, q)

= 0

in probability. Using the estimate of V1(t, q) in Case 2 that

V1(t, q) �
1

q
2(q/2−1)(4t−2s+d),

it suffices to show

lim
q→∞

sup
t∈I2

ε

q2−(q/2−1)(4t−2s+d)‖u(·, t, q)‖2t = 0 .

To achieve this, we recall the expression of the norm term and write

q2−(q/2−1)(4t−2s+d)‖u(·, t, q)‖2t
q2−q(s+d)+4t−2s+dξ20 + q2−(q/2−1)(4t−2s+d)

∑
m∈Bd

q \{0}

|m|2t−2sξ2m.

Clearly, the first term on the right hand side converges to 0, so we only need to
deal with the second term. Let

β(t, q) = q2−(q/2−1)(4t−2s+d)
∑

m∈Bd
q \{0}

|m|2t−2sξ2m .

Consider t ∈ [s − d/2 + ε′, 1/δ] where ε′ is a parameter to be tuned. We have
2t− 2s+ d ≥ ε′ > 0 so we are able to write

β(t, q) = q2−(q/2−1)(4t−2s+d)2q(2t−2s+d)α(2t− 2s+ d, q)

= q2−q(s−d/2)+4t−2s+dα(2t− 2s+ d, q).

By Lemma 2.17, limq→∞ α(2t− 2s+ d, q) = γ(2t− 2s+ d) in probability uniformly

for t ∈ [s− d/2 + ε′, 1/δ]. Since limq→∞ q2−(q/2−1)(4t−2s+d)2q(2t−2s+d) = 0, we get
limq→∞ supt∈[s−d/2+ε′,1/δ] β(t, q) = 0.

For t ∈ [ s−d/2
2 + ε, s− d/2 + ε′], we have the estimate

q2−(q/2−1)(4t−2s+d) ≤
(
q2−(q/2−1)(4t−2s+d)

)
t= s−d/2

2 +ε
= q2−2qε+4ε

and ∑
m∈Bd

q \{0}

|m|2t−2sξ2m ≤
∑

m∈Bd
q \{0}

|m|−d+2ε′ξ2m,

where we have used the fact that t is upper bounded by s− d/2 + ε′. Hence,

sup
t∈[

s−d/2
2 +ε,s−d/2+ε′]

β(t, q) ≤ q2−2qε+4ε
∑

m∈Bd
q \{0}

|m|−d+2ε′ξ2m

= q2−2qε+4ε22qε
′
α(2ε′, q).

Now, we set ε′ = ε/2 such that limq→∞ q2−2qε+4ε22qε
′
= 0. Lemma 2.17 leads to

limq→∞ α(2ε′, q) = γ(2ε′) < ∞, from which we can conclude limq→∞ supt∈I2
ε
β(t, q)

= 0. Therefore, we get

(6.13) lim
q→∞

P[ inf
t∈I2

ε

r(t, q) ≤ 1] = 0.
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Combining (6.12) and (6.13) gives

(6.14) lim
q→∞

P[ inf
t∈Iε

r(t, q) ≤ 1] = 0.

Based on the definition of r(t, q) in (6.9) and the arguments therein, we obtain

lim
q→∞

P[sKF(q) ∈ (
s− d/2

2
− ε,

s− d/2

2
+ ε)] = 1,

from which the consistency of the KF estimator follows. �
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