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Abstract In this article, we consider a Bayesian inverse
problem associated to elliptic partial differential equations
in two and three dimensions. This class of inverse prob-
lems is important in applications such as hydrology, but the
complexity of the link function between unknown field and
measurements canmake it difficult to draw inference from the
associated posterior. We prove that for this inverse problem
a basic sequential Monte Carlo (SMC) method has a Monte
Carlo rate of convergence with constants which are indepen-
dent of the dimension of the discretization of the problem;
indeed convergence of the SMC method is established in a
function space setting. We also develop an enhancement of
the SMC methods for inverse problems which were intro-
duced in Kantas et al. (SIAM/ASA J Uncertain Quantif
2:464–489, 2014); the enhancement is designed to deal with
the additional complexity of this elliptic inverse problem.
The efficacy of the methodology and its desirable theoretical
properties, are demonstrated for numerical examples in both
two and three dimensions.
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1 Introduction

The viability of the Bayesian approach to inverse problems
was established in the pioneering text (Kaipio and Somer-
salo 2005)which, in particular, demonstrated the potential for
Markov chainMonteCarlo (MCMC)methods in this context.
Nonetheless, the high-dimensional nature of the unknown,
often found from discretizing a field, leads to difficult prob-
lems in the designof proposalswhich are cheap to implement,
yet whichmix efficiently. One recent approach to tackle these
problems has been the development of algorithmswithmesh-
free mixing times, such as those highlighted in Cotter et al.
(2013),Hoang et al. (2013); these non-standardMCMCalgo-
rithms avoid the unnecessary penalties incurred by naive
proposals related to exploration of the part of the parame-
ter space dominated by the prior. Nonetheless, in the large
dataset or small observational noise regimes, one is still con-
fronted with an inference problem in high dimensions which,
whilst of smaller order than the dimension of the PDE solver,
exhibits wide variations in scales in different coordinates of
the parameterizations, leading to substantial challenges for
algorithmic tuning.

A different approach, which we will adopt here, involves
SMC samplers (Del Moral et al. 2006). These are par-
ticle methods which, in the context of Bayesian inverse
problems, build an approximation to a sequence of mea-
sures which interpolate from the prior to the posterior; the
sequential nature of the approximation allows for adap-
tation of the particle distribution and weights from the
(typically simple) prior to the (potentially very complex)
posterior. Recent work in the context of inverse problems
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(Kantas et al. 2014) has shown how, using the afore-
mentioned dimension-independent MCMC methods within
SMC, it is possible to construct algorithms which com-
bine the desirable dimension-independent aspects of novel
MCMC algorithms with the desirable self-adaptation of
particle methods. This combination is beneficial for com-
plex posteriors such as those arising in the large dataset or
small noise regimes; in particular the computational results
in Kantas et al. (2014) demonstrate an order of magni-
tude speed-up of these new SMC methods over the MCMC
methods highlighted in Cotter et al. (2013), within the con-
text of the inverse problem for the initial condition of the
Navier–Stokes equation. Furthermore, recent works (Beskos
et al. 2014a; Del Moral 2004; Del Moral et al. 2006; Jasra
et al. 2011) have shown that important aspects of this SMC
algorithm for inverse problems, such as adaptation, tem-
pering and parallelization, have the potential to provide
effective methods even for high-dimensional inverse prob-
lems.

The contributions of this article are three-fold:

(1) A computational study of SMC methods for a class of
Bayesian inverse problems which arise in applications
such as hydrology (Iglesias et al. 2013), and are more
challenging to fit, in comparison to the Navier–Stokes
inverse problem which was the focus of the develop-
ment of novel SMC methods in Kantas et al. (2014);
furthermore, with modification of the measurement set-
up, the inverse problems considered also find application
in medical imaging problems such as EIT (Kaipio and
Somersalo 2005).

(2) An enhancement of the class of SMC methods intro-
duced in Kantas et al. (2014) which leads to greater
efficiency and, in particular, the ability to efficiently
solve the elliptic inverse problems which are the focus
of this paper.

(3) A proof of the fact that these SMC algorithms have
Monte Carlo convergence rates which are mesh-indepen
dent and indeed converge in the function space setting.
This complements related theoretical work (Hairer et al.
2014) which establishes mesh-independence mixing for
the novel MCMC methods which are used as proposal
kernels within the SMC approach of Kantas et al. (2014)
which we build upon here.

