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Numerical methods for initial-value problems which develop singularities in finite time are
analyzed. The objective is to determine simple strategies which produce the correct asymptotic
behaviour and give an accurate approximation of the blow-up time. Fixed step methods for
scalar ordinary differential equations are studied first and it is shown that there is a natural
embedding of the discrete process in a continuous one. This shows clearly how and why the
fixed-step strategy fails. A class of time-stepping strategies that correspond to a time-
continuous re-scaling of the underlying differential equation is then proposed; this class is
analyzed and criteria established to determine suitable choices for the re-scaling. Finally the
ideas are applied to a partial differential equation arising from the study of a fluid with
temperature-dependent viscosity. The numerical method involves re-formulating the equation
as a moving boundary problem for the peak value and applying the ODE time-stepping
strategies based on this peak value.

1 Introduction

Many time-evolving differential equations modelling real-world phenomena develop
singularities in finite time. Typically the singularity reflects either the break down of some
approximations used to derive the model of the real world (as in simple combustion models,
e.g. Kapila 1986) or the use of unphysical initial or boundary conditions (as in various
models derived from the Navier-Stokes equations by similarity reduction (Childress et al.
1989). In the former case it is very important to have precise information about the spatial
and temporal scales on which the model breaks down so that the equations can be modified
in the simplest possible manner consistent with mathematical considerations (usually
asymptotics) and real-world observations. In the latter case, the mechanism of singularity
formation is very poorly understood and it is important to have simple numerical schemes
to complement analysis.

The numerical analysis of blow-up problems is not a well-developed subject. It is our
purpose to construct and evaluate various time-stepping strategies suitable for PDEs by
studying in detail the blow-up problem for a scalar ODE. Many numerical methods for
time-dependent PDEs can be formulated in terms of the method of lines approach and this
justifies our study of the ODE case. We apply our ideas to a concrete PDE in the final
section. A simple time-stepping strategy was used by Hocking et al. (1972) in their study
of bursting in fluid flow and we shall analyse a generalization of this. For computations of
the nonlinear Schrodinger equation a re-scaling algorithm related to that in Hocking et al.
(1972) has been used (LeMesurier et al. 1986). The most sophisticated numerical study of
blow-up is by Berger & Kohn (1988). They use the scale-invariance of nonlinear parabolic
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equations to repeatedly refine the spatial and temporal grids, in a coupled fashion, close to
the point of formation of the singularity in space-time. This is without doubt the most
accurate computation of such a singularity and replicates precisely the known spatial
structure of the problem at the blow-up time. However, for many problems there may be
no scale-invariant structure or the precise details of the blow-up profile may not be
required. For these cases it is useful to have an alternative or simpler numerical approach.
In this paper we will concentrate mainly upon the effect of time-discretization. The effects
of spatial discretization for PDEs which develop singularities in finite time is considered in
Stuart (1989).

We believe that it is important to be able to analyze the asymptotics of the numerical
method, for a given time-stepping strategy, in order to show that the asymptotics of the
underlying differential equation are correctly reproduced. To be able to do this it is
desirable to have a time-stepping procedure which is defined in a simple way in terms of the
numerical solution of the differential equation and does not involve a posteriori testing to
determine whether various tolerances are satisfied at each step; the analysis of the
asymptotics of automatic step-size control packages is a difficult subject and studies have
only just begun (Griffiths 1987). The procedures we study can be naturally defined in terms
of an underlying continuous re-scaling of the problem and this simplifies the analysis
considerably; we relate our approach to the work of Griffiths in §3.

For simplicity, our analysis is restricted to one-step methods. In §2 we study fixed step
methods for scalar ODEs. We show that there is a natural continuous embedding of the
numerical method in which it can be viewed as a bifurcation problem with time as the
parameter. This shows clearly how and why fixed step methods, for scalar ODEs with
stronger than linear growth rate, break down. By considering At as an unfolding parameter
we show the effect of decreasing the time-step.

We note here that computational results for blow-up problems with fixed time-stepping
strategies still appear in the literature (see, for example, Childress et al. 1988, §4.2) and we
believe that analysis of the simple scalar ODE problem is beneficial in highlighting the
pitfalls of such strategies. In §3 we propose a class of variable time-stepping strategies
designed to overcome these pitfalls. We analyze the asymptotics of these strategies, again
by use of a continuous embedding of the discrete process, and describe criteria which
determine the strategy most suited to a particular problem. The classification is based on
the growth of the nonlinearity in the differential equation at infinity.

Finally we turn our attention to the parabolic PDE

with q > 0 and Dirichlet boundary conditions on a finite interval 0 < x < 1. The equation
arises as a qualitative simplification of a model for a fluid with temperature dependent
viscosity (Ockendon 1979; Lacey 1984). In §4 we summarize the known theoretical results
about the equation and in §5 we describe a numerical method for its solution. Numerical
results are then presented. Our analysis in §§2 and 3 suggests the importance of a precise
knowledge of the peak value of u(x, t) and we describe a peak-tracking method, coupled
with a time-stepping strategy based on the peak value of u, to solve the problem. The peak-
tracking is crucial to the solution of the PDE since the peak can move arbitrarily close to
the boundary (Floater 1989).
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Throughout §§2 and 3 we use the following notation to denote a subset of the reals:

Notation 1.1 For be9i, define B = {xeft-.x ^ b).

2 Fixed Step Methods for ODEs

In this and the following section we will analyze numerical methods for the scalar
differential equation

du/dt =/ («) , / > 0 and «(0) = b. (2.1)

We require that /(u)^/>0 for u^b. (2.2)

With this condition u(t) ->• oo in either finite or infinite time. We assume that /(w) is a C1

function for ueB.
Let un denote our approximation to u(n At) for some fixed step size At > 0. We solve (2.1)

by the one-step method

+1),n>Q and uo = b. (2.3)

Here 0 s% 6 ̂  1 and the method is implicit unless 0 = 0. Since u(0) = b and the solution of
(2.1) and (2.2) is monotonic increasing, we seek solutions un+1 of (2.3) in B. We now prove
some results which are needed to define a continuous embedding of the numerical method.

Lemma 2.1 If there exists a sequence uo,ult ...,uN satisfying (2.3) with elements u,eB, then

( i ) M( > Mj.j f o r i = 1, ...,N.

(ii) ut^u0 + iAtf for i = \,...,N.
(iii) If N can be arbitrarily large, then «,->• oo as i-+co.

Note on Lemma We have assumed the existence of a sequence of u,'s satisfying (2.3). In
general we cannot expect this sequence to be unique. Existence and uniqueness issues are
discussed in theorems 2.3 and 2.4.

