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TIKHONOV REGULARIZATION WITHIN ENSEMBLE KALMAN
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Abstract. Ensemble Kalman inversion is a parallelizable methodology for solving inverse or
parameter estimation problems. Although it is based on ideas from Kalman filtering, it may be
viewed as a derivative-free optimization method. In its most basic form it regularizes ill-posed
inverse problems through the subspace property: the solution found is in the linear span of the
initial ensemble employed. In this work we demonstrate how further regularization can be imposed,
incorporating prior information about the underlying unknown. In particular we study how to impose
Tikhonov-like Sobolev penalties. As well as introducing this modified ensemble Kalman inversion
methodology, we also study its continuous-time limit, proving ensemble collapse; in the language
of multi-agent optimization this may be viewed as reaching consensus. We also conduct a suite of
numerical experiments to highlight the benefits of Tikhonov regularization in the ensemble inversion
context.

Key words. Tikhonov regularization, ensemble Kalman inversion, Bayesian inverse problems,
long-term behavior
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1. Introduction. Inverse problems are ubiquitous in science and engineering.
They occur in numerous applications, such as recovering permeability from measure-
ment of flow in a porous medium [31, 35] or locating pathologies via medial imaging
[23]. Mathematically speaking, an inverse problem may be formulated as the recovery
of parameter u \in X from noisy data y \in Y where the parameter u and data y are
related by

(1.1) y = G(u) + \eta ,

G is an operator from the space of parameters to observations, and \eta represents noise;
in this paper we will restrict ourselves to X,Y being separable Hilbert spaces. Inverse
problems are typically solved through two competing methodologies: the determin-
istic optimization approach [13] and the probabilistic Bayesian approach [23]. The
former is based on defining a loss function \ell (G(u), y) which one aims to minimize; a
regularizer R(u) that incorporates prior information about u is commonly added to
improve the inversion [3]. The Bayesian approach instead views u, y, and \eta as random
variables and focuses on the conditional distribution of u| y via Bayes's theorem as the
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1264 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

solution; this approach has received recent attention since it provides representation of
the underlying uncertainty, and it may be formulated even in the infinite-dimensional
setting [41]. The optimization and Bayesian approaches are linked via the notion of
the maximum a posteriori (MAP) estimator through which the mode of the condi-
tional distribution on u| y is shown to correspond to optimization of a regularized loss
function [1, 9, 18, 23, 32].

Ensemble Kalman inversion (EKI) is a proposed inversion methodology that lies
at the interface between the deterministic and probabilistic approaches [5, 21]. It is
based on the ensemble Kalman filter (EnKF) [15, 16, 28, 37], which is an algorithm
originally designed for high-dimensional state estimation, derived by combining se-
quential Bayesian methods with an approximate Gaussian ansatz. EKI applies EnKF
to the inverse problem setting by introducing a trivial dynamics for the unknown. The
idea of using ensemble Kalman methods for inverse problems was pioneered in the
oil-reservoir simulation community [35] and, in particular, the idea of iterating using
trivial dynamics conditioned on data was introduced in [8, 12]. The algorithm works

by iteratively updating an ensemble of candidate solutions \{ u(j)
n \} Jj=1 from iteration

index n to n+1; here j indexes the ensemble and J denotes the size of the ensemble.
The basic form of the algorithm is as follows. Define the empirical means

\=un =
1

J

J\sum 
j=1

u(j)
n , \=Gn =

1

J

J\sum 
j=1

G(u(j)
n )

and covariances

Cuu
n =

1

J

J\sum 
j=1

\bigl( 
u(j)
n  - \=un

\bigr) 
\otimes 

\bigl( 
u(j)
n  - \=un

\bigr) 
,(1.2a)

Cup
n =

1

J

J\sum 
j=1

\bigl( 
u(j)
n  - \=un

\bigr) 
\otimes (G

\bigl( 
u(j)
n ) - \=Gn

\bigr) 
,(1.2b)

Cpp
n =

1

J

J\sum 
j=1

\bigl( 
G(u(j)

n ) - \=Gn

\bigr) 
\otimes 

\bigl( 
G(u(j)

n ) - \=Gn

\bigr) 
.(1.2c)

Then the EKI update formulae are

(1.3) u
(j)
n+1 = u(j)

n + Cup
n

\bigl( 
Cpp

n + \Gamma 
\bigr)  - 1\bigl( 

y
(j)
n+1  - G(u(j)

n )
\bigr) 
,

where the artificial observations are given by

(1.4) y
(j)
n+1 = y + \xi 

(j)
n+1, \xi 

(j)
n+1 \sim \scrN (0,\Gamma \prime ) i.i.d.

Here an implicit assumption is that \eta is additive centered Gaussian noise with covari-
ance \Gamma and it is independent of u. Typical choices for \Gamma \prime include 0 and \Gamma . The history
of the development of the method, which occurred primarily within the oil industry,
may be found in [35]; the general and application-neutral formulation of the method
as presented here may be found in [21].

For linear, bounded, and invertible G the method provably optimizes the standard
least squares loss function over the finite-dimensional subspace spanned by the initial
ensemble differences [39, Theorem 4.3, Corollary 4.4]; for nonlinear G similar behavior
is observed empirically in [21]. However, the ensemble does not, in general, accurately
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TIKHONOV REGULARIZATION WITHIN EKI 1265

capture posterior variability; this is demonstrated theoretically in [14, Lemma 12,
Theorem 13] and numerically in [21, 27]. For this reason we focus on the perspective of
EKI as a derivative-free optimization method, somewhat similar in spirit to the paper
[45] concerning the EnKF for state estimation. Viewed in this way, EKI may be seen
as part of a wider class of tools based around multi-agent interacting systems which
aim to optimize via consensus [36]. Within this context of EKI as an optimization tool
for inversion, a potential drawback is the issue of how to incorporate regularization.
It is demonstrated in [21, 31] that the updated ensemble lies within the linear span of
the initial ensemble and this is a form of regularization since it restricts the solution to
a finite-dimensional space. However, the numerical evidence in [21] demonstrates that
overfitting may still occur, and this led to the imposition of iterative regularization
by analogy with the Levenburg--Marquardt approach, a method pioneered in [19]; see
[5] for an application of this approach.

There are a number of approaches to regularization of ill-posed inverse problems
which are applied in the deterministic optimization realm. Three primary ones are (i)
optimization over a compact set, (ii) iterative regularization through early stopping,
and (iii) Tikhonov penalization of the misfit. The standard EKI imposes approach (i),
and the method of [19] imposes approach (ii). The purpose of this paper is to demon-
strate how approach (iii), Tikhonov regularization [3, 13], may also be incorporated
into the EKI approach. Our primary contributions are the following:

\bullet We present a straightforward modification of the standard EKI methodology
from [21] which allows for incorporation of Tikhonov regularization, leading
to the TEKI (Tikhonov-EKI) approach.

\bullet We study the TEKI approach analytically, building on the continuous time
analysis and gradient flow structure for EKI developed in [39, section 3]; in
particular we prove that, for general nonlinear inverse problems, the TEKI
flow exhibits asymptotic consensus, i.e., ensemble collapse as the iteration
count tends to infinity.

\bullet We describe numerical experiments which highlight the benefits of TEKI over
EKI, using inverse problems arising from the eikonal equation [11]. We further
test our methodology on Darcy flow [21] to highlight the robustness of the
proposed algorithm.

The outline of the paper is as follows. In section 2 we describe the TEKI method-
ology, introducing the modified inverse problem which incorporates the additional
regularization. Section 3 is devoted to the derivation of a continuous time analogue of
the resulting algorithm, and we also study its properties in the case of linear inverse
problems. In section 4 we present numerical experiments demonstrating the benefits
of using TEKI over EKI, using inverse problems arising from the eikonal equation and
Darcy flow. We conclude in section 5 with an overview and further research directions
to consider.

2. EKI with Tikhonov regularization. In this section we derive the TEKI
algorithm, the regularized variant of the EKI algorithm which we introduce in this
paper. We start by recalling how classical Tikhonov regularization works and then
demonstrate how to apply similar ideas within EKI.

Assuming that we model \eta \sim N(0,\Gamma ) in (1.1), the resulting loss function is in the
L2 form

(2.1) \ell Y (y
\prime , y) =

1

2
\| \Gamma  - 1/2(y\prime  - y)\| 2Y .D
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1266 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

Recall (see the previous section) that EKI minimizes

(2.2) \ell Y (G(u), y) =
1

2
\| \Gamma  - 1/2(G(u) - y)\| 2Y

within a subspace defined by the initial ensemble, provably in the linear case and with
similar behavior observed empirically in the nonlinear case.

