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Abstract Consider a probability measure on a Hilbert space defined via its den-
sity with respect to a Gaussian. The purpose of this paper is to demonstrate that an
appropriately defined Markov chain, which is reversible with respect to the measure in
question, exhibits a diffusion limit to a noisy gradient flow, also reversible with respect
to the same measure. The Markov chain is defined by applying a Metropolis–Hastings
accept–reject mechanism (Tierney, Ann Appl Probab 8:1–9, 1998) to an Ornstein–
Uhlenbeck (OU) proposal which is itself reversible with respect to the underlying
Gaussian measure. The resulting noisy gradient flow is a stochastic partial differential
equation driven by a Wiener process with spatial correlation given by the underlying
Gaussian structure. There are two primary motivations for this work. The first concerns
insight into Monte Carlo Markov Chain (MCMC) methods for sampling of measures
on a Hilbert space defined via a density with respect to a Gaussian measure. These
measures must be approximated on finite dimensional spaces of dimension N in order
to be sampled. A conclusion of the work herein is that MCMC methods based on prior-
reversible OU proposals will explore the target measure in O(1) steps with respect to
dimension N . This is to be contrasted with standard MCMC methods based on the ran-
dom walk or Langevin proposals which require O(N ) and O(N 1/3) steps respectively
(Mattingly et al., Ann Appl Prob 2011; Pillai et al., Ann Appl Prob 22:2320–2356

N. S. Pillai
Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA
e-mail: pillai@stat.harvard.edu

A. M. Stuart
Mathematics Institute, Warwick University, Coventry CV4 7AL, UK
e-mail: a.m.stuart@warwick.ac.uk

A. H. Thiéry (B)
Department of Statistics, Warwick University, Coventry CV4 7AL, UK
e-mail: a.h.thiery@warwick.ac.uk

123



Stoch PDE: Anal Comp (2014) 2:196–232 197

2012). The second motivation relates to optimization. There are many applications
where it is of interest to find global or local minima of a functional defined on an infi-
nite dimensional Hilbert space. Gradient flow or steepest descent is a natural approach
to this problem, but in its basic form requires computation of a gradient which, in some
applications, may be an expensive or complex task. This paper shows that a stochastic
gradient descent described by a stochastic partial differential equation can emerge from
certain carefully specified Markov chains. This idea is well-known in the finite state
(Kirkpatricket al., Science 220:671–680, 1983; Cerny, J Optim Theory Appl 45:41–
51, 1985) or finite dimensional context (German, IEEE Trans Geosci Remote Sens
1:269–276, 1985; German, SIAM J Control Optim 24:1031, 1986; Chiang, SIAM J
Control Optim 25:737–753, 1987; J Funct Anal 83:333–347, 1989). The novelty of
the work in this paper is that the emergence of the noisy gradient flow is developed on
an infinite dimensional Hilbert space. In the context of global optimization, when the
noise level is also adjusted as part of the algorithm, methods of the type studied here
go by the name of simulated–annealing; see the review (Bertsimas and Tsitsiklis, Stat
Sci 8:10–15, 1993) for further references. Although we do not consider adjusting the
noise-level as part of the algorithm, the noise strength is a tuneable parameter in our
construction and the methods developed here could potentially be used to study simu-
lated annealing in a Hilbert space setting. The transferable idea behind this work is that
conceiving of algorithms directly in the infinite dimensional setting leads to methods
which are robust to finite dimensional approximation. We emphasize that discretizing,
and then applying standard finite dimensional techniques in R

N , to either sample or
optimize, can lead to algorithms which degenerate as the dimension N increases.

Keywords Optimisation · Simulated annealing · Markov chain monte carlo ·
Diffusion approximation

Mathematics Subject Classification 60-08 · 60H15 · 60J25

1 Introduction

There are many applications where it is of interest to find global or local minima of a
functional

J (x) = 1

2
‖C−1/2x‖2 + Ψ (x) (1)

where C is a self-adjoint, positive and trace-class linear operator on a Hilbert space(
H, 〈·, ·〉, ‖ · ‖

)
. Gradient flow or steepest descent is a natural approach to this prob-

lem, but in its basic form requires computation of the gradient of Ψ which, in some
applications, may be an expensive or complex task. The purpose of this paper is to
show how a stochastic gradient descent described by a stochastic partial differential
equation can emerge from certain carefully specified random walks, when combined
with a Metropolis–Hastings accept–reject mechanism [1]. In the finite state [4,5] or
finite dimensional context [6–9] this is a well-known idea, which goes by the name
of simulated-annealing; see the review [10] for further references. The novelty of the
work in this paper is that the theory is developed on an infinite dimensional Hilbert
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space, leading to an algorithm which is robust to finite dimensional approximation: we
adopt the “optimize then discretize” viewpoint (see [11], Chapter 3). We emphasize
that discretizing, and then applying standard finite dimensional techniques in R

N to
optimize, can lead to algorithms which degenerate as N increases; the diffusion limit
proved in [2] provides a concrete example of this phenomenon for the standard random
walk algorithm.

The algorithms we construct have two basic building blocks: (i) drawing samples
from the centred Gaussian measure N (0, C) and (ii) evaluating Ψ . By judiciously com-
bining these ingredients we generate (approximately) a noisy gradient flow for J with
tunable temperature parameter controlling the size of the noise. In finite dimensions
the basic idea is built from Metropolis–Hastings methods which have an invariant mea-
sure with Lebesgue density proportional to exp

(−τ−1 J (x)
)
. The essential challenge

in transferring these finite-dimensional algorithms to an infinite-dimensional setting
is that there is no Lebesgue measure. This issue can be circumvented by working with
measures defined via their density with respect to a Gaussian measure, and for us the
natural Gaussian measure on H is

πτ
0 = N(0, τ C). (2)

The quadratic form‖C− 1
2 x‖2 is the square of the Cameron-Martin norm corresponding

to the Gaussian measure πτ
0 . Given πτ

0 we may then define the (in general non-
Gaussian) measure πτ via its Radon-Nikodym derivative with respect to πτ :

dπτ

dπτ
0

(x) ∝ exp
(
−Ψ (x)

τ

)
. (3)

We assume that exp
(−τ−1Ψ (·)) is in L1

πτ
0

. Note that if H is finite dimensional then

πτ has Lebesgue density proportional to exp
(−τ−1 J (x)

)
.

Our basic strategy will be to construct a Markov chain which is πτ -invariant and
to show that a piecewise linear interpolant of the Markov chain converges weakly (in
the sense of probability measures) to the desired noisy gradient flow in an appropriate
parameter limit. To motivate the Markov chain we first observe that the linear SDE in
H given by

dz = −z dt + √
2τdW

z0 = x, (4)

where W is a Brownian motion in H with covariance operator equal to C , is reversible
and ergodic with respect to πτ

0 given by (2) [12]. If t > 0 then the exact solution of
this equation has the form, for δ = 1

2 (1 − e−2t ),

z(t) = e−t x +
√(

τ(1 − e−2t )
)
ξ

= (
1 − 2δ

) 1
2 x + √

2δτξ, (5)
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where ξ is a Gaussian random variable drawn from N (0, C). Given a current state x
of our Markov chain we will propose to move to z(t) given by this formula, for some
choice of t > 0. We will then accept or reject this proposed move with probability
found from pointwise evaluation of Ψ , resulting in a Markov chain {xk,δ}k∈Z+ . The
resulting Markov chain corresponds to the preconditioned Crank-Nicolson, or pCN,
method, also refered to as the PIA method with (α, θ) = (0, 1

2 ) in the paper [13] where
it was introduced; this is one of a family of Metropolis–Hastings methods defined on
the Hilbert space H and the review [14] provides further details.

From the output of the pCN Metropolis–Hastings method we construct a continuous
interpolant of the Markov chain defined by

zδ(t) = 1

δ
(t − tk) xk+1,δ + 1

δ
(tk+1 − t) xk,δ for tk ≤ t < tk+1 (6)

with tk
def= kδ. The main result of the paper is that as δ → 0 the Hilbert-space valued

function of time zδ converges weakly to z solving the Hilbert space valued SDE, or
SPDE, following the dynamics

dz = −
(

z + C∇Ψ (z)
)

dt + √
2τdW (7)

on pathspace. This equation is reversible and ergodic with respect to the measure πτ

[12,15]. It is also known that small ball probabilities are asymptotically maximized
(in the small radius limit), under πτ , on balls centred at minimizers of J [16]. The
result thus shows that the algorithm will generate sequences which concentrate near
minimizers of J .

Because the SDE (7) does not possess the smoothing property, almost sure fine scale
properties under its invariant measure πτ are not necessarily reflected at any finite time.
For example, if C is the covariance operator of Brownian motion or Brownian bridge
then the quadratic variation of draws from the invariant measure, an almost sure quan-
tity, is not reproduced at any finite time in (7) unless z(0) has this quadratic variation;
the almost sure property is approached asymptotically as t → ∞. This behaviour is
reflected in the underlying Metropolis–Hastings Markov chain pCN with weak limit
(7), where the almost sure property is only reached asymptotically as n → ∞. In a sec-
ond result of this paper we will show that almost sure quantities such as the quadratic
variation under pCN satisfy a limiting linear ODE with globally attractive steady state
given by the value of the quantity under πτ . This gives quantitative information about
the rate at which the pCN algorithm approaches statistical equilibrium.

We have motivated the limit theorem in this paper through the goal of creating
noisy gradient flow in infinite dimensions with tuneable noise level, using only draws
from a Gaussian random variable and evaluation of the non-quadratic part of the
objective function. A second motivation for the work comes from understanding the
computational complexity of MCMC methods, and for this it suffices to consider
τ fixed at 1. The paper [2] shows that discretization of the standard Random Walk
Metropolis algorithm, S-RWM, will also have diffusion limit given by (7) as the
dimension of the discretized space tends to infinity, whilst the time increment δ in (6),
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decreases at a rate inversely proportional to N . The condition on δ is a form of CFL
condition, in the language of computational PDEs, and implies that O(N ) steps will
be required to sample the desired probability distribution. In contrast the pCN method
analyzed here has no CFL restriction: δ may tend to zero independently of dimension;
indeed in this paper we work directly in the setting of infinite dimension. The reader
interested in this computational statistics perspective on diffusion limits may also wish
to consult the paper [3] which demonstrates that the Metropolis adjusted Langevin

algorithm, MALA, requires a CFL condition which implies that O(N
1
3 ) steps are

required to sample the desired probability distribution. Furthermore, the formulation
of the limit theorem that we prove in this paper is closely related to the methodologies
introduced in [2] and [3]; it should be mentioned nevertheless that the analysis carried
out in this article allows to prove a diffusion limit for a sequence of Markov chains
evolving in a possibly non-stationary regime. This was not the case in [2] and [3].

We prove in Theorem 4 that for a fixed temperature parameter τ > 0, as the time
increment δ goes to 0, the pCN algorithm behaves as a stochastic gradient descent. By
adapting the temperature τ ∈ (0,∞) according to an appropriate cooling schedule it
is possible to locate global minima of J ; standard heuristics show that the distribution
πτ concentrates on a τ 1/2-neighbourhood around the global minima of the functional
J . We stress though that all the proofs presented in this article assume a constant
temperature. The asymptotic analysis of the effect of the cooling schedule is left for
future work; the study of such Hilbert space valued simulated annealing algorithms
presents several challenges, one of them being that that the probability distributions
πτ are mutually singular for different temperatures τ > 0.

