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POSTERIOR CONSISTENCY

FOR GAUSSIAN PROCESS APPROXIMATIONS

OF BAYESIAN POSTERIOR DISTRIBUTIONS

ANDREW M. STUART AND ARETHA L. TECKENTRUP

Abstract. We study the use of Gaussian process emulators to approximate
the parameter-to-observation map or the negative log-likelihood in Bayesian
inverse problems. We prove error bounds on the Hellinger distance between the
true posterior distribution and various approximations based on the Gaussian
process emulator. Our analysis includes approximations based on the mean of
the predictive process, as well as approximations based on the full Gaussian
process emulator. Our results show that the Hellinger distance between the
true posterior and its approximations can be bounded by moments of the error
in the emulator. Numerical results confirm our theoretical findings.

1. Introduction

Given a mathematical model of a physical process, we are interested in the inverse
problem of determining the inputs to the model given some noisy observations
related to the model outputs. Adopting a Bayesian approach [20,41], we incorporate
our prior knowledge of the inputs into a probability distribution, referred to as the
prior distribution, and obtain a more accurate representation of the model inputs in
the posterior distribution, which results from conditioning the prior distribution on
the observations. Since the posterior distribution is generally intractable, sampling
methods such as Markov chain Monte Carlo (MCMC) [11, 14, 16, 18, 26, 34] are
typically used to explore it. A major challenge in the application of MCMCmethods
to problems of practical interest is the large computational cost associated with
numerically solving the mathematical model for a given set of the input parameters.
Since the generation of each sample by the MCMC method requires a solve of the
governing equations, and often millions of samples are required, this process can
quickly become very costly.

This drawback of fully Bayesian inference for complex models was recognised
several decades ago in the statistics literature, and resulted in key papers which
had a profound influence on methodology [21, 30, 36]. These papers advocated the
use of a Gaussian process surrogate model to approximate the solution of the gov-
erning equations, and in particular the likelihood, at a much lower computational
cost. This approximation then results in an approximate posterior distribution,
which can be sampled more cheaply using MCMC. However, despite the widespread
adoption of the methodology, there has been little analysis of the effect of the ap-
proximation on posterior inference. In this work, we study this issue, focussing on

Received by the editor March 7, 2016 and, in revised form, September 26, 2016.
2010 Mathematics Subject Classification. Primary 60G15, 62G08, 65D05, 65D30, 65J22.
Key words and phrases. Inverse problem, Bayesian approach, surrogate model, Gaussian pro-

cess regression, posterior consistency.

c©2017 American Mathematical Society

721

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3244


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

722 ANDREW M. STUART AND ARETHA L. TECKENTRUP

the use of Gaussian process emulators [7, 19, 21, 30, 32, 36, 40] as surrogate models.
Other choices of surrogate models such as those described in [4,9], generalised poly-
nomial chaos [23,45], sparse grid collocation [5,22] and adaptive subspace methods
[12,13] might also be studied similarly, but are not considered here. Indeed we note
that the paper [22] studied the effect, on the posterior distribution, of stochastic
collocation approximation within the forward model and was one of the first pa-
pers to address such questions. That paper used the Kullback-Leibler divergence,
or relative entropy, to measure the effect on the posterior, and considered finite
dimensional input parameter spaces.

The main focus of this work is to analyse the error introduced in the posterior
distribution by using a Gaussian process emulator as a surrogate model. The error
is measured in the Hellinger distance, which is shown in [15, 41] to be a suitable
metric for evaluation of perturbations to the posterior measure in Bayesian inverse
problems, including problems with infinite dimensional input parameter spaces.
We consider emulating either the parameter-to-observation map or the negative
log-likelihood. The convergence results presented in this paper are of two types.
In section 3, we present convergence results for simple Gaussian process emulators
applied to a general function f satisfying suitable regularity assumptions. In section
4, we prove bounds on the error in the posterior distribution in terms of the error
in the Gaussian process emulator. The novel contributions of this work are mainly
in section 4. The results in the two sections can be combined to give a final error
estimate for the simple Gaussian process emulators presented in section 3. However,
the error bounds derived in section 4 are much more general in the sense that they
apply to any Gaussian process emulator satisfying the required assumptions. A
short discussion on extensions of this work related to Gaussian process emulators
used in practice is included in the conclusions in section 6.

We study three different approximations to the posterior distribution. First, we
consider using the mean of the Gaussian process emulator as a surrogate model,
resulting in a deterministic approximation to the posterior distribution. Our second
approximation is obtained by using the full Gaussian process as a surrogate model,
leading to a random approximation in which case we study the second moment of
the Hellinger distance between the true and the approximate posterior distribution.
The uncertainty in the posterior distribution introduced in this way can be thought
of representing the uncertainty in the emulator due to the finite number of function
evaluations used to construct it. This uncertainty can in applications be large (or
comparable) to the uncertainty present in the observations, and a user may want
to take this into account to “inflate” the variance of the posterior distribution.
Finally, we construct an alternative deterministic approximation by using the full
Gaussian process as surrogate model, and taking the expected value (with respect
to the distribution of the surrogate) of the likelihood. It can be shown that this
approximation of the likelihood is optimal in the sense that it minimises the L2-error
[39]. In contrast to the approximation based on only the mean of the emulator, this
approximation also takes into account the uncertainty of the emulator, although
only in an averaged sense.

For the three approximations discussed above, we show that the Hellinger dis-
tance between the true and approximate posterior distribution can be bounded by
the error between the true parameter-to-observation map (or log-likelihood) and its
Gaussian process approximation, measured in a norm that depends on the approx-
imation considered. Our analysis is restricted to finite dimensional input spaces.
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This reflects the state-of-the-art with respect to Gaussian process emulation itself;
the analysis of the effect on the posterior is less sensitive to dimension. For sim-
plicity, we also restrict our attention to bounded parameters, i.e., parameters in a
compact subset of RK for some K ∈ N, and to problems where the parameter-to-
observation map is uniformly bounded.

The convergence results on Gaussian process regression presented in section 3
are mainly known results from the theory of scattered data interpolation [28,37,43].
The error bounds are given in terms of the fill distance of the design points used to
construct the Gaussian process emulator, and depend in several ways on the number
K of input parameters we want to infer. First, when looking at the error in terms
of the number of design points used, rather than the fill distance of these points,
the rate of convergence typically deteriorates with the number of parameters K.
Second, the proof of these error estimates requires assumptions on the smoothness
of the function being emulated, where the precise smoothness requirements depend
on the Gaussian process emulator employed. For emulators based on Matèrn kernels
[24], we require these maps to be in a Sobolev space Hs, where s > K/2. We would
like to point out here that it is not necessary for the function being emulated to be
in the reproducing kernel Hilbert space (or native space) of the Matèrn kernel used
in order to prove convergence (cf. Proposition 3.4), but that is suffices to be in a
larger Sobolev space in which point evaluations are bounded linear functionals.

The remainder of this paper is organised as follows. In section 2, we set up the
Bayesian inverse problem of interest. We then recall some results on Gaussian pro-
cess regression in section 3. The heart of the paper is section 4, where we introduce
the different approximations to the posterior and perform an error analysis. Our
theoretical results are confirmed on a simple model problem in section 5, and some
conclusions are finally given in section 6.

2. Bayesian inverse problems

Let X and V be separable Banach spaces, and define the measurable mappings
G : X → V and O : V → R

J , for some J ∈ N. Denote by G : X → R
J

the composition of O and G. We refer to G as the forward map, to O as the
observation operator and to G as the parameter-to-observation map. We denote by
‖ · ‖ the Euclidean norm on R

n, for n ∈ N. We consider the setting where the
Banach space X is a compact subset of RK , for some finite K ∈ N, representing
the range of a finite number K of parameters u. The inverse problem of interest is
to determine the parameters u ∈ X from the noisy data y ∈ R

J given by

y = G(u) + η,

where the noise η is a realisation of the R
J -valued Gaussian random variable

N (0, σ2
ηI), for some known variance σ2

η. We adopt a Bayesian perspective in which,
in the absence of data, u is distributed according to a prior measure μ0. We are
interested in the posterior distribution μy on the conditioned random variable u|y,
which can be characterised as follows.

Proposition 2.1 ([41]). Suppose G : X → R
J is continuous and μ0(X) = 1. Then

the posterior distribution μy on the conditioned random variable u|y is absolutely
continuous with respect to μ0 and given by Bayes’ Theorem:

dμy

dμ0
(u) =

1

Z
exp

(
− Φ(u)

)
,
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where

(2.1) Φ(u) =
1

2σ2
η

‖y − G(u)‖2 and Z = Eμ0

(
exp

(
− Φ(u)

))
.

We make the following assumption on the regularity of the parameter-to-
observation map G.
Assumption 2.2. We assume that G : X → R

J satisfies G ∈ Hs(X;RJ), for some
s > K/2, and that supu∈X ‖G(u)‖ =: CG < ∞.

Under Assumption 2.2, it follows that the negative log-likelihood Φ : X → R

satisfies Φ ∈ Hs(X), and supu∈X |Φ(u)| =: CΦ < ∞. Since s > K/2, the Sobolev
Embedding Theorem furthermore implies that G and Φ are continuous. Examples
of model problems satisfying Assumption 2.2 include linear elliptic and parabolic
partial differential equations [10, 38] and non-linear ordinary differential equations
[17, 42]. A specific example is given in section 5.

Note that in Assumption 2.2, the smoothness requirement on G becomes stronger
as K increases. The reason for this is that in order to apply the results in section 3,
we require G to be in a Sobolev space in which point evaluations are bounded linear
functionals. The second part of Assumption 2.2 is mainly included to define the
constant CG , since the fact that supu∈X ‖G(u)‖ is finite follows from the continuity
of G and the compactness of X.

3. Gaussian process regression

We are interested in using Gaussian process regression to build a surrogate model
for the forward map, leading to an approximate Bayesian posterior distribution
that is computationally cheaper to evaluate. Generally speaking, Gaussian process
regression (or Gaussian process emulation, or kriging) is a way of building an ap-
proximation to a function f , based on a finite number of evaluations of f at a chosen
set of design points. We will here consider emulation of either the parameter-to-
observation map G : X → R

J or the negative log-likelihood Φ : X → R. Since the
efficient emulation of vector-valued functions is still an open question [6], we will
focus on the emulation of scalar-valued functions. An emulator of G in the case
J > 1 is constructed by emulating each entry independently.

Now let f : X → R be an arbitrary function. Gaussian process emulation is in
fact a Bayesian procedure, and the starting point is to put a Gaussian process prior
on the function f . In other words, we model f as

(3.1) f0 ∼ GP(m(u), k(u, u′)),

with known mean m : X → R and two point covariance function k : X ×X → R,
assumed to be positive-definite. Here, we use the Gaussian process notation as in,
for example, [32]. In the notation of [41], we have f0 ∼ N (m,C), where m = m(·)
and C is the integral operator with covariance function k as kernel.

Typical choices of the mean functionm include the zero function and polynomials
[32]. A family of covariance functions k frequently used in applications are the
Matèrn covariance functions [24], given by

(3.2) kν,λ,σ2
k
(u, u′) = σ2

k

1

Γ(ν)2ν−1

(
‖u− u′‖

λ

)ν

Bν

(
‖u− u′‖

λ

)
,

where Γ denotes the Gamma function, Bν denotes the modified Bessel function
of the second kind and ν, λ and σ2

k are positive parameters. The parameter λ is
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referred to as the correlation length, and governs the length scale at which f0(u) and
f0(u

′) are correlated. The parameter σ2
k is referred to as the variance, and governs

the magnitude of f0(u). Finally, the parameter ν is referred to as the smoothness
parameter, and governs the regularity of f0 as a function of u. As the limit when
ν → ∞, we obtain the Gaussian covariance

(3.3) k∞,λ,σ2
k
(u, u′) = σ2

k exp

(
−‖u− u′‖2

λ2

)
.

Now suppose we are given data in the form of a set of distinct design points
U := {un}Nn=1 ⊆ X, together with corresponding function values

(3.4) f(U) := [f(u1), . . . , f(uN )] ∈ R
N .