This article is structured as follows. In Sect. 2, we describe
the Bayesian model and associated PDE. In Sect. 3 our com-
putational procedure is outlined, along with our theoretical
results. In Sect. 4, we present our numerical results. The arti-
cle is concluded in Sect. 5with a discussion of areas for future
work.

2 Modelling

Consider two normed linear spaces, K and Y ⊆ R, corre-
sponding to the state-space of the parameters (u ∈ K) and
observations (y ∈ Y), respectively. We will observe data at
spatial locations x ∈ X ⊂ R

d , d ∈ {2, 3} and we denote the
observation at location x as yx . Let G : X ×K → Y and, for
each x ∈ X , let εx ∈ Y be a random variable of zero mean;
then we will be concerned with models of the form:

yx = G(x; u) + εx .

Here G(x; u) is an underlying system behaviour for a given
parameter u, and εx expresses measurement (and indeed
sometimes model error) at location x . In our context, G is
associated to the solution of a PDE, with parameter u. We
are interested in drawing inference on u, given a prior distri-
bution on u ∈ K, conditional upon observing realizations of
yx for a set of points x ∈ O ⊆ X , with Card(O) < +∞.
This is the framework of our Bayesian inverse problem. In
Sect. 2.1 we define the forward model, and in Sect. 2.2, we
describe prior modelling on our unknown. Section 2.3 shows
that the posterior distribution is well-defined and states a key
property of the log-likelihood, used in what follows.

2.1 Forward model

In this paper, we focus on the general scenario where the
forward map G is described by an elliptic PDE. In particular,
we work with a problem of central significance in hydrology,
namely the estimation of subsurface flow frommeasurements
of the pressure (hydraulic head) at certain locations x in the
domain of interest. The pressure and velocity are linked by
Darcy’s law in which the subsurface permeability appears
as a parameter; estimating it is thus a key step in predicting
the subsurface flow. In this subsection, we define the forward
map from permability to pressure space.

In detail, we consider the d-dimensional cube X =
[−π

2 , π
2 ]d as our domain, in both the cases d = 2, 3.Define a

mapping p : X → R, denoting pressure (or hydraulic head),
v : X → R

3, denoting a quantity proportional to veloc-
ity, and u : X → R, denoting permeability (or hydraulic
conductivity) of soil (McLaughlin and Townley 1996). The
behaviour of the system is described through the elliptic PDE:

v(x) = −u(x)∇x p(x), x ∈ X (1a)

−∇x · (
v(x)

) = f (x), x ∈ X (1b)

p(x) = 0, x ∈ ∂X . (1c)

Equation (1a) is Darcy’s law and contains the permeability u
(for us the key parameter); Eq. (1b) expresses continuity of
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mass and here f : X → R is assumed to be known and char-
acterizes the source/sink configuration; in Eq. (1c) ∂X is the
boundary of the domain, andwe are thus assuming a homoge-
neous boundary condition on the boundary pressure—other
boundary conditions, specifying the flux, are also possible.
Together Eq. (1) define an elliptic PDE for pressure p.

If u is in L∞(X ) and lower bounded by a positive constant
kmin a.e. in X then, for every f ∈ H−1(X ), there is a unique
solution p ∈ H1

0 (X ) to the PDE (1) satisfying

‖p‖H1
0

≤ 1

kmin
‖ f ‖H−1; (2)

see Dashti and Stuart (2015) and the references therein. In
this setting, the forwardmapG(x; u) := p(x) iswell-defined
and thus corresponds to solution of the elliptic PDE for a
given permeability field u. A typical choice of the source/sink
function f is

f (x) =
∑

i

ciδxi (x). (3)

The set of points {xi } denotes the known position of sources
or sinks, and the signs of each ci determine whether one
has a source or sink at xi (Iglesias et al. 2013). We note
that the cleanest setting for the mathematical formulation
of the problem requires f ∈ H−1(X ) and, in theory, will
require mollification of the Dirac’s at each xi ; in practice this
modification makes little difference to the inference.