In Sect. 2 we describe some notation used throughout the paper, discuss the required
properties of Gaussian measures and Hilbert-space valued Brownian motions, and state
our assumptions. Section 3 contains a precise definition of the Markov chain {xk,δ}k≥0,
together with statement and proof of the weak convergence theorem that is the main
result of the paper. Section 4 contains proof of the lemmas which underly the weak
convergence theorem. In Sect. 5 we state and prove the limit theorem for almost sure
quantities such as quadratic variation; such results are often termed “fluid limits” in
the applied probability literature. An example is presented in Sect. 6. We conclude in
Sect. 7.

2 Preliminaries

In this section we define some notational conventions, Gaussian measure and Brownian
motion in Hilbert space, and state our assumptions concerning the operator C and the
functional Ψ.

2.1 Notation

Let
(
H, 〈·, ·〉, ‖ · ‖

)
denote a separable Hilbert space of real valued functions with

the canonical norm derived from the inner-product. Let C be a positive symmetric
trace class operator on H and {ϕ j , λ

2
j } j≥1 be the eigenfunctions and eigenvalues of
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C respectively, so that Cϕ j = λ2
j ϕ j for j ∈ N. We assume a normalization under

which {ϕ j } j≥1 forms a complete orthonormal basis in H. For every x ∈ H we have
the representation x = ∑

j x jϕ j where x j = 〈x, ϕ j 〉. Using this notation, we define
Sobolev-like spaces Hr , r ∈ R, with the inner-products and norms defined by

〈x, y〉r
def=

∞∑
j=1

j2r x j y j and ‖x‖2
r

def=
∞∑
j=1

j2r x2
j . (8)

Notice that H0 = H. Furthermore Hr ⊂ H ⊂ H−r and { j−rϕ j } j≥1 is an orthonormal
basis of Hr for any r > 0. For a positive, self-adjoint operator D : Hr �→ Hr , its
trace in Hr is defined as

TraceHr (D)
def=

∞∑
j=1

〈( j−rϕ j ), D( j−rϕ j )〉r .

Since TraceHr (D) does not depend on the orthonormal basis {ϕ j } j≥1, the operator D is
said to be trace class in Hr if TraceHr (D) < ∞ for some, and hence any, orthonormal
basis of Hr . Let ⊗Hr denote the outer product operator in Hr defined by

(x ⊗Hr y)z
def= 〈y, z〉r x (9)

for vectors x, y, z ∈ Hr . For an operator L : Hr �→ Hl , we denote its operator norm
by ‖·‖L(Hr ,Hl ) defined by ‖L‖L(Hr ,Hl )

def= sup
{‖Lx‖l , : ‖x‖r = 1

}
. For self-adjoint

L and r = l = 0 this is, of course, the spectral radius of L . Throughout we use the
following notation.

– Two sequences {αn}n≥0 and {βn}n≥0 satisfy αn � βn if there exists a constant
K > 0 satisfying αn ≤ Kβn for all n ≥ 0. The notations αn � βn means that
αn � βn and βn � αn .

– Two sequences of real functions { fn}n≥0 and {gn}n≥0 defined on the same set Ω

satisfy fn � gn if there exists a constant K > 0 satisfying fn(x) ≤ K gn(x) for
all n ≥ 0 and all x ∈ Ω . The notations fn � gn means that fn � gn and gn � fn .

– The notation Ex
[

f (x, ξ)
]

denotes expectation with variable x fixed, while the
randomness present in ξ is averaged out.

– We use the notation a ∧ b instead of min(a, b).

2.2 Gaussian measure on Hilbert space

The following facts concerning Gaussian measures on Hilbert space, and Brownian
motion in Hilbert space, may be found in [17]. Since C is self-adjoint, positive and
trace-class we may associate with it a centred Gaussian measure π0 on H with covari-

ance operator C , i.e., π0
def= N(0, C). If x

D∼ π0 then we may write its Karhunen-Loéve
expansion,
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x =
∞∑
j=1

λ j ρ j ϕ j , (10)

with {ρ j } j≥1 an i.i.d sequence of standard centered Gaussian random variables; since
C is trace-class, the above sum converges in L2. Notice that for any value of r ∈ R we

have E‖X‖2
r = ∑

j≥1 j2r 〈X, ϕ j 〉2 = ∑
j≥1 j2rλ2

j for X
D∼ π0. For values of r ∈ R

such that E‖X‖2
r < ∞ we indeed have π0

(Hr
) = 1 and the random variable X can

also be described as a Gaussian random variable in Hr . One can readily check that in
this case the covariance operator Cr : Hr → Hr of X when viewed as a Hr -valued
random variable is given by

Cr = B1/2
r C B1/2

r . (11)

where Br : H �→ H denote the operator which is diagonal in the basis {ϕ j } j≥1

with diagonal entries j2r . In other words, Br ϕ j = j2rϕ j so that B
1
2

r ϕ j = jrϕ j and

E
[〈X, u〉r 〈X, v〉r

] = 〈u, Crv〉r for u, v ∈ Hr and X
D∼ π0. The condition E‖X‖2

r <

∞ can equivalently be stated as

TraceHr (Cr ) < ∞.

This shows that even though the Gaussian measure π0 is defined on H, depending on
the decay of the eigenvalues of C , there exists an entire range of values of r such that
E‖X‖2

r = TraceHr (Cr ) < ∞ and in that case the measure π0 has full support on Hr .
Frequently in applications the functional Ψ arising in (1) may not be defined on

all of H, but only on a subspace Hs ⊂ H, for some exponent s > 0. From now
onwards we fix a distinguished exponent s > 0 and assume that Ψ : Hs → R and that
TraceHs (Cs) < ∞ so that π(Hs) = πτ

0 (Hs) = πτ (Hs) = 1; the change of measure
formula (3) is well defined. For ease of notations we introduce

ϕ̂ j = B
− 1

2
s ϕ j = j−s ϕ j

so that the family {ϕ̂ j } j≥1 forms an orthonormal basis for
(Hs, 〈·, ·〉s

)
. We may view

the Gaussian measure π0 = N(0, C) on
(H, 〈·, ·〉) as a Gaussian measure N(0, Cs)

on
(Hs, 〈·, ·〉s

)
.

A Brownian motion {W (t)}t≥0 in Hs with covariance operator Cs : Hs → Hs

is a continuous Gaussian process with stationary increments satisfying E
[〈W (t), x〉s

〈W (t), y〉s
] = t〈x, Cs y〉s . For example, taking {β j (t)} j≥1 independent standard real

Brownian motions, the process

W (t) =
∑

j

( j sλ j ) β j (t)ϕ̂ j (12)

defines a Brownian motion in Hs with covariance operator Cs ; equivalently, this same
process {W (t)}t≥0 can be described as a Brownian motion in H with covariance
operator equal to C since Eq. (12) may also be expressed as W (t) = ∑∞

j=1 λ jβ j (t)ϕ j .
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2.3 Assumptions

In this section we describe the assumptions on the covariance operator C of the
Gaussian measure π0 = N(0, C) and the functional Ψ , and the connections between
them. Roughly speaking we will assume that the second-derivative of Ψ is globally
bounded as an operator acting between two spaces which arise naturally from under-
standing the domain of the function Ψ ; furthermore the domain of Ψ must be a set of
full measure with respect to the underlying Gaussian. If the eigenvalues of C decay
like j−2κ and κ > 1

2 then πτ
0 (Hs) = 1 for all s < κ − 1

2 and so we will assume
eigenvalue decay of this form and assume the domain of Ψ is defined appropriately.
We now formalize these ideas.

For each x ∈ Hs the derivative ∇Ψ (x) is an element of the dual (Hs)∗ of Hs ,
comprising the linear functionals on Hs . However, we may identify (Hs)∗ = H−s

and view ∇Ψ (x) as an element of H−s for each x ∈ Hs . With this identification, the
following identity holds

‖∇Ψ (x)‖L(Hs ,R) = ‖∇Ψ (x)‖−s

and the second derivative ∂2Ψ (x) can be identified with an element of L(Hs,H−s). To
avoid technicalities we assume that Ψ (x) is quadratically bounded, with first deriv-
ative linearly bounded and second derivative globally bounded. Weaker, localized
assumptions could be dealt with by use of stopping time arguments.

Assumption 1 The functional Ψ and the covariance operator C satisfy the following
assumptions.

A1. Decay of Eigenvalues λ2
j of C : there exists a constant κ > 1

2 such that

λ j � j−κ . (13)

A2. Domain of Ψ : there exists an exponent s ∈ [0, κ − 1/2) such Ψ is defined on
Hs .

A3. Size of Ψ : the functional Ψ : Hs → R satisfies the growth conditions

0 ≤ Ψ (x) � 1 + ‖x‖2
s .

A4. Derivatives of Ψ : The derivatives of Ψ satisfy

‖∇Ψ (x)‖−s � 1 + ‖x‖s and ‖∂2Ψ (x)‖L(Hs ,H−s ) � 1.

Remark 1 The condition κ > 1
2 ensures that TraceHr (Cr ) < ∞ for any r < κ − 1

2 :
this implies that πτ

0 (Hr ) = 1 for any τ > 0 and r < κ − 1
2 .

Remark 2 The functional Ψ (x) = 1
2‖x‖2

s is defined on Hs and satisfies Assump-
tions 1. Its derivative at x ∈ Hs is given by ∇Ψ (x) = ∑

j≥0 j2s x jϕ j ∈ H−s

with ‖∇Ψ (x)‖−s = ‖x‖s . The second derivative ∂2Ψ (x) ∈ L(Hs,H−s) is the
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linear operator that maps u ∈ Hs to
∑

j≥0 j2s〈u, ϕ j 〉ϕ j ∈ H−s : its norm satisfies

‖∂2Ψ (x)‖L(Hs ,H−s ) = 1 for any x ∈ Hs .

The Assumptions 1 ensure that the functional Ψ behaves well in a sense made precise
in the following lemma.

Lemma 2 Let Assumptions 1 hold.

1. The function d(x)
def= −

(
x + C∇Ψ (x)

)
is globally Lipschitz on Hs :

‖d(x) − d(y)‖s � ‖x − y‖s ∀x, y ∈ Hs . (14)

2. The second order remainder term in the Taylor expansion of Ψ satisfies

∣∣Ψ (y) − Ψ (x) − 〈∇Ψ (x), y − x〉∣∣ � ‖y − x‖2
s ∀x, y ∈ Hs . (15)

Proof See [2].

In order to provide a clean exposition, which highlights the central theoretical ideas,
we have chosen to make global assumptions on Ψ and its derivatives. We believe that
our limit theorems could be extended to localized version of these assumptions, at the
cost of considerable technical complications in the proofs, by means of stopping-time
arguments. The numerical example presented in Sect. 6 corroborates this assertion.
There are many applications which satisfy local versions of the assumptions given,
including the Bayesian formulation of inverse problems [18] and conditioned diffu-
sions [19].