Proof of Lemma We prove (i) and (ii) first. From (2.2) and (2.3) we have, since 0 ̂  8 < 1,

M( > «<_! + A;(l - 6)f+ At 0 / = «(_! + Atf.

This establishes (i) since / > 0 and (ii) follows by induction. Property (iii) follows
automatically from (ii). •

In the following we will find it useful to define a new variable by setting

An = un + At(l-d)f(un). (2.4)

Thus (2.3) may be written as un+1 = An + Atdf(un+1). (2.5)

We now prove that the ̂ ns form an increasing sequence; this is not immediately obvious
since /(«) may be a decreasing function for some values of its argument.

Lemma 2.2 Under the same conditions as lemma 2.1 we have

(i) At> AM f o r / = \,...,N.
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(ii) A , ^
(iii) If N can be arbitrarily large, then At^ oo as /-*» oo.

Proof of Lemma We have, by definition,

At = ut + At(l-6)f(ud.

Hence, by (2.3), we have A( = ut^ + At(l-d)/^) + Atf(u()

The proof is now identical to lemma 2.1 with At replacing «,. •

By lemmas 2.1 and 2.2 and equations (2.4) and (2.5) it follows that a solution sequence
{«,.} satisfying (2.3) can be continuously embedded in a solution branch X(A) of the single
parameterized nonlinear equation _

X — A+r\X), (2.6)
= At6f(X). (2.7)

Here we consider A as a continuously varying parameter with Ao ^ A < oo. Note that Ao

= b + At(\ -6)f{b) $? b. Each element u( of a sequence of wn's satisfying (2.3) necessarily
corresponds to a solution of (2.6) with A = At_x, where the A,s have properties given in
lemma 2.2. By lemmas 2.1 and 2.2, the sequences {«„} and {Att} are monotonic increasing,
whilst they exist. Thus there is a bijection between Ae[Aa, oo) and te[0, oo) if we set, for
AelA"'An+lX (An+1-A)tn + (A-An)tn+1

where tn = nAt.
Hence equation (2.6) is a simple bifurcation problem for X, with A as the bifurcation

parameter. The function X{A) can be viewed as a continuous embedding of the sequence
{«„} satisfying (2.3); thus A has the role of a time-like variable in the embedding. By
answering questions about the existence and multiplicity of solutions X(A), we show clearly
when and why the discretization breaks down. We can determine the asymptotic behaviour
of solutions of (2.3) for large n by examining the asymptotic behaviour of the single equation
(2.6) for large A. We will examine three separate cases, determined by the behaviour of/(u)
as u ->• oo :

Case (a) l i m ^ [f(u)/u] -+ 0.
Case (b) limu^00 [f(u)/u] -* L, constant.
Case (c) l i m ^ [f(u)/u] -+ co.

Case (c) contains functions for which blow-up in (2.1) occurs in finite time (that is,
« (0^ oo as t^tb< co); however, not all functions in class (c) necessarily lead to finite time
blow-up (consider/(M) = wlog(«), for example).

We are now in a position to prove the following theorem about the solutions of (2.3) for
large n. Observe that, for 6 = 0, (2.3) has a solution for all n > 0.

Theorem 2.3 For 0 < 6 ^ 1, the existence of solutions of (2.3) asn^-co can be classified as
follows:
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(i) For case (a) there is a solution un+1e B for all n > 0.
(ii) For case (b) there is a solution un+1eBfor all n > 0 if AtOL < 1.

(iii) For case (c) there exists N such that, for all n> N, there are no solutions un+1 e B.

Note on Theorem It might seem that the non-existence property in (iii) is desirable since
case (c) includes differential equations whose solutions cease to exist in finite time. This is
not the case for two reasons: firstly, not all equations covered by case (c) have solutions
which cease to exist in finite time (/(«) = «log(w) for example) so that property (iii) is
highly undesirable. Secondly, even if the true solution does cease to exist in finite time, the
manner in which the discrete solution ceases to exist is of a completely different nature; see
theorem 2.4 and example 2.7 below.

Proof of Theorem By lemmas 2.1 and 2.2 the question of the existence of solutions of (2.3)
in B for all integer n > 0 is completely determined by the question of existence of solutions
of (2.6) in B for all A<=[A0, oo). We define the function G(X) by

G(X) = X-A-F(X). (2.9)

To prove existence of a solution of (2.6) in B for any given A in the appropriate range, it
is sufficient to show that G(X) must change sign, for b ^ X < oo. Throughout the following
we use the fact that/(«) is a C1 function for ueB.

We have G(b) = b-A-F(b)< b-A0-Atdf^ -Atdf< 0. Now, for any Ae[Ao, oo),

.. G(X) F(X)
h m y i = 1 h m ^

In case (a) we deduce that G{X) > 0 for X sufficiently large and thus that a positive solution
exists. Thus (i) follows. In case (b) we deduce that G(X) > 0 for X sufficiently large provided
that AtOL < 1, by (2.7). This establishes (ii).

We now prove (iii). In this case, there exists X* > 0 such that, for X > X* we have
F(X) ^ aX for some a ^ 1. We let

F= min F(X) > 0.

Then, for b < X < X*, we have G(X) ^X*-A-F. Thus, for A > X*-Fwe have G(X) < 0
for b ^ X ^ X*. Also, for X > X*, we have G(X) < X-A -aX < 0, for A > 0. Thus, for
A > max {X* -F, e}, any e > 0, we have G(X) < 0 for all X > b. This implies that (2.5) does
not have solutions in B for An sufficiently large; hence, by lemma 2.1, equation (2.3) does
not have solutions in B for n sufficiently large. •

A desirable property of the equation (2.3) is that it should have a unique solution in B.
For cases (a) and (b) uniqueness holds if At is suitably restricted, and /(«) is not highly
oscillatory as «-*oo. However, for case (c) uniqueness cannot occur, since (2.3) always
possesses an even number of solutions in B.

Theorem 2.4 For 0 < 6 < 1, the number of solutions of'(2.3) in B can be classified as follows:
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(i) In cases (a) and (b) there is a unique solution in B provided that

sup Atdf'(X)< 1. (2.10)

(ii) In case (c) there is an even number of solutions in B or none at all.

