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Abstract
Semi-supervised learning uses underlying relationships in

data with a scarcity of ground-truth labels. In this paper, we intro-

duce an uncertainty quantification (UQ) method for graph-based

semi-supervised multi-class classification problems. We not only

predict the class label for each data point, but also provide a con-

fidence score for the prediction. We adopt a Bayesian approach

and propose a graphical multi-class probit model together with

an effective Gibbs sampling procedure. Furthermore, we propose

a confidence measure for each data point that correlates with the

classification performance. We use the empirical properties of

the proposed confidence measure to guide the design of a human-

in-the-loop system. The uncertainty quantification algorithm and

the human-in-the-loop system are successfully applied to classifi-

cation problems in image processing and ego-motion analysis of

body-worn videos.

Introduction
Applications such as police body-worn video cameras gen-

erate a huge amount of data, beyond what is humanly possible for
analysts to review. Such problems are ripe for the development of
semi-supervised learning algorithms, which, by definition, use a
small amount of training data. In the last year, progress has been
made in applying graph-based semi-supervised learning to body-
worn videos with the goal of recognizing camera-wearers’ activ-
ities, i.e., ego-motion [11, 5]. However, as is often the case with
real-world videos, the variability of the data leads to imperfect
classification. Recently, the authors of [3] proposed to pair uncer-
tainty quantification (UQ) with the binary classification problem
on a similarity graph. Besides a label assigned to each data point,
they also estimated a measure of uncertainty, which helped iden-
tify hard-to-classify data points that require further investigation.

In the present paper, we push the UQ methodology to a
multi-class setting. We extend the binary graphical probit method
to a multi-class version and develop a Gibbs sampler that draws
samples from the posterior distribution. We propose a confidence
measure for each data point that we find correlates with the clas-
sification performance; we observe that data points with higher
confidence scores are more likely to be classified correctly. Along
with the new methodology and the empirical observations, we de-
velop the foundations for a system with a human in the loop who
serves to provide additional class labels based on the confidence

scores; our uncertainty quantification method identifies hard-to-
classify data points and the human in the loop assigns ground truth
to them, leading to reduced overall confidence scores. Our ideas
are tested on an image data set — the MNIST data set [10] — and
a body-worn video data set, the HUJI EgoSeg data set [14].

Related Work
Semi-supervised learning has been studied extensively in the

past two decades and has been successfully applied to applications
such as hyperspectral images [12] and body-worn videos [11, 5].
We refer readers to [22] and the more recent article [1] for a lit-
erature review. We focus on graph-based methods, in which a
similarity is measured for each pair of nodes (i.e. data points)
and label information is spread across the similarity graph from
a small set of labeled fidelity points. The similarity information
is often leveraged via the graph Laplacian, which has been been
used in a myriad of machine learning methods (see, for instance,
[19, 20, 21, 23]). The analogy between the graph Laplacian and
the classical Laplacian operator inspires a number of PDE-based
classification methods, such as [2, 9]; this also introduces the
recent development in uncertainty quantification to the machine
learning community. For instance, in their recent work [3], the
authors used an efficient sampling method that was originally de-
veloped for PDE-based inverse problems [6] to perform uncer-
tainty quantification for binary classification.

We refer readers to the books [16, 17] and the recent arti-
cle [13] for a review of methodologies employed in the field of
uncertainty quantification. For the specific application to machine
learning methods, the book [20] investigates uncertainty quantifi-
cation for a variety machine learning problems using a Gaussian
process prior. Except the above-mentioned book and the recent
work [3], most machine learning methods, even those developed
with the Bayesian way of thinking, focus on finding the optimal
classification (and/or hyperparameters that produce the optimal
classification) in an optimization context and do not consider or
utilize uncertainty quantification.

Methodology

Graphical Setting
Let X = {x1,x2, . . . ,xn} be a set of feature vectors, where

xi 2 Rd . Let Z = {1,2, . . . ,n} index the entire dataset and Z
0 ⇢ Z
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be a fidelity set consisting of nodes with known labels. We aim to
classify n data points into c classes such that:

1) data points with similar feature vectors, measured via a suit-
able similarity measure, should belong to the same class;

2) the classification should respect the ground-truth labels on
the fidelity set.