2.2 Prior modelling of permeablity u

We describe the modelling of u in three dimensions; sim-
plification to the two-dimensional setting is straightforward.
We begin by expressing the unknown model parameter as a
Fourier series:

u(x) = ū(x) +
∑

k∈Z3

ukek(x). (4)

Here we have scaled Fourier coefficients

ek(x) = ak exp(ik · x) , k ∈ Z
3 (5)

and the real coefficients {ak}, complex coefficients {uk} (sat-
isfying ūk = u−k) and real-valued L∞(X ) function ū will be
chosen to enforce the mathematically necessary (and physi-
cally sensible) positivity restriction

u(x) ≥ kmin > 0, x ∈ X . (6)

The use of Fourier series in principle enables the represen-
tation of arbitrary functions in L2(X ) by use of periodic
extensions. However we will impose a rate of decay on the
{ak}, in order to work in the setting of inversion for this
problem, as developed in Hoang et al. (2013), Schwab and

Stuart (2012); this rate of decay will imply a certain degree
of smoothness in the function (u − ū)(·). Noting that the
functions exp(ik · x) have L∞(X ) norm equal to one, we can
place ourselves in the setting of Hoang et al. (2013), Schwab
and Stuart (2012) by assuming that, for some q > 0, C > 0,
∑

k

|ak |∞ < ∞ ,
∑

k:|k|∞> j

|ak |∞ < C j−q . (7)

We choose ak of the form

ak = a|k|−α
L∞ (8)

and then impose α > 3 in dimension d = 3 or α > 2 in
dimension d = 2.

Given this set-up, we need to find a suitable prior for u, so
that the forwardmodelG(x; u) is almost-surelywell defined,
as well as reflecting any prior statistical information we may
have. There are several widely adopted approaches in the
literature for prior parameterization of the permeability, the
most common being the log-normal choice (see Tarantola
(2005) for details and, for example, Iglesias et al. (2013) for a
recent application), widely adopted by geophysicists, and the
uniform case Hoang et al. (2013), Schwab and Stuart (2012)
which has been successfully adopted in the computational
mathematics literature, building on earlier work of Schwab
in uncertainty quantification (Schwab and Gittelson 2011).
We work with the uniform priors popularized by Schwab:

we choose uk
i.i.d.∼ U[−1,1] in the representation (4) for u,

resulting in a pushforward measure ν0 on u as in Schwab
and Stuart (2012). We let K denote the separable Banach
space found from the closure, with respect to the L∞ norm,
of the set of functions used in the representation (4) of u(·).
Then ν0 is viewed as a measure on K; see Dashti and Stuart
(2015) for further details. Once the parameters ak are chosen
to satisfy (7), the mean function ū(x) can be chosen to ensure
that there is kmin such that u(·) is in L∞(X ) and satisfies (6)
almost surely with respect to the prior ν0 on function u.

2.3 Bayesian inverse problem

We observe the pressure at certain locations, the set of which
is denoted as O ∈ X . We will suppose that for each x ∈ O
and independently, εx ∼ N (0, σ 2), where N (0, σ 2) is the
normal distribution of mean 0 and known variance σ 2. Then
the log-likelihood is, up to an irrelevant additive constant,
given by

	(u; y) := −
∑

x∈O

∣∣G(x; u) − y(x)
∣∣2

2σ 2 . (9)

Along with the prior modelling in Sect. 2.2, this defines a
scenario so that the forward model G(x; ·) is, almost-surely,
well defined and, in fact, Lipschitz. As in Dashti and Stu-
art (2015), Schwab and Stuart (2012) we may then define a
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posterior ν y on u which has density with respect to ν0 given
by (9)

dν y

dν0
(u) ∝ π(u) = exp

(−	(u; y)). (10)

Exploring the posterior distribution ν y is the objective of the
paper. In doing so, the following fact will be relevant; it is
easily established by the fact that (6) holds almost surely for
u ∼ ν0, together with the bound on the solution of the elliptic
PDE given in (2).

Lemma 2.1 There is a constant πmin = πmin(y) > 0 such
that πmin ≤ π(u) ≤ 1 almost surely for u ∼ ν0.

We finish by noting that, in algorithmic practice, it is typ-
ically necessary (see, however, Agapiou et al. (2014) in the
context of MCMC) to apply a spectral truncation:

u(x) = ū(x) +
∑

k: |k|∞<c

ukek(x), (11)

where c is a truncation parameter. Having defined the desired
parameterization of u, we consider the truncated vector of
Fourier coefficients uk as the object of inference in practice.

3 Sequential Monte Carlo

In this section, we describe the application of SMC methods
toBayesian inversion. Sect. 3.1 contains an explanation of the
basic methodology and statement of a basic (non-adaptive)
algorithm. Sect. 3.2 contains statement and proof of a conver-
gence theorem for the basic form of the algorithm, notably
because it applies in infinite-dimensional spaces. In Sect. 3.3,
we describe an adaptive version of the SMCalgorithm,which
we use in practice.