Since f0 is a Gaussian process, the vector [f0(u
1), . . . , f0(u

N ), f0(ũ
1), . . . , f0(ũ

M )] ∈
R

N+M , for any set of test points {ũm}Mm=1 ⊆ X \U , follows a multivariate Gaussian
distribution. The conditional distribution of f0(ũ

1), . . . , f0(ũ
M ), given the values

f0(u
1) = f(u1), . . . , f0(u

N ) = f(uN ), is then again Gaussian, with mean and co-
variance given by the standard formulas for the conditioning of Gaussian random
variables [32].

Conditioning the Gaussian process (3.1) on the known values f(U), we hence
obtain another Gaussian process fN , known as the predictive process. We have

(3.5) fN ∼ GP(mf
N (u), kN (u, u′)),

where the predictive mean mf
N : X → R and predictive covariance kN : X×X → R

are known explicitly, and depend on the modelling choices made in (3.1). In the
following discussion, we will focus on the popular choice m ≡ 0; the case of a
non-zero mean is discussed in Remark 3.7. When m ≡ 0, we have

(3.6)
mf

N (u) = k(u, U)TK(U,U)−1f(U),

kN (u, u′) = k(u, u′)− k(u, U)TK(U,U)−1k(u′, U),

where k(u, U) = [k(u, u1), . . . , k(u, uN )] ∈ R
N and K(U,U) ∈ R

N×N is the matrix
with ijth entry equal to k(ui, uj) [32].

There are several points to note about the predictive mean mf
N in (3.6). First,

mf
N is a linear combination of the function evaluations f(U), and hence a linear

predictor. It is in fact the best linear predictor [40], in the sense that it is the

linear predictor with the smallest mean square error. Second, mf
N interpolates the

function f at the design points U , since the vector k(un, U) is the nth row of the

matrix K(U,U). In other words, we have mf
N (un) = f(un), for all n = 1, . . . , N .

Finally, we remark that mf
N is a linear combination of kernel evaluations,

mf
N (u) =

N∑
n=1

αnk(u, u
n),

where the vector of coefficients is given by α = K(U,U)−1f(U). Concerning the
predictive covariance kN , we note that kN (u, u) < k(u, u) for all u ∈ X, since
K(U,U)−1 is positive definite. Furthermore, we also note that kN (un, un) = 0, for
n = 1, . . . , N , since k(un, U)T K(U,U)−1 k(un, U) = k(un, un).

For stationary covariance functions k(u, u′) = k(‖u − u′‖), the predictive mean
is a radial basis function interpolant of f , and we can make use of results from

the radial basis function literature to investigate the behaviour of mf
N and kN as
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N → ∞. Before we do this, in subsection 3.2, we recall some results on native
spaces (also know as reproducing kernel Hilbert spaces) in subsection 3.1.

3.1. Native spaces of Matèrn kernels. We recall the notion of the reproducing
kernel Hilbert space corresponding to the kernel k, usually referred to as the native
space of k in the radial basis function literature.

Definition 3.1. A Hilbert space Hk of functions f : X → R, with inner product
〈·, ·〉Hk

, is called the reproducing kernel Hilbert space (RKHS) corresponding to a
symmetric, positive definite kernel k : X ×X → R if

i) for all u ∈ X, k(u, u′), as a function of its second argument, belongs to Hk,
ii) for all u ∈ X and f ∈ Hk, 〈f, k(u, ·)〉Hk

= f(u).

By the Moore-Aronszajn Theorem [3], a unique RKHS exists for each symmetric,
positive definite kernel k. Furthermore, this space can be constructed using Mercer’s
Theorem [25], and it is equal to the Cameron-Martin space [8] of the covariance
operator C with kernel k. For covariance kernels of Matèrn type, the native space
is isomorphic to a Sobolev space [37, 43].

Proposition 3.2. Let kν,λ,σ2
k
be a Matèrn covariance kernel as defined in (3.2).

Then the native space Hk
ν,λ,σ2

k

is equal to the Sobolev space Hν+K/2(X) as a vector

space, and the native space norm and the Sobolev norm are equivalent.

Native spaces for more general kernels, including non-stationary kernels, are
analysed in [43]. For stationary kernels, the native space can generally be char-
acterised by the rate of decay of the Fourier transform of the kernel. The native
space of the Gaussian kernel (3.3), for example, consists of functions whose Fourier
transform decays exponentially, and is hence strictly contained in the space of an-
alytic functions. Proposition 3.2 shows that as a vector space, the native space of
the Matèrn kernel kν,λ,σ2

k
is fully determined by the smoothness parameter ν. The

parameters λ and σ2
k do, however, influence the constants in the norm equivalence

of the native space norm and the standard Sobolev norm.

3.2. Radial basis function interpolation. For stationary covariance functions
k(u, u′) = k(‖u − u′‖), the predictive mean is a radial basis functions interpolant
of f . In fact, it is the minimum norm interpolant [32],

(3.7) mf
N = argmin

g∈Hk : g(U)=f(U)

‖g‖Hk
.

Given the set of design points U = {un}Nn=1 ⊆ X, we define the fill distance hU ,
separation radius qU and mesh ratio ρU by

hU := sup
u∈X

inf
un∈U

‖u− un‖, qU :=
1

2
min
i �=j

‖uj − ui‖, ρU :=
hU

qU
≥ 1.

The fill distance is the maximum distance any point in X can be from U , and the
separation radius is half the smallest distance between any two distinct points in
U . The mesh ratio provides a measure of how uniformly the design points U are

distributed in X. We have the following theorem on the convergence of mf
N to f

[27, 28, 43].
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Proposition 3.3. Suppose X ⊆ R
K is a bounded, Lipschitz domain that satisfies

an interior cone condition, and the symmetric positive definite kernel k is such that
Hk is isomorphic to the Sobolev space Hτ (X), with τ = n + r, n ∈ N, n > K/2

and 0 ≤ r < 1. Suppose mf
N is given by (3.6). If f ∈ Hτ (X), then there exists a

constant C, independent of f , U , and N , such that

‖f −mf
N‖Hβ(X) ≤ Chτ−β

U ‖f‖Hτ (X), for any β ≤ τ,

for all sets U with hU sufficiently small.

Proposition 3.3 assumes that the function f is in the RKHS of the kernel k. Con-
vergence estimates for a wider class of functions can be obtained using interpolation
in Sobolev spaces [28].

Proposition 3.4. Suppose X ⊆ R
K is a bounded, Lipschitz domain that satisfies

an interior cone condition, and the symmetric positive definite kernel k is such that

Hk is isomorphic to the Sobolev space Hτ (X). Suppose mf
N is given by (3.6). If

f ∈ H τ̃ (X), for some τ̃ ≤ τ , τ̃ = n+ r, n ∈ N, n > K/2, and 0 ≤ r < 1, then there
exists a constant C, independent of f , U , and N , such that

‖f −mf
N‖Hβ(X) ≤ Chτ̃−β

U ρτ−β
U ‖f‖H τ̃ (X), for any β ≤ τ̃ ,

for all sets U with hU and ρU sufficiently small.

We would like to point out here that, in practice, it is much more informative
to obtain convergence rates in terms of the number of design points N rather than
their associated fill distance hU . This is of course possible in general, but the precise
relation between N and hU will depend on the specific choice of design points U .
For uniform tensor grids U , the fill distance hU is of the order N−1/K (cf. section
5). This suggests a strong dependence on the input dimension K of the convergence
rate in terms of the number of design points N .

Convergence of the predictive variance kN (u, u) follows under the assumptions
of Propositions 3.3 or 3.4 using the relation in Proposition 3.5 below. This was
already noted, without proof, in [37]; we give a proof here for completeness.

Proposition 3.5. Suppose mf
N and kN are given by (3.6). Then

kN (u, u)
1
2 = sup

‖g‖Hk
=1

|g(u)−mg
N (u)|.

Proof. For any u ∈ X, we have

sup
‖g‖Hk

=1

|g(u)−mg
N (u)| = sup

‖g‖Hk
=1

∣∣∣g(u)− N∑
j=1

(k(u, U)TK(U,U)−1)jg(u
j)
∣∣∣

= sup
‖g‖Hk

=1

∣∣∣ 〈g, k(·, u)〉Hk
−

N∑
j=1

(k(u, U)TK(U,U)−1)j〈g, k(·, uj)〉Hk

∣∣∣
= sup

‖g‖Hk
=1

∣∣∣〈g, k(·, u)− N∑
j=1

(k(u, U)TK(U,U)−1)jk(·, uj)〉Hk

∣∣∣
= ‖k(·, u)− k(·, U)TK(U,U)−1k(u, U)‖Hk

.

The final equality follows from the Cauchy-Schwarz inequality, which becomes an
equality when the two functions considered are linearly dependent. By Definition
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3.1, we then have

‖k(·, u)− k(·, U)TK(U,U)−1k(u, U)‖2Hk

= 〈k(·, u)− k(·, U)TK(U,U)−1k(u, U), k(·, u)− k(·, U)TK(U,U)−1k(u, U)〉Hk

= 〈k(·, u), k(·, u)〉Hk
− 2〈k(·, u), k(·, U)TK(U,U)−1k(u, U)〉Hk

+ 〈k(·, U)TK(U,U)−1k(u, U), k(·, U)TK(U,U)−1k(u, U)〉Hk

= k(u, u)− 2k(u, U)TK(U,U)−1k(u, U) + k(u, U)TK(U,U)−1k(u, U)

= kN (u, u).

The identity which leads to the third term in the penultimate line uses the fact
that 〈k(·, u′), k(·, u)〉Hk

= k(u, u′), for any u, u′ ∈ X. If 
(u) = K(U,U)−1k(u, U),
then

〈k(·, U)TK(U,U)−1k(u, U), k(·, U)TK(U,U)−1k(u, U)〉Hk

=
∑
j,k


j(u)〈k(·, uj), k(·, uk)〉Hk

k(u)

=
∑
j,k


j(u)k(u
j , uk)
k(u)

= 
(u)TK(U,U)
(u)

= k(u, U)TK(U,U)−1k(u, U)

as required. This completes the proof. �

The second string of equalities, appearing in the middle part of the proof Proposi-
tion 3.5, might appear counter-intuitive at first glance in that the left-most quantity
is a norm squared of quantities which scale like k, whilst the right-most quantity
scales like k itself. However, the space Hk itself depends on the kernel k, and scales
inversely proportional to k, explaining that the identity is indeed dimensionally
correct.

Remark 3.6 (Exponential convergence for the Gaussian kernel). The RKHS corre-
sponding to the Gaussian kernel (3.3) is no longer isomorphic to a Sobolev space;
it is contained in Hτ (X), for any τ < ∞. For functions f in this RKHS, Gauss-
ian process regression with the Gaussian kernel converges exponentially in the fill
distance hU . For more details, see [43].

Remark 3.7 (Regression with non-zero mean). If in (3.1) we use a non-zero mean

m(·), the formula for the predictive mean mf
N changes to

(3.8) mf
N (u) = m(u) + k(u, U)TK(U,U)−1(f(U)−m(U)),

where m(U) := [m(u1), . . . ,m(uN )] ∈ R
N . The predictive covariance kN (u, u′) is

as in (3.6). As in the case m ≡ 0, we have mf
N (un) = f(un), for n = 1, . . . , N , and

mf
N is an interpolant of f . If m ∈ Hk, then mf

N given by (3.8) is also in Hk, and
the proof techniques in [27,28] can be applied. The conclusions of Propositions 3.3
and 3.4 then hold, with the factor ‖f‖ in the error bounds replaced by ‖f‖+ ‖m‖.
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4. Approximation of the Bayesian posterior distribution

In this section, we analyse the error introduced in the posterior distribution
μy when we use a Gaussian process emulator to approximate the parameter-to-
observation map G or the negative log-likelihood Φ. The aim is to show conver-
gence, in a suitable sense, of the approximate posterior distributions to the true
posterior distribution as the number of observations N tends to infinity. For a given
approximation μy,N of the posterior distribution μy, we will focus on bounding the
Hellinger distance [41] between the two distributions, which is defined as

dHell(μ
y, μy,N ) =

⎛
⎜⎝1

2

∫
X

⎛
⎝
√

dμy

dμ0
−

√
dμy,N

dμ0

⎞
⎠

2

dμ0

⎞
⎟⎠

1/2

.