We consider each data point as a node in a weighted similarity
graph, where the edge weights are given by

wi j = exp
⇣
�kxi � x jk2/ti j

⌘
,

where k · k is the Euclidean distance and ti j are the self-tuning
constants proposed in [21]. The weights are chosen such that a
pair of nodes with similar feature vectors will have a weight close
to one and dissimilar nodes will have a near-zero weight. Suppose
u : Z ! Rc is an assignment function; if u`(i) = max ˆ̀u ˆ̀(i) then
we interpret this to mean that u assigns class ` to data point i.
One way to achieve a classification is to optimize the following
objective function with respect to an assignment function u:

J(u) =
1
4

n

Â
i, j=1

wi jku(i)�u( j)k2 +F(u,u0), (1)

where u
0 encodes the ground-truth labels on the fidelity set Z

0,
F(u,u0) measures the extent to which u differs from u

0 on Z
0.

Minimizing the first term in the object function ensures that a pair
of data points (i, j) with a high similarity wi j will be assigned to
the same class.

Using matrix notation, we identify u and u
0 with n⇥ c ma-

trices so that ui` = u`(i). If we let W be the matrix of wi j and
D = diag(d1,d2, · · · ,dn) where di = Â j wi j , we can introduce the
graph Lapalcian

L = D�W (2)

and the Dirichlet energy

hu,Lui= 1
2

n

Â
i, j=1

wi jku(i)�u( j)k2, (3)

where hu,vi= trace
�
u

T
v
�
, and hence we may write eq. (1) as

J(u) =
1
2
hu,Lui+F(u,u0) (4)

The quadratic form in eq. (3) alludes to the connection to
Bayesian Gaussian process models.

It is common in graph-based learning methods to use nor-
malized variants of the graph Laplacian in place of the unnormal-
ized graph Laplacian eq. (2) because of better numerical proper-
ties as well as the classification performance (see, for instance,
[2]). One popular choice is the symmetrically normalized graph
Laplacian,

Lsym = D
�1/2

LD
�1/2, (5)

which is convenient to compute with due to its symmetry. With
the choice of the symmetrically normalized graph Laplacian, the
quadratic form in eq. (3) becomes

hu,Lsymui= 1
2

n

Â
i, j=1

wi j

�����
u(i)p

di

� u( j)p
d j

�����

2

.

In the remainder of this manuscript, the notation L is a placeholder
for any choice of graph Laplacian.

Bayesian model
We now present a Bayesian model for the assignment func-

tion u, for which the posterior distribution takes the form:

p(u|u0) µ exp(�J(u)), (6)

so a maximum a posteriori probability (MAP) estimator is a mini-
mizer of J(u). We assume the prior on u is a Gaussian distribution,

p(u) µ exp
✓
�1

2
hu,Lui

◆
.

To explicitly construct a sample u that follows the prior distribu-
tion, we employ the Karhunen-Loéve expansion. Let L = QLQ

T

be the eigen-decomposition of the graph Laplacian where the
columns of Q 2 Rn⇥n form an orthonormal basis of Rn and
L = diag(l1,l2, · · · ,ln) obeys

0 = l1  l2  · · · ln.

We observe that L is positive semi-definite. Suppose {xi}n

i=1 is
a collection of independent c-variate normal random variables
N (0, Ic), where Ic is an identity matrix of size c. We construct a
sample u as the random sum

u =
n

Â
i=2

l�1/2
i

qix T

i ,

so that the columns of u live in span{q1}? and u has the desired
probability distribution

p(u) µ exp

 
�1

2

n

Â
i=1

c

Ầ
=1

lihu`,qii2

!
= exp

✓
�1

2
hu,Lui

◆
.