Proof of Theorem The number of solutions of (2.3) in B for integer n > 0 is determined by
the number of solutions of (2.6) in B for all Ae[A0, oo). Consider G(X) as defined by
equation (2.9). Then G'{X) = 1 -F'{X). If condition (2.10) is satisfied then, by (2.7), G(X)
is a monotonic increasing function of XeB for any A. Hence the solution of (2.5) is unique
in B (if it exists). This establishes (i). In case (c) we have

G(b) = b-A-f(b)<b-Ao-f<-f<0 and G(oo) < 0

so that there must be an even number of solutions of (2.6) in B, or none at all. This
establishes (ii). •

We now describe some examples which illustrate theorems 2.3 and 2.4. The initial value
b is zero in all three examples. All the figures show graphs of solutions X of (2.6) as A is
varied. We can identify A with time, through (2.8), and Zwith a continuous embedding of
the solution sequence satisfying (2.3). Thus the pictures are essentially bifurcation diagrams
for the numerical solution of (2.1) with time as the parameter. We do not have a precise
numerical description of time since the identification of A and t via (2.8) depends on the
sequence of A(s which we do not know a priori; however, by virtue of lemmas 2.1 and 2.2,
we know that the plots of X versus A and X (a continuous embedding of un) versus / will
be topologically equivalent. We shall study the deformation of these diagrams as we vary the
parameter At. In the language of singularity theory we are considering At as an unfolding
parameter.

Example 2.5 Let/(«) = /te"<u"10)2/1°. This function falls in category (a). Figure 1 shows the
bifurcation diagram for four values of A; chosen so that AtO/i = 8,4, 2 and 1. Consider the
largest value of At described in figure 1 (a): the solution X is not unique as a function of
time (A). The numerical method will pick out a (monotonically increasing) sequence of
values of X corresponding to some (monotonically increasing) sequence of values of A (and
hence t). Near to A = 5 the solution generated by the numerical method will undergo rapid
transient behaviour as it jumps to the upper branch. This behaviour is spurious and caused
by poor temporal resolution. As the temporal mesh is refined this behaviour is eliminated:
in figure 1 (b) the two fold points coalesce at a cusp catastrophe and in figures 1 (c) and 1 (d)
condition (2.10) is satisfied and the solution is unique.

Example 2.6 Let/(w) = /i{\ +«)(11 +10sin(1 + M)). This function does not fall in any of
the three categories (a), (b) and (c). However, its behaviour is essentially that in category
(b). Figure 2 shows the bifurcation diagram for four values of At chosen so that
A/0/* = O'Ol, 0-005, 0-0025 and 0-00125. In figure 2(a) At is not sufficiently small and
non-uniqueness abounds. At every other turning point the numerical solution will undergo
spurious transient behaviour as it jumps to the branch above. As the mesh is refined this
non-uniqueness is eliminated once condition (2.10) is satisfied.
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FIGURE 1. The numerical solution of (2.1) and (2.2);f(u) = /ie"1"-101''10. (a) Atd/i = 8-0; (b) Atd/i =
40 ; (c) Atdfi = 20 ; (d) Atdji = 10. A is identified with time, X with the numerical solution of (2.1)
and (2.2).

Example 2.7 Let/(«) = (1+M)2. This function falls in category (c) and solutions of (2.1)
blow-up in finite time. For the numerical method this strong temporal growth has severe
consequences. For any non-zero value of At 6 the solutions of the algebraic equations (2.3)
are necessarily non-unique (if they exist) and, for large enough n, no solutions exist in B.
This is illustrated in figure 3. Note that the non-existence occurs by a coalescing of the true
solution (the lower branch) with a spurious solution introduced by discretization (the upper
branch) at a fold point. This non-existence is of entirely different character from that which
occurs in the differential equation at the blow-up time.

The continuous embedding of the discrete process shows very clearly what is going on
in numerical methods which exhibit grid-scale dynamics: the discrete initial value problem
has multiple solutions. Only one of these solutions corresponds to the true trajectory and
the numerical method can jump onto a spurious trajectory. In examples 2.5 and 2.6 the
jump occurs because the true trajectory ceases to exist for large enough values of A and this
occurs by a coalescence of the real trajectory with a spurious one at a turning point. In
general this jumping may occur for other reasons associated with the domains of attraction
of the solutions for the particular algebraic solver used. The choice of nonlinear algebraic
solver is discussed in Iserles (1988).

In example 2.7 this coalescing also occurs, but there is no other solution for the numerical
method to select, so that the discrete solution ceases to exist after a finite number of steps.
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FIGURE 2. The numerical solution o/(2.1) and (2.2);/(u) = fi(\ +w)(ll + 10sin(1 +«)). (a) Atd/i =
001 ; (b) Atd/i = 0-005; (c) AtOfi = 0-0025; (rf) Af 0/t = 0-001 25. A is identified with time, X with
the numerical solution of (2.1) and (2.2).

This is typical of nonlinear problems with strong growth. In the remainder of the paper we
focus on such problems and examine adaptive time-stepping strategies designed to
overcome the multiplicity and non-existence of solutions manifest in example 2.7.

We finish this section with an observation about the explicit case 6 = 0. At first glance
it might appear that the problems of multiplicity and non-existence arising from case (c)
(see theorems 2.3 and 2.4) can be overcome in a straightforward fashion by the use of
explicit methods, since (2.3) has a unique solution, for all n, if 0 = 0. However, the solutions
obtained in this case have the undesirable property that in the finite time blow-up case the
numerically computed solutions exist for all values of the discrete time tn = n At. Thus the
fixed-step explicit method is totally inadequate at describing highly nonlinear problems,
just as its implicit counterpart is.

Figure 4 summarizes the implications of the analysis in this section for the computation
of blow-up problems by means of fixed time-stepping routines. The figure shows the true
solution (T), which blows up in finite time tb = 1. The curve (I) is a discrete approximation
to (T) found by an implicit approximation (0e(O,1]). The solution ceases to exist after finite
time; however, this does not occur through blow-up, but by a coalescing of the
approximation to the true solution (the lower branch) with a spurious solution introduced
by discretization (the upper branch). The curve (E) is an explicit approximation (6 = 0) and
the solution exists for all time, even though the true solution ceases to exist at t = tb.
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FIGURE 3. The numerical solution of(2.\) and (2.2) ;f(u) = (1 +uf. (a) Ltd = 0-08; (b) Ltd = 004; (c)
Atd = 0-02; (d) Ltd = 001. ,4 is identified with time, A'with the numerical solution of (2.1) and (2.2).
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FIGURE 4. Summary of existence theory for fixed step methods for blow-up problems. T = true
solution; I = implicit approximation; E = explicit approximation.
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3 Variable-Step Methods for ODEs

Throughout this section we will study variable step methods for the solutions of equation
(2.1), when/(w) is as in case (c); to avoid repetition we will not state this explicitly in the
following. In particular we are interested in the case where

= P —
" Jo /(«)

< oo. (3.1)

This is the case for which finite time blow-up occurs, with blow-up time given by tb.
We base our time-stepping strategies on an underlying transformation of the continuous

variable t. Specifically, we introduce a new time-like variable s with the property that

(3.2)

We re-write equation (2.1) as
du/ds = H(u)f(u), K(0) = b (3.3)

and dt/ds = H(u), t(0) = 0. (3.4)

We wish to choose H(u) so that the following properties hold. These are properties of H(u)
itself, the true solution w(j) and the discrete solution un, satisfying (3.5) and (3.6).