Tikhonov regularization is associated with defining

(2.3) R(u) =
\bfitlambda 

2
\| u\| 2K ,

whereK is a Hilbert space which is continuously and compactly embedded intoX, and
which minimizes the sum of \ell (G(u), y) and R(u). The regularization parameter \bfitlambda > 0
may be tuned to trade-off between data fidelity and smoothness, thereby avoiding
overfitting. This may be connected to Bayesian regularization if the prior on u is the
Gaussian measure N(0,\bfitlambda  - 1C0), with C0 trace-class and strictly positive definite on

X. Then K is a Hilbert space K equipped with inner product \langle C - 1
2

0 \cdot , C - 1
2

0 \cdot \rangle X and

norm \| \cdot \| K = \| C - 1
2

0 \cdot \| X ; it is known as the Cameron--Martin space associated with
the Gaussian prior. Minimizing the sum of \ell (G(u), y) and R(u) corresponds to finding
a mode of the distribution [9].

To incorporate such prior information into the EKI algorithm, we proceed as
follows. We first extend (1.1) to the equations

y = G(u) + \eta 1,(2.4a)

0 = u+ \eta 2,(2.4b)

where \eta 1, \eta 2 are independent random variables distributed as \eta 1 \sim N(0,\Gamma ), \eta 2 \sim 
N(0,\bfitlambda  - 1C0). Let Z = Y \times X; we then define the new variables z, \eta and mapping
F : X \times X \rightarrow Z as follows:

z =

\biggl[ 
y
0

\biggr] 
, F (u) =

\biggl[ 
G(u)
u

\biggr] 
, \eta =

\biggl[ 
\eta 1
\eta 2

\biggr] 
,

noting that then

\eta \sim N(0,\Sigma ), \Sigma =

\biggl[ 
\Gamma 0

0 \bfitlambda  - 1C0

\biggr] 
.

We then consider the inverse problem

(2.5) z = F (u) + \eta ,

which incorporates the original equation (1.1) via (2.4a) and the prior information
via (2.4b). We now define the ensemble mean

\=Fn =
1

J

J\sum 
j=1

F (u(j)
n )

and covariances

Bup
n =

1

J

J\sum 
j=1

\bigl( 
u(j)
n  - \=un

\bigr) 
\otimes (F

\bigl( 
u(j)
n ) - \=Fn

\bigr) 
, Bpp

n =
1

J

J\sum 
j=1

\bigl( 
F (u(j)

n ) - \=Fn

\bigr) 
\otimes 
\bigl( 
F (u(j)

n ) - \=Fn

\bigr) 
.
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TIKHONOV REGULARIZATION WITHIN EKI 1267

The TEKI update formulae are then found by applying the EKI algorithm to (2.5)
to obtain

(2.6) u
(j)
n+1 = u(j)

n +Bup
n

\bigl( 
Bpp

n +\Sigma 
\bigr)  - 1\bigl( 

z
(j)
n+1  - F (u(j)

n )
\bigr) 
,

where

(2.7) z
(j)
n+1 = z + \zeta 

(j)
n+1, \zeta 

(j)
n+1 \sim \scrN (0,\Sigma \prime ) i.i.d.

Typical choices for \Sigma \prime are 0 and \Sigma . Notice that the resulting L2 loss function (2.1) is,
in this case,

(2.8) \ell Z(z
\prime , z) =

1

2
\| \Sigma  - 1/2(z\prime  - z)\| 2Z ,

leading, with z\prime = F (u), to the loss function

(2.9) \scrI (u; y) := 1

2
\| \Gamma  - 1/2(y  - G(u))\| 2X +

\bfitlambda 

2
\| u\| 2K .

It is in this sense that TEKI regularizes EKI, the latter being associated with the
unregularized objective function (2.2).

Remark 2.1. Both the EKI algorithm (1.3) and the TEKI algorithm (2.6) have the
property that all ensemble members remain in the linear span of the initial ensemble
for all time. This is proved in [39] for EKI; the proof for TEKI is very similar and
hence not given. For EKI (resp., TEKI) it follows simply from the fact that Cup

n

(resp., Bup
n ) projects onto the linear span of the current ensemble and then uses an

induction.

3. Continuous time limit of TEKI. In this section we aim to study the use
of Tikhonov regularization within EKI through analysis of a continuous time limit of
TEKI. For economy of notation we assume the regularization constant \bfitlambda to take the
value 1 throughout. This incurs no loss of generality, since one can always replace
(\bfitlambda , C0) with (1,\bfitlambda  - 1C0), and the TEKI formulation remains the same.

In subsection 3.1 we derive the continuous time limit of the TEKI algorithm,
while in subsection 3.2 we state and prove the general existence theorem (Theorem
3.1) for the TEKI flow. In subsection 3.3 we demonstrate ensemble collapse of the
TEKI flow, Theorem 3.3; this shows that the ensemble members reach consensus. We
also prove two lemmas which together characterize an invariant subspace property of
TEKI flow, closely related to Remark 2.1. Subsection 3.4 contains derivation of two a
priori bounds on the TEKI flow, one in the linear setting and the other in the general
setting. Finally, in subsection 3.5 we study the long-time behavior of TEKI flow in
the linear setting, generalizing related work on the EKI flow in [39].

3.1. Derivation of continuous time limit. We first recall the derivation of
the continuous time limit of the EKI algorithm (1.3) from [39], as the derivation
for TEKI is very similar. For this purpose we set \Gamma \prime = 0 and rescale \Gamma \mapsto \rightarrow h - 1\Gamma 

so that (approximately for h \ll 1) (Cpp
n + \Gamma ) - 1 \mapsto \rightarrow h\Gamma  - 1. We then view u

(j)
n as an

approximation of a continuous function u(j)(t) at time t = nh and let h \rightarrow 0. To
write down the resulting flow succinctly, we let u \in XJ denote the collection of
\{ u(j)\} j\in \{ 1,...,J\} . Now define

Djk(u) := \langle \Gamma  - 1/2(G(u(j)) - y),\Gamma  - 1/2(G(u(k)) - \=G)\rangle Y ,

D
ow

nl
oa

de
d 

04
/2

8/
20

 to
 1

31
.2

15
.2

48
.2

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1268 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

where

\=u :=
1

J

J\sum 
m=1

u(m), \=G :=
1

J

J\sum 
m=1

G(u(m)).

The continuum limit of (1.3) is then

du(j)

dt
=  - 1

J

J\sum 
k=1

(u(k)  - \=u)\otimes (G(u(k)) - \=G)\Gamma  - 1(G(u(j)) - y)

=  - 1

J

J\sum 
k=1

Djk(u)(u
(k)  - \=u) =  - 1

J

J\sum 
k=1

Djk(u)u
(k).(3.1)

Here we used the fact that replacing u(k)(t) by u(k)(t) - \=u(t) does not change the flow
since Djk(u(t)) sums to zero over k; we will use this fact occasionally in what follows
and without further comment. The equations may be written as

(3.2)
du

dt
=  - 1

J
D(u)u

for the appropriate Kronecker operator D(u) \in \scrL (XJ , XJ) defined from the Djk(u).
Note also that we hid the dependence on time t in our derivation above, and we will
often do so in the discussion below.

The resulting flow is insightful because it demonstrates that, in the linear case
G(\cdot ) = A\cdot , each ensemble member undergoes a gradient flow for the loss function (2.1)
preconditioned by the empirical covariance C(u) defined by

(3.3) C(u) =
1

J

J\sum 
m=1

\bigl( 
u(m)  - \=u

\bigr) 
\otimes 

\bigl( 
u(m)  - \=u

\bigr) 
;

specifically, we have

(3.4)
du(j)

dt
=  - C(u)\nabla u\ell Y (Au(j), y).

Note that although each ensemble member performs a gradient flow, they are coupled
through the empirical covariance.

We now carry out a similar derivation for the TEKI algorithm; doing so will
demonstrate explicitly that the method introduces a Tikhonov regularization. Con-
sider the TEKI algorithm (2.6), setting \Sigma \prime = 0, rescaling \Sigma \mapsto \rightarrow h - 1\Sigma , and viewing

u
(j)
n as an approximation of a continuous function u(j)(t) at time t = nh. The limiting
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TIKHONOV REGULARIZATION WITHIN EKI 1269

flow is

du(j)

dt
=  - 1

J

J\sum 
k=1

\bigl( 
u(k)  - \=u

\bigr) 
\otimes (F

\bigl( 
u(k)) - \=F

\bigr) 
\Sigma  - 1

\bigl( 
F (u(j)) - z

\bigr) 
=  - 1

J

J\sum 
k=1

\Bigl\langle 
\Gamma  - 1/2(G(u(k)) - \=G),\Gamma  - 1/2(G(u(j)) - y)

\Bigr\rangle 
Y

\bigl( 
u(k)  - \=u

\bigr) 
 - 1

J

J\sum 
k=1

\langle u(j), u(k)  - \=u\rangle K
\bigl( 
u(k)  - \=u

\bigr) 
=  - 1

J

J\sum 
k=1

\Bigl( 
Djk(u) + \langle u(j), u(k)  - \=u\rangle K

\Bigr) 
(u(k)  - \=u)

=  - 1

J

J\sum 
k=1

Ejk(u)(u
(k)  - \=u),(3.5)

where
Ejk(u) := Djk(u) + \langle u(j), u(k)  - \=u\rangle K .