3 Diffusion limit theorem

This section contains a precise statement of the algorithm, statement of the main theo-
rem showing that piecewise linear interpolant of the output of the algorithm converges
weakly to a noisy gradient flow described by a SPDE, and proof of the main theorem.
The proofs of various technical lemmas are deferred to Sect. 4.

3.1 pCN algorithm

We now define the Markov chain in Hs which is reversible with respect to the measure
πτ given by Eq. (3). Let x ∈ Hs be the current position of the Markov chain. The
proposal candidate y is given by (5), so that

y = (
1 − 2δ

) 1
2 x + √

2δτ ξ where ξ
D∼ N(0, C) (16)

and δ ∈ (0, 1
2 ) is a small parameter which we will send to zero in order to obtain the

noisy gradient flow. In Eq. (16), the random variable ξ is chosen independent of x .
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As described in [13] (see also [18,20]), at temperature τ ∈ (0,∞) the Metropolis–
Hastings acceptance probability for the proposal y is given by

αδ(x, ξ) = 1 ∧ exp
(
− 1

τ

(
Ψ (y) − Ψ (x)

))
. (17)

For future use, we define the local mean acceptance probability at the current position
x via the formula

αδ(x) = Ex
[
αδ(x, ξ)

]
. (18)

The chain is then reversible with respect to πτ . The Markov chain xδ = {xk,δ}k≥0 can
be written as

xk+1,δ = γ k,δ yk,δ + (1 − γ k,δ) xk,δ

yk,δ = (
1 − 2δ

) 1
2 xk,δ + √

2δτξ k
(19)

In the above equation, the ξ k are i.i.d Gaussian random variables N(0, C) and the γ k,δ

are Bernoulli random variables which account for the accept–reject mechanism of the
Metropolis–Hastings algorithm,

γ k,δ def= γ δ(xk,δ, ξ k, U k) = 1{Uk<αδ(xk,δ ,ξ k )}
D∼ Bernoulli

(
αδ(xk,δ, ξ k)

)
. (20)

for an i.i.d sequence {U k}k≥0 of random variables uniformly distributed on the interval
(0, 1) and independent from all the other sources of randomness. The next lemma will
be repeatedly used in the sequel. It states that the size of the jump y − x is of order√

δ.

Lemma 3 Under Assumptions 1 and for any integer p ≥ 1 the following inequality

Ex
[‖y − x‖p

s
] 1

p � δ ‖x‖s + √
δ �

√
δ
(
1 + ‖x‖s

)

holds for any δ ∈ (0, 1
2 ).

Proof The definition of the proposal (16) shows that ‖y − x‖p
s � δ p ‖x‖p

s +
δ

p
2 E

[‖ξ‖p
s
]
. Fernique’s theorem [17] shows that ξ has exponential moments and

therefore E
[‖ξ‖p

s
]

< ∞. This gives the conclusion.

3.2 Diffusion limit theorem

Fix a time horizon T > 0 and a temperature τ ∈ (0,∞). The piecewise linear
interpolant zδ of the Markov chain (19) is defined by Eq. (6). The following is the
main result of this article. Note that “weakly” refers to weak convergence of probability
measures.
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Theorem 4 Let Assumption 1 hold. Let the Markov chain xδ start at a fixed position
x∗ ∈ Hs . Then the sequence of processes zδ converges weakly to z in C([0, T ],Hs),
as δ → 0, where z solves the Hs -valued stochastic differential equation

dz = −
(

z + C∇Ψ (z)
)

dt + √
2τ dW (21)

z0 = x∗

and W is a Brownian motion in Hs with covariance operator equal to Cs.

For conceptual clarity, we derive Theorem 4 as a consequence of the general diffu-
sion approximation Lemma 6. Consider a separable Hilbert space

(Hs, 〈·, ·〉s
)

and a
sequence of Hs-valued Markov chains xδ = {xk,δ}k≥0. The martingale-drift decom-
position with time discretization δ of the Markov chain xδ reads

xk+1,δ = xk,δ + E
[
xk+1,δ − xk,δ |xk,δ

]

+
(

xk+1,δ − xk,δ − E
[
xk+1,δ − xk,δ |xk,δ

])

= xk,δ + dδ(xk,δ) δ + √
2τδ Γ δ(xk,δ, ξ k) (22)

where the approximate drift dδ and volatility term Γ δ(x, ξ k) are given by

dδ(x) = δ−1
E

[
xk+1,δ − xk,δ |xk,δ = x

]

Γ δ(x, ξ k) = (2τδ)−1/2
(

xk+1,δ − xk,δ − E
[
xk+1,δ − xk,δ |xk,δ = x

])
. (23)

In Eq. (22), the conditional expectation E
[
xk+1,δ−xk,δ |xk,δ

]
is given by αδ(xk,δ, ξ k)×

(yk,δ − xk,δ) for a proposal yk,δ and noise term ξ k as defined in Eq (22). Notice that{
Γ k,δ

}
k≥0, with Γ k,δ def= Γ δ(xk,δ, ξ k), is a martingale difference array in the sense that

Mk,δ = ∑k
j=0 Γ j,δ is a martingale adapted to the natural filtration F δ = {Fk,δ}k≥0

of the Markov chain xδ . The parameter δ represents a time increment. We define the
piecewise linear rescaled noise process by

W δ(t) = √
δ

k∑
j=0

Γ j,δ + t − tk√
δ

Γ k+1,δ for tk ≤ t < tk+1. (24)

We now show that, as δ → 0, if the sequence of approximate drift functions dδ(·)
converges in the appropriate norm to a limiting drift d(·) and the sequence of rescaled
noise process W δ converges to a Brownian motion then the sequence of piecewise
linear interpolants zδ defined by Eq. (6) converges weakly to a diffusion process in
Hs . In order to state the general diffusion approximation Lemma 6, we introduce the
following:

Conditions 5 There exists an integer p ≥ 1 such that the sequence of Markov chains
xδ = {xk,δ}k≥0 satisfies
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1. Convergence of the drift: there exists a globally Lipschitz function d : Hs → Hs

such that
‖dδ(x) − d(x)‖s � δ · (

1 + ‖x‖p
s
)

(25)

2. Invariance principle: as δ tends to zero the sequence of processes {W δ}δ∈(0, 1
2 )

defined by Eq. (24) converges weakly in C([0, T ],Hs) to a Brownian motion W
in Hs with covariance operator Cs.

3. A priori bound: the following bound holds

sup
δ∈

(
0, 1

2

)
{
δ · E

[ ∑
kδ≤T

‖xk,δ‖p
s

]}
< ∞. (26)

Remark 3 The a-priori bound (26) can equivalently be stated as

sup
δ∈

(
0, 1

2

)
{
E

[ T∫

0

‖zδ(u)‖p
s du

]}
< ∞.

It is now proved that Conditions 5 are sufficient to obtain a diffusion approximation
for the sequence of rescaled processes zδ defined by Eq. (6), as δ tends to zero.
Contrary to more classical diffusion approximation for Markov processes results [21,
22] based on infinitesimal generators, the next Lemma exploits specific structures
which arise when the limiting process has additive noise and, in particular, is based
on exploiting preservation of weak convergence under continuous mappings, together
with an explicit construction of the noise process. This idea has previously appeared
in the literature in, for example, the articles [2,3] in the context of MCMC and the
article [23], and the references therein, in the context of the derivation of SDEs from
ODEs with random data.

Lemma 6 (General diffusion approximation for Markov chains) Consider a separable
Hilbert space

(Hs, 〈·, ·〉s
)

and a sequence of Hs -valued Markov chains xδ = {xk,δ}k≥0

starting at a fixed position in the sense that x0,δ = x∗ for all δ ∈ (0, 1
2 ). Suppose that

the drift-martingale decompositions (22) of xδ satisfy Conditions 5. Then the sequence
of rescaled interpolants zδ ∈ C([0, T ],Hs) defined by Eq. (6) converges weakly in
C([0, T ],Hs) to z ∈ C([0, T ],Hs) given by the stochastic differential equation

dz = d(z) dt + √
2τdW (27)

with initial condition z0 = x∗ and where W is a Brownian motion in Hs with covari-
ance Cs.

Proof For the sake of clarity, the proof of Lemma 6 is divided into several steps.
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– Integral equation representation
Notice that solutions of the Hs-valued SDE (27) are nothing else than solutions of
the following integral equation,

z(t) = x∗ +
t∫

0

d(z(u)) du + √
2τ W (t) ∀t ∈ (0, T ), (28)

where W is a Brownian motion in Hs with covariance operator equal to Cs . We thus
introduce the Itô map Θ : C([0, T ],Hs) → C([0, T ],Hs) that sends a function
W ∈ C([0, T ],Hs) to the unique solution of the integral Eq. (28): solution of
(27) can be represented as Θ(W ) where W is an Hs-valued Brownian motion with
covariance Cs . As is described below, the function Θ is continuous if C([0, T ],Hs)

is topologized by the uniform norm ‖w‖C([0,T ],Hs )
def= sup{‖w(t)‖s : t ∈ (0, T )}.

It is crucial to notice that the rescaled process zδ , defined in Eq. (6), satisfies zδ =
Θ(Ŵ δ) with

Ŵ δ(t) := W δ(t) + 1√
2τ

t∫

0

[dδ(z̄δ(u)) − d(zδ(u))] du. (29)

In Equation (29), the quantity dδ is the approximate drift defined in Eq. (23) and
z̄δ is the rescaled piecewise constant interpolant of {xk,δ}k≥0 defined as

z̄δ(t) = xk,δ for tk ≤ t < tk+1. (30)

The proof follows from a continuous mapping argument (see below) once it is
proven that Ŵ δ converges weakly in C([0, T ],Hs) to W .

– The Itô map Θ is continuous

It can be proved that Θ is continuous as a mapping from
(

C([0, T ],Hs), ‖ ·
‖C([0,T ],Hs )

)
to itself. The usual Picard’s iteration proof of the Cauchy-Lipschitz

theorem of ODEs may be employed: see [2].
– The sequence of processes Ŵ δ converges weakly to W

The process Ŵ δ(t) is defined by Ŵ δ(t) = W δ(t)+ 1√
2τ

∫ t
0 [dδ(z̄δ(u))−d(zδ(u))] du

and Conditions 5 state that W δ converges weakly to W in C([0, T ],Hs). Conse-
quently, to prove that Ŵ δ(t) converges weakly to W in C([0, T ],Hs), it suffices
(Slutsky’s lemma) to verify that the sequences of processes

(ω, t) �→
t∫

0

[
dδ(z̄δ(u)) − d(zδ(u))

]
du (31)

converges to zero in probability with respect to the supremum norm in C([0, T ],Hs).
By Markov’s inequality, it is enough to check that E

[ ∫ T
0 ‖dδ(z̄δ(u))−d(zδ(u))‖s du

]
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converges to zero as δ goes to zero. Conditions 5 states that there exists an integer
p ≥ 1 such that ‖dδ(x) − d(x)‖ � δ · (1 + ‖x‖p

s ) so that for any tk ≤ u < tk+1 we
have

∥∥∥dδ(z̄δ(u)) − d(z̄δ(u))

∥∥∥
s

� δ
(
1 + ‖z̄δ(u)‖p

s
) = δ

(
1 + ‖xk,δ‖p

s
)
. (32)

Conditions 5 states that d(·) is globally Lipschitz on Hs . Therefore, Lemma 3 shows
that

E‖d(z̄δ(u)) − d(zδ(u))‖s � E‖xk+1,δ − xk,δ‖s � δ
1
2 (1 + ‖xk,δ‖s). (33)

From estimates (32) and (33) it follows that ‖dδ(z̄δ(u)) − d(zδ(u))‖s � δ
1
2 (1 +

‖xk,δ‖p
s ). Consequently

E

[ T∫

0

‖dδ(z̄δ(u)) − d(zδ(u))‖s du
]

� δ
3
2

∑
kδ<T

E

[
1 + ‖xk,δ‖p

s

]
. (34)

The a-priori bound of Conditions 5 shows that this last quantity converges to zero
as δ converges to zero, which finishes the proof of Eq. (31). This concludes the
proof of Ŵ δ(t) �⇒ W .