As proven in [15, Lemma 6.12 and 6.14], the Hellinger distance provides a bound
for the total variation distance

dTV(μ
y, μy,N ) =

1

2
sup

‖f‖∞≤1

∣∣Eμy(f)− Eμy,N (f)
∣∣ ≤ √

2 dHell(μ
y, μy,N ),

and for f ∈ L2
μy (X) ∩ L2

μy,N (X), the Hellinger distance also provides a bound on

the error in expected values∣∣Eμy (f)− Eμy,N (f)
∣∣ ≤ 2(Eμy(f2) + Eμy,N (f2))1/2 dHell(μ

y, μy,N ).

Depending on how we make use of the predictive process GN or ΦN to approxi-

mate the Radon-Nikodym derivative dμy

dμ0
, we obtain different approximations to the

posterior distribution μy. We will distinguish between approximations based solely
on the predictive mean, and approximations that make use of the full predictive
process.

4.1. Approximation based on the predictive mean. Using simply the pre-
dictive mean of a Gaussian process emulator of the parameter-to-observation map
G or the negative log-likelihood Φ, we can define the approximations μy,N,G

mean and
μy,N,Φ
mean , given by

dμy,N,G
mean

dμ0
(u) =

1

Zmean
N,G

exp
(
− 1

2σ2
η

∥∥y −mG
N (u)

∥∥2 ),
Zmean
N,G = Eμ0

(
exp

(
− 1

2σ2
η

∥∥y −mG
N (u)

∥∥2 )),
dμy,N,Φ

mean

dμ0
(u) =

1

Zmean
N,Φ

exp
(
−mΦ

N (u)
)
,

Zmean
N,Φ = Eμ0

(
exp

(
−mΦ

N (u)
))

,

where mG
N (u) = [mG1

N (u), . . . ,mGJ

N (u)] ∈ R
J . We have the following lemma con-

cerning the normalising constants Zmean
N,G and Zmean

N,Φ , which is followed by the main

Theorem 4.2 and Corollary 4.3 concerning the approximations μy,N,G
mean , μy,N,Φ

mean .

Lemma 4.1. Suppose supu∈X ‖G(u)−mG
N(u)‖ and supu∈X |Φ(u)−mΦ

N (u)| converge
to 0 as N tends to ∞, and assume supu∈X ‖G(u)‖ ≤ CG. Then there exist positive
constants C1 and C2, independent of U and N , such that

C1 ≤ Zmean
N,G ≤ 1 and C−1

2 ≤ Zmean
N,Φ ≤ C2.
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Proof. Let us first consider Zmean
N,G . The upper bound follows from a straightforward

calculation, since the potential 1
2σ2

η

∥∥y −mG
N (u)

∥∥2 is non-negative:

Zmean
N,G = Eμ0

(
exp

(
− 1

2σ2
η

∥∥y −mG
N (u)

∥∥2 )) ≤ Eμ0
(1) = 1.

For the lower bound, we have

Zmean
N,G ≥ Eμ0

(
exp

(
− 1

2σ2
η

sup
u∈X

∥∥y −mG
N (u)

∥∥2 ))

= exp
(
− 1

2σ2
η

sup
u∈X

∥∥y −mG
N (u)

∥∥2 ),
since

∫
X
μ0(du) = 1. Using the triangle inequality, the assumption supu∈X ‖G(u)‖

≤ CG and the fact that every convergent sequence is bounded, we have

(4.1) sup
u∈X

∥∥y −mG
N (u)

∥∥2 ≤ sup
u∈X

‖y − G(u)‖2 + sup
u∈X

∥∥G(u)−mG
N (u)

∥∥2 =: − lnC1,

where C1 is independent of U and N .
The proof for Zmean

N,Φ is similar. For the upper bound, we use
∫
X
μ0(du) = 1 and

the triangle inequality to derive

Zmean
N,Φ ≤ sup

u∈X
exp

(
−mΦ

N (u)
)
≤ exp

(
sup
u∈X

|mΦ
N (u)|

)
≤ exp

(
sup
u∈X

|Φ(u)|+ sup
u∈X

|Φ(u)−mΦ
N (u)|

)
.

Since supu∈X |Φ(u)| is bounded when supu∈X ‖G(u)‖ is bounded, the fact that every
convergent sequence is bounded again gives

sup
u∈X

|Φ(u)|+ sup
u∈X

|Φ(u)−mΦ
N (u)| =: − lnC2,

for a constant C2 independent of U and N . For the lower bound, we note that since∫
X
μ0(du) = 1,

Zmean
N,Φ ≥ Eμ0

(
exp

(
− sup

u∈X
|mΦ

N (u)|
))

= exp
(
− sup

u∈X
|mΦ

N (u)|
)
≥ C−1

2 . �

We would like to point out that the assumptions in Lemma 4.1 can be relaxed to
assuming that the sequences supu∈X ‖G(u)−mG

N (u)‖ and supu∈X |Φ(u)−mΦ
N (u)|

are bounded, since this is sufficient to prove the result.
We may now prove the desired theorem and corollary concerning μy,N,G

mean and
μy,N,Φ
mean .

Theorem 4.2. Under the Assumptions of Lemma 4.1, there exist constants C1

and C2, independent of U and N , such that

dHell(μ
y, μy,N,G

mean ) ≤ C1

∥∥G −mG
N

∥∥
L2

μ0
(X;RJ )

,

and dHell(μ
y, μy,N,Φ

mean ) ≤ C2

∥∥Φ−mΦ
N

∥∥
L2

μ0
(X)

.
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Proof. Let us first consider μy,N,G
mean . By definition of the Hellinger distance, we have

2 d2Hell(μ
y, μy,N,G

mean ) =

∫
X

⎛
⎝
√

dμy

dμ0
−

√
dμy,N,G

mean

dμ0

⎞
⎠

2

μ0(du)

≤ 2

Z

∫
X

(
exp

(
− 1

4σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

4σ2
η

∥∥y −mG
N (u)

∥∥2 ))2

μ0(du)

+ 2Zmean
N,G

(
Z−1/2 − (Zmean

N,G )−1/2
)2

=: I + II.

For the first term, we use the local Lipschitz continuity of the exponential function,
together with the equality a2−b2 = (a−b)(a+b) and the reverse triangle inequality
to bound

Z

2
I =

∫
X

(
exp

(
− 1

4σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

4σ2
η

∥∥y −mG
N (u)

∥∥2 ))2

μ0(du)

≤
∫
X

(
1

2σ2
η

(
‖y − G(u)‖2 −

∥∥y −mG
N (u)

∥∥2))2

μ0(du)

=

∫
X

1

4σ4
η

(
‖y − G(u)‖+ ‖y −mG

N (u)‖
)2 ∥∥G(u)−mG

N (u)
∥∥2 μ0(du)

≤ 1

4σ4
η

sup
u∈X

(
‖y − G(u)‖+ ‖y −mG

N (u)‖
)2 ∥∥G(u)−mG

N (u)
∥∥2
L2

μ0
(X;RJ )

.

As in equation (4.1), the first supremum can be bounded independently of U and
N , from which it follows that

I ≤ C
∥∥G(u)−mG

N (u)
∥∥2
L2

μ0
(X;RJ )

,

for a constant C independent of U and N . For the second term, a very similar
argument, together with Lemma 4.1 and Jensen’s inequality, shows

II = 2Zmean
N,G

(
Z−1/2 − (Zmean

N,G )−1/2
)2

≤ 2Zmean
N,G max(Z−3, (Zmean

N,G )−3)|Z − Zmean
N,G |2

= 2Zmean
N,G max(Z−3, (Zmean

NG )−3)

(∫
X

exp
(
− 1

4σ2
η

‖y − G(u)‖2
)

− exp
(
− 1

4σ2
η

∥∥y −mG
N (u)

∥∥2 )μ0(du)

)2

≤ C
∥∥G(u)−mG

N (u)
∥∥2
L2

μ0
(X;RJ )

,

for a constant C independent of U and N .
The proof for μy,N,Φ

mean is similar. We use an identical corresponding splitting of the
Hellinger distance dHell(μ

y, μy,N,Φ
mean ) ≤ I + II. Using the local Lipschitz continuity
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of the exponential function, we have

Z

2
I =

∫
X

(
exp

(
− Φ(u)

)
− exp

(
−mΦ

N (u)
))2

μ0(du)

≤
(
1 + exp

(
sup
u∈X

|mΦ
N (u)|

)) ∥∥Φ(u)−mΦ
N (u)

∥∥2
L2

μ0
(X)

,

where the first factor can be bounded independently of U and N as in Lemma 4.1.
Using Lemma 4.1 and Jensen’s inequality, we furthermore have

II ≤ 2Zmean
N,Φ max(Z−3, (Zmean

N,Φ )−3)

(∫
X

exp
(
− Φ(u)

)
− exp

(
−mΦ

N (u)
)
μ0(du)

)2

≤ C
∥∥Φ(u)−mΦ

N (u)
∥∥2
L2

μ0
(X)

,

for a constant C independent of U and N . �

We remark here that Theorem 4.2 does not make any assumptions on the predic-
tive means mG

N and mΦ
N other than the requirement that supu∈X ‖G(u)−mG

N (u)‖
and supu∈X |Φ(u)−mΦ

N (u)| converge to 0 as N tends to ∞. Whether the predictive
means are defined as in (3.6), or are derived by alternative approaches to Gauss-
ian process regression [32], does not affect the conclusions of Theorem 4.2. Under
Assumption 2.2, we can combine Theorem 4.2 with Proposition 3.3 (or Proposition
3.4) with β = 0 to obtain error bounds in terms of the fill distance of the design
points.

Corollary 4.3. Suppose mΦ
N and mGj

N , j = 1, . . . , J , are defined as in (3.6), with
Matèrn kernel k = kν,λ,σ2

k
. Suppose Assumption 2.2 holds with s = ν +K/2, and

the assumptions of Proposition 3.3 and Theorem 4.2 are satisfied. Then there exist
constants C1 and C2, independent of U and N , such that

dHell(μ
y, μy,N,G

mean ) ≤ C1h
ν+K/2
U and dHell(μ

y, μy,N,Φ
mean ) ≤ C2h

ν+K/2
U .

If Assumption 2.2 holds only for some s < ν+K/2, an analogue of Corollary 4.3
can be proved using Proposition 3.4 with β = 0. As already discussed in section
3.2, translating convergence rates in terms of the fill distance hU into rates in terms
of the number of points N typically leads to a strong dependence on the input
dimension K. For uniform tensor grids U , the rates of convergence in N predicted
by Corollary 4.3 are given in Table 1.

4.2. Approximations based on the predictive process. Alternative to the
mean-based approximations considered in the previous section, we now consider
approximations to the posterior distribution μy obtained using the full predictive
processes GN and ΦN . In contrast to the mean, the full Gaussian processes also
carry information about the uncertainty in the emulator due to only using a finite
number of function evaluations to construct it.

For the remainder of this section, we denote by νGN the distribution of GN and
by νΦN the distribution of ΦN , for N ∈ N ∪ {0}. We note that since the process

GN consists of J independent Gaussian processes Gj
N , the measure νGN is a product

measure, νGN =
∏J

j=1 ν
Gj

N . ΦN is a Gaussian process with mean mΦ
N and covariance

kernel kN , and Gj
N , for j = 1, . . . , J , is a Gaussian process with mean mGj

N and
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covariance kernel kN . Replacing G by GN in (2.1), we obtain the approximation

μy,N,G
sample given by

dμy,N,G
sample

dμ0
(u) =

1

Zsample
N,G

exp
(
− 1

2σ2
η

‖y − GN (u)‖2
)
,

where

Zsample
N,G = Eμ0

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
))

.

Similarly, we define for the predictive process ΦN the approximation μy,N,Φ
sample by

dμy,N,Φ
sample

dμ0
(u) =

1

Zsample
N,Φ

exp
(
− ΦN (u)

)
, Zsample

N,Φ = Eμ0

(
exp

(
− ΦN (u)

))
.

The measures μy,N,G
sample and μy,N,Φ

sample are random approximations of the deterministic
measure μy. The uncertainty in the posterior distribution introduced in this way
can be thought of representing the uncertainty in the emulator, which in applica-
tions can be large (or comparable) to the uncertainty present in the observations.
A user may want to take this into account to “inflate” the variance of the posterior
distribution.