3.1 Standard SMC samplers

Let (E,E ) denote a measure space and ν0 a probability
measure on that space.Wewish to sample from a target prob-
ability measure ν on (E,E ), which has density with respect
to ν0 known up to a normalizing constant:

dν

dν0
(u) ∝ π(u). (12)

We introduce a sequence of “bridging” densities which
enable us to connect ν0 to ν:

πn(u) ∝ π(u)ϕn , x ∈ E, (13)

where 0 = ϕ0 < · · · < ϕn−1 < ϕn < · · · < ϕp = 1; we
refer to the ϕ j as temperatures. We let νn denote the proba-
bility measure with density proportional to πn with respect

to ν0. Assuming that π(u) is finite ν0 almost surely we obtain

dνn
dν0

(u) ∝ π(u)ϕn ,
dνn
dνn−1

(u) ∝ �n−1(u) :=π(u)ϕn−ϕn−1 ,

n ∈ {1, . . . , p}. (14)

We note that the assumption on π being finite is satisfied
for our elliptic inverse problem; see Lemma 2.1. Although
ν = νp may be far from ν0, careful choice of the ϕn can
ensure that νn is close to νn−1 allowing gradual evolution of
approximation of ν0 into approximation of ν. Other choices
of bridging densities are possible and are discussed in e.g.Del
Moral et al. (2006).

Let {Ln−1}pn=1 denote the sequence of (nonlinear) maps
on measures found by applying Bayes’s Theorem with like-
lihood proportional to {�n−1}pn=1 and let {Kn}pn=1 be a
sequence of Markov kernels (and equivalently, for notational
convenience, the resulting linear maps on measures) with
invariant measure {νn}pn=1. We define {	n}pn=1 to be the non-
linear maps on measures found as 	n = KnLn−1. Explicitly
we have, for each n ≥ 1 and any probability measure
μ on E :

(	nμ)(du) = μ(�n−1Kn(du))

μ(�n−1)
,

where we use the notation μ(�n−1Kn(du)) = ∫
E μ(dy)

�n−1(y)Kn(y, du) and μ(�n−1) = ∫
E μ(dy)�n−1(y). It then

follows that

νn = 	nνn−1, n ∈ {1, . . . , p}. (15)

The standardSMCalgorithm is described inFig. 1. It involves
a population of M particles evolving with n. With no resam-
pling, the algorithm coincides with annealed importance
sampling as in Neal (2001). With resampling at every step
[i.e. the case Mthresh = M , where Mthresh denotes the cut-
off point for the effective sample size (EES)] we define the
empirical approximating measures by the iteration

νM
n = SM	nν

M
n−1, n ∈ {1, . . . , p}; νM

0 = 1

M

M∑

m=1

δum0
.

(16)

Here

(SMμ)(dv) = 1

M

M∑

m=1

δv(m) (dv), v(m) ∼ μ i.i.d..

3.2 Convergence property

The issue of dimensionality in SMC methods has attracted
substantial attention in the literature (Beskos et al. 2014a, b, c;
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Fig. 1 Standard SMC
Samplers. Mthres ∈ {1, . . . , M}
is a user defined parameter

0. Sample {um
0 }Mm=1 i.i.d. from ν0 and define the weights wm

0 = M−1 for m = 1, · · · , M.

Set n = 1 and l = 0.

1. For each m set ŵm
n = n−1(um

n−1)w
m
n−1 and sample um

n from Kn(um
n−1, ·); calculate

the normalized weights

wm
n = ŵm

n /
M

m=1

ŵm
n .

2. Calculate the Effective Sample Size (ESS):

ESS(n)(M) :=

M
m=1 wm

n

2

M
m=1(wm

n )2
. (17)

If ESS(n)(M) ≤ Mthres:

resample {um
n }Mm=1 according to the normalized weights {wm

n }Mm=1;

re-initialise the weights by setting wm
n = M−1 for m = 1, · · · , M ;

let {um
n }Mm=1 now denote the resampled particles.

3. If n < p set n = n + 1 and return to Step 1; otherwise stop.

Rebeschini and Van Handel 2015). In this section, using a
simple approach for the analysis of particle filters which
is clearly exposed in Rebeschini and Van Handel (2015),
we show that for our SMC method it is possible to
prove dimension-free error bounds. Whilst the theoreti-
cal result in this subsection is not entirely new (similar
results follow from the work in Del Moral (2004), Del
Moral (2013)), a direct and simple proof is included for
non-specialists in SMC methods, to highlight the utility of
SMC methods in inverse problems, and to connect with
related recent results in dimension-independent MCMC,
such as Hairer et al. (2014), which are far harder to
establish.