– Continuous mapping argument

It has been proved that Θ is continuous as a mapping from
(

C([0, T ],Hs), ‖ ·
‖C([0,T ],Hs )

)
to itself. The solutions of the Hs-valued SDE (27) can be expressed

as Θ(W ) while the rescaled continuous interpolate zδ also reads zδ = Θ(Ŵ δ).

Since Ŵ δ converges weakly in
(

C([0, T ],Hs), ‖ · ‖C([0,T ],Hs )

)
to W as δ tends

to zero, the continuous mapping theorem ensures that zδ converges weakly in(
C([0, T ],Hs), ‖ · ‖C([0,T ],Hs )

)
to the solution Θ(W ) of the Hs-valued SDE (27).

This ends the proof of Lemma 6.

In order to establish Theorem 4 as a consequence of the general diffusion approxi-
mation Lemma 6, it suffices to verify that if Assumptions 1 hold then Conditions 5
are satisfied by the Markov chain xδ defined in Sect. 3.1. In Sect. 4.2 we prove the
following quantitative version of the approximation the function dδ(·) by the function

d(·) where d(x) = −
(

x + C∇Ψ (x)
)

.

Lemma 7 (Drift estimate) Let Assumptions 1 hold and let p ≥ 1 be an integer. Then
the following estimate is satisfied,

‖dδ(x) − d(x)‖p
s � δ

p
2 (1 + ‖x‖2p

s ). (35)

Moreover, the approximate drift dδ is linearly bounded in the sense that

‖dδ(x)‖s � 1 + ‖x‖s . (36)
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It follows from Lemma (7) that Eq. (25) of Conditions 5 is satisfied as soon as Assump-
tions 1 hold. The invariance principle of Conditions 5 follows from the next lemma.
It is proved in Sect 4.5.

Lemma 8 (Invariance Principle) Let Assumptions 1 hold. Then the rescaled noise
process W δ(t) defined in Eq. (24) satisfies

W δ �⇒ W

where �⇒ denotes weak convergence in C([0, T ],Hs), and W is a Hs -valued Brown-
ian motion with covariance operator Cs.

In Sect. 4.4 it is proved that the following a priori bound is satisfied,

Lemma 9 (A priori bound) Consider a fixed time horizon T > 0 and an integer
p ≥ 1. Under Assumptions 1 the following bound holds,

sup
{
δ · E

[ ∑
kδ≤T

‖xk,δ‖p
s

]
: δ ∈

(
0,

1

2

) }
< ∞. (37)

In conclusion, Lemmas 7 and 8 and 9 together show that Conditions 5 are conse-
quences of Assumptions 1. Therefore, under Assumptions 1, the general diffusion
approximation Lemma 6 can be applied: this concludes the proof of Theorem 4.

4 Key estimates

This section assembles various results which are used in the previous section. Some
of the technical proofs are deferred to the appendix.

4.1 Acceptance probability asymptotics

This section describes a first order expansion of the acceptance probability. The approx-
imation

αδ(x, ξ) ≈ ᾱδ(x, ξ) where ᾱδ(x, ξ) = 1 −
√

2δ

τ
〈∇Ψ (x), ξ 〉1{〈∇Ψ (x),ξ〉>0} (38)

is valid for δ � 1. The quantity ᾱδ has the advantage over αδ of being very simple to
analyse: explicit computations are available. This will be exploited in Sect. 4.2. The
quality of the approximation (38) is rigorously quantified in the next lemma.

Lemma 10 (Acceptance probability estimate) Let Assumptions 1 hold. For any integer
p ≥ 1 the quantity ᾱδ(x, ξ) satisfies

Ex
[|αδ(x, ξ) − ᾱδ(x, ξ)|p] � δ p(1 + ‖x‖2p

s ). (39)
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Proof See Appendix 1

Recall the local mean acceptance αδ(x) defined in Eq. (18). Define the approximate
local mean acceptance probability by ᾱδ(x)

def= Ex [ᾱδ(x, ξ)]. One can use Lemma 10
to approximate the local mean acceptance probability αδ(x).

Corollary 1 Let Assumptions 1 hold. For any integer p ≥ 1 the following estimates
hold,

∣∣αδ(x) − ᾱδ(x)
∣∣ � δ (1 + ‖x‖2

s ) (40)

Ex

[∣∣αδ(x, ξ) − 1
∣∣p

]
� δ

p
2 (1 + ‖x‖p

s ) (41)

Proof See Appendix 1

4.2 Drift estimates

Explicit computations are available for the quantity ᾱδ . We will use these results,
together with quantification of the error committed in replacing αδ by ᾱδ , to estimate
the mean drift (in this section) and the diffusion term (in the next section).

Lemma 11 For any x ∈ Hs the approximate acceptance probability ᾱδ(x, ξ) satisfies

√
2τ

δ
Ex

[
ᾱδ(x, ξ) · ξ

]
= −C∇Ψ (x).

Proof Let u =
√

2τ
δ

Ex

[
ᾱδ(x, ξ) · ξ

]
∈ Hs . To prove the lemma it suffices to verify

that for all v ∈ H−s we have 〈u, v〉 = −〈C∇Ψ (x), v〉. To this end, use the decomposi-
tion v = α∇Ψ (x)+w where α ∈ R and w ∈ H−s satisfies 〈C∇Ψ (x), w〉 = 0. Since

ξ
D∼ N(0, C) the two Gaussian random variables ZΨ

def= 〈∇Ψ (x), ξ 〉 and Zw
def= 〈w, ξ 〉

are independent: indeed, (ZΨ , Zw) is a Gaussian vector in R
2 with Cov(ZΨ , Zw) = 0.

It thus follows that

〈u, v〉 = −2 〈Ex
[〈∇Ψ (x), ξ 〉1{〈∇Ψ (x),ξ〉>0} · ξ

]
, α∇Ψ (x) + w〉

= −2 Ex

[
αZ2

Ψ 1{ZΨ >0} + Zw ZΨ 1{ZΨ >0}
]

= −2α Ex

[
Z2

Ψ 1{ZΨ >0}
]

= −αEx

[
Z2

Ψ

]

= −α〈C∇Ψ (x),∇Ψ (x)〉 = 〈−C∇Ψ (x), α∇Ψ (x) + w〉
= −〈C∇Ψ (x), v〉,

which concludes the proof of Lemma 11.

We now use this explicit computation to give a proof of the drift estimate Lemma 7.
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Proof (Proof of Lemma 7) The function dδ defined by Eq. (23) can also be expressed
as

dδ(x) =
{ (1 − 2δ)

1
2 − 1

δ
αδ(x) x

}
+

{√
2τ

δ
Ex [αδ(x, ξ) ξ ]

}
= B1 + B2, (42)

where the mean local acceptance probability αδ(x) has been defined in Eq. (18) and
the two terms B1 and B2 are studied below. To prove Eq. (35), it suffices to establish
that

‖B1 + x‖p
s � δ

p
2 (1 +‖x‖2p

s ) and ‖B2 + C∇Ψ (x)‖p
s � δ

p
2 (1 +‖x‖2p

s ). (43)

We now establish these two bounds.

– Lemma 10 and Corollary 1 show that

‖B1 + x‖p
s =

{ (1 − 2δ)
1
2 − 1

δ
αδ(x) + 1

}p‖x‖p
s (44)

�
{∣∣ (1 − 2δ)

1
2 − 1

δ
− 1

∣∣p + ∣∣αδ(x) − 1
∣∣p

}
‖x‖p

s

�
{
δ p + δ

p
2 (1 + ‖x‖p

s )
}
‖x‖p

s � δ
p
2 (1 + ‖x‖2p

s ).

– Lemma 10 shows that

‖B2 + C∇Ψ (x)‖p
s = ∥∥

√
2τ

δ
Ex [αδ(x, ξ) ξ ] + C∇Ψ (x)

∥∥p
s (45)

� δ− p
2
∥∥Ex [{αδ(x, ξ) − ᾱδ(x, ξ)} ξ ]∥∥p

s

+ ∥∥
√

2τ

δ
Ex [ᾱδ(x, ξ) ξ ] + C∇Ψ (x)

︸ ︷︷ ︸
=0

∥∥p
s .

By Lemma 11, the second term on the right hand equals to zero. Consequently,
the Cauchy-Schwarz inequality implies that

‖B2 + C∇Ψ (x)‖p
s � δ− p

2 Ex [
∣∣αδ(x, ξ) − ᾱδ(x, ξ)

∣∣2] p
2

� δ− p
2

(
δ2(1 + ‖x‖4

s )
)p

2 � δ
p
2 (1 + ‖x‖2p

s ).

Estimates (44) and (45) give Eq. (43). To complete the proof we establish the bound

(36). The expression (42) shows that it suffices to verify δ− 1
2 Ex [αδ(x, ξ) ξ ] �

1 + ‖x‖s . To this end, we use Lemma 11 and Corollary 1. By the Cauchy-Schwarz
inequality,
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∥∥∥δ− 1
2 Ex

[
αδ(x, ξ) · ξ

]∥∥∥
s

=
∥∥∥δ− 1

2 Ex

[
[αδ(x, ξ) − 1] · ξ

]∥∥∥
s

� δ− 1
2 Ex

[
(αδ(x, ξ) − 1)2

] 1
2 � 1 + ‖x‖s,

which concludes the proof of Lemma 7.

4.3 Noise estimates

In this section we estimate the error in the approximation Γ k,δ ≈ N(0, Cs). To this

end, let us introduce the covariance operator Dδ(x) = E

[
Γ k,δ ⊗Hs Γ k,δ|xk,δ = x

]

of the martingale difference Γ δ . For any x, u, v ∈ Hs the operator Dδ(x) satisfies

E

[
〈Γ k,δ, u〉s〈Γ k,δ, v〉s |xk,δ = x

]
= 〈u, Dδ(x)v〉s .

The next lemma gives a quantitative version of the approximation of Dδ(x) by the
operator Cs .

Lemma 12 (Noise estimates) Let Assumptions 1 hold. For any pair of indices i, j ≥ 1,
the martingale difference term Γ δ(x, ξ) satisfies

|〈ϕ̂i , Dδ(x) ϕ̂ j 〉s − 〈ϕ̂i , Cs ϕ̂ j 〉s | � δ
1
8 · (

1 + ‖x‖s
)

(46)

|TraceHs
(
Dδ(x)

) − TraceHs
(
Cs

)| � δ
1
8 · (

1 + ‖x‖2
s

)
. (47)

with {ϕ̂ j = j−sϕ j } j≥0 is an orthonormal basis of Hs .