Deterministic approximations of the posterior distribution μy can now be ob-
tained by taking the expected value with respect to the predictive processes GN

and ΦN . This results in the marginal approximations

dμy,N,G
marginal

dμ0
(u) =

1

EνG
N
(Zsample

N,G )
EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
))

,

dμy,N,Φ
marginal

dμ0
(u) =

1

EνΦ
N
(Zsample

N,Φ )
EνΦ

N

(
exp

(
− ΦN (u)

))
.

Note that by Tonelli’s Theorem ([35], a version of Fubini’s Theorem for non-negative

integrands), the measures μy,N,G
marginal and μy,N,Φ

marginal are indeed probability measures.
It can be shown that the above approximation of the likelihood is optimal in the
sense that it minimises the L2-error [39]. In contrast to the approximation based
on only the mean of the emulator, this approximation also takes into account the
uncertainty of the emulator, although only in an averaged sense. The likelihood

in the marginal approximations μy,N,G
marginal and μy,N,Φ

marginal involves computing an ex-

pectation. Methods from the pseudo-marginal MCMC literature [2] could be used
within an MCMC method in this context.

Before proving bounds on the error in the marginal approximations μy,N,G
marginal and

μy,N,Φ
marginal in section 4.2.2, and the error in the random approximations μy,N,G

sample and

μy,N,Φ
sample in section 4.2.3, we crucially prove boundedness of the normalising constants

Zsample
N,G and Zsample

N,Φ in section 4.2.1.

4.2.1. Moment bounds on Zsample
N,G and Zsample

N,Φ . First, we recall the following clas-

sical results from the theory of Gaussian measures on Banach spaces [1, 31].
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Proposition 4.4 (Fernique’s Theorem). Let E be a separable Banach space and ν
a centred Gaussian measure on (E,B(E)). If λ, r > 0 are such that

log

(
1− ν(f ∈ E : ‖f‖E ≤ r)

ν(f ∈ E : ‖f‖E ≤ r)

)
≤ −1− 32λr2,

then ∫
E

exp(λ‖f‖2E)ν(df) ≤ exp(16λr2) +
e2

e2 − 1
.

Proposition 4.5 (Borell-TIS inequality1). Let f be a scalar, almost surely bounded
Gaussian field on a compact domain T ⊆ R

K , with zero mean E(f(t)) = 0 and
bounded variance 0 < σ2

f := supt∈T V(f(t)) < ∞. Then E(supt∈T f(t)) < ∞, and
for all r > 0,

P(sup
t∈T

f(t)− E(sup
t∈T

f(t)) > r) ≤ exp(−r2/2σ2
f ).

Proposition 4.6 (Sudakov-Fernique inequality). Let f and g be scalar, almost
surely bounded Gaussian fields on a compact domain T ⊆ R

K . Suppose that
E((f(t) − f(s))2) ≤ E((g(t) − g(s))2) and E(f(t)) = E(g(t)), for all s, t ∈ T .
Then

E(sup
t∈T

f(t)) ≤ E(sup
t∈T

g(t)).

Using these results, we are now ready to prove bounds on moments of Zsample
N,G

and Zsample
N,Φ , similar to those proved in Lemma 4.1. The reader interested purely

in approximation results for the posterior can simply read the statements of the
following two lemmas, and then proceed directly to subsections 4.2.2 and 4.2.3.

Recall that, as in (3.1), Φ0 and Gj
0 denote the initial Gaussian process models

for Φ and Gj , respectively, and, as in (3.5), ΦN and Gj
N denote the conditioned

Gaussian process models for Φ and Gj , respectively.

Lemma 4.7. Let X ⊆ R
K be compact. Suppose that supu∈X

∥∥G(u)−mG
N (u)

∥∥,
supu∈X

∣∣Φ(u)−mΦ
N (u)

∣∣ and supu∈X kN (u, u) converge to 0 as N tends to infinity,
and assume supu∈X ‖G(u)‖ ≤ CG < ∞. Suppose the assumptions of the Sudakov-

Fernique inequality hold, for g = Φ0 and f = ΦN − mΦ
N , and for g = Gj

0 and

f = Gj
N −mGj

N , for j ∈ {1, . . . , J}. Then, for any 1 ≤ p < ∞, there exist positive
constants C1 and C2, independent of U and N , such that for all N sufficiently large

C−1
1 ≤ EνG

N

(
(Zsample

N,G )p
)
≤ 1 and 1 ≤ EνG

N

(
(Zsample

N,G )−p
)
≤ C1

and

C−1
2 ≤ EνΦ

N

(
(Zsample

N,Φ )p
)
≤ C2 and C−1

2 ≤ EνΦ
N

(
(Zsample

N,Φ )−p
)
≤ C2.

Proof. We start with Zsample
N,G . Since the potential 1

2σ2
η
‖y − GN (u)‖2 is non-negative

and
∫
X
μ0(du) = 1 =

∫
C0(X;RJ )

νGN (dGN ), we have for any 1 ≤ p < ∞,

EνG
N
((Zsample

N,G )p) =

∫
C0(X;RJ )

(∫
X

exp
(
− 1

2σ2
η

‖y − GN (u‖2
)
μ0(du)

)p

νGN (dGN )

≤ 1.

1The Borell-TIS inequality is named after the mathematicians Borell and Tsirelson, Ibragimov
and Sudakov, who independently proved the result.
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From Jensen’s inequality, it then follows that

EνG
N
((Zsample

N,G )−p
)
≥

(
EνG

N
((Zsample

N,G )p)
)−1 ≥ 1.

To determine C1, we use the triangle inequality to bound, for any 1 ≤ p < ∞,

EνG
N

(
(Zsample

N,G )−p
)
=

∫
C0(X;RJ )

(∫
X

exp
(
− 1

2σ2
η

‖y − GN (u)‖2
)
μ0(du)

)−p

νGN (dGN )

≤
∫
C0(X;RJ )

(
exp

(
− 1

2σ2
η

sup
u∈X

‖y − GN (u)‖2
))−p

νGN (dGN )

=

∫
C0(X;RJ )

exp
( p

2σ2
η

sup
u∈X

‖y − GN (u)‖2
)
νGN (dGN )

≤ exp

(
supu∈X ‖y −mG

N (u)‖2
2p−1σ2

η

)

×
∫
C0(X;RJ )

exp

(
supu∈X ‖GN (u)−mG

N (u)‖2
2p−1σ2

η

)
νGN (dGN ).

The first factor can be bounded independently of U and N using the triangle
inequality, together with supu∈X ‖G(u)‖ ≤ CG and supu∈X

∥∥G(u)−mG
N (u)

∥∥ → 0
as N → ∞. For the second factor, we use Fernique’s Theorem (Proposition 4.4).
First, we note that (using independence)∫

C0(X;RJ)

exp

(
supu∈X ‖GN (u)−mG

N (u)‖2
2p−1σ2

η

)
νGN (dGN )

=

∫
C0(X;RJ )

exp

(
supu∈X

∑J
j=1 |Gj

N (u)−mGj

N (u)|2

2p−1σ2
η

)
νGN (dGN )

≤
∫
C0(X;RJ )

exp

⎛
⎝ J∑

j=1

supu∈X |Gj
N (u)−mGj

N (u)|2
2p−1σ2

η

⎞
⎠ νGN (dGN )

=

∫
C0(X;RJ )

J∏
j=1

exp

(
supu∈X |Gj

N (u)−mGj

N (u)|2
2p−1σ2

η

)
νGN (dGN )

=

J∏
j=1

∫
C0(X)

exp

(
supu∈X |Gj

N (u)−mGj

N (u)|2
2p−1σ2

η

)
νG

j

N (dGj
N ).

It remains to show that, for N sufficiently large, the assumptions of Fernique’s
Theorem hold for λ = pσ−2

η /2 and a value of r independent of U and N , for ν

equal to the push-forward of νG
j

N under the map T (f) = f − mGj

N . Denote by

BGj

N,r ⊂ C0(X) the set of all functions f such that ‖f −mGj

N ‖C0(X) ≤ r, for some

fixed r > 0 and 1 ≤ j ≤ J . Let Gj
N = Gj

N −mGj

N . By the Borell-TIS inequality, we

have for all r > E(supu∈X(Gj
N (u)),

νG
j

N (Gj
N : sup

u∈X
Gj
N (u) > r) ≤ exp

(
−
(
r − E(supu∈X Gj

N (u)
)2

2σ2
N

)
,
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where σ2
N := supu∈X kN (u, u). By assumption, Eνj

N
((Gj

N(u) − Gj
N (u′))2) ≤

Eνj
0
((Gj

0(u) − Gj
0(u

′))2), and so E(supu∈X(Gj
N (u)) ≤ E(supu∈X(Gj

0(u)), by the

Sudakov-Fernique inequality. We can hence choose r > E(supu∈X(Gj
0(u)), inde-

pendent of U and N , such that the bound

νG
j

N (Gj
N : sup

u∈X
Gj
N (u) > r) ≤ exp

(
−
(
r − E(supu∈X Gj

0(u)
)2

2σ2
N

)
,

holds for all N ∈ N. By assumption we have σ2
N → 0 as N → ∞, and by the

symmetry of Gaussian measures, we hence have νG
j

N (BGj

N,r) → 1 as N → ∞, for all

r > E(supu∈X(Gj
0(u)). For N = N(p) sufficiently large, the inequality

log

(
1− νG

j

N (BGj

N,r)

νG
j

N (BGj

N,r)

)
≤ −1− 32λr2,

in the assumptions of Fernique’s Theorem is then satisfied, for λ = pσ−2
η /2 and r >

E(supu∈X(Gj
0(u)), both independent of U and N . Hence, E

(
(Zsample

N,G )−p
)
≤ C1(p),

for a constant C1(p) < ∞ independent of U and N . From Jensen’s inequality, it
then finally follows that

EνG
N
((Zsample

N,G )p
)
≥

(
EνG

N
((Zsample

N,G )−p)
)−1 ≥ C−1

1 (p).

The proof for Zsample
N,Φ is similar. Using

∫
X
μ0(du) = 1 and the triangle inequality,

we have

EνΦ
N

(
(Zsample

N,Φ )p
)
=

∫
C0(X)

(∫
X

exp
(
− ΦN (u)

)
μ0(du)

)p

νΦN (dΦN )

≤
∫
C0(X)

exp
(
p sup
u∈X

|ΦN (u)|
)
νΦN (dΦN )

≤ exp
(
p sup
u∈X

|mΦ
N (u)|

) ∫
C0(X)

exp
(
p sup
u∈X

|ΦN (u)−mΦ
N (u)|

)
νΦN (dΦN ).

The first factor can be bounded independently of U and N , since supu∈X ‖G(u)‖ ≤
CG and supu∈X

∣∣Φ(u)−mΦ
N (u)

∣∣ converges to 0 as N → ∞. The second factor can
be bounded by Fernique’s Theorem. Using the same proof technique as above,
we can show that νΦN (BΦ

N,r) → 1 as N → ∞ for all r > E(supu∈X(Φ0(u)), where

BΦ
N,r ⊂ C0(X) denotes the set of all functions f such that ‖f − mΦ

N‖C0(X) ≤ r.
Hence, it is possible to choose r > 0, independent of U and N , such that the
assumptions of Fernique’s Theorem hold for ν equal to the push-forward of νΦN
under the map T (f) = f −mΦ

N , for some λ > 0 also independent of U and N . By
Young’s inequality, we have

exp
(
p sup
u∈X

|ΦN (u)−mΦ
N (u)|

)
≤ exp

(
λ sup

u∈X
|ΦN (u)−mΦ

N (u)|2 + p2/4λ
)
,

and it follows that Eω

(
(Zsample

N,Φ )p
)
≤ C2(p), for a constant C2(p) < ∞ independent

of U and N , for any 1 ≤ p < ∞. Furthermore, we note

EνΦ
N

(
(Zsample

N,Φ )−p
)
≤

∫
C0(X;R)

exp
(
p sup
u∈X

|ΦN (u)|
)
νΦN (dΦN ) ≤ C2(p).
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By Jensen’s inequality, we finally have EνΦ
N

(
(Zsample

N,Φ )−p
)

≥ C2(p)
−1 and

EνΦ
N

(
(Zsample

N,Φ )p
)
≥ C2(p)

−1. �

We would like to point out here that the assumption that supu∈X kN (u, u) con-
verges to 0 as N tends to infinity in Lemma 4.7 is crucial in order to enable the
choice of any 1 ≤ p < ∞. This is related to the fact that the parameter λ needs to be
sufficiently small compared to supu∈X kN (u, u) in order to satisfy the assumptions
of Fernique’s Theorem.