We will consider the algorithm in Fig. 1 with Mthres = M ,
so one resamples at every time step (and this is multinomi-
ally). Note that then, for n ≥ 0, at the end of each step of the
algorithm the approximation to νn is given by

νM
n (du) := 1

M

M∑

m=1

δumn (dx), (18)

which follows from the algorithm in Fig. 1 with Mthres = M
or, equivalently, (16).

Throughout, we will assume that there exists a κ > 0 such
that for each n ≥ 0 and any u ∈ E

κ ≤ �n(u) ≤ 1/κ. (19)

We note that this holds for the elliptic inverse problem from
the previous section, when the uniform prior ν0 is employed;
see Lemma 2.1.

Let P denote the collection of all probability measures on
E . Letμ = μ(ω) and ν = ν(ω) denote two possibly random
elements in P, and E

ω expectation w.r.t. ω. We define the
distance between μ, ν ∈ P by

d(μ, ν) = sup| f |∞≤1

√
Eω|μ( f ) − ν( f )|2,

where the supremum is over all f : E → R with | f |∞ :=
supv∈E | f (v)| ≤ 1. This definition of distance is indeed a
metric on the space of random probability measures; in par-
ticular it satisfies the triangle inequality. In the context of
SMC, the randomness underlying the approximations (18)
comes from the various sampling operations within the algo-
rithm.

We have the following convergence result for the SMC
algorithm.

Theorem 3.1 Assume (19) and consider the SMC algorithm
with Mthresh = M. Then, for any n ≥ 0,

d(νM
n , νn) ≤

n∑

j=0

(2κ−2) j
1√
M

.

Proof For n = 0 the result holds via Lemma 3.2. For n > 0,
we have, by the triangle inequality, Lemma 3.1 and Lemma
3.2 (which may be used by the conditional independence
structure of the algorithm),

d(νn, ν
M
n ) = d(	nνn−1, S

M	nν
M
n−1)

≤ d(	nνn−1,	nν
M
n−1)
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+ d(	nν
M
n−1, S

M	nν
M
n−1)

≤ 2

κ2 d(νn−1, ν
M
n−1) + 1√

M
.

Iterating gives the desired result. ��
Remark 3.1 This theorem shows that the sequential particle
filter actually reproduces the true posterior distribution νp,
in the limit M → ∞. We make some comments about this.

• The measure νp is well-approximated by νM
p in the

sense that, as the number of particles M → ∞, the
approximating measure converges to the true measure.
The result holds in the infinite-dimensional setting. As
a consequence, the algorithm as stated is robust to finite
dimensional approximation.

• In principle, the theory applies even if the Markov ker-
nel Kn is simply the identity mapping on probability
measures. However, moving the particles according to
a non-trivial νn-invariant measure is absolutely essential
for the methodology to work in practice. This can be
seen by noting that if Kn is indeed taken to be the iden-
tity map on measures then the particle positions will be
unchanged as n changes, meaning that the measure νp

is approximated by weighted samples (almost) from the
prior, clearly undesirable in general.

• The MCMC methods in Cotter et al. (2013) provide
explicit examples of Markov kernels with the desired
property of preserving the measures νn , including the
infinite-dimensional setting.

• In fact, if the Markov kernel Kn has some ergodicity
properties then it is sometimes possible to obtain bounds
which are uniform in p; see DelMoral (2004), Del Moral
(2013).

Lemma 3.1 Assume (19). Then, for any n ≥ 1 and any
μ, ν ∈ P,

d(	nμ,	nν) ≤ 2

κ2 d(μ, ν).

Proof For any measurable f : E → R we have

[	nμ − 	nν]( f ) = 1

μ(�n−1)
[μ − ν](�n−1Kn( f ))

+ ν(�n−1Kn( f ))

μ(�n−1)ν(�n−1)
[ν − μ](�n−1).

So we have, by Minkowski,

E
ω[|[	nμ − 	nν]( f )|2]1/2

≤ E
ω
[∣∣∣

1

μ(�n−1)
[μ − ν](�n−1Kn( f ))

∣∣∣
2]1/2

+E
ω
[∣∣∣

ν(�n−1Kn( f ))

μ(�n−1)ν(�n−1)
[ν − μ](�n−1)]

∣∣∣
2]1/2

.