Proof See Appendix 1

4.4 A priori bound

Now we have all the ingredients for the proof of the a priori bound presented in Lemma
9 which states that the rescaled process zδ given by Eq. (6) does not blow up in finite
time.

Proof (Proof Lemma 9) Without loss of generality, assume that p = 2n for some
positive integer n ≥ 1. We now prove that there exist constants α1, α2, α3 > 0
satisfying

E[‖xk,δ‖2n
s ] ≤ (α1 + α2k δ)eα3k δ. (48)

Lemma 9 is a straightforward consequence of Eq. 48 since this implies that

δ
∑

kδ<T

E[‖xk,δ‖2n
s ] ≤ δ

∑
kδ<T

(α1 + α2k δ)eα3k δ �
T∫

0

(α1 + α2 t) eα3 t < ∞.
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For notational convenience, let us define V k,δ = E
[‖xk,δ‖2n

s

]
. To prove Eq. (48), it

suffices to establish that

V k+1,δ − V k,δ ≤ K δ · (
1 + V k,δ

)
, (49)

where K > 0 is constant independent from δ ∈ (0, 1
2 ). Indeed, iterating inequality

(49) leads to the bound (48), for some computable constants α1, α2, α3 > 0. The
definition of V k shows that

V k+1,δ − V k,δ = E
[‖xk,δ + (xk+1,δ − xk,δ)‖2n

s − ‖xk,δ‖2n
s

]
(50)

= E
[{‖xk,δ‖2

s + ‖xk+1,δ − xk,δ‖2
s

+ 2〈xk,δ, xk+1,δ − xk,δ〉s

}n − ‖xk,δ‖2n
s

]

where the increment xk+1,δ − xk,δ is given by

xk+1,δ − xk,δ = γ k,δ
(
(1 − 2δ)

1
2 − 1

)
xk,δ + √

2δ γ k,δξ k . (51)

To bound the right-hand-side of Eq. (50), we use a binomial expansion and control
each term. To this end, we establish the following estimate: for all integers i, j, k ≥ 0
satisfying i + j + k = n and (i, j, k) �= (n, 0, 0) the following inequality holds,

E

[(
‖xk,δ‖2

s

)i ×
(
‖xk+1,δ − xk,δ‖2

s

) j

×
(
〈xk,δ, xk+1,δ − xk,δ〉s

)k]
� δ (1 + V k,δ). (52)

To prove Eq. (52), we separate two different cases.

– Let us suppose (i, j, k) = (n − 1, 0, 1). Lemma 7 states that the approximate drift
has a linearly bounded growth so that

∥∥∥E
[
xk+1,δ − xk,δ|xk,δ

]∥∥∥
s

= δ‖dδ(xk,δ)‖s � δ(1 + ‖xk,δ‖s).

Consequently, we have

E

[(
‖xk,δ‖2

s

)n−1〈xk,δ, xk+1,δ−xk,δ〉s

]
� E

[
‖xk,δ‖2(n−1)

s ‖xk,δ‖s

(
δ(1+‖xk,δ‖s

)]

� δ(1 + V k,δ).

This proves Eq. (52) in the case (i, j, k) = (n − 1, 0, 1).

– Let us suppose (i, j, k) �∈
{
(n, 0, 0), (n−1, 0, 1)

}
. Because for any integer p ≥ 1,

Ex

[
‖xk+1,δ − xk,δ‖p

s

] 1
p � δ

1
2 (1 + ‖x‖s)
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it follows from the Cauchy-Schwarz inequality that

E

[(
‖xk,δ‖2

s

)i(‖xk+1,δ − xk,δ‖2
s

) j(〈xk,δ, xk+1,δ − xk,δ〉s

)k]
� δ j+ k

2 (1 + V k,δ).

Since we have supposed that (i, j, k) �∈
{
(n, 0, 0), (n−1, 0, 1)

}
and i + j +k = n,

it follows that j + k
2 ≥ 1. This concludes the proof of Eq. (52),

The binomial expansion of Eq. (50) and the bound (52) show that Eq. (49) holds. This
concludes the proof of Lemma 9.

4.5 Invariance principle

Combining the noise estimates of Lemma 12 and the a priori bound of Lemma 9, we
show that under Assumptions 1 the sequence of rescaled noise processes defined in
Eq. 24 converges weakly to a Brownian motion. This is the content of Lemma 8 whose
proof is now presented.

Proof (Proof of Lemma 8) As described in [24] [Proposition 5.1], in order to prove that
W δ converges weakly to W in C([0, T ],Hs) it suffices to prove that for any t ∈ [0, T ]
and any pair of indices i, j ≥ 0 the following three limits hold in probability,

lim
δ→0

δ
∑
kδ<t

E

[
‖Γ k,δ‖2

s |xk,δ
]

= t · TraceHs (Cs) (53)

lim
δ→0

δ
∑
kδ<t

E

[
〈Γ k,δ, ϕ̂i 〉s〈Γ k,δ, ϕ̂ j 〉s |xk,δ

]
= t 〈ϕ̂i , Cs ϕ̂ j 〉s (54)

lim
δ→0

δ
∑

kδ<T

E

[
‖Γ k,δ‖2

s 1{‖Γ k,δ‖2
s ≥δ−1 ε} |xk,δ

]
= 0 ∀ε > 0. (55)

We now check that these three conditions are indeed satisfied.

– Condition (53): since E

[
‖Γ k,δ‖2

s |xk,δ
]

= TraceHs (Dδ(xk,δ)), Lemma 12 shows

that
E

[
‖Γ k,δ‖2

s |xk,δ
]

= TraceHs (Cs) + eδ
1(xk,δ)

where the error term eδ
1 satisfies |eδ

1(x)| � δ
1
8 (1 + ‖x‖2

s ). Consequently, to prove
condition (53) it suffices to establish that

lim
δ→0

E

[∣∣δ
∑

kδ<T

eδ
1(xk,δ)

∣∣] = 0.

We have E
[∣∣δ ∑

kδ<T eδ
1(xk,δ)

∣∣] � δ
1
8

{
δ · E

[ ∑
kδ<T (1 + ‖xk,δ‖2

s )
]}

and the a

priori bound presented in Lemma 9 shows that

sup
δ∈

(
0, 1

2

)
{
δ · E

[ ∑
kδ<T

(1 + ‖xk,δ‖2
s )

]}
< ∞.
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Consequently limδ→0 E
[∣∣δ ∑

kδ<T eδ
1(xk,δ)

∣∣] = 0, and the conclusion follows.
– Condition (54): Lemma 12 states that

Ek

[
〈Γ k,δ, ϕ̂i 〉s〈Γ k,δ, ϕ̂ j 〉s

]
= 〈ϕ̂i , Cs ϕ̂ j 〉s + eδ

2(xk,δ)

where the error term eδ
2 satisfies |eδ

2(x)| � δ
1
8 (1+‖x‖s). The exact same approach

as the proof of Condition (53) gives the conclusion.
– Condition (55): from the Cauchy-Schwarz and Markov’s inequalities it follows

that

E

[
‖Γ k,δ‖2

s 1{‖Γ k,δ‖2
s ≥δ−1 ε}

]
≤ E

[
‖Γ k,δ‖4

s

] 1
2 · P

[
‖Γ k,δ‖2

s ≥ δ−1 ε
] 1

2

≤ E

[
‖Γ k,δ‖4

s

] 1
2 ·

{E
[‖Γ k,δ‖4

s

]

(δ−1 ε)2

} 1
2

≤ δ

ε
· E

[
‖Γ k,δ‖4

s

]
.

Lemma 7 readily shows that E‖Γ k,δ‖4
s � 1 + ‖x‖4

s Consequently we have

E

[∣∣∣δ
∑

kδ<T

E

[
‖Γ k,δ‖2

s 1{‖Γ k,δ‖2
s ≥δ−1 ε}|xk,δ

]∣∣∣
]

≤ δ

ε
×

{
δ ·E

[ ∑
kδ<T

(1+‖xk,δ‖4
s )

]}

and the conclusion again follows from the a priori bound Lemma 9.

5 Quadratic variation

As discussed in the introduction, the SPDE (7), and the Metropolis–Hastings algorithm
pCN which approximates it for small δ, do not satisfy the smoothing property and so
almost sure properties of the limit measure πτ are not necessarily seen at finite time. To
illustrate this point, we introduce in this section a functional V : H → R that is well
defined on a dense subset of H and such that V (X) is πτ -almost surely well defined

and satisfies P
(
V (X) = 1

) = τ for X
D∼ πτ . The quantity V corresponds to the usual

quadratic variation if π0 is the Wiener measure. We show that the quadratic variation
like quantity V (xk,τ ) of a pCN Markov chain converges as k → ∞ to the almost sure
quantity τ . We then prove that piecewise linear interpolation of this quantity solves, in
the small δ limit, a linear ODE (the “fluid limit”) whose globally attractive stable state
is the almost sure quantity τ . This quantifies the manner in which the pCN method
approaches statistical equilibrium.
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5.1 Definition and properties

Under Assumptions 1, the Karhunen-Loéve expansion shows that π0-almost every
x ∈ H satisfies

lim
N→∞ N−1

N∑
j=1

〈x, ϕ j 〉2

λ2
j

= 1.

This motivates the definition of the quadratic variation like quantities

V−(x)
def= lim inf

N→∞ N−1
N∑

j=1

〈x, ϕ j 〉2

λ2
j

and V+(x)
def= lim sup

N→∞
N−1

N∑
j=1

〈x, ϕ j 〉2

λ2
j

.

When these two quantities are equal the vector x ∈ H is said to possess a quadratic
variation V (x) defined as V (x) = V−(x) = V+(x). Consequently, π0-almost every
x ∈ H possesses a quadratic variation V (x) = 1. It is a straightforward consequence
that πτ

0 -almost every and πτ -almost every x ∈ H possesses a quadratic variation
V (x) = τ . Strictly speaking this only coincides with quadratic variation when C
is the covariance of a (possibly conditioned) Brownian motion; however we use the
terminology more generally in this section. The next lemma proves that the quadratic
variation V (·) behaves as it should do with respect to additivity.

Lemma 13 (Quadratic variation additivity) Consider a vector x ∈ H and a Gaussian

random variable ξ
D∼ π0 and a real number α ∈ R. Suppose that the vector x ∈ H

possesses a finite quadratic variation V (x) < +∞. Then almost surely the vector
x + αξ ∈ H possesses a quadratic variation that is equal to

V (x + αξ) = V (x) + α2.

Proof Let us define VN
def= N−1 ∑N

1
〈x,ϕ j 〉·〈ξ,ϕ j 〉

λ2
j

. To prove Lemma 13 it suffices to

prove that almost surely the following limit holds

lim
N→∞ VN = 0.

Borel-Cantelli Lemma shows that it suffices to prove that for every fixed ε > 0 we
have

∑
N≥1 P

[∣∣VN
∣∣ > ε

]
< ∞. Notice then that VN is a centred Gaussian random

variables with variance

Var(VN ) = 1

N

(
N−1

N∑
1

〈x, ϕ j 〉2

λ2
j

)
� V (x)

N
.