In Lemma 4.7, we supposed that the assumptions of the Sudakov-Fernique in-

equality hold, for g = Φ0 and f = ΦN −mΦ
N , and for g = Gj

0 and f = Gj
N −mGj

N ,
for j ∈ {1, . . . , J}. This is an assumption on the predictive variance kN . In the
following lemma, we prove this assumption for the predictive variance given in (3.6).

Lemma 4.8. Suppose the predictive variance kN is given by (3.6). Then the as-
sumptions of the Sudakov-Fernique inequality hold, for g = Φ0 and f = ΦN −mΦ

N ,

and for g = Gj
0 and f = Gj

N −mGj

N , for j ∈ {1, . . . , J}.

Proof. We give a proof for g = Φ0 and f = ΦN − mΦ
N , the proof for g = Gj

0

and f = Gj
N − mGj

N , for j ∈ {1, . . . , J}, is identical. For any u, u′ ∈ X, we have
EνΦ

0
(Φ0(u)) = 0 = EνΦ

N
(ΦN (u)−mΦ

N (u)), and

EνΦ
N

(
((ΦN (u)−mΦ

N (u))− (ΦN (u′)−mΦ
N (u′)))2

)
= kN (u, u)− kN (u, u′)− kN (u′, u) + kN (u′, u′),

EνΦ
0

(
(Φ0(u)− Φ0(u

′))2
)
= k(u, u)− k(u, u′)− k(u′, u) + k(u′, u′).

By (3.6), we have

kN (u, u′) = k(u, u′)− k(u, U)T K(U,U)−1 k(u′, U),

and so

EνΦ
0

(
(Φ0(u)− Φ0(u

′))2
)
− EνΦ

N

(
((ΦN (u)−mΦ

N (u))− (ΦN (u′)−mΦ
N (u′)))2

)
=

(
k(u, U)T − k(u′, U)T

)
K(U,U)−1

(
k(u, U)− k(u′, U)

)
≥ 0,

since the matrix K(U,U)−1 is positive definite. �

We are now ready to prove bounds on the approximation error in the posterior
distributions.

4.2.2. Error in the marginal approximations μy,N,G
marginal and μy,N,Φ

marginal. We start by

analysing the error in the marginal approximations μy,N,G
marginal and μy,N,Φ

marginal.

Theorem 4.9. Under the assumptions of Lemma 4.7, there exist constants C1 and
C2, independent of U and N , such that for any δ > 0,

dHell(μ
y, μy,N,G

marginal) ≤ C1

∥∥∥∥(EνG
N

(
‖G − GN‖1+δ

))1/(1+δ)
∥∥∥∥
L2

μ0
(X)

,

dHell(μ
y, μy,N,Φ

marginal) ≤ C2

∥∥∥EνΦ
N

(
|Φ− ΦN |1+δ

)1/(1+δ)
∥∥∥
L2

μ0
(X)

.
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Proof. We start with μy,N,G
marginal. By the definition of the Hellinger distance, we have

2 d2Hell(μ
y, μy,N,G

marginal) =

∫
X

⎛
⎝
√

dμy

dμ0
−

√
dμy,N,G

marginal

dμ0

⎞
⎠

2

μ0(du)

≤ 2

Z

∫
X

(√
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)

−
√
EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du)

+ 2EνG
N

(
Zsample
N,G

) (
Z−1/2 − EνG

N

(
Zsample
N,G

)−1/2
)2

= I + II.

For the first term, we use the (in)equalities a − b = (a2 − b2)/(a + b) and

(
√
a+

√
b)2 ≥ a+ b, for a, b > 0, to derive

Z

2
I =

∫
X

(√
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)

−
√
EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du)

≤
∫
X

(
exp

(
− 1

2σ2
η
‖y − G(u)‖2

)
− EνG

N

(
exp

(
− 1

2σ2
η
‖y − GN (u)‖2

)))2

exp
(
− 1

2σ2
η
‖y − G(u)‖2

)
+ EνG

N

(
exp

(
− 1

2σ2
η
‖y − GN (u)‖2

)) μ0(du)

≤ sup
u∈X

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)
+ EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))−1

×
∫
X

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)

−EνG
N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du).

For the first factor, using the convexity of 1/x on (0,∞), together with Jensen’s
inequality, we have for all u ∈ X the bound(

exp
(
− 1

2σ2
η

‖y − G(u)‖2
)
+ EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))−1

≤ exp
(
− 1

2σ2
η

‖y − G(u)‖2
)−1

+ EνG
N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
))−1

≤ exp
( 1

2σ2
η

‖y − G(u)‖2
)
+ EνG

N

(
exp

( 1

2σ2
η

‖y − GN (u)‖2
))

≤ exp
( 1

2σ2
η

sup
u∈X

‖y − G(u)‖2
)
+ EνG

N

(
exp

( 1

2σ2
η

sup
u∈X

‖y − GN (u)‖2
))

.

As in the proof of Lemma 4.7, it then follows by Fernique’s Theorem that the
right-hand side can be bounded by a constant independent of U and N .
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For the second factor in the bound on Z
2 I, the linearity of expectation, the local

Lipschitz continuity of the exponential function, the equality a2−b2 = (a−b)(a+b),
the reverse triangle inequality, and Hölder’s inequality with conjugate exponents
p = (1 + δ)/δ and q = 1 + δ give∫

X

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)
− EνG

N

(
exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du)

=

∫
X

(
EνG

N

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du)

≤ 2

∫
X

(
EνG

N

(
| 1

2σ2
η

‖y − G(u)‖2 − 1

2σ2
η

‖y − GN (u)‖2 |
))2

μ0(du)

≤ 2

4σ4
η

∫
X

(
EνG

N

(
(‖y − G(u)‖+ ‖y − GN (u)‖) ‖G(u)− GN (u)‖

))2

μ0(du)

≤ 2

4σ4
η

∫
X

(
EνG

N

(
(‖y − G(u)‖+ ‖y − GN (u)‖)(1+δ)/δ

))2δ/(1+δ)

×
(
EνG

N

(
‖G(u)− GN (u)‖1+δ

))2/(1+δ)

μ0(du)

≤ 2

4σ4
η

sup
u∈X

(
EνG

N

(
(‖y − G(u)‖+ ‖y − GN (u)‖)(1+δ)/δ

))2δ/(1+δ)

×
∫
X

(
EνG

N

(
‖G(u)− GN (u)‖1+δ

))2/(1+δ)

μ0(du),

for any δ > 0. The supremum in the above expression can be bounded by a constant
independent of U and N by Fernique’s Theorem as in the proof of Lemma 4.7, since
supu∈X ‖G(u)‖ ≤ CG < ∞. It follows that there exists a constant C independent
of U and N such that

Z

2
I ≤ C

∥∥∥∥(EνG
N

(
‖GN − G‖1+δ

))1/(1+δ)
∥∥∥∥
2

L2
μ0

(X)

.

For the second term in the bound on the Hellinger distance, we have

1

2EνG
N

(
Zsample
N,G

)II =
(
Z−1/2 −

(
EνG

N

(
Zsample
N,G

))−1/2
)2

≤ max(Z−3, (EνG
N

(
Zsample
N,G

)
)−3)|Z − EνG

N

(
Zsample
N,G

)
|2.

Using the linearity of expectation, Tonelli’s Theorem and Jensen’s inequality, we
have∣∣∣Z − EνG

N

(
Zsample
N,G

)∣∣∣2
=

∣∣∣∣
∫
X

EνG
N

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

2σ2
η

‖y − GN (u)‖2
))

μ0(du)

∣∣∣∣
2

≤
∫
X

(
EνG

N

(
exp

(
− 1

2σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

2σ2
η

‖y − GN (u)‖2
)))2

μ0(du),

which can now be bounded as before. The first claim of the theorem now follows
by Lemma 4.7.
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The proof for μy,N,Φ
marginal is similar. We use an identical corresponding splitting of

the Hellinger distance dHell(μ
y, μy,N,Φ

marginal) ≤ I + II. For the first term, we have

Z

2
I =

∫
X

(√
exp

(
− Φ(u)

)
−
√
EνΦ

N

(
exp

(
− ΦN (u)

)))2

μ0(du)

≤ sup
u∈X

(
exp

(
− Φ(u)

)
+ EνΦ

N

(
exp

(
− ΦN (u)

)))−1

×
∫
X

(
exp

(
− Φ(u)

)
− EνΦ

N

(
exp

(
− ΦN (u)

)))2

μ0(du).

The first factor can again be bounded using Jensen’s inequality,

sup
u∈X

(
exp

(
− Φ(u)

)
+ EνΦ

N

(
exp

(
− ΦN (u)

)))−1

≤ exp
(
sup
u∈X

Φ(u)
)
+ EνΦ

N

(
exp

(
sup
u∈X

ΦN (u)
))

,

which as in the proof of Lemma 4.7, can be bounded by a constant independent of
U and N by Fernique’s Theorem. For the second factor in the bound on Z

2 I, the
linearity of expectation, Hölder’s inequality with conjugate exponents p = (1+δ)/δ
and q = 1+ δ, and the inequality | exp(x)− exp(y)| ≤ (exp(x) + exp(y))|x− y|, for
all x, y ∈ R, give∫

X

(
exp

(
− Φ(u)

)
− EνΦ

N

(
exp

(
− ΦN (u)

)))2

μ0(du)

=

∫
X

(
EνΦ

N

(
exp

(
− Φ(u)

)
− exp

(
− ΦN (u)

)))2

μ0(du)

≤
∫
X

(
EνΦ

N

((
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))(1+δ)/δ
)δ/(1+δ)

×EνΦ
N

(
|Φ(u)− ΦN (u)|1+δ

)1/(1+δ)
)2

μ0(du)

≤ sup
u∈X

EνΦ
N

(
(exp

(
− Φ(u)

)
+ exp

(
− ΦN (u))

)(1+δ)/δ
)2δ/(1+δ)

×
∥∥∥EνΦ

N

(
|Φ(u)− ΦN (u)|1+δ

)1/(1+δ)
∥∥∥2
L2

μ0
(X)

,

where the first factor can be bounded independently of U and N as in Lemma 4.7.
For the second term in the bound on the Hellinger distance, the linearity of

expectation, Tonelli’s Theorem and Jensen’s inequality give∣∣∣Z − EνΦ
N

(
Zsample
N,Φ

)∣∣∣2 ≤
∫
X

(
EνΦ

N

(
exp

(
− Φ(u)

)
− exp

(
− ΦN (u)

)))2

μ0(du),

which can now be bounded as before. The second claim of the theorem then follows
by Lemma 4.7. �

Similarly to Theorem 4.2, Theorem 4.9 provides error bounds for general Gauss-
ian process emulators of G and Φ. An example of a Gaussian process emulator that
satisfies the assumptions of Theorem 4.9 is the emulator defined by (3.6), however,
other choices are possible. As in Corollary 4.3, we can now combine Assumption 2.2,
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Theorem 4.9, and Proposition 3.3 with β = 0 to derive error bounds in terms of
the fill distance.

Corollary 4.10. Suppose GN and ΦN are defined as in (3.6), with Matèrn kernel
k = kν,λ,σ2

k
. Suppose Assumption 2.2 holds with s = ν + K/2, and the assump-

tions of Proposition 3.3 and Theorem 4.9 are satisfied. Then there exist constants
C1, C2, C3, and C4, independent of U and N , such that

dHell(μ
y, μy,N,G

marginal) ≤ C1h
ν+K/2
U + C2h

ν
U

and

dHell(μ
y, μy,N,Φ

marginal) ≤ C3h
ν+K/2
U + C4h

ν
U .