This may be written as

(3.6)
du

dt
=  - 1

J
E(u)u

for an appropriate Kronecker matrix E(u) \in \scrL (XJ , XJ) defined from the Ejk(u).
We note that the flow may be written as

du(j)

dt
=  - 1

J

J\sum 
k=1

Djk(u)(u
(k)  - \=u) - C(u)\nabla uR(u(j)),(3.7)

where

(3.8) R(u) =
1

2
\| u\| 2K .

So we see explicitly that the algorithm includes a Tikhonov regularization, precondi-
tioned by the empirical covariance C(u). In the linear case G( \cdot ) = A \cdot , define

(3.9) \scrI linear(u; y) = \ell Y (Au(j), y) +R(u).

Note that, with \ell Y (\cdot , \cdot ) and R(\cdot ) defined by (2.1) and (3.8), this coincides with (2.9)
when specialized to the linear case. In particular, we also see that the TEKI flow has
the form

(3.10)
du(j)

dt
=  - C(u)\nabla u\scrI linear(u(j); y).

Each ensemble member thus undergoes a gradient flow with respect to the Tikhonov
regularized least squares loss function \scrI linear(u; y), preconditioned by the empirical
covariance of the collection of all the ensemble members.

Remark 3.1. Additive covariance inflation, as described in [39], modifies the EKI
gradient flow (3.4) by addition of a fixed invertible covariance matrix to the empirical
covariance. In contrast, (3.10) fixes the empirical covariance and instead modifies the
objective function by addition of a regularizer.
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Note that we derived the continuous time TEKI algorithm (3.6) by passing to the
continuum limit; to implement an algorithm in subsection 4.1, we apply an Euler
discretization (with adaptive time-step) to (3.6). Other choices of discrete time-
algorithms could have been made, for example, using the original discrete time TEKI
algorithm (2.6). We have chosen to use discretization of (3.6), rather than (2.6), be-
cause it results in a conceptually simpler algorithm and (relatedly) because it avoids
the calculation of the empirical covariance in data space. However, working directly
with (2.6) may have practical advantages in some problems and can be contemplated
separately [7].

3.2. Existence for TEKI flow. Recall that the Cameron--Martin space asso-

ciated with the Gaussian measure N(0, C0) on X is the domain of C
 - 1

2
0 . We have the

following result.

Theorem 3.1. Suppose the initial ensemble \{ u(j)(0)\} Jj=1 is chosen to lie in K and

that G : K \rightarrow Y is C1. Let \scrA denote the linear span of \{ u(j)(0)\} Jj=1 and \scrA J the J-fold

Cartesian product of this set. Then (3.6) has a unique solution in C1([0, T );\scrA J) for
some T > 0.

Remark 3.2. The same theorem may be proved for (3.2) under the milder as-
sumptions that the initial ensemble \{ u(j)(0)\} Jj=1 is chosen to lie in X itself and that

G : X \rightarrow Y is C1.

Proof of Theorem 3.1. The right-hand side of (3.6) is of the form E(u)u and E :
\scrA J \rightarrow \scrL (\scrA J ,\scrA J). Thus it suffices to show that E is differentiable at u \in \scrA J ; then
the right-hand side of (3.6) is locally Lipschitz as a mapping of the finite-dimensional
space \scrA J into itself and standard ODE theory gives a local in time solution. Lemma
3.2 verifies the required differentiability.

Lemma 3.2. The function E : \scrA J \rightarrow \scrL (\scrA J ,\scrA J) is Fr\'echet differentiable with
respect to u \in \scrA J .

Proof. To prove this, we write down the Fr\'echet partial derivative of each compo-
nent of E with respect to u(i), applied in perturbation direction v \in \scrA ; we use \nabla G(u)
to denote the Fr\'echet derivative of G : K \rightarrow Y at point u \in K. Now note that\biggl\langle 

v,
\partial 

\partial u(i)
Djk(u)

\biggr\rangle 
K

=  - 1

J
\langle \Gamma  - 1/2(G(u(j)) - y),\Gamma  - 1/2\nabla G(u(i))v\rangle Y

+ 1i=j\langle \Gamma  - 1/2\nabla G(u(j))v,\Gamma  - 1/2(G(u(k)) - \=G)\rangle Y
+ 1i=k\langle \Gamma  - 1/2(G(u(j)) - y),\Gamma  - 1/2\nabla G(u(k))v\rangle Y .

When G is C1, \nabla G(u(i)) is a bounded operator from K to Y , so the quantity above
is bounded. Next, we define

Pjk(u) := \langle u(j), u(k)  - \=u\rangle K ;

this is finite because it is bounded above by \| u(j)\| K\| u(k)  - \=u\| K using the Cauchy--
Schwarz inequality. Then\biggl\langle 

v,
\partial 

\partial u(i)
Pjk(u)

\biggr\rangle 
K

=  - 1

J
\langle u(j), v\rangle K + 1i=j\langle v, u(k)  - \=u\rangle K + 1i=k\langle u(j), v\rangle K .

It is straightforward to verify that this is bounded for v \in \scrA . Since E is formed by
summing D and P , the proof is complete.
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3.3. Ensemble collapse for TEKI flow. From Theorem 3.1 we know that the
vector space \scrA is invariant for the TEKI flow. Furthermore, when restricted to \scrA ,

C0 is positive definite, so \| \cdot \| K = \| C - 1/2
0 \cdot \| X and \| \cdot \| X are equivalent norms on

the vector space \scrA . In particular, the following constants are well defined and strictly
positive:

(3.11) \lambda m(\scrA ) := inf
v\in \scrA ,\| v\| 2

X=1
\| v\| 2K , \lambda M (\scrA ) := sup

v\in \scrA ,\| v\| 2
X=1

\| v\| 2K .

Note that \lambda m(\scrA ) and \lambda M (\scrA ) do depend on \scrA , which is defined through the initial
choice of ensemble members.

The empirical covariance C(u(t)) can also be viewed as a matrix in the finite-
dimensional linear space \scrA . The following theorem demonstrates that its operator
norm can be bounded from above uniformly in time, and establishes asymptotic in
time collapse of the ensemble, provided that the solution exists for all time.

Theorem 3.3. For the TEKI flow defined by (3.5) the following upper bound
holds while a solution exists:

(3.12) \| C(u(t))\| X \leq 1

\| C(u(0))\|  - 1
X + 2\lambda m(\scrA )t

.

Here \| C(u(t))\| X is the operator norm of C(u(t)) on (\scrA , \| \cdot \| X) and \lambda m(\scrA ) is defined
in (3.11).

Proof. Recall the dynamical system for u(j)(t):

d

dt
u(j) =  - 1

J

J\sum 
k=1

\Bigl( 
Djk(u) + \langle u(j), u(k)  - \=u\rangle K

\Bigr) 
(u(k)  - \=u).

Averaging over j, we have the ODE for \=u(t). Taking the difference, we have

d

dt
(u(j)  - \=u) =  - 1

J

J\sum 
k=1

\langle \Gamma  - 1/2(G(u(j)) - \=G),\Gamma  - 1/2(G(u(k)) - \=G)\rangle Y (u(k)  - \=u)

 - 1

J

J\sum 
k=1

\langle u(j)  - \=u, u(k)  - \=u\rangle K(u(k)  - \=u).

Then, because C(u(t)) = 1
J

\sum J
j=1(u

(j)(t) - \=u(t))\otimes (u(j)(t) - \=u(t)), we find that

dC(u(t))

dt
=  - 2

J2

J\sum 
j,k=1

\langle u(j)  - \=u, u(k)  - \=u\rangle K(u(k)  - \=u)\otimes (u(j)  - \=u)

 - 2

J2

J\sum 
j,k=1

\langle \Gamma  - 1/2(G(u(j)) - \=G),\Gamma  - 1/2(G(u(k)) - \=G)\rangle Y (u(k)  - \=u)\otimes (u(j)  - \=u).

Now we consider projecting the ODE above on a fixed v \in X. Denote

vk(t) = \langle v, u(k)(t)\rangle X , \=v(t) = \langle v, \=u(t)\rangle X .