It readily follows that
∑

N≥1 P
[∣∣VN

∣∣ > ε
]

< ∞, finishing the proof of the Lemma.
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5.2 Large k behaviour of quadratic variation for pCN

The pCN algorithm at temperature τ > 0 and discretization parameter δ > 0 proposes
a move from x to y according to the dynamics

y = (1 − 2δ)
1
2 x + (2δτ)

1
2 ξ with ξ

D∼ π0.

This move is accepted with probability αδ(x, y). In this case, Lemma 13 shows that if
the quadratic variation V (x) exists then the quadratic variation of the proposed move
y ∈ H exists and satisfies

V (y) − V (x)

δ
= −2(V (x) − τ). (56)

Consequently, one can prove that for any finite time step δ > 0 and temperature τ > 0
the quadratic variation of the MCMC algorithm converges to τ .

Proposition 14 (Limiting Quadratic Variation) Let Assumptions 1 hold and {xk,δ}k≥0
be the Markov chain of Sect. 3.1. Then almost surely the quadratic variation of the
Markov chain converges to τ ,

lim
k→∞ V (xk,δ) = τ.

Proof Let us first show that the number of accepted moves is infinite. If this were not
the case, the Markov chain would eventually reach a position xk,δ = x ∈ H such

that all subsequent proposals yk+l = (1 − 2δ)
1
2 xk + (2τδ)

1
2 ξ k+l would be refused.

This means that the i.i.d. Bernoulli random variables γ k+l = Bernoulli
(
αδ(xk, yk+l)

)
satisfy γ k+l = 0 for all l ≥ 0. This can only happen with probability zero. Indeed,
since P[γ k+l = 1] > 0, one can use Borel-Cantelli Lemma to show that almost surely
there exists l ≥ 0 such that γ k+l = 1. To conclude the proof of the Proposition, notice
then that the sequence {uk}k≥0 defined by uk+1 − uk = −2δ(uk − τ) converges to τ .

5.3 Fluid limit for quadratic variation of pCN

To gain further insight into the rate at which the limiting behaviour of the quadratic
variation is observed for pCN we derive an ODE “fluid limit” for the Metropolis–
Hastings algorithm. We introduce the continuous time process t �→ vδ(t) defined as
continuous piecewise linear interpolation of the process k �→ V (xk,δ),

vδ(t) = 1

δ
(t − tk) V ( xk+1,δ ) + 1

δ
(tk+1 − t) V ( xk,δ ) for tk ≤ t < tk+1. (57)

Since the acceptance probability of pCN approaches one as δ → 0 (see Corollary 1)
Eq. (56) shows heuristically that the trajectories of the process t �→ vδ(t) should be
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well approximated by the solution of the (non-stochastic) differential equation

v̇ = −2 (v − τ). (58)

We prove such a result, in the sense of convergence in probability in C([0, T ], R):

Theorem 15 (Fluid limit for quadratic variation) Let Assumptions 1 hold. Let the
Markov chain xδ start at fixed position x∗ ∈ Hs . Assume that x∗ ∈ H possesses a finite
quadratic variation, V (x∗) < ∞. Then the function vδ(t) converges in probability in
C([0, T ], R), as δ goes to zero, to the solution of the differential Eq. (58) with initial
condition v0 = V (x∗).

As already indicated, the heart of the proof consists in showing that the acceptance
probability of the algorithm converges to one as δ goes to zero. We prove such a result
as Lemma 16 below, and then proceed to prove Theorem 15. To this end we introduce
tδ(k), the number of accepted moves,

tδ(k)
def=

∑
l≤k

γ l,δ,

where γ l,δ = Bernoulli(αδ(x, y)) is the Bernoulli random variable defined in Eq.
(20). Since the acceptance probability of the algorithm converges to 1 as δ → 0, the
approximation tδ(k) ≈ k holds. In order to prove a fluid limit result on the interval
[0, T ] one needs to prove that the quantity

∣∣tδ(k)− k
∣∣ is small when compared to δ−1.

The next Lemma shows that such a bounds holds uniformly on the interval [0, T ].
Lemma 16 (Number of accepted moves) Let Assumptions 1 hold. The number of
accepted moves tδ(·) verifies

lim
δ→0

sup
{
δ · ∣∣tδ(k) − k

∣∣ : 0 ≤ k ≤ T δ−1} = 0

where the convergence holds in probability.

Proof The proof is given in Appendix 2.

We now complete the proof of Theorem 15 using the key Lemma 16.

Proof (of Theorem 15) The proof consists in showing that the trajectory of the
quadratic variation process behaves as if all the move were accepted. The main ingre-
dient is the uniform lower bound on the acceptance probability given by Lemma 16.
Recall that vδ(kδ) = V (xk,δ). Consider the piecewise linear function v̂δ(·) ∈
C([0, T ], R) defined by linear interpolation of the values v̂δ(kδ) = uδ(k) and where
the sequence {uδ(k)}k≥0 satisfies uδ(0) = V (x∗) and

uδ(k + 1) − uδ(k) = −2δ (uδ(k) − τ).

The value uδ(k) ∈ R represents the quadratic variation of xk,δ if the k first moves of
the MCMC algorithm had been accepted. One can readily check that as δ goes to zero

123



220 Stoch PDE: Anal Comp (2014) 2:196–232

the sequence of continuous functions v̂δ(·) converges in C([0, T ], R) to the solution
v(·) of the differential Eq. (58). Consequently, to prove Theorem 15 it suffices to show
that for any ε > 0 we have

lim
δ→0

P

[
sup

{∣∣V (xk,δ) − uδ(k)
∣∣ : k ≤ δ−1T

}
> ε

]
= 0. (59)

The definition of the number of accepted moves tδ(k) is such that V (xk,δ) = uδ(tδ(k)).
Note that

uδ(k) = (1 − 2δ)ku0 + (
1 − (1 − 2δ)k)τ. (60)

Hence, for any integers t1, t2 ≥ 0, we have
∣∣uδ(t2)− uδ(t1)

∣∣ ≤ ∣∣uδ(|t2 − t1|)− uδ(0)
∣∣

so that

∣∣V (xk,δ) − uδ(k)
∣∣ = ∣∣uδ(tδ(k)) − uδ(k)

∣∣ ≤ ∣∣uδ(k − tδ(k)) − uδ(0)
∣∣.

Equation (60) shows that |uδ(k) − uδ(0)| �
(
1 − (1 − 2δ)k

)
. This implies that

∣∣V (xk,δ) − uδ(k)
∣∣ � 1 − (1 − 2δ)k−tδ(k) � 1 − (1 − 2δ)δ

−1 S

where S = sup
{
δ · ∣∣tδ(k) − k

∣∣ : 0 ≤ k ≤ T δ−1
}
. Since for any a > 0 we have

1 − (1 − 2δ)aδ−1 → 1 − e−2a , Eq. (59) follows if one can prove that as δ goes to
zero the supremum S converges to zero in probability: this is precisely the content of
Lemma 16. This concludes the proof of Theorem 15.

6 Numerical results

In this section, we present some numerical simulations demonstrating our results. We
consider the minimization of a functional J (·) defined on the Sobolev space H1

0 (R).

Note that functions x ∈ H1
0 ([0, 1]) are continuous and satisfy x(0) = x(1) = 0; thus

H1
0 (R) ⊂ C0([0, 1]) ⊂ L2(0, 1). For a given real parameter λ > 0, the functional

J : H1
0 ([0, 1]) → R is composed of two competitive terms, as follows:

J (x) = 1

2

1∫

0

∣∣ẋ(s)
∣∣2

ds + λ

4

1∫

0

(
x(s)2 − 1

)2
ds. (61)

The first term penalizes functions that deviate from being flat, whilst the second term
penalizes functions that deviate from one in absolute value. Critical points of the
functional J (·) solve the following Euler-Lagrange equation:

ẍ + λ x(1 − x2) = 0 (62)

x(0) = x(1) = 0.
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Fig. 1 The three solutions of the Euler-Lagrange Eq. (62) for λ = 2π2. Only the two non-zero solutions
are global minimum of the functional J (·). The dotted solution is a local maximum of J (·)

Clearly x ≡ 0 is a solution for all λ ∈ R
+. If λ ∈ (0, π2) then this is the unique

solution of the Euler-Lagrange equation and is the global minimizer of J . For each
integer k there is a supercritical bifurcation at parameter value λ = k2π2. For λ > π2

there are two minimizers, both of one sign and one being minus the other. The three
different solutions of (62) which exist for λ = 2π2 are displayed in Fig. 1, at which
value the zero (blue dotted) solution is a saddle point, and the two green solutions are
the global minimizers of J . These properties of J are overviewed in, for example,
[25]. We will show how these global minimizers can emerge from an algorithm whose
only ingredients are an ability to evaluate Ψ and to sample from the Gaussian measure
with Cameron-Martin norm

∫ 1
0 |ẋ(s)|2ds. We emphasize that we are not advocating

this as the optimal method for solving the Euler-Lagrange equations (62). We have
chosen this example for its simplicity, in order to illustrate the key ingredients of the
theory developed in this paper.

The pCN algorithm to minimize J given by (61) is implemented on L2([0, 1]).
Recall from [17] that the Gaussian measure N(0, C) may be identified by finding
the covariance operator for which the H1

0 ([0, 1]) norm ‖x‖2
C

def= ∫ 1
0

∣∣ẋ(s)
∣∣2

ds is the
Cameron-Martin norm. In [26] it is shown that the Wiener bridge measure W0→0 on
L2([0, 1]) has precisely this Cameron-Martin norm; indeed it is demonstrated that
C−1 is the densely defined operator − d2

ds2 with D(C−1) = H2([0, 1]) ∩ H1
0 ([0, 1]).

In this regard it is also instructive to adopt the physicists viewpoint that

W0→0(dx) ∝ exp
(

− 1

2

1∫

0

∣∣ẋ(s)
∣∣2

ds
)

dx
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although, of course, there is no Lebesgue measure in infinite dimensions. Using an
integration by parts, together with the boundary conditions on H1

0 ([0, 1]), then gives

W0→0(dx) ∝ exp
(1

2

1∫

0

x(s)
d2x

ds2 (s) ds
)

dx

and the inverse of C is clearly identified as the differential operator above. See [27]
for basic discussion of the physicists viewpoint on Wiener measure. For a given tem-
perature parameter τ the Wiener bridge measure W

τ
0→0 on L2([0, 1]) is defined as the

law of
{√

τ W (t)
}

t∈[0,1] where {W (t)}t∈[0,1] is a standard Brownian bridge on [0, 1]
drawn from W0→0.

The posterior distribution πτ (dx) is defined by the change of probability formula

dπτ

dW
τ
0→0

(x) ∝ e−Ψ (x) with Ψ (x) = λ

4

1∫

0

(
x(s)2 − 1

)2
ds.