Proof. We give the proof for μy,N,G
marginal, the proof for μy,N,Φ

marginal is similar. Using
Theorem 4.9, Jensen’s inequality and the triangle inequality, we have

dHell(μ
y, μy,N,G

marginal)
2 ≤ C

∥∥∥∥(EνG
N

(
‖G − GN‖2

))1/2
∥∥∥∥
2

L2
μ0

(X)

= C

∫
X

EνG
N

(
‖G(u)− GN (u)‖2

)
μ0(du)

≤ 2C

∫
X

‖G(u)−mG
N (u)‖2μ0(du)

+ 2C

∫
X

EνG
N

(
‖mG

N (u)− GN (u)‖2
)
μ0(du).

The first term can be bounded by using Assumption 2.2, Proposition 3.2, and
Proposition 3.3,∫

X

‖G(u)−mG
N (u)‖2μ0(du) =

∫
X

J∑
j=1

(Gj(u)−mGj

N (u))2μ0(du)

≤ Ch2ν+K
U

J∑
j=1

‖Gj‖2Hν+K/2(X),

for a constant C independent of U and N . The second term can be bounded by
using Assumption 2.2, Propositions 3.2, 3.3, 3.5, the linearity of expectation, and
the Sobolev Embedding Theorem∫

X

EνG
N

(
‖mG

N (u)− GN (u)‖2
)
μ0(du) =

∫
X

EνG
N

( J∑
j=1

(mGj

N (u)− Gj
N (u))2

)
μ0(du)

= J

∫
X

kN (u, u)μ0(du)

≤ J sup
u∈X

sup
‖g‖Hk

=1

|g(u)−mg
N (u)|2

≤ Ch2ν
U ,

for a constant C independent of U and N . The claim of the corollary then follows.
�

If Assumption 2.2 holds only for some s < ν + K/2, an analogue of Corollary
4.10 can be proved using Proposition 3.4 with β = 0.
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Note that the term hν
U appearing in the bounds in Corollary 4.10 corresponds

to the error bound on ‖k1/2N ‖L2(X), which does not appear in the error bounds

for μy,N,G
mean and μy,N,Φ

marginal analysed in Corollary 4.3. Due to the supremum over g

appearing in the expression for kN (u, u) in Proposition 3.5, we can only conclude

on the lower rate of convergence hν
U for ‖k1/2N ‖L2(X). This result appears to be

sharp, and the lower rate of convergence ν is observed in some of the numerical
experiments in section 5 (cf. Figures 3 and 4).

4.2.3. Error in the random approximations μy,N,G
sample and μy,N,Φ

sample. We have the fol-

lowing result for the random approximations μy,N,G
sample and μy,N,Φ

sample.

Theorem 4.11. Under the Assumptions of Lemma 4.7, there exist constants C1

and C2, independent of U and N , such that for any δ > 0,(
EνG

N

(
dHell(μ

y, μy,N,G
sample)

2
))1/2

≤ C1

∥∥∥∥(EνG
N

(
‖G − GN‖2+δ

))1/(2+δ)
∥∥∥∥
L2

μ0
(X)

,

(
EνΦ

N

(
dHell(μ

y, μy,N,Φ
sample)

2
))1/2

≤ C2

∥∥∥∥(EνΦ
N

(
|Φ− ΦN |2+δ

))1/(2+δ)
∥∥∥∥
L2

μ0
(X)

.

Proof. We start with μy,N,G
sample. By the definition of the Hellinger distance and the

linearity of expectation, we have

EνG
N

(
2 dHell(μ

y, μy,N,G
sample)

)2

= EνG
N

⎛
⎜⎝∫

X

⎛
⎝
√

dμy

dμ0
−

√
dμy,N,G

sample

dμ0

⎞
⎠

2

μ0(du)

⎞
⎟⎠

≤ 2

Z
EνG

N

(∫
X

(
exp

(
− 1

4σ2
η

‖y − G(u)‖2
)
− exp

(
− 1

4σ2
η

‖y − GN (u)‖2
))2

μ0(du)

)

+ 2 EνG
N

(
Zsample
N,G |Z−1/2 − (Zsample

N,G )−1/2|2
)

=: I + II.

For the first term, Tonelli’s Theorem, the local Lipschitz continuity of the expo-
nential function, the equality a2−b2 = (a−b)(a+b), the reverse triangle inequality,
and Hölder’s inequality with conjugate exponents p = (1 + δ)/δ and q = 1+ δ give

Z

2
I =

∫
X

EνG
N

((
exp

(
− 1

4σ2
η

‖y − G(u)‖2
)

− exp
(
− 1

4σ2
η

‖y − GN (u)‖2
))2

)
μ0(du)

≤ 1

σ2
η

∫
X

EνG
N

((
‖y − G(u)‖2 − ‖y − GN (u)‖2

)2)
μ0(du)

≤ 1

σ2
η

∫
X

EνG
N

(
(‖y − GN (u)‖+ ‖y − G(u)‖)2 ‖GN (u)− G(u)‖2

)
μ0(du)

≤ 1

σ2
η

∫
X

(
EνG

N

(
(‖y − G(u)‖+ ‖y − GN (u)‖)2(1+δ)/δ

)
))δ/(δ+1)

×
(
EνG

N

(
‖G(u)− GN (u)‖2(1+δ)

))1/(1+δ)

μ0(du)
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≤ 1

σ2
η

sup
u∈X

(
EνG

N

(
(‖y − G(u)‖+ ‖y − GN (u)‖)2(1+δ)/δ)

))δ/(δ+1)

×
∫
X

(
EνG

N

(
‖G(u)− GN (u)‖2(1+δ)

))1/(1+δ)

μ0(du).

for any δ > 0. The supremum in the above bound can be bounded independently
of U and N by Fernique’s Theorem as in the proof of Lemma 4.7. It follows that
there exists a constant C independent of U and N such that

Z

2
I ≤ C

∥∥∥∥(EνG
N

(
‖GN − G‖2(1+δ)

))1/2(1+δ)
∥∥∥∥
2

L2
μ0

(X)

.

For the second term in the bound on the Hellinger distance, we have

1

2
II = EνG

N

(
Zsample
N,G |Z−1/2 − (Zsample

N,G )−1/2|2
)

≤ EνG
N

(
Zsample
N,G max(Z−3, (Zsample

N,G )−3)|Z − Zsample
N,G |2

)
.

By Jensen’s inequality and the same argument as above, we have

|Z − Zsample
N,G |2 =

∣∣∣∣
∫
X

(
exp

(
− 1

4σ2
η

‖y − G(u)‖2
)

− exp
(
− 1

4σ2
η

‖y − GN (u)‖2
))

μ0(du)

∣∣∣∣
2

≤ 1

σ4
η

∫
X

(‖y − GN (u)‖+ ‖y − G(u)‖)2 ‖GN (u)− G(u)‖2μ0(du).

Together with Tonelli’s Theorem and Hölder’s inequality with conjugate exponents
p = (1 + δ)/δ and q = 1 + δ, we then have

1

2
II ≤ 1

σ4
η

EνG
N

(
Zsample
N,G max(Z−3, (Zsample

N,G )−3)

×
∫
X

(‖y − GN (u)‖+ ‖y − G(u)‖)2 ‖GN (u)− G(u)‖2μ0(du)

)

=
1

σ4
η

∫
X

EνG
N

(
Zsample
N,G max(Z−3, (Zsample

N,G )−3)

× (‖y − GN (u)‖+ ‖y − G(u)‖)2‖GN (u)− G(u)‖2
)
μ0(du)

≤ 1

σ4
η

sup
u∈X

(
EνG

N

(
(Zsample

N,G )(1+δ)/δ max(Z−3, (Zsample
N,G )−3)(1+δ)/δ

× (‖y − G(u)‖+ ‖y − GN (u)‖)2(1+δ)/δ
)
))δ/(δ+1)

∫
X

(
EνG

N

(
‖GN (u)− G(u)‖2(1+δ)

))1/(1+δ)

μ0(du),

for any δ > 0. The supremum in the bound above can be bounded independently
of U and N by Lemma 4.7 and Fernique’s Theorem. The first claim of the theorem
then follows.

The proof for μy,N,Φ
sample is similar. Using an identical corresponding splitting of the

Hellinger distance EνΦ
N

(
2 d2Hell(μ

y, μy,N,Φ
sample)

)
≤ I + II, we bound the first term by
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Tonelli’s Theorem, Hölder’s inequality with conjugate exponents p = (1+ δ)/δ and
q = 1 + δ, and the inequality | exp(x)− exp(y)| ≤ (exp(x) + exp(y))|x− y|, for all
x, y ∈ R,

Z

2
I =

∫
X

EνΦ
N

((
exp

(
− Φ(u)/2

)
− exp

(
− ΦN (u)/2

))2)
μ0(du)

≤
∫
X

EνΦ
N

(
| exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

)
|2|Φ(u)− ΦN (u)|2

)
μ0(du)

≤
∫
X

EνΦ
N

(
| exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

)
|2(1+δ)/δ

)δ/(1+δ)

× EνΦ
N

(
|Φ(u)− ΦN (u)|2(1+δ)

)1/(1+δ)

μ0(du)

≤ sup
u∈X

EνΦ
N

((
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))2(1+δ)/δ
)δ/(1+δ)

×
∥∥∥∥EνΦ

N

(
|Φ(u)− ΦN (u)|2(1+δ)

)1/(2(1+δ))
∥∥∥∥
2

L2
μ0

(X)

,

where the first factor can be bounded independently of U and N as in Lemma 4.7.
For the second term, we have as before

1

2
II ≤ EνΦ

N

(
Zsample
N,Φ max(Z−3, (Zsample

N,Φ )−3)|Z − Zsample
N,Φ |2

)
and

|Z − Zsample
N,Φ |2 =

∣∣∣∣
∫
X

(
exp

(
− Φ(u)

)
− exp

(
− ΦN (u)

))
μ0(du)

∣∣∣∣
2

≤
∫
X

(
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))2
(Φ(u)− ΦN (u))2μ0(du).

Together with Tonelli’s Theorem and Hölder’s inequality with conjugate exponents
p = (1 + δ)/δ and q = 1 + δ, we then have

1

2
II ≤ EνΦ

N

(
Zsample
N,Φ max(Z−3, (Zsample

N,Φ )−3)

×
∫
X

(
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))2
(Φ(u)− ΦN (u))2μ0(du)

)

=

∫
X

EνΦ
N

(
Zsample
N,Φ max(Z−3, (Zsample

N,Φ )−3)

×
(
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))2
(Φ(u)− ΦN (u))2

)
μ0(du)

≤
(
EνG

N

(
(Zsample

N,Φ )(1+δ)/δ max(Z−3, (Zsample
N,Φ )−3)(1+δ)/δ

× sup
u∈X

(
exp

(
− Φ(u)

)
+ exp

(
− ΦN (u)

))2(1+δ)/δ))δ/(δ+1)

×
∫
X

(
EνΦ

N

(
‖Φ(u)− ΦN (u)‖2(1+δ)

))1/(1+δ)

μ0(du),
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for any δ > 0. The first expected value in the bound above can be bounded
independently of U and N by Lemma 4.7. The second claim of the theorem then
follows. �

Similarly to Theorems 4.2 and 4.9, Theorem 4.11 provides error bounds for
general Gaussian process emulators of G and Φ. As a particular example, we can
take the emulators defined by (3.6). We can now combine Assumption 2.2, Theorem
4.11, and Proposition 3.3 with β = 0 to derive error bounds in terms of the fill
distance.

Corollary 4.12. Suppose GN and ΦN are defined as in (3.6), with Matèrn kernel
k = kν,λ,σ2

k
. Suppose Assumption 2.2 holds with s = ν + K/2, and the assump-

tions of Proposition 3.3 and Theorem 4.11 are satisfied. Then there exist constants
C1, C2, C3, and C4, independent of U and N , such that

dHell(μ
y, μy,N,G

marginal) ≤ C1h
ν+K/2
U + C2h

ν
U

and

dHell(μ
y, μy,N,Φ

marginal) ≤ C3h
ν+K/2
U + C4h

ν
U .

Proof. The proof is similar to that of Corollary 4.10, exploiting that for a Gaussian
random variable X, we have E((X − E(X))4) = 3(E((X − E(X))2))2. �

If Assumption 2.2 holds only for some s < ν + K/2, an analogue of Corollary
4.12 can be proved using Proposition 3.4 with β = 0.