Note that

\langle v, (u(k)  - \=u)\otimes (u(j)  - \=u)v\rangle X = \langle v, u(k)  - \=u\rangle X\langle v, u(j)  - \=u\rangle X = (v(k)  - \=v)(v(j)  - \=v).
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The projection of dC(u(t))
dt on v is given by

J2

\biggl\langle 
v,

d

dt
C(u(t))v

\biggr\rangle 
X

=  - 2

J\sum 
j,k=1

\langle u(j)  - \=u, u(k)  - \=u\rangle K(vk  - \=v) \cdot (vj  - \=v)

 - 2

J\sum 
j,k=1

\langle \Gamma  - 1/2(G(u(j)) - \=G),\Gamma  - 1/2(G(u(k)) - \=G)\rangle Y (vk  - \=v) \cdot (vj  - \=v)

=  - 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
J\sum 

j=1

(vj  - \=v)(u(j)  - \=u)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

K

 - 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Gamma  - 1/2
J\sum 

j=1

(vj  - \=v)(G(u(j)) - \=G)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

Y

.(3.13)

Note that

1

J

J\sum 
j=1

(vj  - \=v)(u(j)  - \=u) =
1

J

J\sum 
j=1

\langle v, u(j)  - \=u\rangle X(u(j)  - \=u) = C(u)v,

so if v \in \scrA , then\biggl\langle 
v,

d

dt
C(u(t))v

\biggr\rangle 
X

\leq  - 2\| C(u)v\| 2K \leq  - 2\lambda m(\scrA )\| C(u(t))v\| 2X .

Here we used that for all v \in \scrA ,

C(u(t))v =
1

J

J\sum 
j=1

\langle v, (u(j)  - \=u)\rangle X(u(j)  - \=u) \in \scrA .

Consider C(u(t)) as a matrix in (\scrA , \| \cdot \| X), and let w(t) be the unit-norm eigenvector
with maximum eigenvalue. Since

0 =
d

dt
\| w(t)\| 2X = 2

\biggl\langle 
w(t),

d

dt
w(t)

\biggr\rangle 
X

,

it follows that

d

dt
\| C(u(t))\| X =

d

dt
\langle w(t), C(u(t))w(t)\rangle X

=

\biggl\langle 
w,

d

dt
C(u)w

\biggr\rangle 
X

+ 2

\biggl\langle 
d

dt
w(t), C(u(t))w(t)

\biggr\rangle 
X

=

\biggl\langle 
w,

d

dt
C(u)w

\biggr\rangle 
X

+ 2\| C(u)\| K
\biggl\langle 

d

dt
w(t), w(t)

\biggr\rangle 
X

\leq  - 2\lambda m(\scrA )\| C(u(t))w(t)\| 2X =  - 2\lambda m(\scrA )\| C(u(t))\| 2X .

So
d

dt
\| C(u(t))\|  - 1

X =  - \| C(u(t))\|  - 2
X

d

dt
\| C(u(t))\| X \geq 2\lambda m(\scrA ),

and hence we have our claim.
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Remark 3.3. The bound in the preceding theorem shows that the TEKI ensemble
collapses, even in the case of nonlinear G; previous collapse results for EKI concern
only the linear setting. The rate of collapse for each ensemble member is \scrO ( 1\surd 

t
). In

classical Kalman filter theory, upper bounds for the covariance matrix can be obtained
through an observability condition. In the TEKI algorithm the inclusion of a (prior)
observation u in F (u) enforces observability of the system. This provides the intuition
for the upper bound (3.12) we prove for the TEKI covariance.

We conclude this subsection with a lemma and corollary which dig a little deeper
into the properties of the solution ensemble, within the invariant subspace \scrA .

Lemma 3.4. For any u\bot \in X, if \langle u\bot , u(j)(0)  - \=u(0)\rangle X = 0 for all j = 1, . . . , J ,
then the TEKI flow will not change along the direction of u\bot while the solution exists:

\langle u\bot , u(j)(t)\rangle X = \langle u\bot , \=u(0)\rangle X .

In particular C(u(t))u\bot \equiv 0.

Proof. First of all, recall that (3.13) holds for all v \in X. We let v = u\bot , which
leads to

0 \leq \langle u\bot , C(u(t))u\bot \rangle X \leq \langle u\bot , C(u(0))u\bot \rangle X =
1

J

J\sum 
j=1

\langle u\bot , u(j)(0) - \=u(0)\rangle 2X = 0.

Then from

\langle u\bot , C(u(t))u\bot \rangle X =
1

J

J\sum 
j=1

\langle u\bot , u(j)(t) - \=u(t)\rangle 2X

we find that \langle u\bot , u(j)(t) - \=u(t)\rangle X = 0. Next, we note that

d

dt
\langle u\bot , u(j)(t)\rangle X

=  - 1

J

J\sum 
k=1

\Bigl( 
Djk(u) + \langle C - 1/2

0 u(j), C
 - 1/2
0 (u(k)  - \=u)\rangle X

\Bigr) 
\langle u\bot , u(k)  - \=u\rangle X = 0.

So \langle u\bot , u(j)(t)\rangle X = \langle u\bot , u(j)(0)\rangle X = \langle u\bot , \=u(0)\rangle X . Last, for any fixed v,

\langle v, C(u(t))u\bot \rangle X =
1

J

J\sum 
j=1

\langle v, u(j)(t) - \=u(t)\rangle X\langle u\bot , u(j)(t) - \=u(t)\rangle X = 0.

So C(u(t))u\bot \equiv 0.

Lemma 3.4 suggests that we define the following subspace \scrB \subseteq \scrA :

\scrB := span\{ u(j)(0) - \=u(0), j = 1, . . . , J\} .

Let P\scrB be the orthogonal projection onto \scrB with respect to \| \cdot \| X , and let

(3.14) u\bot 
0 := \=u(0) - P\scrB \=u(0).

For notational simplicity we write v\bot \scrB if \langle v, u\rangle X = 0 for all u \in \scrB . Then u\bot 
0 \bot \scrB , and

u(j)(0) - u\bot 
0 \in \scrB for all j. By Lemma 3.4, we know, for any v\bot \scrB , that

\langle v, u(j)(t)\rangle X = \langle v, u(j)(0)\rangle X = \langle v, u\bot 
0 \rangle X \leftrightarrow \langle v, u(j)(t) - u\bot 

0 \rangle X = 0.

In other words we further improve the results in Theorem 3.1 to the following corollary.

Corollary 3.5. The TEKI flow stays in the affine space u\bot 
0 + \scrB , that is,

u(j)(t) - u\bot 
0 \in \scrB while the solution exists.
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3.4. A priori bounds on TEKI flow. In many inverse problems prior in-
formation is available in terms of rough upper estimates on \| u\| 2K , where K is an
appropriately chosen Banach space. Classically, Tikhonov regularization is used to
achieve such bounds, and in this subsection we show how similar bounds may be im-
posed through the TEKI flow approach. In the study of the EnKF for state estimation
some general conditions that guarantee boundedness of the solutions are investigated
[25, 43]. However, in general, EnKF-based state estimation can exhibit a catastrophic
growth phenomenon [24]. For inverse problems, and TEKI in particular, the situation
is more favorable. We study the linear setting first and then the nonlinear case. Recall
the definition (3.9) of \scrI linear.

Proposition 3.6. If the observation operator G is linear and bounded, then the
TEKI flow (3.6) has a solution u \in C([0,\infty ),\scrA ) and, for all t \geq 0,

\| u(j)(t)\| 2K \leq 2\scrI linear(u(j)(0); y).

Proof. Simply note that in the linear case, the TEKI flow can be written as a
gradient flow in the form (3.10), so that

d

dt
\scrI linear(u(j)(t); y) =  - \langle \nabla u\scrI linear(u(j)(t); y), C(u)\nabla u\scrI linear(u(j)(t); y)\rangle K \leq 0.

Therefore, \scrI linear(u(j)(t); y) \leq \scrI linear(u(j)(0); y). This implies that

1

2
\| u(j)(t)\| 2K = R(u(j)(t)) \leq \scrI linear(u(j)(t); y) \leq \scrI linear(u(j)(0); y).

As the solution is bounded, it cannot blow up and hence, because the dynamics are
finite-dimensional, exists for all time.

It is difficult to show that TEKI flow is bounded for a general, nonlinear obser-
vation operator. However, by modifying the observation operator outside a bounded
set, it is possible to obtain bounds on the TEKI flow, using the regularization term
to provide the needed control. Modification of the observation operator for \| u\| K
sufficiently large is quite natural if one has a prior knowledge of where the solutions
of the inverse problem lie. We seek a solution satisfying \| u\| K \leq M for some known
constant M and define

(3.15) \widetilde G(u) = \phi M (\| u\| K)G(u),

where \phi M (x) is a smooth transition function satisfying \phi M (x) = 1 if x < M and

\phi M (x) = 0 if x > M + 1. Using \widetilde G(u) instead of G is natural in situations where
we seek solutions satisfying \| u\| K \leq M . To understand this setting, we work in the
remainder of this section under the following assumption.

Assumption 3.7. There is a constant M , so that G(u) = 0 if \| u\| K > M + 1.