Note that the ratio

ν(�n−1Kn( f ))

ν(�n−1)

is an expectation of f and is hence bounded by 1 in modulus,
if | f |∞ ≤ 1. Then using the fact that |�n−1Kn( f )|∞ ≤ κ−1

and �n−1 ≥ κ (see (19)) we deduce that

E
ω[|[	nμ − 	nν]( f )|2]1/2

≤ 1

κ2E
ω
[∣∣
∣[μ − ν](�n−1Kn( f )κ)

∣∣
∣
2]1/2

+ 1

κ2E
ω
[∣∣∣[ν − μ](�n−1κ)]

∣∣∣
2]1/2

.

using the fact that |�n−1Kn( f )|∞ ≤ κ−1 and �n−1 ≤ κ−1,
with the first following from (19) together with the Markov
property for Kn , taking suprema over f completes the proof.

��
Lemma 3.2 The sampling operator satisfies

sup
μ∈P

d(SMμ,μ) ≤ 1√
M

.

Proof Let ν be an element of P(X) and {v(k)}Mk=1 a set of
i.i.d. samples with v(1) ∼ ν; the randomness entering the
probability measures is through these samples, expectation
with respect to which we denote by E

ω in what follows.
Then

SMν( f ) = 1

M

M∑

k=1

f (v(k))

and, defining f = f − ν( f ), we deduce that

SMν( f ) − ν( f ) = 1

M

M∑

k=1

f (v(k)).

It is straightforward to see that

E
ω f (v(k)) f (v(l)) = δklE

ω| f (v(k))|2.

Furthermore, for | f |∞ ≤ 1,

E
ω| f (v(1))|2 = E

ω| f (v(1))|2 − |Eω f (v(1))|2 ≤ 1.

It follows that, for | f |∞ ≤ 1,

E
ω|ν( f ) − SMν( f )|2 = 1

M2

M∑

k=1

E
ω| f (v(k))|2 ≤ 1

M
.

Since the result is independent of ν, we may take the supre-
mum over all probability measures and obtain the desired
result. ��
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3.3 Adaptive-SMC samplers

In practice, the SMC samplers algorithm requires the speci-
fication of 0 < ϕ0 < · · · < ϕn−1 < ϕn < · · · < ϕp = 1 as
well as any parameters in the MCMC kernels. As demon-
strated in Jasra et al. (2011), Kantas et al. (2014), the
theoretical validity of which is established in Beskos et al.
(2014d), these parameters may be set on the fly.

First, we focus on the specification of the sequence of
distributions. Given step n − 1 and πn−1(x), we select the
next target density by adapting the temperatures to a required
value for the effective sample size (ESS) statistic (17) as in
Jasra et al. (2011) (see also Zhou et al. (2015) for an alterna-
tive procedure). So, for a user-specified threshold Mthres, we
choose ϕn as the solution of ESS(n)(M) = Mthres. One can
use an inexpensive bisection method to obtain ϕn .

Second, we turn to the specification of the mutation ker-
nels Kn . Several options are available here, but we will
use reflective random-walk Metropolis proposals on each
univariate component, conditionally independently. We will
adapt the random-move proposal scales, ε j,n , with j the
co-ordinate and n the time index. A simple choice would
be to tune ε j,n to the marginal variance along the j-th co-
ordinate; since this is analytically unavailable we opt for
the SMC estimate at the previous time-step. Thus, we set

εn, j = ρn

√
V̂ar(Un, j ) where ρn is a global scaling para-

meter. For ρn itself, we propose to modify it based on the
previous average acceptance rate over the population of par-
ticles (denoted αN

n−1), to try to have average acceptance rates
in a neighbourhood of 0.2 (see e.g. Beskos et al. (2009) and
the references therein for a justification). Our adaptive strat-
egy works as follows;

ρn =

⎧
⎪⎨

⎪⎩

2ρn−1 , if αN
n−1 > 0.3

0.5ρn−1 , if αN
n−1 < 0.15

ρn−1 , o.w.

(20)

Thus, we scale ρ upwards (downwards) if the last average
acceptance rate went above (below) a predetermined neigh-
bourhood of 0.2. This approach is different to the work in
Kantas et al. (2014).

In addition, one can synthesize a number, sayMn , of base-
line MCMC kernels to obtain an overall effective one with
good mixing; this is a new contribution relative to Kantas
et al. (2014). To adapt Mn , we follow the following heuristic;
We propose to select Mn using Mn = � m

ρ2
n
�, with m being

a global parameter. The intuition is that for random-walk-
type transitions of increment with small standard deviation
δ, one needs O(δ−2) steps to travel distance O(1) in the
state-space. A final modification for practical computational
reasons is that we force Mn steps to lie within a predeter-
mined bounded set, i.e. [l, u].