(I) Property (3.2) holds for the solution u(s), t(s) of (3.3) and (3.4).
(II) For the discretization (3.5) and (3.6), a fixed-stepping strategy in s (h fixed) has a

solution un+1eB for all n ^ 0.
(III) The computed solution satisfies un -»• oo as n -> oo.
(IV) H(u) > 0 for u e B, so that s(t) is a monotonically increasing function, for / > 0.
(V) //(u)eC1 for ueB.

Henceforth we shall assume that properties (IV) and (V) hold. We determine conditions
which ensure (I)—(III). For given/(M) satisfying (3.1), there are many different choices of
H(u) that will result in the desirable property (I). It is more difficult to ensure (II) and we
analyze the discretization (3.5) and (3.6) in some detail to guide our choice for H(u). We
shall find that the best choice is determined by the growth off(u) at infinity. Once existence
is established for arbitrary n > 0, (III) follows from (IV); see lemma 3.1.

In a recent paper (Griffiths 1987) it is shown that both the error per step and the error
per unit step strategies have 'modified equations' interpretations of the form (3.3) and (3.4).
Specifically, the former strategy corresponds to H(u) = \f'(u)f(u)\~* and the latter to
H(u) = I / 'M/Mr 1 - The particular class of problems defined by (3.1) is very special and,
rather than using standard error control strategies, we shall take (3.3) and (3.4) to define
our time-stepping strategy, by taking equally spaced steps in s. We shall examine the
effect of different choices of the function H{u).

Let h > 0 denote a fixed step in the variable s. We define the discrete grid by the points
sn = nh and we let un and tn denote our approximations to u(sn) and t(sn) respectively. We
consider the one-step method defined by

+i)] ,«>0 and u, = b (3.5)

and tn+1 -tn = hH(un), t0 = 0. (3.6)
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As in §2, we assume that 0 < 6 < 1 and seek solutions un+1eB. The method is implicit
unless 0 = 0. We shall concentrate on the case 6 4= 0. The case 6 = 0 is relatively
straightforward to analyze since it corresponds to inverting the ODE (2.1) to obtain an
ODE for t(u) and applying quadrature on the infinite interval (with the spacing of the step
in u determined by the choice of H(u)) to determine tb.

The choice of evaluating H(u) in an explicit fashion throughout (3.5) is made for the
following reason: our ultimate goal is to gain understanding of time-stepping strategies for
PDEs where H(u) will become a functional of the solution (for example, u might be replaced
by the maximum norm of u over the spatial variables as in § 5) and it is impractical to solve
a large system of nonlinear equations involving such a functional implicitly since the
functional introduces a global coupling of the equations that would destroy any banded or
sparse structure arising from the discretization.

We now discuss various possible choices for the function H(u). Hocking et al. (1972)
made the observation that 0(1) relative changes in u(t), the solution of (2.1), evolve on a
time-scale proportional to u/f(u) and that therefore the time-step should be chosen to be
small on that time scale; the particular nonlinearity they consider has leading order
behaviour oc M3 and the time-step At is adjusted to keep Atf(u)/u beneath some specified
tolerance. In terms of the underlying continuous re-scaling this corresponds to choosing
H(u) = «//(«). By (3.3) this means evolving u(s) satisfying

du/ds = u,

that is, adapting the time-step so that the solution grows exponentially in the new time-like
variable s. Clearly this re-scaling results in property (I) on H(u).

We will show that H{u) = u/f(u) has the desired properties (I)-(V) when f(u) has
polynomial growth at infinity. However, when the nonlinearity has exponential growth the
appropriate choice turns out to be H(u) = 1 //(«), since otherwise (II) is violated. We shall
also show that for all choices of H(u) the solution wn+1 of (3.5) is necessarily non-unique,
if it exists. Thus adaptive time-stepping strategies cannot avoid the problem of non-
uniqueness inherent in fixed-step strategies: see theorem 3.4.

As in §2, we shall analyze the existence and multiplicity of solutions of (3.5) and (3.6) by
defining a continuous embedding of the problem. First we must prove a preparatory
lemma; note that the lemma shows that property (III) on H(u) holds once (II) is established.
Recall that we assume that properties (IV) and (V) hold.

Lemma 3.1 If there exists a sequence u0, ult ...,uN satisfying (3.5) with elements u(eB, then

(i) ut>ui_1fori= \,...,N.
(ii) «,£ «0+A/SJ:J #(«,).

(iii) If N can be arbitrarily large, then w(-> oo as /-> oo.

Proof of Lemma By (3.5) we have, since/(w) ^ / > 0 and H(u) > 0 for ueB,

From this it follows that ut > u^ and (ii) follows by induction. By (i) we know that u( form
a monotonically increasing sequence and we deduce that, if N can be arbitrarily large, then
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u( either reaches a limit or tends to infinity with /. If it were to approach a limit, say «*, then
such a limit would have to be in B and, by (3.5), satisfy

u* = u* + hH(u*)f(u*).

However, we know that H(u) > 0 and/(«) ^ / > 0 for ueB. Thus a finite limit cannot be
attained in B. Hence (iii) must be true. •

As a consequence of lemma 3.1 we can continuously embed the solutions of (3.5) in the
single equation

X = u + hH{u) ((1 - 6)f(u) + df(X)), (3.7)

where u is a continuously varying parameter in B, and increasing u corresponds to
increasing n in (3.5). We can examine the question of existence of solutions of (3.5) for large
n by examining the existence of solutions of (3.7) as M-> OO. Furthermore, if the solution ut

of (3.5) and (3.6) exists for all i, then ut^ oo as i-*- oo. Thus we can identify the parameter
b ^ u < oo with the variable 0 < s < oo by defining, for ue[un, un+l)

s = ( " n + l - " K + ( M - M n ) V n ,3 g)

As for the embedding considered in §2, we do not know the numerical values of ut

a priori, so the embedding is not defined numerically. However, we deduce that the graph of
X versus u will be topologically equivalent to the graph of X (a continuous embedding of
M,) versus s. We are particularly interested in determining choices for the re-scaling function
H(u) which ensure that equation (3.7) has a solution for all u > b with h fixed. This
corresponds to choosing H(u) so that the fixed-step strategy in s gives the correct
asymptotic behaviour, namely that the solution exists and blows up as s-> oo(t->tb). We
examine this in the following theorem, which gives a sufficient condition for property (II)
on H(u) to hold. Property (III) then follows from lemma 3.1. We consider only the case
6 = 1 since this simplifies the analysis considerably without altering the nature of the
conclusions.