(7)

In graph-based semi-supervised learning, it is common to
approximate the graph Laplacian using only its first few eigen-
vectors and eigenvalues, since these often contain the relevant
geometric information reflecting clustering of the data points at
nodes of the graph (see, for instance, [19]). Such truncation of the
spectrum both reduces computation cost and often improves the
classification performance. In this case, we also employ spectral
truncation and let u be the random sum up to K for K ⌧ n, i.e.

u =
K

Â
i=2

l�1/2
i

qix T

i . (8)

In their recent work [3], the authors considered several like-
lihood functions p(u0|u) to connect the latent variable u to the
ground-truth labeling u

0 for binary classification. In the present
paper, we primarily investigate the independent probit likelihood
function. Suppose {h(i)}i2Z0 is a collection of independent c-
variate normal random variables N (0,g2

Ic) where g2 is the noise
variance. We connect u to u

0 via

v(i) = u(i)+h(i)

u
0(i) = threshold(v(i)) , i 2 Z

0.
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The threshold operator applied to a vector simply sets the largest
element in the vector to be 1 and the rest to be 0. With the intro-
duction of latent variables {v(i)}i2Z0 , we have, from Bayes for-
mula, the following joint posterior probability distribution

p(u,v|u0) µ exp

 
�1

2
hu,Lui� 1

2g2 Â
i2Z0

ku(i)� v(i)k2

!

⇥ ’
i2Z0

1threshold(v(i))=u0(i).

Using the change of variable from u to x , for x =
(x1,x2, · · · ,xK) 2 Rc⇥K in eq. (8), we can apply our chosen sam-
pling method to p(x ,v|u0). We compute that the joint probability

p(x ,v|u0) µ exp
✓
�1

2
hx T ,L0x T i� 1

2g2 kHQ
0x T � vk2

◆

⇥ ’
i2Z0

1threshold(v(i))=u0(i),

where L0 = diag(l1,l2, · · · ,lK), the matrix Q
0 2 Rn⇥K consists

of the first K eigenvectors of the graph Laplacian, and H =(di ji
)2

R|Z0|⇥n for Z
0 = { ji : i = 1,2, · · · , |Z0|}. We note that H applied to

a matrix selects its rows of the fidelity set Z
0.

To sample from the joint posterior distribution, a Gibbs sam-
pler will alternate between the following three steps:

1) Draw x from p(x |v,u0),
2) Construct u from x via eq. (8),
3) Draw v from p(v|u,u0).

For Step 1) we note that for each ` 2 {1,2, · · · ,c}, the con-
ditional probability for each row of x , denoted as p(x:,`|v,u0) has
the same distribution as

N
⇣

m,P�1
⌘
, P = L0+

1
g2 Q

0T
H

T
HQ

0, m =
1
g2 P

�1
Q
0T

H
T

v`.

In Step 3), for each i 2 Z
0, we need to sample a c-variate nor-

mal random variable subject to a linear inequality constraint; let
ai denote the unique index such that u

0
ai
(i) = 1 for i 2 Z

0, i.e., data
point i belongs to class ai according to the ground-truth label.
Then we need to sample v(i) according to the following condi-
tions:

v(i)⇠ N
⇣

u(i),g2
Ic

⌘
, vai

(i)� v`(i) for all ` 2 {1,2, · · · ,c}.

We use the implementation from [4] to efficiently draw samples
from the linearly constrained normal distribution.

Uncertainty Quantification
Given a set of samples {u

(k)}N

k=1 from the Gibbs sam-
pler, we investigate Eu|u0 (threshold(u)), the posterior mean of
threshold(u); this can be approximated by the sample mean

s`(i) = Eu|u0 (threshold(u(i))`)⇡
1
N

N

Â
k=1

threshold(u(i))`.

Since each element threshold(u(i))` is either zero or one, the ex-
pectation s`(i) simply gives the probability, under the posterior
distribution, of the element being one; that is s`(i) can be inter-
preted as the probability data point i belongs to class `. We note

Figure 1. A flow chart summarizing the proposed human-in-the-loop sys-
tem.

that for each data point, the probability of it belonging to each
class should sum to one, i.e., Â` s`(i) = 1. This is obeyed by both
the posterior mean and the sample mean approximation. We can
use the posterior mean s(i) as a classifier, which classifies data
point i according to its largest entry.