The adaptive-SMC algorithm works as in Fig. 1, except in
step 1, before simulation from Kn is undertaken, our adaptive
procedure is implemented. Then one may resample (or not)
and then move the samples according to Kn . In addition,
the algorithm will run for a random number of time steps
and terminate when ϕn = 1 (which will happen in a finite
number of steps almost surely).

4 Numerical results

In this section, we describe the details of our implementation
(Sect. 4.1), describe the objects of inference (Sect. 4.2) and
give our results in 2D (Sect. 4.3) and 3D (Sect. 4.4).

4.1 Implementation details

The software used in our experiments has been implemented
in C++ for the GNU\Linux platform. We used the Libmesh
library for finite elements computation (Kirk et al. 2006),
we used the Fast Fourier Transform for rapid evaluation of
the sum in u(·) at predetermined grid-points in X and we
exploited parallel computation wherever possible, for which
we used the MPI libraries. Our experiments were run on
a computer server with 23 “Intel(R) Xeon(R)CPU X7460
@2.66GHz” processors, each with 2 cores; 50Gb memory
and running “RedHat Linux version 2.6.18-194.el5” operat-
ing system. The experiments discussed in this paper used 20
processors.

All the colour plots of random fields (e.g. permeability
fields) have been prepared using the rainbow colour scheme
from theRprogramming language/environment. The scheme
quantizes the Hue quantity of HSV (Hue Saturation Value)
triplet of a pixel. Our level of quantization is selected to be
256 (8bits), with the Hue range of [0, 1], hence we normalize
the randomfields to this range and quantize to 8bits to get the
Hue value for a pixel. Saturation and Value were taken to be
1. All images were computed using 500 × 500 equi-spaced
point evaluations from the respective random fields.

4.2 Objects of inference

The work in Völlmer (2013) investigates the performance of
the Bayesian approach for our elliptic inverse problem and
gives sufficient conditions under which posterior consistency
holds. Posterior consistency is concerned with “ball proba-
bilities” of type

lim
Card(O)→∞

∫

Bε

dν y

dν0
(u)ν0(du) = 1,

where y = {yx }x∈O and Bε is the ε neighbourhood of the
true value of u. One way to check such a result numerically
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Table 1 Parameter values of used for the 2D experiments

Parameter name Value

Frequency cutoff 10

Finite elements d.o.f. 100

σ 2 5 × 10−7

M 1000

Mthres 600

a 4

ū 40

Wall-clock time 11h

Between 5 and 1000 steps are allowed for the iterates of the MCMC
kernels. The frequency cutoff determines the level of discretization of
the permeability field. Finite elements d.o.f. denotes the number of finite
elements used in the numerical solution of the elliptic PDE, higher
values indicate better approximation at the expense of computational
resources. For a see (8)

is to use the posterior estimates obtained via our method. The
estimated ball probabilities are computed as follows:

∑

i

wi
pIBε (u(xip)) (21)

Although not all the conditions inVöllmer (2013) required
for posterior consistency to hold are fulfilled, we will
nonetheless empirically investigate such a consistency prop-
erty. This also provides a severe test for the SMC method
since it implies posterior measures in the large dataset limit.

4.3 Results in 2D

We consider Eq. (1) in dimension d = 2 and with source and
sinks as specified in (3). Our goal is to construct a sequence

of posterior estimates, corresponding to increasing number
of observations in order to numerically illustrate posterior
consistency. Table 1 shows the parameters used in our exper-
iments.

To get an empirical sense of these parameters’ effects on
the distribution of the permeability field, we plot some sam-
ples from the prior field u(x) in Fig. 2. We will then generate
100 data points from the model, in the scenario where the
permeability field is as Fig. 3a. In Fig. 3b we show the mean
of the posterior permeability field, using these 100 noisily
observed data points. The posterior mean is estimated as the
mean of the particle distribution from SMC at the final time,
and notable in that it shows good agreement with true value
of the permeability.

In another experiment, designed to study posterior con-
sistency, a sequence of posterior estimates is formed by
repeatedly running the adaptive SMCalgorithmwith, respec-
tively, 4, 16, 36, 64 and 100 observations equi-spaced inside
the domain of [−π/2, π/2]2. The computed MSE and ball
probabilities are given in Fig. 4, with the ball radius ε taken
to be 0.17 × 360, where 360 is the number of parame-
ters in the system, corresponding to a frequency cutoff of
10. The Figure suggests that as more data become avail-
able posterior consistency is obtained as predicted, under
slightly more restrictive assumptions than we have in play
here, in Völlmer (2013). This is interesting for two reasons:
firstly it suggests the potential for more refined Bayesian
posterior consistency analyses for nonlinear PDE inverse
problems; secondly it demonstrates the potential to solve
hard practical Bayesian inverse problems and to obtain
informed inference from a relatively small number of obser-
vations.