Theorem 3.2 Let 6 = 1. Then, provided that

limsupH(x-§§-]f'(X) < oo, (3.9)

there exists hc > 0, independent of un, such that (3.5) has a solution un+1eB for all n ^ 0,
for any h < hc.

Proof of Theorem From lemma 3.1 we deduce that the question of existence of solutions
of (3.5) in B for all n is equivalent to the question of existence of solutions of (3.7) for all
ueB. With 6 = 1 equation (3.7) becomes

X=u + hH(u)f(X). (3.10)

For u = b this equation has at least two solutions XinB for h sufficiently small; this is since
f(u) is denned by case (c) in §2. To show that, for some fixed h > 0, the equation has a
solution for arbitrary u > b it is sufficient to show that the solutions which exist for u = b
can be continuously extended to all values u > b.
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Suppose, for the purpose of contradiction, that the solution X(u) cannot be continuously
extended to all values of ueB. Then, by the implicit function theorem, there must exist a
pair X and u, both in B, satisfying (3.10) and

\ = hH{u)f\X). (3.11)

At such a point, u = X- ~^-. (3.12)
J X)

However, if (3.9) holds, then it is possible to choose h independently of weB so that (3.11)
cannot be satisfied with u given by (3.12). This is a contradiction. Thus the solution found
for M = b can be continuously extended to all ueB. •

The following result uses theorem 3.2 to determine suitable choices for the time-rescaling
function H(u), given different assumptions about the growth at infinity of/(«). By ' suitable'
we mean a function H(u) for which property (II) holds; property (III) can then be deduced
from lemma 3.1. Properties (I, IV and V) can be established independently. The choice
made in Hocking et al. (1972) is shown to be suitable for the case of polynomial growth at
infinity, but a more severe re-scaling is required when the growth is exponential.

Result 3.3 Consider the case 6 = 1.

(i) If/(w) oc uv as «-> oo, then the choice H(u) = u/f(u) is a suitable re-scaling function,
(ii) If/(w) oc eu as «-> oo, then the choice H{u) = 1//(M) is a suitable re-scaling function.

Justification The justification involves checking that condition (3.9) holds with the given
choices for H(u). This is straightforward. •

Having established conditions under which the fixed-stepping strategy in s yields a
solution of (3.5) in B for all n ^ 0 we now turn our attention to equation (3.6) and the
numerical approximation of the blow-up time. The numerical blow-up time is given by

/ „ = £ hH{un), (3.13)
n-0

assuming that the sum exists. Using equation (3.5) this can be re-written as

/ _ y M i u

00 T (1

The true blow-up time is given by (3.1). Clearly equation (3.14) forms an approximation
to the semi-infinite integral (3.1). The accuracy of the approximation is determined by the
spacing of the un which is itself determined by the choice of the re-scaling function H(u).
In the following result we take two representative choices for/(w) and establish convergence
of the approximation (3.14) to the true blow-up time (3.1), under suitable choices of H(u)
governed by result 3.3. The results prove convergence of the numerical scheme, (3.5) and
(3.6), over arbitrarily long intervals in s; note that such results are considerably sharper
than those which follow from standard estimates - such estimates involve an error constant
which grows exponentially with the independent variable s.
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Result 3.4 Consider the case 6 = 1.

(i) If/(M) = u2 then, with the choice H(u) = «//(«), the sum (3.14) converges to the
integral (3.1) as /i-»0.

(ii) If f(u) = e" then, with the choice H(u) = l//(w), the sum (3.14) converges to the
integral (3.1) as h-^0.

Proof

(i) With/(i/) = u2 the integral (3.1) can be evaluated to give tb = \/b. Here H{u) = \/u
and so (3.5) gives 2

Note that the solution wn+1 is non-unique (see theorem 3.5) but that a solution may be
found for all n provided that h < £ (see result 3.3 (i)). The required solution is given by the
smaller of the two roots and is ,

„ -C'u c _ l - ( l - 4 / Q '

Using (3.13) we calculate that

Taking the limit shows that tK -*• tb as h -*• 0.
(ii) With/(«) = e" the integral (3.1) can be evaluated to give tb = e"6. Here H(u) = e"u

and so (3.5) gives . „ _„

As in part (i) the solution is non-unique, but a solution exists for all n provided that
h < e"1 (see result 3.3 (ii)). The required solution is given by

un = uo + nY=b + nY,

where Y is the smaller of the two roots of the equation Y = heY. Using (3.13) we calculate
t h a t L y

Thus /„ = y/e"(ey-1) and since Y^O as h-»-0, we find that tx->tb as h-»• 0. •

In this section we have introduced a new time-like variable 5 with the property that the
finite-time blow-up point t = tb\s transformed to s = oo. The results show that, if the re-
scaling function H{u) can be chosen in such a way that (3.9) is satisfied, then a fixed step
strategy in s will have a solution for all values of the discrete time, and that there is a precise
sense in which this solution trajectory is a continuous extension of the initial value. In
addition, the discrete solution tends to infinity as discrete time tends to infinity.
Furthermore, we have shown that in two important special cases, the numerical
approximation of the blow-up time converges to the true blow-up time as the discretization
parameter h tends to zero.

We complete this section with the following cautionary result. The result shows that,
even with a careful choice of time-stepping strategy guided by theorem 3.2, numerical
methods for blow-up problems introduce a non-uniqueness which is not present in the
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underlying initial-value problem. Thus particular care is required in the choice of nonlinear
algebraic solver to ensure convergence to the correct solution. As before we take 6 = 1 since
this choice simplifies the analysis without modifying the results.

Theorem 3.5 Let 6 = 1. Consider a time-stepping strategy chosen with H{u) satisfying (3.9).
Then there is either an even number of solutions to (3.5) in B, or no solution in B.

Proof It is sufficient to show that (3.10) has either an even number of solutions in B or no
solution in B, for any value of u > b. We use the fact that any solution XeB of (3.10) must
satisfy X > u. Thus, for usB, no solution A' of (3.10) can cross the boundary of B as u
varies.

Let G(X, u) = hH(u)f(X) + u-X.