Intuitively, a single large s`(i) for a data point i indicates a
very confident classification of class `; in this case, the remaining
entries in s(i) are necessarily small due to the sum-to-one condi-
tion; this creates a large variance in the vector s(i). On the other
hand, if entries in the vector s(i) are all roughly equal, meaning
the data point is equally likely to be classified as either class, the
classification has a lot of uncertainty, resulting in an s(i) with a
small variance. Based on this intuition, we measure the classifi-
cation confidence of node i by the variance of s(i)

S(i) = var(s(i)) =
1
c

c

Ầ
=1

 
s`(i)�

1
c

c

Ầ
=1

s`(i)

!2

.

We emphasize that this variance is not the posterior variance.
However, we can show the following connection between the
quantity S(i) and the posterior variance

S(i) =
1
c
� 1

c2 � 1
c

c

Ầ
=1

varu|u0 (threshold(u(i))`) ,

where varu|u0(·) is the posterior variance. Therefore, the quantity
S(i) is a constant minus the mean posterior variance, which can be
interpreted as a measure of uncertainty, averaged over all classes.

Human-in-the-loop
In the following experiments section, we demonstrate a pos-

itive correlation between the proposed confidence score and the
classification performance; the confidence score enables us to lo-
cate hard-to-classify data points, which we may label and use as
additional fidelity. This naturally leads to the idea of using the
confidence measure to intelligently select new fidelity points to
achieve a better classification performance with limited human
labeling effort. We design a human-in-the-loop system as follows
(see fig. 1). We start with a small set of initial fidelity points
and apply the UQ algorithm to obtain a confidence score for the
entire data set. We randomly sample, in a uniform fashion, ad-
ditional candidate fidelity points with confidence scores within a
percentile range. The human in the loop then observes each of the
candidate fidelity points to assign ground truth to them. We per-
form the UQ algorithm again to update the confidence scores and
repeat the process until we reach the maximum number of fidelity
points permitted (this will be determined by the application).

We observe that in practice adding data points with the low-
est confidence scores does not benefit overall classification per-
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(a) Low confidence (b) High confidence

Figure 2. Uncertainty quantification on the MNIST dataset. S(i) is the proposed confidence score. For each digit, we present four examples chosen from the
top/bottom ten with the highest/lowest confidence scores within each class.

formance because these data points are often outliers. The signifi-
cance of classifying these outliers correctly is scenario dependent.
In our experiments, we focus on the overall accuracy and do not
sample fidelity from data points with confidence scores strictly
below the tenth percentile.

Experiments
We perform uncertainty quantification on 1) the MNIST data

set, a handwritten digit data set, and 2) the HUJI EgoSeg data
set, a body-worn video data set. Through these experiments, we
illustrate some empirical properties of the confidence score; we
demonstrate its correlation with the classification performance.
We also validate our human-in-the-loop system and showcase its
ability to improve classification results with limited human input.

MNIST
The MNIST data set [10] consists of 70,000 images of hand-

written digits; each image is of the size 28⇥28 pixels. We choose
uniformly at random 500 images each from the digits 1, 4, 7, and 9
to form a graph of 2000 nodes. We follow the graph construction
procedure in [3]; each image is projected onto the lead 50 princi-
pal components yielding a 50-dimensional feature vector, and we
construct a 15-nearest neighbor graph. The weighting constants
ti j are chosen according to [21]. For data point i, we compute
the mean distance of its 15 nearest neighbors, denoted as ti; then
the weighting constant ti j is given by ti j = tit j. We use the sym-
metrically normalized graph Laplacian (see eq. (5)) and truncate
its spectrum at K = 300. We perform the Gibbs sampler with 3%
uniformly randomly sampled fidelity points; the noise variance is
chosen to be g = 0.1, and we draw 2⇥104 samples to estimate the
uncertainty. We showcase examples of images with the highest or
the lowest confidence scores in fig. 2. It is interesting to note that
the lowest confidence score of digit 1 is much higher than that of
the other digits; we theorize that it is easier for the algorithm to
differentiate digit 1 from the other three digits.