For our results below to hold, G(u) can take any fixed constant value when \| u\| K >
M + 1. We choose 0 to be concrete. One can then apply simple modifications such
as (3.15). The advantage of Assumption 3.7 is that, when the ensemble is outside
\{ u : \| u\| K > M + 1\} , the data misfit has no effect, and the TEKI flow is forced only
by the gradient of the regularization term. This gradient controls TEKI if it is outside
the ball \{ u : \| u\| K > M + 1\} .
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Proposition 3.8. Let Assumption 3.7 hold. Then for any fixed T the TEKI flow
has unique solution u \in C([0,\infty ),\scrA ) satisfying, for every ensemble member j,

sup
t\geq T

\| u(j)(t)\| K \leq max

\Biggl\{ 
\| u(j)(T )\| K ,M +

\sqrt{} 
2\lambda M (\scrA )J

\lambda m(\scrA )T
+ 1

\Biggr\} 
.

The constants \lambda m(\scrA ) and \lambda M (\scrA ) are given by (3.11).

Proof. By Theorem 3.3, we deduce that, assuming a solution exists for all time,

sup
t\geq T

\| C(u(t))\| X <
1

2\lambda m(\scrA )T
.

Note that, for any j,

1

J
\| u(j)  - \=u\| 4X \leq \langle u(j)  - \=u,C(u)(u(j)  - \=u)\rangle X \leq \| C(u)\| X\| u(j)  - \=u\| 2X .

As a consequence, assuming that a solution exists for all time, then every ensemble
member j satisfies

sup
t\geq T

\| u(j)(t) - \=u(t)\| 2X \leq J sup
t\geq T

\| C(u(t))\| X <
J

2\lambda m(\scrA )T
.

Therefore, again assuming that a solution exists for all time, every ensemble member
u(j) satisfies

(3.16) sup
t\geq T

\| u(j)(t) - \=u(t)\| 2K \leq \lambda M (\scrA ) sup
t\geq T

\| u(j)(t) - \=u(t)\| 2X \leq \lambda M (\scrA )J

2\lambda m(\scrA )T
.

Now assume that for some ensemble member u(k) and some time t \geq T we have

(3.17) \| u(k)(t)\| K > M + 2

\sqrt{} 
\lambda M (\scrA )J

2\lambda m(\scrA )T
+ 1.

It follows from (3.16) with j = k that, for all t \geq T ,

\| u(k)(t)\| K  - \| \=u(t)\| K \leq 

\sqrt{} 
\lambda M (\scrA )J

2\lambda m(\scrA )T

and hence that

\| \=u(t)\| K \geq M +

\sqrt{} 
\lambda M (\scrA )J

2\lambda m(\scrA )T
+ 1.

Now from (3.16) with any index j we deduce that, for all t \geq T ,

\| \=u(t)\| K  - \| u(j)(t)\| K \leq 

\sqrt{} 
\lambda M (\scrA )J

2\lambda m(\scrA )T

and hence that, for any ensemble member u(j),

\| u(j)(t)\| K \geq M + 1.
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It follows that if (3.17) holds, then

Dk\ell (u) = \langle \Gamma  - 1/2(G(u(k)) - y),\Gamma  - 1/2(G(u(\ell )) - \=G)\rangle Y = 0.

Then

d

dt
u(k)(t) =  - C(u)C - 1

0 u(k) \Rightarrow d

dt
\| u(k)(t)\| 2K =  - 2\langle C - 1

0 u(k), C(u)C - 1
0 u(k)\rangle X \leq 0.

It follows that, for t \geq T , the function t \mapsto \rightarrow \| u(k)(t)\| K is nonincreasing whenever it is

larger than M +
\sqrt{} 

2\lambda M (\scrA )J
\lambda m(\scrA )T + 1. This demonstrates the desired upper bound on the

solution which, in turn, proves global existence of a solution to (3.5).

3.5. Long-time analysis for TEKI flow: The linear setting. Theorem
3.3 shows that the TEKI ensemble collapses as time evolves. As the collapse is ap-
proached, it is natural to use a linear approximation to understand the TEKI flow.
This motivates the analysis in this subsection where we consider the linear setting
G(u) = Au and study the asymptotic behavior of the TEKI flow. The following
theorem will be developed only in the finite-dimensional setting; development in vari-
ous infinite-dimensional settings, guided by specific linear inverse problems of applied
interest, would constitute valuable future research.

Assumption 3.9. Both X and Y are finite-dimensional spaces, and the matrix
C0 is strictly positive definite on X.

From Corollary 3.5 we know the TEKI flow is restricted to the affine subspace
u\bot 
0 + \scrB \subset K. Given this constraint, it is natural to expect the long-time limit point

of u(j)(t) to be of form u\bot 
0 + u\dagger 

\scrB , where

u\dagger 
\scrB = argmin

u\in \scrB 

\Bigl\{ 
\| C - 1/2

0 (u+ u\bot 
0 )\| 2X + \| \Gamma  - 1/2(A(u+ u\bot 

0 ) - y)\| 2Y
\Bigr\} 
.

Then the Karush--Kuhn--Tucker (KKT) condition yields that

(C - 1
0 +A\ast \Gamma  - 1A)(u\dagger 

\scrB + u\bot 
0 ) - A\ast \Gamma  - 1y =: v\dagger \bot \scrB .

Here A\ast is the adjoint of A : (X, \| \cdot \| X) \rightarrow (Y, \| \cdot \| Y ).
Note that \Omega := C - 1

0 + A\ast \Gamma  - 1A is the posterior precision matrix of the Bayesian
inverse problem associated to inverting A subject to additive Gaussian noise N(0,\Gamma )
and prior N(0, C0) on u. Since we often consider elements in the subspace \scrB , we
also denote the restriction of \Omega in \scrB as \Omega B . Note that 0 < \langle u,\Omega \scrB u\rangle X < \infty for all

nontrivial u \in \scrB , and \Omega \scrB is positive definite on \scrB , while \Omega  - 1
\scrB and \Omega 

1/2
\scrB are both well

defined.

Theorem 3.10. Let Assumption 3.9 hold, and assume further that G(u) = Au,
where A is a bounded linear map. Then the TEKI flow exists for all t > 0 and the
solution converges to u\bot 

0 + u\dagger 
\scrB with rate of O( 1\surd 

t
). In particular, e(j)(t) = u(j)(t)  - 

u\bot 
0  - u\dagger 

\scrB is bounded by

\| e(j)(t)\| 2Z \leq m0

1 + 2m0t
\| e(j)(0)\| 2Z .

Here the constant m0 is given by

m0 := min
u\in \scrB ,\| u\| X=1

\langle \Omega 1/2
\scrB u,C(u(0))\Omega 

1/2
\scrB u\rangle X .
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TIKHONOV REGULARIZATION WITHIN EKI 1277

Furthermore, \| \cdot \| Z is the norm on \scrB given by

\| u\| 2Z = \| u\| 2K + \| \Gamma  - 1/2Au\| 2Y = \langle \Omega \scrB u, u\rangle X .

Before proving the theorem, we discuss how the constraint u\dagger 
\scrB \in \scrB changes the

solution in relation to the unconstrained optimization. For that purpose, consider the
unconstrained problem

u\dagger = argmin
u\in K

\Bigl\{ 
\| u+ u\bot 

0 \| 2K + \| \Gamma  - 1/2(A(u+ u\bot 
0 ) - y)\| 2Y

\Bigr\} 
.

(This corresponds to finding the maximum a posteriori estimator for the Bayesian
inverse problem referred to above.) The KKT condition leads to

\Omega (u\dagger + u\bot 
0 ) = A\ast \Gamma  - 1y.

Note that u\dagger is in the space K, while u\dagger 
\scrB is in the subspace \scrB . It is natural to try and

understand the relationship between u\dagger and u\dagger 
\scrB since this sheds light on the optimal

choice of \scrB and hence of the initial ensembles. To this end, we have the following
proposition.

Proposition 3.11. Under the same conditions as Theorem 3.10, let P\scrB be the
orthogonal projection from K to \scrB with respect to the inner product \langle \cdot \rangle X , and let

P\bot = I - P\scrB . Then u\dagger 
\scrB can be written as

u\dagger 
\scrB = P\scrB u

\dagger +\Omega  - 1
\scrB P\scrB \Omega P\bot u

\dagger .

In particular, if \scrB and its orthogonal complement have no correlation through \Omega (i.e.,

\langle u,\Omega v\rangle X = 0 for all u \in \scrB and v\bot \scrB ), then u\dagger 
\scrB = P\scrB u

\dagger .

Proof. Recall the KKT conditions

\Omega (u\dagger + u\bot 
0 ) = A\ast \Gamma  - 1y, \Omega (u\dagger 

\scrB + u\bot 
0 ) = A\ast \Gamma  - 1y + v\dagger ,

where v\dagger \bot \scrB . They lead to

\Omega u\dagger 
\scrB = \Omega u\dagger + v\dagger = \Omega P\scrB u

\dagger +\Omega P\bot u
\dagger + v\dagger .

Projecting this equation into \scrB , we find that

P\scrB \Omega P\scrB u
\dagger 
\scrB = P\scrB \Omega P\scrB u

\dagger + P\scrB \Omega P\bot u
\dagger .