Notice that πτ
0

(
H1

0 ([0, 1)
) = πτ

(
H1

0 ([0, 1)
) = 0 since a Brownian bridge is almost

surely not differentiable anywhere on [0, 1]. For this reason, the algorithm is imple-
mented on L2([0, 1]) even though the functional J (·) is defined on the Sobolev space
H1

0 ([0, 1]). In terms of Assumptions 1(1) we have κ = 1 and the measure πτ
0 is sup-

ported on Hr if and only if r < 1
2 , see Remark 1; note also that H1

0 ([0, 1]) = H1.

Assumption 1(2) is satisfied for any choice s ∈ [ 1
4 , 1

2 ) because Hs is embedded into
L4([0, 1]) for s ≥ 1

4 . We add here that Assumptions 1(3-4) do not hold globally,
but only locally on bounded sets, but the numerical results below will indicate that
the theory developed in this paper is still relevant and could be extended to nonlocal
versions of Assumptions 1(3-4), with considerable further work.

Following Sect. 3.1, the pCN Markov chain at temperature τ > 0 and time dis-
cretization δ > 0 proposes moves from x to y according to

y = (1 − 2δ)
1
2 x + (2δτ)

1
2 ξ

where ξ ∈ C([0, 1], R) is a standard Brownian bridge on [0, 1]. The move x → y
is accepted with probability αδ(x, ξ) = 1 ∧ exp

( − τ−1[Ψ (y) − Ψ (x)]). Figure 2
displays the convergence of the Markov chain {xk,δ}k≥0 to a minimizer of the functional
J (·). Note that this convergence is not shown with respect to the space H1

0 ([0, 1]) on
which J is defined, but rather in L2([0, 1]); indeed J (·) is almost surely infinite when
evaluated at samples of the pCN algorithm, precisely because πτ

0

(
H1

0 ([0, 1)
) = 0, as

discussed above.
Of course the algorithm does not converge exactly to a minimizer of J (·), but

fluctuates in a neighborhood of it. As described in the introduction of this article,
in a finite dimensional setting the target probability distribution πτ has Lebesgue
density proportional to exp

( − τ−1 J (x)
)
. This intuitively shows that the size of the

fluctuations around the minimum of the functional J (·) are of size proportional to
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Fig. 2 pCN parameters: λ = 2π2, δ = 1.10−2, τ = 1.10−2. The algorithm is started at the zero function,
x0,δ(t) = 0 for t ∈ [0, 1]. After a transient phase, the algorithm fluctuates around a global minimizer of
functional J (·). The L2 error ‖xk,δ − (minimizer)‖L2 is plotted as a function of the algorithmic time k

Fig. 3 Mean error E
[‖x − (minimizer)‖2

]
as a function of the temperature τ

√
τ . Figure 3 shows this phenomenon on log-log scales: the asymptotic mean error

E
[‖x − (minimizer)‖2

]
is displayed as a function of the temperature τ . Figure 4

illustrates Theorem 15. One can observe the path {vδ(t)}t∈[0,T ] for a finite time step
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Fig. 4 pCN parameters: λ = 2 π2, τ = 1.10−1, δ = 1.10−3 and the algorithm starts at xk,δ = 0. The
rescaled quadratic variation process (full line) behaves as the solution of the differential equation (dotted
line), as predicted by Theorem 15. The quadratic variation converges to τ , as described by Proposition 14

discretization parameter δ as well as the limiting path {v(t)}t∈[0,T ] that is solution of
the differential Eq. (58).

7 Conclusion

There are two useful perspectives on the material contained in this paper, one con-
cerning optimization and one concerning statistics. We now detail these perspectives.

– Optimization We have demonstrated a class of algorithms to minimize the func-
tional J given by (1). The Assumptions 1 encode the intuition that the quadratic
part of J dominates. Under these assumptions we study the properties of an algo-
rithm which requires only the evaluation of Ψ and the ability to draw samples from
Gaussian measures with Cameron-Martin norm given by the quadratic part of J .
We demonstrate that, in a certain parameter limit, the algorithm behaves like a noisy
gradient flow for the functional J and that, furthermore, the size of the noise can
be controlled systematically. The advantage of constructing algorithms on Hilbert
space is that they are robust to finite dimensional approximation. We turn to this
point in the next bullet.

– Statistics The algorithm that we use is a Metropolis–Hastings method with an
Onrstein–Uhlenbeck proposal which we refer to here as pCN, as in [14]. The pro-
posal takes the form for ξ ∼ N(0, C),

y = (
1 − 2δ

) 1
2 x + √

2δτξ
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given in (5). The proposal is constructed in such a way that the algorithm is defined
on infinite dimensional Hilbert space and may be viewed as a natural analogue of
a random walk Metropolis–Hastings method for measures defined via density with
respect to a Gaussian. It is instructive to contrast this with the standard random walk
method S-RWM with proposal

y = x + √
2δτξ.

Although the proposal for S-RWM differs only through a multiplicative factor in the
systematic component, and thus implementation of either is practically identical,
the S-RWM method is not defined on infinite dimensional Hilbert space. This turns
out to matter if we compare both methods when applied in R

N for N � 1, as
would occur if approximating a problem in infinite dimensional Hilbert space: in
this setting the S-RWM method requires the choice δ = O(N−1) to see the diffusion
(SDE) limit [2] and so requires O(N ) steps to see O(1) decrease in the objective
function, or to draw independent samples from the target measure; in contrast the
pCN produces a diffusion limit for δ → 0 independently of N and so requires
O(1) steps to see O(1) decrease in the objective function, or to draw independent
samples from the target measure. Mathematically this last point is manifest in the
fact that we may take the limit N → ∞ (and thus work on the infinite dimensional
Hilbert space) followed by the limit δ → 0.

The methods that we employ for the derivation of the diffusion (SDE) limit use a
combination of ideas from numerical analysis and the weak convergence of probability
measures. This approach is encapsulated in Lemma 6 which is structured in such a
way that it, or variants of it, may be used to prove diffusion limits for a variety of
problems other than the one considered here.
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8 Appendix 1: Proofs of lemmas; Section 4

Proof (Proof of Lemma 10) Let us introduce the two 1-Lipschitz functions h, h∗ :
R → R defined by

h(x) = 1 ∧ ex and h∗(x) = 1 + x 1{x<0}. (63)

The function h∗ is a first order approximation of h in a neighborhood of zero and we
have

αδ(x, ξ) = h
(

− 1

τ
{Ψ (y) − Ψ (x)}

)
and ᾱδ(x, ξ) = h∗

(
−

√
2δ

τ
〈∇Ψ (x), ξ 〉

)
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where the proposal y is a function of x and ξ , as described in Eq. (16). Since h∗(·)
is close to h(·) in a neighborhood of zero, the proof is finished once it is proved

that − 1
τ
{Ψ (y) − Ψ (x)} is close to −

√
2δ
τ

〈∇Ψ (x), ξ 〉. We have Ex

[
|αδ(x, ξ) −

ᾱδ(x, ξ)|p
]

� A1 + A2 where the quantities A1 and A2 are given by

A1 = Ex

[∣∣h( − 1

τ
{Ψ (y) − Ψ (x)}) − h

( −
√

2δ

τ
〈∇Ψ (x), ξ 〉)∣∣p

]

A2 = Ex

[∣∣h( −
√

2δ

τ
〈∇Ψ (x), ξ 〉) − h∗

( −
√

2δ

τ
〈∇Ψ (x), ξ 〉)∣∣p

]
.

By Lemma 2, the first order Taylor approximation of Ψ is controlled,
∣∣Ψ (y)−Ψ (x)−

〈∇Ψ (x), y − x〉∣∣ � ‖y − x‖2
s . The definition of the proposal y given in Eq. (16) shows

that ‖(y − x) − √
2δτξ‖s � δ‖x‖s . Assumptions 1 state that for z ∈ Hs we have

〈∇Ψ (x), z〉 �
(
1 + ‖x‖s

) · ‖z‖s . Since the function h(·) is 1-Lipschitz it follows that

A1 = Ex

[∣∣h( − 1

τ
{Ψ (y) − Ψ (x)}) − h

( −
√

2δ

τ
〈∇Ψ (x), ξ 〉)∣∣p

]

� Ex

[∣∣Ψ (y) − Ψ (x) − 〈∇Ψ (x), y − x〉∣∣p + ∣∣〈∇Ψ (x), y − x − √
2δτξ 〉∣∣p

]

� Ex

[
‖y − x‖2p

s + (1 + ‖x‖p
s ) · (δ‖x‖s)

p
]

� δ p (1 + ‖x‖2p
s ). (64)

Lemma 3 has been used to control the size of Ex
[‖y − x‖p

]
. To bound A2, notice that

for z ∈ R we have |h(z) − h∗(z)| ≤ 1
2 z2. Therefore the quantity A2 can be bounded

by

A2 � Ex

[
|√δ〈∇Ψ (x), ξ 〉|2p

]
� δ p

Ex

[
(1 + ‖x‖2p

s ) ‖ξ‖2p
s

]
� δ p(1 + ‖x‖2p

s ).

(65)
Estimates (64) and (65) together give Eq. (39).

Proof (Proof of Corollary 1) Let us prove Eqs. (40) and (41).

– Lemma 10 and Jensen’s inequality give Eq. (40).
– To prove (41), one can suppose δ

p
2 ‖x‖p

s ≤ 1. Indeed, if δ
p
2 ‖x‖p

s ≥ 1, we have

Ex

[∣∣αδ(x, ξ) − 1
∣∣p

]
� 1 ≤ δ

p
2 ‖x‖p

s ≤ δ
p
2 (1 + ‖x‖p

s ),

which gives the result. We thus suppose from now on that δ
p
2 ‖x‖s ≤ 1. Under

Assumptions 1 we have ‖∇Ψ (x)‖−s � 1 + ‖x‖s . Lemma 2 shows that for all
x, y ∈ Hs we have

∣∣Ψ (y) − Ψ (x) − 〈∇Ψ (x), y − x〉∣∣ � ‖y − x‖2
s . The function

h(x) = 1 ∧ ex is 1-Lipschitz, αδ(x, ξ) = h
( − 1

τ
[Ψ (y) − Ψ (x)]) and h(0) = 1.

Consequently,

123



Stoch PDE: Anal Comp (2014) 2:196–232 227

Ex

[∣∣αδ(x, ξ) − 1
∣∣p

]
= Ex

[∣∣h( − 1

τ
[Ψ (y) − Ψ (x)]) − h(0)

∣∣p
]

� Ex
[|Ψ (y) − Ψ (x)|p] � Ex

[|〈∇Ψ (x), y − x〉|p

+‖y − x‖2p
s

]

� (1 + ‖x‖p
s ) · Ex

[‖y − x‖p
s ] + Ex

[‖y − x‖2p
s

]
.

By Lemma 3, for any integer β ≥ 1 we have Ex
[‖y − x‖β

s
]

� δβ‖x‖β
s + δ

β
2 so

that the assumption δ
p
2 ‖x‖p

s ≤ 1 leads to

Ex

[∣∣αδ(x) − 1
∣∣p

]
� (1 + ‖x‖p

s ) · (δ p‖x‖p
s + δ

p
2 ) + (δ2p‖x‖2p

s + δ p)

� (1 + ‖x‖p
s ) · (δ

p
2 + δ

p
2 ) + (δ p + δ p)

� δ
p
2 (1 + ‖x‖p

s ).

This finishes the proof of Corollary 1.