Then G{b,b) > 0 and G(co,b) > 0, since/(«) is as in case (c), defined in §2 and H(0) > 0.
Thus, for M = b, (3.10) has an either even number of solutions in B or no solution at all in
B. All of the solutions found for u - b satisfy X > b. Since condition (3.9) is satisfied we
deduce from the implicit function theorem that the solutions found for « = b remain in B
and are continuously extendable to all values of u > b; thus the result follows. D

4 Application to a Degenerate Parabolic Equation; Theoretical Results

In this section we summarize theoretical results about a degenerate parabolic PDE arising
as a qualitative model of a fluid with temperature-dependent vicosity. We emphasize that
the equation we study only reflects the qualitative features of the full model: it is one of the
simplest parabolic equations in which a degeneracy and a nonlinear source term are
present. These theoretical results are presented to motivate the numerical scheme described
in the following section.

The model is derived in Ockendon (1979) and the simplifications leading to the equations
(4.1)-(4-3) are discussed in Lacey (1984). The problem is to find u(x, t)eC21((0,1) x (0,T))

satisfying, for a > 0, ^ «„„+/<„), (x,06(0,l)x(0,r), (4.1)

«(0,0 = « 0 , 0 = 0,0 < * < T , (4.2)

). (4.3)

The solution u(x, t) can cease to exist after a finite time /„ at which it becomes infinite.
We prove this in theorem 4.1, which is a generalization of proposition 3.1 in Floater (1989).
The interesting feature of the blow-up which distinguishes it from non-degenerate problems
is that it is possible for the blow-up point to be at the boundary x = 0; the peak temperature
of u(x, t) may occur at a sequence of points which approach arbitrarily closely to x = 0 as
the blow-up time is approached. For the nonlinearity f(u) = up, with 1 < p ^ 2 and q = 1
this is proved in Floater (1989) and the results are summarized in theorem 4.2.

In theorem 4.3 we derive a condition on the formation of interior zeros of ux(x, t) as time
evolves. This condition is helpful in our numerical simulations, which are based on tracking
the peak value of u. It appears difficult to show that if w0 has only one critical point (where
uOx = 0) then u(x, t) has only one critical point for any t > 0. However, under the
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assumption that ul +/(M0) ^ 0, we can prove that no new peak forms to the right of the
initial one.

Having established that blow-up can occur at the boundary, an important question is to
determine when it actually does occur there. As theorem 4.2 shows, this depends on two
factors: the initial condition and the relationship between the strength of the source term
and the effect of degeneracy. The effect of the initial data is intuitively obvious, since if uo(x)
attains its maximum near x = 0, it has more chance of blowing up at x = 0. The balance
between the source term and the degeneracy can be interpreted as follows: the stronger the
degeneracy, the more rapidly the peak is pulled towards x = 0; on the other hand, the
stronger the source term the more quickly the solution blows up. The bound onp for blow-
up at the boundary is determined by this balance: p > 1 ensures that blow-up occurs, whilst
p < q + 1 ensures that the solution does not blow-up before the peak reaches the boundary.
Numerically we are interested in testing the sharpness of the upper bound on p, together
with testing the necessity of the condition on the initial data.

Theorem 4.1 Let <f>(x) ^ 0 be the principal eigenfunction satisfying

= o,
with corresponding eigenvalue A. Take <j> to be normalized so that j^x9</>dx = 1. Define
U(t) = Jo x"<t>(x) u(x, t) dx. Assume that

(i) f(u) is a strictly positive, convex function.
(ii) f{U)-XU > 0,for all U 5* f/(0).

Then the solution u(x,t) of (4.1)—(4.3) blows up infinite time tb < t*.

Proof Multiply (4.1) by <f>(x) and integrate over xe(0,1), using parts twice on the second
term. This gives « „ n

x"(j>ut&x= <j)xzu<\x+\ (j)f{u)dx.
o Jo Joo

Using the denning equation for (f> we obtain

By the convexity of/(«) we may apply Jensen's inequality (Gradsteyn & Ryzhik 1981;
12.411) to obtain ,

Integrating this differential inequality, using (ii) and (iii), establishes that U{t) becomes
unbounded in finite time. Hence u(x, t) must become unbounded at, at least, one point. This
completes the proof. •
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Theorem 4.2

(i) There exists a unique classical solution of (4.1)—(4.3) which either exists for all
0 < t < oo or becomes unbounded infinite time tb < oo.

(ii) Suppose that

[Tx^f)^
for all xe(0,1) and that f(u) = uv for any p such that 1 < p < q+ 1. Ifu(x, t) blows up
in finite time, then the only blow-up point is x = 0.

Proof Part (i) is proved in Floater (1989) for/(«) = uv and can be easily adapted to more
general/(M) - see also Floater (1988). Part (ii) is proved in Floated (1989).

In theorem 4.3 we use the following notation, which we also employ in §5. Suppose that
uOx(x) > 0 for 0 < x < a and uOx(x) < 0 for a < x < 1. Define s(t) to be the continuous curve
such that 5(0) = a and ux(s(t), t) = 0.

Theorem 4.3 Suppose that MJ,' + / ( M 0 ) JS 0. Then, for all t > 0 and x > s(t), ux(x, t) < 0.

Proof Set w{x,t) = ux{x,f) in the region S = {(x,t):t > O,s(t) < x < 1}. Differentiating

g l V e S xQwt - wxx -f'(u) w = - qxq-xut < 0.

The fact that ut > 0 follows from the maximum principle applied to ut{x, i); see Floater
(1989). At the boundaries of S we have w(s(t), t) = 0, w{\,t) < 0 (by the strong maximum
principle applied to u(x, t)) and w(x, 0) < 0 for a < x < 1. Hence, by the maximum
principle, w < 0 in 5, as required. •

S Application to a Degenerate Parabolic Equation; Numerical Method and Results

In this section we decribe a numerical method for the solution of (4.1)—(4.3). Theorems 4.1
and 4.2 indicate that equations (4.1)—(4.3) form a very delicate problem since not only does
the solution blow up, but it is possible for the peak value to approach arbitrarily close to
the boundary x = 0. By virtue of the boundary condition (4.2), this suggests that a
boundary layer forms at x = 0 with thickness which becomes arbitrarily small as the blow-
up time is approached. As discussed in the previous section, an important question is to
determine the balances between the strength of nonlinearity f(u) and the degeneracy x"
which determine when blow-up actually occurs at the boundary.