Note that for any v1, v2 \in \scrB , \langle v1,\Omega \scrB v2\rangle X = \langle v1, P\scrB \Omega P\scrB v2\rangle X , so \Omega \scrB v2 = P\scrB \Omega P\scrB v2.
Therefore, we have

\Omega \scrB (u
\dagger 
\scrB  - P\scrB u

\dagger ) = P\scrB \Omega P\bot u
\dagger .

Finally, note that \Omega \scrB is positive definite within \scrB and hence invertible within \scrB .
Applying \Omega  - 1

\scrB on both sides, we have our claim.
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1278 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

Proof of Theorem 3.10. We investigate the dynamics of e(j)(t) = u(j)(t)  - u\bot 
0  - 

u\dagger 
\scrB \in \scrB . Note that

d

dt
e(j)(t) =  - 1

J

J\sum 
k=1

\Bigl( 
\langle \Gamma  - 1(Au(j)  - y), A(u(k)  - \=u)\rangle Y + \langle u(j), u(k)  - \=u\rangle K

\Bigr) 
(u(k)  - \=u)

=  - 1

J

J\sum 
k=1

\langle A\ast \Gamma  - 1(Au(j)  - y), u(k)  - \=u\rangle X(u(k)  - \=u)

 - 1

J

J\sum 
k=1

\langle u(j), C - 1
0 (u(k)  - \=u)\rangle X(u(k)  - \=u)

=  - C(u)A\ast \Gamma  - 1(Au(j)  - y) - C(u)C - 1
0 u(j)

=  - C(u)(A\ast \Gamma  - 1A+ C - 1
0 )u(j) + C(u)A\ast \Gamma  - 1y

=  - C(u)(A\ast \Gamma  - 1A+ C - 1
0 )u(j) + C(u)(C - 1

0 +A\ast \Gamma  - 1A)
\Bigl( 
u\dagger 
\scrB + u\bot 

0  - v\dagger 
\Bigr) 

=  - C(u)(A\ast \Gamma  - 1A+ C - 1
0 )e(j)(t) - C(u)v\dagger .

But Lemma 3.4 shows that C(u)v\dagger = 0, so we have established that

d

dt
e(j)(t) =  - C(u(t))\Omega e(j)(t).

Since we know that e(j)(t) \in \scrB , C(u(t))w = 0 for any w\bot \scrB , the equation above can
be written as

d

dt
e(j)(t) =  - C(u(t))\Omega \scrB e

(j)(t).

This leads to

1

2

d

dt
\| e(j)(t)\| 2Z =  - \langle \Omega \scrB e

(j), C(u)\Omega \scrB e
(j)\rangle X

=  - \langle \Omega 
1
2

\scrB e
(j), D(u)\Omega 

1
2

\scrB e
(j)\rangle X ,

where D(u) = \Omega 
1
2

\scrB C(u)\Omega 
1
2

\scrB on \scrB . Lemma 3.12 below shows that for any v \in \scrB with
\| v\| X = 1, and m0 as defined above,

\langle v,D(u)v\rangle X \geq 1

m - 1
0 + 2t

.

Therefore,

d

dt
\| e(j)(t)\| 2Z \leq  - 2

m - 1
0 + 2t

\| \Omega 1/2
\scrB e(j)(t)\| 2K =  - 2

m - 1
0 + 2t

\| e(j)(t)\| 2Z .

This leads to

d

dt
log \| e(j)(t)\| 2Z \leq  - 2

m - 1
0 + 2t

\Rightarrow \| e(j)(t)\| 2Z \leq 1

1 + 2m0t
\| e(j)(0)\| 2Z .D
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Lemma 3.12. Let the same conditions as in Theorem 3.10 hold, and define D(u) =

\Omega 
1/2
\scrB C(u)\Omega 

1/2
\scrB . Then, given any v \in \scrB , \| v\| Z = 1,

\langle \Omega 1/2
\scrB v,D(u(t))\Omega 

1/2
\scrB v\rangle X \geq 1

m - 1
0 + 2t

.

Proof. Recall (3.13) and set G(u) = Au to obtain

\biggl\langle 
v,

d

dt
C(u(t))v

\biggr\rangle 
X

=  - 2

J2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
J\sum 

j=1

(vj  - \=v)(u(j)  - \=u)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

K

 - 2

J2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Gamma  - 1/2A

J\sum 
j=1

(vj  - \=v)(u(j)  - \=u)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

Y

=  - 2\| C - 1/2
0 C(u(t))v\| 2K  - 2\| \Gamma  - 1/2AC(u(t))v\| 2Y

=  - 2\langle C(u(t))v, (C - 1
0 +A\ast \Gamma  - 1A)C(u(t))v\rangle X .

Since this is true for any v, we deduce that C(u(t)) as a matrix on \scrB satisfies

d

dt
C(u(t)) =  - 2C(u(t))(C - 1

0 +A\ast \Gamma  - 1A)C(u(t)).

Recall that by Lemma 3.4, C(u)v = 0 for all v\bot \scrB . As a consequence, C(u) =
P\scrB C(u)P\scrB , and therefore we can write

d

dt
C(u(t)) =  - 2C(u(t))\Omega \scrB C(u(t)).

So, by the chain rule,
d

dt
D(u(t)) =  - 2D(u(t))2.

As a consequence, we find that each eigenvector v of D(u(0)) remains an eigenvector
of D(u(t)), and its eigenvalue \lambda = \lambda (t) solves the ODE

d

dt
\lambda (t) =

d

dt
\langle v,D(u(t))v\rangle X =  - \langle v,D(u(t))2v\rangle X =  - 2\lambda 2.

The solution is given by \lambda (t) = 1
\lambda (0) - 1+2t . Taking \lambda (0) to be the minimum eigenvalue

of D(u(0)) gives our claim.

4. Numerical experiments. In this section we describe numerical results com-
paring EKI with the regularized TEKI method. Our EKI and TEKI algorithms are
based on time-discretizations of the continuum limit, rather than on the discrete al-
gorithms stated in sections 1 and 2; we describe the adaptive time-steppers used in
subsection 4.1. In subsection 4.2 we present the spectral discretization used to cre-
ate prior samples and demonstrate how to introduce the additional regularization of
prior samples required for the TEKI approach. Subsection 4.3 contains numerical
experiments comparing EKI and TEKI. The inverse problem is to find the slowness
function in an eikonal equation, given noisy travel time data. In subsection 4.4 we
have also conducted numerical experiments with a porous medium equation. The
inverse problem associated with it is to find the permeability, given noisy pressure
measurements.
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1280 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

4.1. Temporal discretization. The specific ensemble Kalman algorithms that
we use are found by applying the Euler discretization to the continuous time limit of
each algorithm. Discretizing (3.5) with adaptive time-step hn gives

u
(j)
n+1 = u(j)

n  - hn

J

J\sum 
k=1

Ejk(un)(u
(k)
n  - \=un)(4.1a)

= u(j)
n  - hn

J

J\sum 
k=1

\Bigl( 
Djk(un) + \langle C - 1

0 u(j)
n , u(k)

n  - \=un\rangle X
\Bigr) 
(u(k)

n  - \=un).(4.1b)

For the adaptive time-step we take, as implemented in [26],

(4.2) hn =
h0

\| E(un)\| F + \delta 

for some h0, \delta \ll 1, where \| \cdot \| F denotes the Frobenius norm, and E is the matrix
with entries Ejk (rather than its Kronecker form used earlier in (3.6)). The integration
method for the EKI flow (3.1) is identical but with Ejk replaced byDjk. Note that this
adaptive time-step is motivated by an understanding of the stability restriction on the
Euler method which arises for linear problems, here adapted to the state-dependence
of D and E.

4.2. Spatial discretization. We consider all inverse problems on the two-
dimensional spatial domain \scrD = [0, 1]2. We let  - \bigtriangleup denote the Laplacian on \scrD subject
to homogeneous Neumann boundary conditions. We then define

C0 =
\bigl( 
 - \bigtriangleup + \tau 2

\bigr)  - \alpha 
,

where \tau \in \BbbR + denotes the inverse lengthscale of the random field and \alpha \in \BbbR + de-
termines the regularity; specifically, draws from the random field are H\"older with
exponent up to \alpha  - 1 (since spatial dimension d = 2). From this we note that the
eigenvalue problem

C0\varphi k = \lambda k\varphi k

has solutions for \BbbZ = \{ 0, 1, 2, . . . \} :

\varphi k(x) =
\surd 
2 cos(k\pi x), \lambda k =

\bigl( 
| k| 2\pi 2 + \tau 2

\bigr)  - \alpha 
, k \in \BbbZ 2

+.