Finally, Fig. 5 shows marginal posterior density estimates
corresponding to 144 observations. The usual observation is

Fig. 2 Six permeability field
samples drawn from the prior
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Fig. 3 The true and posterior
estimated permeability field.
The estimated filed is the mean
estimated at the final step of the
SMC method. a True
permeability field. b Estimated
permeability field
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Fig. 4 Numerical consistency checks for the sequence of experiments with 4, 16, 36, 64 and 100 observations. a Root mean squared error
corresponding to the sequence of experiments. b Estimated small-ball probabilities (Eq. 21) corresponding to the sequence of experiments

Fig. 5 Posterior marginal density estimates for two low and one high frequency coefficients in the 2D case

to note the effectiveness of even the mode estimator in lower
frequencies. Another important observation is the similar-
ity of the high frequency marginal densities to the prior.
In fact, it is this behaviour that makes a prior invariant
MCMC proposal superior to others, i.e. the proposal itself
is almost optimal for a wide range of coefficients in the prob-
lem.

4.4 Results in 3D

Amore realistic experiment is performed using the 3D setup
discussed in Sect. 2. In this setup, the computational aspects
of the problem are further highlighted as the numerical solu-
tion of the forward operator becomes much harder due to the
increased cardinality of the finite elements basis. The values
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Table 2 Parameter values used for the 3D experiment discussed in this
section

Parameter name Value

# of observations 125

Frequency cutoff 5

Finite elements d.o.f. 1000

σ 2 1 × 10−8

M 1000

Mthres 600

a 1

ū 100

Wall-clock time 10 days

Between 5 and 200 steps are allowed for the iterates of the MCMC
kernels

of parameters in this numerical study are given in Table 2.
The data are generated from the model, under the specifica-
tions given in Table 2.

In Fig. 6, we consider the performance of our SMC algo-
rithm in this very challenging scenario. In Fig. 6a, we can
see the average acceptance rates of the MCMC moves, over

the time parameter of the SMC algorithm. We can observe
that these acceptance rates do not collapse to zero and are
not too far from 0.2. This indicates that the step-sizes are
chosen quite reasonably by the adaptive SMC algorithm and
the MCMC kernels have some mixing ability. In Fig. 6b, we
can see the number of MCMC iterations that are used per-
particle over the time parameter of the SMC algorithm. We
can observe, as one might expect, that as the target distribu-
tion becomes more challenging, the number of MCMC steps
required grows. Figure 6 indicates reasonable performance
of our SMC algorithm.

In terms of inference, the posterior density estimates are
shown in Fig. 7. Recall that the priors are uniform. These esti-
mates indicate a clear deviation from the prior specification,
illustrating that the data influence our inference significantly.
This is not obvious, and establishes that one can hope to use
this Bayesian model in real applications.

5 Summary

In this article, we have presented an SMC method for
Bayesian inverse problems and applied it to a particular ellip-
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Fig. 6 SMC performance for 3D example. a Average acceptance rates for each iteration of the adaptive-SMC algorithm. b Adaptively selected
MCMC steps for each iteration of the adaptive-SMC algorithm, bounded to be in [5,200]

Fig. 7 Posterior marginal density estimates for two low and one high frequency coefficients in the 3D case
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tic PDE inversion; the methodology, however, is transferable
to other PDE inverse problems. Simulations demonstrated
both the feasibility of the SMC method for challenging
infinite-dimensional inversion, as well as the property of pos-
terior contraction to the truth. In addition to simulations, we
have provided a straightforward proof of the fact that SMC
methods are robust to the dimension of the problem.

There are several avenues for future research. Firstly, our
error bounds explodew.r.t. the time parameter. It is of interest
to find realistic conditions for which this is not the case (for
instance the bounds in Del Moral (2004), Del Moral (2013),
Whiteley (2013) have assumptions which either do not hold
or are hard to verify). Secondly, a further algorithmic inno-
vation is to use multi-level Monte Carlo method as in Hoang
et al. (2013), within the SMC context; this is being consid-
ered in Beskos et al. (2015). And finally, it is of interest to
consider the use of these methods to solve other Bayesian
inference problems.
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