We propose treating equations (4.1)—(4.3) as a moving boundary problem, with the peak
value of u(x, t) determining the position of the boundary. Thus we introduce a peak-
tracking numerical method. This decision is made for two reasons:

(i) The main theoretical interest in equations (4.1)—(4.3) is in the possibility of blow-up
occurring at the boundary x = 0, since it is this feature that distinguishes it from non-
degenerate problems. A fixed grid numerical method cannot track the position of the peak
value close to the boundary x = 0 since it is naturally limited to placing the peak at least
one grid point from the boundary, in addition to losing important spatial resolution
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between the peak value of u and the boundary at x = 0. By re-formulating the problem as
a moving boundary problem for the position of the peak, and using a suitable co-ordinate
transformation, we essentially introduce an automatic mesh-refinement that places a
reasonable number of mesh points between the boundary x = 0 and the position of the
peak.

(ii) The analysis in §§2 and 3 indicates the care required in choosing a time-stepping
strategy, even for the scalar ODE (2.1). For the PDE we propose the use of time-stepping
strategies based on the supremum norm of u{x, i); thus it is important to have an accurate
knowledge of the peak position and value. Again this suggests that tracking the position
of the peak is important.

We now describe the formulation of (4.1)-(4.3) as a moving boundary problem. In the
following we shall use the variable s(t) determined by the condition

ux(s(t),t) = 0 (5.1)

and assume that the point x = s(t) defines a local maximum in x for the function u(x, t). As
stated, s(t) is not uniquely defined in general, since the solution u(x, t) of (4.1)—(4.3) may
possess several maxima or minima. However, we shall mainly consider classes of initial data
for which s(t) is uniquely defined. Note that theorem 4.3 shows that any new maxima must
form in (0, s(t)). By monitoring the solution in this region we can determine numerically
when this occurs and, if desired, re-start the numerical method and track the position of
the new peak which has formed nearer the boundary x = 0.

The function s(t) determines an internal moving boundary for the solution of (4.1)—(4.3)
and we consider its determination as part of the problem. The extra condition that we shall
use to determine s(t) numerically is that u(x, t) be continuous at x = s(t). Thus we can state
the moving boundary problem as follows: find u(x, t) e C2t ^(0,1) x (0, T)) and s(t) e C\0, r)
satisfying

*>u u +/(«), (x,0e((U0)x(0,T), (5.2)

M(0, 0 = 0, ux(s(t), t) = 0,0 <t<r, (5.3)

x"ut = uxx +f(u), (x, t) e (s(t), 1) x (0, T), (5.4)

1/^(0,0 = 0,w(l,0 = 0,0 <?<r , (5.5)

u(x, t) continuous at x = s(t), (5.6)

together with a suitable initial condition on u(x, 0), which will determine s(0).
We shall use a numerical method for the solution of (5.2)—(5.6) based on a co-ordinate

transformation. This idea was introduced for the Stefan problem in Landau (1950); its
application to a problem with an internal moving boundary is described in Stuart (1985).
The essence of the transformation is this: we introduce a co-ordinate change which maps
0 < x < s(t) onto 0 < X < 1 and which maps s(t) < x(t) < 1 onto 1 < X < 2. The use of a
fixed spatial grid in the variable X corresponds to a moving mesh in the variable x.
Furthermore, we can guarantee as much spatial resolution as we desire between the
boundary x = 0 and the position of the maximum x = s(t), by use of a suitable number of
grid points in 0 < X < 1. Thus arbitrarily thin boundary layers, which form in the cases
when blow-up occurs at the boundary (.?(/)->•()), can be resolved.
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We introduce the new variable X denned by

X =-^-,0 < x < s(t) and X = * "*" X~ ^ ,s(t) < x < 1. (5.7)
Syt) 1 S(t)

We also define T = / and introduce

U(X,T) = u(x,t),0<X<\ and V(X,T) = u(x,t),\ < X <2. (5.8)

Under (5.7) and (5.8) equations (5.2)—(5.6) give the following problem: find

U(X, T) e C^ >((0,1) x (0, T)), V{X, T) e C2-»((1,2) x (0, r)) and 5(7) e C'(0, r)

satisfying, for s = ds/dT,

V+1iC/x + 53/(t/), ( j r , r )e(0 , l )x(0 ,T) , (5.9)

U(0,T)=Ux(\,T) = 0, (5.10)

»)X(O,T), (5.11)

Vx(\,T)=V(2,T) = 0, (5.12)

U(l,T)= V(\,T), (5.13)

and suitable initial conditions on U(X, 0), V(X, 0) and s(Q).
We now describe the numerical method that we use for the determination of U, V and

s. First we descretize equations (5.9) and (5.10) for U(X, T) and equations (5.11) and (5.12)
for V(X, T) as if s{T) were a known function at the grid points T = n AT; thus we may use
a standard difference approximation to s. Secondly we employ the condition (5.13) to
determine s(T).

(i) Introduction of discrete variables

Let AX and ATn denote step-sizes in the Xand T directions respectively. We assume that
J AX = 1, for some integer J. We shall fix AX but vary the time-step. Our choice of time-
stepping algorithm is motivated by the discussion in §3. Let U", V" and sn denote our
numerical approximations, defined as follows:

[/; *U(j AX, Tn),j = 0,...,J, (5.14)

V?*V(\+jAX,Tn)J = 0,...,J, (5.15)

sn*s(Tn), (5.16)

where Tn = £ ATr (5.17)

(ii) Choice of time-step

The time-step is chosen adaptively in a manner analogous to that used for the ODE case
described in §3. Motivated by (3.6) we set, for HC/"^ = supJC/"!,

(5.18)

EJM I
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for some suitable rescaling function H(u); guided by theorem 3.2 and result 3.3 we shall
choose H(u) carefully, depending on the growth of/(w) at infinity. Note that, for solutions
u(x, t) with a single maximum, we have HtZ/'lL — U". This is the class of solutions with
which we compute.

(iii) Time-stepping algorithm

Assuming that s(T) is known at the grid points T = TN, we can write down standard finite
difference discretizations of equations (5.9)—(5.12). We choose a fully implicit (in time)
discretization of all terms involving derivatives, but an explicit evaluation of the nonlinear
source terms involving the function / . The implicit discretization of the differential
operators is chosen because it is the only scheme known to have a maximum principle when
applied to the linear heat equation (with unrestricted values of ATn/AX2) (Richtmyer &
Morton 1967), and we consider this a valuable property to preserve; this is especially so
since we are interested in solutions with a unique point at which ux = 0. The explicit
evaluation of the source terms is chosen since we have shown in §§2 and 3 that implicit
evaluation of the source term can lead to multiple solutions in the time-stepping. The
second order spatial differential operators are replaced by the standard three point
approximation, and the first order spatial differential operators are replaced by centred
approximations. We introduce the usual artificial points U]*l and V"tl to deal with the
zero gradient boundary conditions at X = 1.