Here X = L2(\scrD ,\BbbR ) and the \varphi k are orthonormal in X with respect to the standard
inner product. Draws from the measure N(0, C0) are given by the Karhunen--Lo\`eve
(KL) expansion

(4.3) u =
\sum 
k\in \BbbZ 2

+

\sqrt{} 
\lambda k\xi k\varphi k(x), \xi k \sim N(0, 1) i.i.d.

This random function will be almost surely in X and in C(\scrD ,\BbbR ), provided that \alpha > 1
[41], and we therefore impose this condition.

Recall that for TEKI to be well defined we require an initial ensemble to lie in the
Cameron--Martin space of the Gaussian measure N(0, C0). The draws in (4.3) do not
satisfy this criterion; indeed, in infinite dimensions samples from Gaussian measure
never live in the Cameron--Martin space. Instead, we consider an expansion in the
form

(4.4) v =
\sum 
k\in \BbbZ 2

+

\lambda a
k\xi k\varphi k(x), \xi k \sim N(0, 1) i.i.d.
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and determine a condition on a which ensures that such random functions lie in the
domain of C

 - 1
2

0 , the required Cameron--Martin space. We note that

\BbbE \| v\| 2K = \BbbE \| C - 1
2

0 v\| 2X = \BbbE 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
k\in \BbbZ 2

+

\lambda 
a - 1

2

k \xi k\varphi k(x)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

=
\sum 
k\in \BbbZ 2

+

\lambda 2a - 1
k .

Since \scrD is a two-dimensional domain, the eigenvalues of the Laplacian grow
asymptotically like j if ordered on a one-dimensional lattice \BbbZ + indexed by j. Thus
it suffices to find a to ensure \sum 

j\in \BbbZ +

j - \alpha (2a - 1) < \infty .

Hence we see that choosing a > 1
2 + 1

2\alpha will suffice. The initial ensemble for both
EKI and TEKI is found by drawing functions v with a satisfying this inequality. The
random function (4.4) is H\"older with exponent up to 2a\alpha  - 1.1

Fig. 1. KL draws from the prior with \alpha = 1 and a = 1.

Fig. 2. KL draws from the Cameron--Martin space of the prior with \alpha = 2 and a = 1.

To illustrate the foregoing, we consider the Gaussian measure N(0, C0) which
arises when \alpha = 2 and with inverse lengthscale \tau = 15. We study realizations from the
KL expansion (4.3) and from the TEKI-regularized expansion (4.4) with a = 1 > 3/4,
using common realizations of the random variables \{ \xi k\} k\in \BbbZ 2

+
. Figure 1 shows four

random draws from the KL expansion (4.3) and Figure 2 from (4.4). The required
higher regularity of initial samples for the TEKI method is apparent. The functions in
Figure 1 have H\"older exponent up to 1, while those in Figure 2 have H\"older exponent
up to 3.

1For noninteger \beta we use the terminology that a function is H\"older with exponent \beta if the function
is in C\lfloor \beta \rfloor and its \lfloor \beta \rfloor th derivatives are H\"older \beta  - \lfloor \beta \rfloor . In the context of this paper integer \beta can be
avoided because random Gaussian functions are always H\"older on an interval of exponents which is
open from the right. See [10].
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4.3. Inverse Eikonal equation. We test and compare EKI and TEKI on an
inverse problem arising from the eikonal equation. This PDE arises in numerous
scientific disciplines, in particular in seismic travel time tomography. Given a slowness
or inverse velocity function s(x) \in C0( \=\scrD ), characterizing the medium, and a source
location x0 \in \scrD , the forward eikonal equation is to solve for travel time T (x) \in C0( \=\scrD )
satisfying

| \nabla T (x)| = s(x), x \in \scrD \setminus \{ x0\} ,(4.5)

T (x0) = 0,(4.6)

\nabla T (x) \cdot \nu (x) \geq 0, x \in \partial \scrD .(4.7)

The forward solution T (x) represents the shortest travel time from x0 to a point in the
domain \scrD . The Soner boundary condition (4.7) imposes wave propagation along the
unit outward normal \nu (x) on the boundary of the domain. For the slowness function
s(x) we assume the positivity s(x) > 0, which ensures well-posedness. The unique
solution can be characterized via the minimization procedure found in [33].

The inverse problem is to determine the speed function s from measurements
(linear mollified pointwise functionals lj(\cdot )) of the travel time function T ; for example,
we might measure T at specific locations in the domain \=\scrD . In order to ensure positivity
of the speed function during inversion, we write s = exp(u) and invert for u rather
than s. The data is assumed to take the form

(4.8) yj = lj(T ) + \eta j , j = 1, . . . , J,

where the \eta j are Gaussian noise, assumed independent, mean zero, and with covari-
ance \Gamma . By defining Gj(u) = lj(T ), we can rewrite (4.8) as the inverse problem

(4.9) y = G(u) + \eta , \eta \sim N(0,\Gamma ).

Further details on the well-posedness of the forward and inverse eikonal equation can
be found in Elliott, Deckelnick, and Styles [11].

The discretization of the forward model is based on a fast marching method
[11, 40], employing a uniform mesh with spacing h\ast = 0.01. On the left-hand boundary
we choose five random source points with 64 equidistant pointwise measurements in
the domain. For the inversion we choose \Gamma = \gamma 2I, with \gamma = 0.01. We fix the ensemble
size at J = 100 and the maximum number of iterations at 23. To define the adaptive
time-stepping procedure, we take h0 = 0.02 and \delta = 0.05.

Recall that the initial ensembles for EKI and TEKI, when chosen at random, differ
in terms of regularity: TEKI draws lie in the Cameron--Martin space and hence are
more regular than those for EKI. In order to thoroughly compare the methodologies
we will consider three different truth functions u\dagger , one each matching the regularities
of the EKI and TEKI draws, respectively, and one with regularity lying between
the regularities of the two EKI and TEKI initializations. The EKI draws in each of
Cases 1, 2, and 3 are found by taking \alpha = 2 (and by definition a = 0.5) and the
TEKI draws by taking \alpha = 2 and a = 1. The truth in each case is found by taking
\alpha = 2, a = 0.5 (Case 1), \alpha = 3.2, a = 0.5 (Case 2), and \alpha = 2, a = 1 (Case 3). The
resulting maximal H\"older exponents are shown in Table 1. We will also study the
EKI and TEKI methods when initialized with the same initial ensemble, namely the
KL eigenfunctions \varphi k.

In addition to experiments where the initial ensembles are drawn at random from
(4.3) (for EKI) and from (4.4) (for TEKI), we also consider experiments where the
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Table 1
Maximal H\"older exponent for EKI and TEKI initial draws and truth u\dagger .

Case EKI u\dagger TEKI

1 1 1 3
2 1 2.2 3
3 1 3 3

initial ensemble comprises the eigenfunctions

(4.10) u(j)(x) = \varphi j(x), j = 1, . . . , J,

and so it is the same for both EKI and TEKI. The first motivation for using the
eigenfunctions is to facilitate a comparison between EKI and TEKI when they both
use the same initial regularity, in contrast to the differing regularities in Table 1.
The second motivation is that the choice of working with eigenfunctions, rather than
random draws, has been show to guard against overfitting for EKI [21].

To assess the performance of both methods for each case, we consider analyzing
this through two quantities, the relative error and the data misfit. These are defined,
for EKI, as

| u(j)
EKI  - u\dagger | 22
| u\dagger | 22

,
\bigm| \bigm| y  - G(u

(j)
EKI)

\bigm| \bigm| 
\Gamma 
,

and similarly for TEKI, where | \cdot | 2 denotes the standard Euclidean norm. When we
evaluate these error and misfit measures, we will do so by employing the mean of the
current ensemble. For the relative error we will plot this on a logarithmic scale. To
see the effect of overfitting, we use the noise level | \eta | 2 = | y - G(u\dagger )| 2 as a benchmark.
While the observation model is nonlinear and hence does not directly follow Theorem
3.10, we plot the rate of e(t) = 1\surd 

t
for comparison. Throughout the experiments we

show a progression through the n = 23 iterations, which will be represented through
three subimages related to the (1st, 11th, 23rd) iterations, ordered from left to right.
The first image, at step 1, is simply a single draw from the initial ensemble; the
remaining two images show the mean of the ensemble at steps 11 and 23. We will
plot the truth beside each set of progression images for ease of comparison. For the
KL basis the image shown at step 1 is hence just one of the eigenfunctions \varphi j . As
mentioned, all of the numerics will be split into the three test cases as described in
Table 1.

Remark 4.1. We note that for the purposes of all the results presented we set
\bfitlambda = 1. We have conducted additional experiments for other values, including \bfitlambda =
0.1, 10, leading to no behavior majorly qualitatively different from that seen here.
However, in general it will be of interest to learn the parameter \lambda , as is standard in
the solution of ill-posed inverse problems [3, 13, 44]. We do not focus on this question
here, however, as it distracts from the main message of the paper.