Body-Worn Videos
We also apply our method to the HUJI EgoSeg data set

[14, 15]. This data set contains 65 hours of egocentric videos
including 44 videos filmed using a head-mounted GoPro Hero3+,

the Disney data set [7] and other YouTube videos1. In the re-
cent paper [5], a graph-based semi-supervised learning method is
applied to this data set to classify video segments according to
camera-wearers’ activities and showed promising results. This
data set consists of footage of 7 activities: Walking, Driving,

Riding Bus, Biking, Standing, Sitting, and Static. We follow
the same feature extraction procedure described in [5] to obtain
a 50-dimensional feature vector for every 4-second video seg-
ments; this yields 36,421 segments. To speed up our calculation,
we sample every fifth segment. The graph is constructed from
the 50-dimensional feature vectors, and the weighting constants
ti j = tit j are chosen according to [21], where ti is the distance of
the 40th nearest neighbor of node i. We employ the symmetrically
normalized graph Laplacian and truncate the spectrum at K = 400.
The eigenvectors are computed using a low-rank approximation
of the graph Laplacian via the Nystrom extension [8]. The Gibbs
sampler is applied with g = 0.1 and 2⇥104 iterations.

The data set is separated into a training and testing set, which
are disjoint sets of videos; the training set contains around 65% of
the data, measured in terms of the footage length. We refer read-
ers to [15] for the details of the experimental protocol. However,
we do not use the full training set but instead take a portion of
it as the fidelity. All classification performances are evaluated on
the testing set only. We first investigate the correlation between
the confidence score and the classification accuracy. We perform
uncertainty quantification with 12% of the training set. Recall
that the classification is produced by taking the largest entry of
the posterior mean s(i) for each data point i. In fig. 3, we plot
the classification accuracy of the top x% to x+5% confident data
points for each x 2 {0,5,10, · · · ,95}. We observe that the clas-
sification is more accurate on data points with higher confidence
scores. We also validate our human-in-the-loop system on this
data set. We start with 6% fidelity data and gradually increase
the fidelity percentage to 30% over five iterations; at each iter-
ation, we introduce additional 6% fidelity points sampled from
data points with confidence scores within in the range of the tenth
and 50th percentile. We perform uncertainty quantification as
well as a graph-based semi-supervised learning method (an MBO
scheme [2]) using the same set of fidelity points. We refer read-
ers to the appendix for a description of the MBO scheme and its

1http://www.vision.huji.ac.il/egoseg/
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Figure 3. Classification accuracy on data points with top x% to x+5% confi-
dence scores on the HUJI EgoSeg data set. We group data points based on
their confidence score; each group contains 5% data points and we evaluate
the classification accuracy on each group.
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Figure 4. Classification performance of UQ and an MBO classifier using
iteratively generated fidelity (UQ/MBO-iter) and uniformly randomly sampled
fidelity (UQ/MBO) on the HUJI EgoSeg data set.

parameters that we use for this experiment. We compare the clas-
sification performance, measured in terms of accuracy and mean
recall averaged over seven classes, of both classifiers using iter-
atively generated fidelity against the same classifiers using uni-
formly randomly sampled fidelity. The results are presented in
fig. 4. We observe that both classifiers benefit from the intelli-
gently sampled fidelity in terms of producing higher accuracy and
mean recall than using uniformly randomly sampled fidelity.

Conclusion
In this paper, we considered the problem of uncertainty

quantification in a graph-based semi-supervised multi-class clas-
sification problem . We extended the graphical probit model, orig-
inally proposed for the binary classification problem in [3], to the
multi-class case. We proposed a Gibbs sampler to sample from
the posterior distribution and a confidence score that connects to
the posterior variance. Through our experiments on the MNIST

data set, we demonstrated that the proposed confidence score is
easy to interpret; it is clear to see the contrast between the digit
images with low confidence scores and ones with high confidence
scores. The proposed confidence score also exhibits a correla-
tion with the classification performance in our experiments on the
HUJI EgoSeg data set. Based on these observations, we designed
a human-in-the-loop system to efficiently use human labeling ef-
fort to improve classification results. We validated this system on
the HUJI EgoSeg data set and observed that the classifiers that we
studied produced improved classification using the human-in-the-
loop system than the same classifiers using uniformly randomly
sampled fidelity.