Observe that C/O
n+1 = K;+1 = 0, from the boundary conditions. Let U = (U?+1,..., £/?+1)r

and V= (Kg+1,..., Vjt\)T. Then, assuming sn+1 to be known, we have two systems o f /
linear, tridiagonal equations, one for U_ and the other for V. The equations come from the
discretization of equations (5.9)—(5.10) and (5.11) and (5.12), respectively. Each system of
equations depends nonlinearly on the parameter sn+1. Thus the two systems can be written

a S A(sn+1)U = B(sn+1)V=0, (5.19)

where A and B are tri-diagonal matrices depending nonlinearly on sn+1.

(iv) Determination of s

To determine sn+1 it is necessary to impose condition (5.13) which requires

f/J+1 = Ko
n+1. (5.20)

Thus each time-step of the numerical method involves solving equations (5.19) and (5.20)
for the unknowns U, V and sn+l.

The fact that equations (5.19) are linear in U and V suggests that we employ an iterative
procedure to solve (5.19) and (5.20) for sn+1. Newton iteration is the obvious choice for such
a scheme since the value of s at the previous time-step, s" provides a good initial guess;
however, we wish to minimize the number of matrix inversions, and so we choose secant
iteration as being a reasonable compromize between rate of convergence and ease of
implementation. We have found this iteration scheme to be very satisfactory in practice,
subject to a careful choice of the two starting values for the iteration, which we now discuss.
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(v) Starting values for the secant iteration

67

The secant iteration to determine sn+1 requires two starting values. We take these to be the
value of s" from the previous time-step, and an estimate of sn+1 calculated from an
approximation of the rate of change of s with respect to t. Specifically, we choose the initial
approximations ^

s" and s" + . " (s" — sn~l).

This completes the description of the numerical method. •
We now present results from the numerical solution of (4.1) and (4.3) using the method

described above. In all the examples the discretization parameters are set at AA' = 0.01 and
h = 0.0004.

Example 5.1 In this example we take f(u) = 15M2 and uo(x) = 4x(l —x). The re-scaling
function H(u) in (5.18) is chosen so that H(u) oc u/f(u); see result 3.3. By theorem 4.1 the
solutions blows up in finite time. Furthermore, by theorem 4.2 (ii), the peak value of u(x, f)
tends to x — 0 as the blow-up time is approached. The numerical method handles this
successfully. Figure 5 shows a graph of the position of the peak, s(t), against t. Notice that
the peak is tracked into the origin. Figure 6 shows the value of \/u(s(t), t) against time and
establishes that blow-up occurs for / » 006. Figure 7 shows successive profiles of the
solution u(x, t) against xat intervals of 50 time-steps; the solutions have been scaled to have
maximum values of unity. Notice how the peak moves towards the boundary x = 0 as time
progresses.

Example 5.2 In this example we take f{u) = 4e" and uo(x) = 4x(\ — x). The re-scaling
function H(u) in (5.18) is chosen so that H(u) oc l//(w); see result 3.3. By theorem 4.1 the
solution blows up in finite time. However, since eu P uv for large u for any/? > 0, we suspect
that blow-up does not occur at the boundary x = 0. (See theorem 4.2 (ii).) This is borne out
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FIGURE 5. Example 5.1 s(t) versus t.
3-2
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FIGURE 6. Example 5.1 1 /u(s(t), t) versus t.
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FIGURE 7. Example 5.1 u(x,t)/u(s(t),t) versus x.

by the numerical evidence. In figure 8 we plot the peak value u(s(t), t) against s(t) and it is
clear that the limiting value of s(t) as blow-up is approached (u(s(t), t) -> oo) is bounded
away from x = 0.

Example 5.3 In this example we take/(«) = 25w? and MO(X) = 4x(l — x). The rescaling
function H(u) in (5.18) is chosen so that H(u) oc u/f{u). As in example 5.1, the solution
blows up at the boundary. Figure 9 shows the profile of w(x, t) against x, close to the blow-
up time.
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FIGURE 8. Example 5.2 u(s(t), t) versus s(t).
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FIGURE 9. Example 5.3 u(x, t) versus x.

6 Conclusions

In this paper we have examined the asymptotics of numerical methods for initial value
problems which develop singularities in finite time. We have analyzed the problem for a
scalar ODE in detail and applied the ideas to a specific PDE arising from the study of a fluid
with temperature-dependent viscosity.

First we examined fixed-step methods for the scalar ODE and showed that both explicit
and implicit methods are wholly inadequate in reproducing the asymptotics of the
differential equation: explicit methods have a solution which exists for all values of discrete
time, thus missing the blow-up completely; implicit methods have multiple solutions in
discrete time and the numerical solution ceases to exist not by blow-up, but by the
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coalescing of the true trajectory with a spurious trajectory at a particular value of discrete
time. Figure 4 gives a summary of these results; the details are given in §2.

Secondly we examined variable-step methods for the scalar ODE. The time-stepping
strategies we examined are based on a re-scaling of the time variable in the underlying
differential equation, and contact was made with a recent 'modified equations' analysis of
the dynamics of multi-step methods. We established criteria on the time re-scaling function
under which the numerical solution exists and approaches infinity as the blow-up time is
approached; see theorem 3.2 and 3.1. We also established that the discrete blow-up time
converges to the true blow-up time, as the discretization parameter tends to zero, in a
number of representative cases; see result 3.4. However, it was shown that the problem of
multiplicity of solutions in discrete time is not avoided by using variable time-stepping
strategies; see theorem 3.5. Thus extreme care is required in the choice of algebraic solver
if implicit methods are used to solve initial value problems which exhibit finite time
singularities. Although the analysis in §3 applies only to scalar ODEs, we believe that
theorem 3.2 is useful in guiding the choice of time-stepping strategies for PDEs whch
develop singularities in finite time.

Finally we applied our ideas to a PDE. We described a peak-tracking strategy and based
the adaptive time-stepping on this peak value. The problem chosen is particularly delicate
since an arbitrarily thin and high boundary layer can develop between a boundary at which
u = 0 and the peak value of the solution, as the blow-up time is approached. The numerical
method was shown to cope with this difficulty successfully, and the adaptive time-stepping,
based on the analysis of §3, enabled us to solve the problem accurately close to the blow-
up time. We believe that the idea of peak-tracking is useful for the computation of many
PDEs whose solutions blow up in finite time and the co-ordinate transformation approach
used here is easily adapted to other problems.

M.S.F. was funded by the Science and Engineering Research Council, UK. We are
grateful to John Ockendon for interesting us in the problem of blow-up at the boundary.
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