4.3.1. Case 1. Our first case corresponds to the first row of Table 1, as well
as experiments in which both EKI and TEKI are initialized with the KL eigenfunc-
tions. The truth and reconstructions are provided in Figure 3. We see no evidence
of overfitting, and we notice that the TEKI solutions outperform the EKI solutions,
and that the KL-initialized solutions are less accurate than those found from TEKI
using random draws to initialize the ensemble; see Figure 4. Each row of Figure 3

D
ow

nl
oa

de
d 

04
/2

8/
20

 to
 1

31
.2

15
.2

48
.2

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1284 NEIL K. CHADA, ANDREW M. STUART, AND XIN T. TONG

demonstrates the progression of the method in each case. As the iteration progresses,
we start to see differences in reconstruction for both EKI and TEKI. The regularity of
the truth and the EKI initial ensemble match creating a superficial similarity in this
case; however, the TEKI outperforms EKI despite this. When initializing with the
KL basis, we notice a similar behavior for both TEKI and EKI. However, the added
regularization for TEKI over EKI is manifest in a smaller error.

4.3.2. Case 2. Our second test case compares both methods when the regularity
of the truth is between that of EKI and TEKI initial ensemble members. For this
test case the truth and reconstructions are shown in Figure 5. The numerics for this
test case show an ordering of the accuracy of the methods similar to that observed
in Case 1. However, Figure 6 also demonstrates that the relative error of EKI with
random draws starts to diverge. This is linked to the overfitting of the data since in
this case the data misfit goes below the noise level. The results are similar to those
obtained in [21] for EKI in the discrete form (1.3). This overfitting is demonstrated
on the top row in Figure 5, which highlights the difficulty of reconstructing the truth
within the linear span of the EKI initial ensemble.

For EKI and TEKI with a KL basis we see immediately that the divergence of
the error does not occur here. Instead, the EKI algorithm performs relatively well,
similarly to TEKI. However, the added regularization again leads to smaller errors
in TEKI than in EKI. Interestingly, we also notice that there is little difference in
TEKI for both the random draws and the KL basis. These results can be seen in the
second and bottom rows of Figure 5. It is worth mentioning that, although Figure 6
shows that for TEKI with random draws the misfit reaches the noise level, running for
further iterations does not result in overfitting (misfit falling below the noise level).

4.3.3. Case 3. Our third and final test case compares both methods, in a setting
in which the regularity of the random draws for TEKI is the same as for the truth,
shown in Figure 7. Figure 7 demonstrates almost identical outcomes as in Case 2,
which show the progression of the iterations in the four different cases.

As the value of the regularity is higher compared to the previous case, we see the
degeneracy of the EKI with random draws. This is highlighted in Figure 8, where we
notice the same effect of the overfitting of the data as in Figure 6. This is similar to
the top row of Figure 7, in that an overfitting phenomenon leads to a poor fitting of
the truth as the iteration progresses.

All other methods, which include TEKI with random draws and both methods
initialized with the KL basis, perform similarly. This can be attributed to the fact
that all of their initial ensembles begin with a high regularity. As we observe from
the third and bottom rows of Figure 7, the added regularization comes into play.

4.4. Darcy flow. Our final set of experiments will be to test the methodology
on an inverse problem arising from Darcy flow. Given a domain \scrD = [0, 1]2 and real-
valued permeability function \kappa \in L\infty (\scrD ) defined on \scrD , the forward model is concerned
with determining a real-valued pressure (or hydraulic head) function p \in H1(\scrD ) on
\scrD from

 - \nabla \cdot (\kappa \nabla p) = f, x \in \scrD ,

with mixed boundary conditions

p(x1, 0) = 100,
\partial p

\partial x1
(1, x2) = 0,  - \kappa 

\partial p

\partial x1
(0, x2) = 500,

\partial p

\partial x2
(x1, 1) = 0
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Fig. 3. Reconstruction of truth for Case 1 for the eikonal equation. Top row: EKI reconstruc-
tion using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.

and the source term f defined as

f(x1, x2) =

\left\{     
0 if 0 \leq x2 \leq 4

6 ,

137 if 4
6 \leq x2 \leq 5

6 ,

274 if 5
6 \leq x2 \leq 1.

The inverse problem is concerned with the recovery of u = log(\kappa ) from mollified
pointwise linear functionals of the form Gj(u) = lj(u), with lj denoting mollified
pointwise observation on a regular grid. The results that follow have no commentary
because the phenomena exhibited are identical to what we see for the eikonal equation.
For simplicity we keep to the same setting as subsection 4.3, where our results are
presented in Figures 9, 10, 11, 12, 13, and 14.
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Fig. 4. Case 1. Relative errors and data misfits for the eikonal equation.

Fig. 5. Reconstruction of truth for Case 3 for the eikonal equation. Top row: EKI reconstruc-
tion using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.
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Fig. 6. Case 2. Relative errors and data misfits for the eikonal equation.

Fig. 7. Reconstruction of truth for Case 3 for the eikonal equation. Top row: EKI reconstruc-
tion using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.
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Fig. 8. Case 3. Relative errors and data misfits for the eikonal equation.

Fig. 9. Reconstruction of truth for Case 1 for Darcy flow. Top row: EKI reconstruction
using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.
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Fig. 10. Case 1. Relative errors and data misfits for Darcy flow.

Fig. 11. Reconstruction of truth for Case 2 for Darcy flow. Top row: EKI reconstruction
using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.
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Fig. 12. Case 2. Relative errors and data misfits for Darcy flow.

Fig. 13. Reconstruction of truth for Case 3 for Darcy flow. Top row: EKI reconstruction
using random draws. Second row: TEKI reconstruction using random draws. Third row: EKI
reconstruction using the KL basis. Second row: TEKI reconstruction using the KL basis.
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Fig. 14. Case 3. Relative errors and data misfits for Darcy flow.

5. Conclusions. Regularization is a central idea in optimization and statisti-
cal inference problems. In this work we considered adapting EKI methods to allow
for Tikhonov regularization, leading to the TEKI methodology. Inclusion of this
Tikhonov regularizer within EKI leads demonstrably to improved reconstructions of
our unknown; we have shown this on an inverse eikonal equation and porous medium
equation, using both random draws from the prior and the eigenfunctions of the KL
basis to initialize the ensemble methods. We also derived a continuous time limit of
TEKI and studied its properties, including showing the existence of the TEKI flow and
its long-time behavior. In particular we showed that the TEKI flow always reaches
consensus---ensemble members collapse on one another. Despite the theoretical and
empirical improvements documented here, stemming from the use of TEKI over EKI,
our concluding message is not that use of TEKI leads to the perfect algorithm for EKI.
Rather we believe that the paper demonstrates that Tikhonov regularization can be
incorporated into ensemble inversion methods in a simple fashion, and we provide
evidence that doing so is worth considering; it can lead to improved reconstructions
and smaller misfits, as well as having some theoretical advantages. Furthermore, we
observe that the use of TEKI-related ideas is central to the ensemble Kalman sampler
introduced in [17].

There are several potentially fruitful new directions one can consider which stem
from this work; we outline a number of them:

\bullet The inclusion of regularization in this paper was specific to the case of the
Cameron--Martin space and hence Tikhonov-like Sobolev regularization. It
would be of interest to generalize to the regularizers of other forms, such as
L1 and total variation penalties [3, 13].

\bullet Understanding EKI as an optimizer is important, specifically in terms of how
effective it is in comparison with other derivative-free optimization methods.
Using the analysis tools developed in [7] could be helpful in this context. A
related question to this direction is to assess the performance of this method-
ology for sampling, using the methodology introduced in [17].

\bullet It would of interest to see how the techniques discussed in [5], where hierar-
chical EKI is introduced, could be improved by use of TEKI. The analysis
presented here could be extended to the hierarchical setting.
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\bullet Related to hierarchical techniques discussed, one could treat the regulariza-
tion parameter \bfitlambda as a further unknown in our inverse problem. As this can be
seen as a scaling factor in the covariance, it could be treated as an amplitude
factor, in the usual way presented through Whittle--Mat\'ern priors [38], and
learned hierarchically as in [5]. Alternatively, it might be of interest to study
the adaptation of other standard statistical techniques for estimation of \bfitlambda to
this inverse problem setting [3, 13, 44]. This is current work in progress [6].

\bullet It is possible to impose convex constraints directly into EKI; see [2]. However,
nonconvex constraints present difficulties in the framework described in that
paper, as nonuniqueness may arise in the optimization problems to be solved
at each step of the algorithm. Nonconvex equality constraints could be im-
posed by using the methods in this paper to impose them in a relaxed form.
A constraint set defined by the equation W (u) = 0 could be approximately
imposed by appending (2.4a)--(2.4b) with the equation W (u) + \eta 3 = 0 and
choosing \eta 3 to be a Gaussian with small variance.

\bullet Our long-time analysis has been developed in the finite-dimensional setting
only; a natural extension would be to develop an infinite-dimensional theory,
with assumptions guided by applications of importance for ensemble methods.
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