Furthermore we have the following result on a generalised total variation distance
[33], defined by

dgTV(μ
y, μy,N,G

sample) = sup
‖f‖C0(X)≤1

(
EνG

N

(
|Eμy (f)− Eμy,N,G

sample
(f)|2

))1/2

,

for μy,N,G
sample, and defined analogously for μy,N,Φ

sample.

Theorem 4.13. Under the Assumptions of Lemma 4.7, there exist constants C1

and C2, independent of U and N , such that for any δ > 0

dgTV(μ
y, μy,N,G

sample) ≤ C1

∥∥∥∥(EνG
N

(
‖G − GN‖2+δ

))1/(2+δ)
∥∥∥∥
L2

μ0
(X)

,

dgTV(μ
y, μy,N,Φ

sample) ≤ C2

∥∥∥∥(EνG
N

(
‖Φ− ΦN‖2+δ

))1/(2+δ)
∥∥∥∥
L2

μ0
(X)

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

746 ANDREW M. STUART AND ARETHA L. TECKENTRUP

Proof. We give the proof for μy,N,Φ
sample; the proof for μ

y,N,G
sample is identical. By definition,

we have

dgTV(μ
y, μy,N,Φ

sample) = sup
‖f‖C0(X)≤1

(
EνΦ

N

(
|Eμy(f)− Eμy,N,Φ

sample
(f)|2

))1/2

= sup
‖f‖C0(X)≤1

(
EνΦ

N

(∣∣∣∣
∫
X

f(u)
(
exp(−Φ(u))Z−1

− exp(−ΦN (u))(Zsample
N,Φ )−1

)
μ0(du)

∣∣∣2))1/2

≤
(
EνΦ

N

(∣∣∣∣
∫
X

(
exp(−Φ(u))Z−1 − exp(−ΦN (u))(Zsample

N,Φ )−1
)
μ0(du)

∣∣∣∣
2
))1/2

≤ 2

Z

(
EνΦ

N

(∫
X

| exp(−Φ(u))− exp(−ΦN (u))|2μ0(du)

))1/2

+
(
EνΦ

N

(
(Zsample

N,Φ )2|Z−1 − (Zsample
N,Φ )−1|2

))1/2

=: I + II.

The terms I and II can be bounded by the same arguments as the terms I

and II in the proof of Theorem 4.11, by noting that |Z−1 − (Zsample
N,Φ )−1|2 ≤

max(Z−4, (Zsample
N,Φ )−4)|Z − Zsample

N,Φ |2. �

5. Numerical examples

We consider the model inverse problem of determining the diffusion coefficient of
an elliptic partial differential equation (PDE) in divergence form from observation
of a finite set of noisy continuous functionals of the solution. This type of equation
arises, for example, in the modelling of groundwater flow in a porous medium. We
consider the one-dimensional model problem

(5.1) − d

dx

(
κ(x;u)

dp

dx
(x;u)

)
= 1 in (0, 1), p(1;u) = p(0;u) = 0,

where the coefficient κ depends on parameters u = {uj}Kj=1 ∈ [−1, 1]K through the
linear expansion

κ(x;u) =
1

100
+

K∑
j=1

uj

200(K + 1)
sin(2πjx).

In this setting the forward map G : [−1, 1]K → H1
0 (D), defined by G(u) = p, is

an analytic function [10]. Since the observation operator O is linear and bounded,
Assumption 2.2 is satisfied for any s > K/2.

Unless stated otherwise, throughout this section we will approximate the solution
p by standard, piecewise linear, continuous finite elements on a uniform grid with
mesh size h = 1/32. The corresponding approximate forward map, denoted by
Gh, is also an analytic function of u [10], and Assumption 2.2 is satisfied for any
s > K/2 also for Gh. By a slight abuse of notation, we will denote the posterior
measure corresponding to the forward map Gh by μy, and use this as our reference
measure. The error induced by the finite element approximation will be ignored.
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As prior measure μ0 on [−1, 1]K , we use the uniform product measure μ0(du) =⊗K
j=1

duj

2 . The observations y are taken as noisy point evaluations of the solution,

yj = p(xj ;u
∗)+ ηj with η ∼ N (0, I) and {xj}Jj=1 evenly spaced points in (0, 1). To

generate y, the truth u∗ was chosen as a random sample from the prior, and the
solution p was approximated by finite elements on a uniform grid with mesh size
h∗ = 1/1024.

The emulators GN and ΦN are computed as described in section 3.2, with mean
and covariance kernel given by (3.6). In the Gaussian process prior (3.1), we choose
m ≡ 0 and k = kν,1,1, a Matèrn kernel with variance σ2

k = 1, correlation length
λ = 1 and smoothness parameter ν.

For a given approximation μy,N to μy, we will compute twice the Hellinger
distance squared:

2dHell(μ
y, μy,N )2 =

∫
[−1,1]K

⎛
⎝
√

dμy

dμ0
(u)−

√
dμy,N

dμ0
(u)

⎞
⎠

2

dμ0(u).

The integral over [−1, 1]K is approximated by a randomly shifted lattice rule with
product weight parameters γj = 1/j2 [29]. The generating vector for the rule used is
available from Frances Kuo’s website (http://web.maths.unsw.edu.au/∼fkuo/)
as “lattice-39102-1024-1048576.3600”. For the marginal and random approxima-
tions, the expected value over the Gaussian process is approximated by Monte
Carlo sampling, using the MATLAB command mvnrnd.

For the design points U , we choose a uniform tensor grid. In [−1, 1]K , the
uniform tensor grid consisting of N = NK

∗ points, for some N∗ ∈ N, has fill dis-

tance hU =
√
K(N∗ − 1)−1. In Table 1, we give the convergence rates in N for

supu∈X |f(u)−mf
N (u)|2 and ‖f −mf

N‖2L2(X) predicted by Proposition 3.3.

Table 1. Convergence rates in N predicted by Proposition 3.3 for
uniform tensor grids.

supu∈X |f(u)−mf
N (u)|2 ‖f −mf

N‖2L2(X)
�����ν

K
1 2 3 4

�����ν
K

1 2 3 4

1 2 1 0.67 0.5 1 3 2 1.7 1.5

5 5 3.3 5 6 4.3
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Table 2. Observed convergence rates in N of dHell(μ
y, μy,N,G)2,

as shown in Figures 1, 3 and 4.

μy,N,G
mean μy,N,G

marginal μy,N,G
sample

�����ν
K

2 3
�����ν

K
2 3

�����ν
K

2 3

1 2.6 2.4 1 2.6 2.2 1 2.3 1.7

5 6.2 4.5 5 6.2 4.6 5 6.1 4.4

Table 3. Observed convergence rates in N of dHell(μ
y, μy,N,Φ)2,

as shown in Figures 1, 3 and 4.

μy,N,Φ
mean μy,N,Φ

marginal μy,N,Φ
sample

�����ν
K

2 3
�����ν

K
2 3

�����ν
K

2 3

1 2.5 2 1 1.8 1.1 1 1.1 0.76

5 5.4 3.8 5 4.9 3.2 5 4.9 3.3

Table 4. Observed convergence rates in N of dHell(μ
y, μy,N,Φ)2

and dHell(μ
y, μy,N,G)2, as shown in Figure 2.

μy,N,G
mean μy,N,Φ

mean
�����ν

K
1 2 3 4

�����ν
K

1 2 3 4

1 4.1 2.7 2.3 2.3 1 4 2.7 2.1 1.9

5.1. Mean-based approximations. In Figure 1, we show 2dHell(μ
y, μy,N,G

mean )2 (left)
and 2dHell(μ

y, μy,N,Φ
mean )2 (right), for a variety of choices of K and ν, for J = 1. For

each choice of the parameters K and ν, we have as a dotted line added the least
squares fit of the form C1N

−C2 , for some C1, C2 > 0, and indicated the rate N−C2

in the legend. The observed rates C2 are also summarised in Tables 2 and 3. By
Corollary 4.3, we expect to see the faster convergence rates in the right panel of
Table 1. For convenience, we have added these rates in parentheses in the legends
in Figure 1. For μy,N,G

mean , we observe the rates in Table 1, or slightly faster. For
μy,N,Φ
mean , we observe rates slightly faster than predicted for ν = 1, and slightly slower

than predicted for ν = 5. Finally, we remark that though the convergence rates of
the error are slightly slower for μy,N,Φ

mean , the actual errors are smaller for μy,N,Φ
mean .

In Figure 2, we again show 2dHell(μ
y, μy,N,G

mean )2 (left) and 2dHell(μ
y, μy,N,Φ

mean )2 (right),
for a variety of choices of K, with J = 15 and ν = 1. The observed convergence
rates are summarised in Table 4. We again observe convergence rates slightly faster
than the rates predicted in the right panel of Table 1. As in Figure 1, we observe
that the errors in μy,N,Φ

mean are smaller, though the rates of convergence are slightly
faster for μy,N,G

mean .
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Figure 1. 2dHell(μ
y, μy,N,G

mean )2 and 2dHell(μ
y, μy,N,Φ

mean )2 (left and
right, respectively), for a variety of choices of K and ν, for J = 1.
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Figure 2. 2dHell(μ
y, μy,N,G

mean )2 and 2dHell(μ
y, μy,N,Φ

mean )2 (left and
right, respectively), for a variety of choices of K and ν = 1, for
J = 15.

5.2. Marginal approximations. In Figure 3, we show 2dHell(μ
y, μy,N,G

marginal)
2 (left)

and 2dHell(μ
y, μy,N,Φ

marginal)
2 (right), for a variety of choices of K and ν, for J = 1. For

each choice of the parameters K and ν, we have again added the least squares fit
of the form C1N

−C2 , and indicated the rate C2 in the legend. The observed rates
C2 are also summarised in Tables 2 and 3. By Corollary 4.10, we expect the error
to be the sum of two contributions, one of which decays at the rate indicated in the
left panel of Table 1, and another which decays at the rate indicated by the right
panel of Table 1. For convenience, we have added these rates in parentheses in the

legends in Figure 3. For μy,N,G
marginal, we observe the faster convergence rates in the

right panel of Table 1, although a closer inspection indicates that the convergence

is slowing down as N increases. For μy,N,G
marginal, the observed rates are somewhere

between the two rates predicted by Table 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

750 ANDREW M. STUART AND ARETHA L. TECKENTRUP

N
101 102 103 104

T
w

ic
e 

H
el

lin
ge

r 
di

st
an

ce
 s

qu
ar

ed

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

K=2, ν=1

N-2.6 (2+1)
K=2, ν=5

N-6.2 (6+5)
K=3, ν=1
N-2.2 (1.7+0.67)
K=3, ν=5
N-4.6 (4.3+3.3)

N
101 102 103 104

T
w

ic
e 

H
el

lin
ge

r 
di

st
an

ce
 s

qu
ar

ed

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

K=2, ν=1
N-1.8 (2+1)
K=2, ν=5
N-4.9 (6+5)
K=3, ν=1
N-1.1 (1.7+0.67)
K=3, ν=5

N-3.2 (4.3+3.3)

Figure 3. 2dHell(μ
y, μy,N,G

marginal)
2 and 2dHell(μ

y, μy,N,Φ
marginal)

2 (left and

right, respectively), for a variety of choices of K and ν, for J = 1.
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Figure 4. 2EνG
N
(dHell(μ

y, μy,N,G
sample)

2) and 2EνΦ
N
(dHell(μ

y, μy,N,Φ
sample)

2)

(left and right, respectively), for a variety of choices of K and ν,
for J = 1.

5.3. Random approximations. In Figure 4, we show 2EνG
N
(dHell(μ

y, μy,N,G
sample)

2)

(left) and 2EνΦ
N
(dHell(μ

y, μy,N,Φ
sample)

2) (right), for a variety of choices of K and ν, for

J = 1. For each choice of the parameters K and ν, we have again added the least
squares fit of the form C1N

−C2 , and indicated the rate C2 in the legend. The
observed rates C2 are also summarised in Tables 2 and 3. By Corollary 4.12, we
expect the error to be the sum of two contributions, as for the marginal approxima-
tions considered in the previous section, and the corresponding rates from Table 1

have been added in parentheses in the legends. For μy,N,G
sample, we again observe the

faster convergence rates in the right panel of Table 1, but the convergence again

seems to be slowing down as N increases. For μy,N,G
marginal, the observed rates are very

close to the slower rates in the left panel of Table 1.
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6. Conclusions and further work

Gaussian process emulators are frequently used as surrogate models. In this
work, we analysed the error that is introduced in the Bayesian posterior distribu-
tion when a Gaussian process emulator is used to approximate the forward model,
either in terms of the parameter-to-observation map or the negative log-likelihood.
We showed that the error in the posterior distribution, measured in the Hellinger
distance, can be bounded in terms of the error in the emulator, measured in a norm
dependent on the approximation considered.