Moving forward, we can develop new theory of uncertainty
quantification for semi-supervised multi-class classification. We
can investigate the performance bound of the Gibbs sampler with
respect to a large number of data points and classes. We can ex-
tend the previous analysis of uncertainty quantification methods
for binary classification to the multi-class case, in which we sus-
pect the number of classes play a nontrivial role in the perfor-
mance of the sampling methods. We also point out that speed
is the primary concern of the current Gibbs sampler. Despite
the development of scalable graph-based semi-supervised learn-
ing methods (see [2] for an example), the Gibbs sampler is mostly
sequential; we draw each sample based on the previous one. Nev-
ertheless, the current work opens the door for the development
of a system that combines modern machine learning with expert
analyst knowledge.
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Appendix
We detail the Merriman-Bence-Osher (MBO) scheme, a

graph-based semi-supervised learning method. We optimize the
graph Total Variation (TV) plus a least-squares fidelity term

1
2
|u|TV +FLS(u,u

0). (9)

subject to the constraint that each u(i) is discrete; it lies on the
corners of a unit simplex, i.e., one and only one entry of each u(i)
is one and the rest are zero; the graph TV is given by

|u|TV =
1
2

n

Â
i, j=1

wi jku(i)�u( j)k1, (10)

and the least-squares fidelity term takes the form:

FLS(u,u
0) = Â

i2Z0

1
2g2 ku(i)�u

0(i)k2.

We note that when u(i) is discrete, the graph TV in eq. (10) agrees
with the Dirichlet energy eq. (3). We then relax the combinatorial
optimization problem; we allow u(i) to take values in Rc and pe-
nalize u for being away from the corners of the unit simplex with
a multi-well potential

M(u) =
n

Â
i=1

c

’̀
=1

1
4
ku(i)� e`k2 ,

where e` is the unit vector in Rc in the `th direction. Replacing
the graph TV with the Dirichlet energy and the discrete constraint
with the addition of the multi-well potential, we arrive at the fol-
lowing objective function

1
2
hu,Lui+ 1

e
M(u)+FLS(u,u

0) (11)

for a small positive constant e . The first two terms of eq. (11) is
known as the Ginzburg-Landau functional, which G-converges to
the graph TV as e ! 0 [18].

In the MBO scheme, we alternatively perform the following
two steps to update u:

1. Diffuse. Solve a force-driven heat equation

∂u

∂ t
=�Lu� 1

g2 Â
i2Z0

u(i)�u
0(i),

for a short time Dt to obtain u
⇤; this is effectively a gradi-

ent descent step for the first and third term of the objective
function eq. (11).

2. Threshold. set

u(i) = e`(i), `= argmax
ˆ̀

u
⇤
ˆ̀(i).

This approximates the gradient descent step for the second
term of eq. (11) when e is small.

We use a semi-implicit method to solve the heat equation:

u
+�u

d t
=�Lu

+� 1
g2 Â

i2Z0
u(i)�u

0(i),

where d t = Dt/Nstep and Nstep is the number of time steps used to
solve the heat equation. We note that we use an implicit stepping
for the term involving the graph Laplacian to resolve the poten-
tial stiffness of L. To accelerate the computation of the implicit
stepping, we truncate the spectral at some level K, i.e., we approx-
imate L by

Q
0L0

Q
0T =

K

Â
i=1

liqiq
T

i .

In the experiment on the HUJI EgoSeg data set, we use the
following set of parameters: g = 0.05, Dt = 0.05, Nstep = 10, and
K = 400. The MBO scheme is allowed to run up to 100 iterations.
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