An issue that requires further consideration is the efficient emulation of vector-
valued functions. A simple solution, employed in this work, is to emulate each
entry independently. In many applications, however, it is natural to assume that
the entries are correlated, and a better emulator could be constructed by including
this correlation in the emulator. Furthermore, there are still a lot of open questions
about how to do this optimally [6]. Also the question of scaling the Gaussian
process methodology to high dimensional input spaces remains open. The current
error bounds from scattered data approximation employed in this paper feature a
strong dependence on the input dimension K, yielding poor convergence estimates
in high dimensions.

Another important issue is the selection of the design points used to construct
the Gaussian process emulator, also known as experimental design. In applications
where the posterior distribution concentrates with respect to the prior, it might be
more efficient to choose design points that are somehow adapted to the posterior
measure instead of space-filling designs that have a small fill distance. For example,
we could use the sequential designs in [39]. It would be interesting to prove suitable
error bounds in this case, maybe using ideas from [44].

In practical applications of Gaussian process emulators, such as in [19], the
derivation of the emulator is often more involved than the simple approach pre-
sented in section 3. The hyper-parameters in the covariance kernel of the emulator
are often unknown, and there is often a discrepancy between the mathematical
model of the forward map and the true physical process, known as model error.
These are both important issues for which the assumptions in our error bounds
have not yet been verified.
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[5] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM Rev. 52 (2010), no. 2, 317–355, DOI
10.1137/100786356. MR2646806

[6] I. Bilionis, N. Zabaras, B. A. Konomi, and G. Lin, Multi-output separable Gaussian pro-
cess: Towards an efficient, fully Bayesian paradigm for uncertainty quantification, Journal
of Computational Physics 241 (2013), 212–239.

http://www.ams.org/mathscinet-getitem?mr=611857
http://www.ams.org/mathscinet-getitem?mr=2502648
http://www.ams.org/mathscinet-getitem?mr=0051437
http://www.ams.org/mathscinet-getitem?mr=2194190
http://www.ams.org/mathscinet-getitem?mr=2646806


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

752 ANDREW M. STUART AND ARETHA L. TECKENTRUP

[7] N. Bliznyuk, D. Ruppert, C. Shoemaker, R. Regis, S. Wild, and P. Mugunthan, Bayesian
calibration and uncertainty analysis for computationally expensive models using optimization
and radial basis function approximation, J. Comput. Graph. Statist. 17 (2008), no. 2, 270–
294, DOI 10.1198/106186008X320681. MR2439960

[8] V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, Amer-
ican Mathematical Society, Providence, RI, 1998. MR1642391

[9] T. Bui-Thanh, K. Willcox, and O. Ghattas, Model reduction for large-scale systems with

high-dimensional parametric input space, SIAM J. Sci. Comput. 30 (2008), no. 6, 3270–3288,
DOI 10.1137/070694855. MR2452388

[10] A. Cohen, R. Devore, and C. Schwab, Analytic regularity and polynomial approximation of
parametric and stochastic elliptic PDE’s, Anal. Appl. (Singap.) 9 (2011), no. 1, 11–47, DOI
10.1142/S0219530511001728. MR2763359

[11] P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith, Asymptotically exact MCMC
algorithms via local approximations of computationally intensive models, J. Amer. Statist.
Assoc. 111 (2016), 1591–1607.

[12] P. G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter
Studies, SIAM Spotlights, vol. 2, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2015. MR3486165

[13] P. G. Constantine, E. Dow, and Q. Wang, Active subspace methods in theory and practice:
applications to kriging surfaces, SIAM J. Sci. Comput. 36 (2014), no. 4, A1500–A1524, DOI
10.1137/130916138. MR3233940

[14] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, MCMC methods for functions:
modifying old algorithms to make them faster, Statist. Sci. 28 (2013), no. 3, 424–446, DOI
10.1214/13-STS421. MR3135540

[15] M. Dashti and A.M.Stuart, The Bayesian Approach to Inverse Problems, Handbook of Un-
certainty Quantification (R. Ghanem, D. Higdon, and H. Owhadi, eds.), Springer.

[16] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte
Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 2, 123–214, DOI
10.1111/j.1467-9868.2010.00765.x. MR2814492

[17] M. Hansen and C. Schwab, Sparse adaptive approximation of high dimensional parametric

initial value problems, Vietnam J. Math. 41 (2013), no. 2, 181–215, DOI 10.1007/s10013-
013-0011-9. MR3089816

[18] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57 (1970), no. 1, 97–109, DOI 10.1093/biomet/57.1.97. MR3363437

[19] D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, Combining field data
and computer simulations for calibration and prediction, SIAM J. Sci. Comput. 26 (2004),
no. 2, 448–466, DOI 10.1137/S1064827503426693. MR2116355

[20] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Math-
ematical Sciences, vol. 160, Springer-Verlag, New York, 2005. MR2102218

[21] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc.
Ser. B Stat. Methodol. 63 (2001), no. 3, 425–464, DOI 10.1111/1467-9868.00294. MR1858398

[22] Y. Marzouk and D. Xiu, A stochastic collocation approach to Bayesian inference in inverse
problems, Commun. Comput. Phys. 6 (2009), no. 4, 826–847, DOI 10.4208/cicp.2009.v6.p826.
MR2672325

[23] Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient
Bayesian solution of inverse problems, J. Comput. Phys. 224 (2007), no. 2, 560–586, DOI
10.1016/j.jcp.2006.10.010. MR2330284

[24] B. Matérn, Spatial variation, 2nd ed., Lecture Notes in Statistics, vol. 36, Springer-Verlag,
Berlin, 1986. MR867886

[25] J. Mercer, Functions of positive and negative type, and their connection with the theory of
integral equations, Philosophical Transactions of the Royal Society of London, Series A 209
(1909), 415–446.

[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation
of state calculations by fast computing machines, J. Chemical Physics 21 (1953), 1087.

[27] F. J. Narcowich, J. D. Ward, and H. Wendland, Sobolev bounds on functions with scattered
zeros, with applications to radial basis function surface fitting, Math. Comp. 74 (2005),
no. 250, 743–763, DOI 10.1090/S0025-5718-04-01708-9. MR2114646

http://www.ams.org/mathscinet-getitem?mr=2439960
http://www.ams.org/mathscinet-getitem?mr=1642391
http://www.ams.org/mathscinet-getitem?mr=2452388
http://www.ams.org/mathscinet-getitem?mr=2763359
http://www.ams.org/mathscinet-getitem?mr=3486165
http://www.ams.org/mathscinet-getitem?mr=3233940
http://www.ams.org/mathscinet-getitem?mr=3135540
http://www.ams.org/mathscinet-getitem?mr=2814492
http://www.ams.org/mathscinet-getitem?mr=3089816
http://www.ams.org/mathscinet-getitem?mr=3363437
http://www.ams.org/mathscinet-getitem?mr=2116355
http://www.ams.org/mathscinet-getitem?mr=2102218
http://www.ams.org/mathscinet-getitem?mr=1858398
http://www.ams.org/mathscinet-getitem?mr=2672325
http://www.ams.org/mathscinet-getitem?mr=2330284
http://www.ams.org/mathscinet-getitem?mr=867886
http://www.ams.org/mathscinet-getitem?mr=2114646


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

POSTERIOR CONSISTENCY FOR GP APPROXIMATIONS 753

[28] F. J. Narcowich, J. D. Ward, and H. Wendland, Sobolev error estimates and a Bernstein
inequality for scattered data interpolation via radial basis functions, Constr. Approx. 24
(2006), no. 2, 175–186, DOI 10.1007/s00365-005-0624-7. MR2239119

[29] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1992. MR1172997

[30] A. O’Hagan, Bayesian analysis of computer code outputs: a tutorial, Reliability Engineering

& System Safety 91 (2006), no. 10, 1290–1300.
[31] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of

Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.
MR1207136

[32] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adaptive
Computation and Machine Learning, MIT Press, Cambridge, MA, 2006. MR2514435

[33] P. Rebeschini and R. van Handel, Can local particle filters beat the curse of dimensionality?,
Ann. Appl. Probab. 25 (2015), no. 5, 2809–2866, DOI 10.1214/14-AAP1061. MR3375889

[34] C. P. Robert and G. Casella, Monte Carlo statistical methods, Springer Texts in Statistics,
Springer-Verlag, New York, 1999. MR1707311

[35] W. Rudin, Principles of Mathematical Analysis, Second edition, McGraw-Hill Book Co., New
York, 1964. MR0166310

[36] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer
experiments, Statist. Sci. 4 (1989), no. 4, 409–435. MR1041765

[37] M. Scheuerer, R. Schaback, and M. Schlather, Interpolation of spatial data—a stochastic
or a deterministic problem?, European J. Appl. Math. 24 (2013), no. 4, 601–629, DOI
10.1017/S0956792513000016. MR3082868

[38] Cl. Schillings and Ch. Schwab, Sparsity in Bayesian inversion of parametric operator equa-
tions, Inverse Problems 30 (2014), no. 6, 065007, 30, DOI 10.1088/0266-5611/30/6/065007.
MR3224127

[39] M. Sinsbeck and W. Nowak, Sequential design of computer experiments for the solution
of Bayesian inverse problems with process emulators, SIAM/ASA Journal on Uncertainty
Quantification, to appear

[40] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Series in
Statistics, Springer-Verlag, New York, 1999. MR1697409

[41] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010), 451–559,
DOI 10.1017/S0962492910000061. MR2652785

[42] W. Walter, Ordinary differential equations, Graduate Texts in Mathematics, vol. 182,
Springer-Verlag, New York, 1998. MR1629775

[43] H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Com-
putational Mathematics, vol. 17, Cambridge University Press, Cambridge, 2005. MR2131724

[44] Z. M. Wu and R. Schaback, Local error estimates for radial basis function interpolation of
scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27, DOI 10.1093/imanum/13.1.13.
MR1199027

[45] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via general-
ized polynomial chaos, J. Comput. Phys. 187 (2003), no. 1, 137–167, DOI 10.1016/S0021-
9991(03)00092-5. MR1977783

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4

7AL, England

Current address: Computing and Mathematical Sciences, Caltech, Pasadena, California 91125
E-mail address: astuart@caltech.edu

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4

7AL, England

Current address: School of Mathematics, James Clerk Maxwell Building, University of Edin-
burgh, EH9 3FD, Edinburgh, Scotland

E-mail address: a.teckentrup@ed.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2239119
http://www.ams.org/mathscinet-getitem?mr=1172997
http://www.ams.org/mathscinet-getitem?mr=1207136
http://www.ams.org/mathscinet-getitem?mr=2514435
http://www.ams.org/mathscinet-getitem?mr=3375889
http://www.ams.org/mathscinet-getitem?mr=1707311
http://www.ams.org/mathscinet-getitem?mr=0166310
http://www.ams.org/mathscinet-getitem?mr=1041765
http://www.ams.org/mathscinet-getitem?mr=3082868
http://www.ams.org/mathscinet-getitem?mr=3224127
http://www.ams.org/mathscinet-getitem?mr=1697409
http://www.ams.org/mathscinet-getitem?mr=2652785
http://www.ams.org/mathscinet-getitem?mr=1629775
http://www.ams.org/mathscinet-getitem?mr=2131724
http://www.ams.org/mathscinet-getitem?mr=1199027
http://www.ams.org/mathscinet-getitem?mr=1977783

	1. Introduction
	2. Bayesian inverse problems
	3. Gaussian process regression
	3.1. Native spaces of Matèrn kernels
	3.2. Radial basis function interpolation

	4. Approximation of the Bayesian posterior distribution
	4.1. Approximation based on the predictive mean
	4.2. Approximations based on the predictive process

	5. Numerical examples
	5.1. Mean-based approximations
	5.2. Marginal approximations
	5.3. Random approximations

	6. Conclusions and further work
	References