Proof (Proof of Lemma 12) The martingale difference Γ δ(x, ξ) defined in Eq. (23)
can also be expressed as

Γ δ(x, ξ) = ξ + F(x, ξ)

where the error term F(x, ξ) = F1(x, ξ) + F2(x, ξ) is given by

F1(x, ξ) = (2τδ)−
1
2
(
(1 − 2δ)

1
2 − 1

) (
γ δ(x, ξ) − Ex [γ δ(x, ξ)])x

F2(x, ξ) = (
γ δ(x, ξ) − 1

) · ξ − Ex
[
γ δ(x, ξ) · ξ

]
.

We now prove that the quantity F(x, ξ) satisfies

Ex

[
‖F(x, ξ)‖2

s

]
� δ

1
4 (1 + ‖x‖2

s ) (66)

– We have δ− 1
2
(
(1 − 2δ)

1
2 − 1

)
� δ

1
2 and |γ δ(x, ξ)| ≤ 1. Consequently,

Ex

[
‖F1(x, ξ)‖2

s

]
� δ‖x‖2

s (67)

– Let us now prove that F2 satisfies

Ex

[
‖F2(x, ξ)‖2

s

]
� δ

1
4 (1 + ‖x‖ 1

2 ). (68)

To this end, use the decomposition

Ex

[
‖F2(x, ξ)‖2

s

]
� Ex

[
|γ δ(x, ξ) − 1|2 · ‖ξ‖2

s

]
+ ‖Ex

[
γ δ(x, ξ) · ξ

]‖2
s

= I1 + I2.
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The Cauchy-Schwarz inequality shows that I1 � Ex

[
|γ δ(x, ξ)−1|4

] 1
2

where the

Bernoulli random variable γ δ(x, ξ) can be expressed as γ δ(x, ξ) = 1{U<αδ(x,ξ)}
where U

D∼ Uniform(0, 1) is independent from any other source of randomness.
Consequently

Ex

[
|γ δ(x, ξ) − 1|4

]
= Ex

[
1{γ δ(x,ξ)=0}

] = 1 − αδ(x)

where the mean local acceptance probability αδ(x) is defined by αδ(x) =
Ex [αδ(x, ξ)] ∈ [0, 1]. The convexity of the function x → |1 − x | ensures that

∣∣1 − αδ(x)
∣∣ = ∣∣1 − Ex

[
αδ(x, ξ)

]∣∣ ≤ Ex
[∣∣1 − αδ(x, ξ)

∣∣] � δ
1
2 (1 + ‖x‖)

where the last inequality follows from Corollary 1. This proves that I1 � δ
1
4 (1 +

‖x‖ 1
2 ). To bound I2, it suffices to notice

I2 = ‖Ex
[
γ δ(x, ξ) · ξ

]‖2
s = ‖Ex

[(
γ δ(x, ξ) − 1

) · ξ
]‖2

s

� Ex

[
|γ δ(x, ξ) − 1|2 · ‖ξ‖2

s

]
= I1

so that I2 � I1 � δ
1
4 (1 + ‖x‖ 1

2 ) and Ex

[
‖F2(x, ξ)‖2

s

]
� δ

1
4 (1 + ‖x‖ 1

2 ).

Combining Eqs. (67) and (68) gives Eq. (66).
Let us now describe how Eqs. (46) and (47) follow from the estimate (66).

– We have E[〈ϕ̂i , ξ 〉s〈ϕ̂ j , ξ 〉s] = 〈ϕ̂i , Cs ϕ̂ j 〉s and Ex [〈ϕ̂i , Γ
δ(x, ξ)〉s〈ϕ̂ j ,

Γ δ(x, ξ)〉s] = 〈ϕ̂i , Dδ(x) ϕ̂ j 〉s with Γ δ(x, ξ) = ξ + F(x, ξ). Consequently,

〈ϕ̂i , Dδ(x) ϕ̂ j 〉s − 〈ϕ̂i , Cs ϕ̂ j 〉s = Ex [〈ϕ̂i , F(x, ξ)〉s〈ϕ̂ j , F(x, ξ)〉s]
+ Ex [〈ϕ̂i , ξ 〉s〈ϕ̂ j , F(x, ξ)〉s]
+ Ex [〈ϕ̂i , F(x, ξ)〉s〈ϕ̂ j , ξ 〉s].

We have |〈ϕ̂i , F(x, ξ)〉s | ≤ ‖F(x, ξ)‖s and the Cauchy-Schwarz inequality
proves that

Ex [〈ϕ̂i , F(x, ξ)〉s〈ϕ̂ j , ξ 〉s]2 ≤ Ex [‖F(x, ξ)‖s ‖ξ‖s]2

� Ex [‖F(x, ξ)‖2
s ].

It thus follows from Eq. (66) that

|〈ϕ̂i , Dδ(x) ϕ̂ j 〉s − 〈ϕ̂i , Cs ϕ̂ j 〉s | � Ex
[‖F(x, ξ)‖2

s

] + Ex
[‖F(x, ξ)‖2

s

] 1
2

� δ
1
8 (1 + ‖x‖s),

finishing the proof of (46).
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– We have TraceHs (Cs) = E[‖ξ‖2
s ] and TraceHs (Dδ(x)) = E[‖Γ δ(x, ξ)‖2

s ]. Esti-
mate (66) thus shows that

|TraceHs
(
Dδ(x)

) − TraceHs
(
Cs

)| = ∣∣E[‖Γ δ(x, ξ)‖2
s − ‖ξ‖2

s ]
∣∣

= ∣∣E[‖ξ + F(x, ξ)‖2
s − ‖ξ‖2

s ]
∣∣

�
∣∣E[〈2ξ + F(x, ξ), F(x, ξ)〉s

∣∣ � E[‖2ξ + F(x, ξ)‖s‖F(x, ξ)‖s]
� E[4‖ξ‖2

s + ‖F(x, ξ)‖2
s ]

1
2 · E[‖F(x, ξ)‖2

s ]
1
2

�
(

1 + δ
1
4 (1 + ‖x‖2

s )
) 1

2 ·
(
δ

1
8 (1 + ‖x‖s))

)
� δ

1
8 (1 + ‖x‖2

s ),

finishing the proof of (47).

9 Appendix 2: Proof of lemma 16

Before proceeding to give the proof, let us give a brief proof sketch. The proof of
Lemma 16 consists in showing first that for any ε > 0 one can find a ball of radius
R(ε) around 0 in Hs ,

B0(R(ε)) = {
x ∈ Hs : ‖x‖s ≤ R(ε)

}
,

such that with probability 1 − 2ε we have xk,δ ∈ B0(R(ε)) and yk,δ ∈ B0(R(ε)) for
all 0 ≤ k ≤ T δ−1. As is described below, the existence of such a ball follows from
the bound

E[ sup
t∈[0,T ]

‖x(t)‖s ] < +∞ (69)

where t �→ x(t) is the solution of the stochastic differential Eq. (21). For the sake of
completeness, we include a proof of Eq. (69). The solution t �→ x(t) of the stochastic
differential Eq. (21) satisfies x(t) = ∫ t

0 d
(
x(u)

)
du + √

2τ W (t) for all t ∈ [0, T ]
where the drift function d(x) = −(

x + C∇Ψ (x)
)

is globally Lipschitz on Hs , as
described in Lemma 2. Consequently ‖d(x)‖s ≤ A(1 + ‖x‖s) for some positive
constant A > 0. The triangle inequality then shows that

‖x(t)‖s ≤ A

t∫

0

(
1 + ‖x(u)‖s

)
du + √

2τ‖W (t)‖s .

By Gronwall’s inequality we obtain

sup
[0,T ]

‖x(t)‖s ≤ (A T + sup
[0,T ]

‖W (t)‖s)
[
1 + A T eA T ]

.

Since E[sup[0,T ] ‖W (t)‖s] < ∞, the bound (69) is proved.

Proof (Proof of Lemma 16) The proof consists in showing that the the acceptance
probability of the algorithm is sufficiently close to 1 so that approximation tδ(k) ≈ k
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holds. The argument can be divided into 3 main steps. In the first part, we show
that we can find a finite ball B(0, R(ε)) such that the trajectory of the Markov chain
{xk,δ}k≤T δ−1 remains in this ball with probability at least 1 − 2ε. This observation
is useful since the function Ψ is Lipschitz on any ball of finite radius in Hs . In the
second part, using the fact that Ψ is Lipschitz on B(0, R(ε)), we find a lower bound
for the acceptance probability αδ . Then, in the last step, we use a moment estimate to
prove that one can make the lower bound uniform on the interval 0 ≤ k ≤ T δ−1.

– Restriction to a ball of finite radius
First, we show that with high probability the trajectory of the MCMC algorithm
stays in a ball of finite radius. The functional x �→ supt∈[0,T ] ‖x(t)‖s is continuous
on C([0, T ],Hs) and E

[
supt∈[0,T ] ‖x(t)‖s

]
< ∞ for t �→ x(t) following the

stochastic differential Eq. (21), as proved in Eq. (69). Consequently, the weak
convergence of zδ to the solution of (21) encapsulated in Theorem 4 shows that
E

[
supk<T δ−1 ‖xk,δ‖s

]
can be bounded by a finite universal constant independent

from δ. Given ε > 0, Markov inequality thus shows that one can find a radius
R1 = R1(ε) large enough so that the inequality

P
[‖xk,δ‖s < R1 for all 0 ≤ k ≤ T δ−1] > 1 − ε (70)

for any δ ∈ (0, 1
2 ). By Fernique’s Theorem there exists α > 0 such that E[eα‖ξ‖2

s ] <

∞. This implies that P[‖ξ‖s > r ] � e−αr2
. Therefore, if {ξk}k≥0 are i.i.d. Gaussian

random variables distributed as ξ
D∼ π0, the union bound shows that

P
[‖√δξk‖s ≤ r for all 0 ≤ k ≤ T δ−1] � 1 − T δ−1 exp(−αδ−1r2).

This proves that one can choose R2 = R2(ε) large enough in such a manner that

P
[‖√δξk‖s < R2 for all 0 ≤ k ≤ T δ−1] > 1 − ε (71)

for any δ ∈ (0, 1
2 ). At temperature τ > 0 the MCMC proposals are given by

yk,δ = (1 − 2δ)
1
2 xk,δ + (2δτ)

1
2 ξk . It thus follows from the bounds (70) and (71)

that with probability at least (1 − 2ε) the vectors xk,δ and yk,δ belong to the ball
B0(R(ε)) = {x ∈ Hs : ‖x‖s < R(ε)} for 0 ≤ k ≤ T δ−1 where radius R(ε) is
given by R(ε) = R1(ε) + R2(ε).

– Lower bound for acceptance probability
We now give a lower bound for the acceptance probability αδ(xk,δ, ξ k) that the
move xk,δ → yk,δ is accepted. Assumptions 1 state that ‖∇Ψ (x)‖−s � 1 + ‖x‖s .
Therefore, the function Ψ : Hs → R is Lipschitz on B0(R(ε)),

‖Ψ ‖lip,ε
def= sup

{ |Ψ (y) − Ψ (x)|
‖y − x‖s

: x, y ∈ B0(R(ε))
}

< ∞.

One can thus bound the acceptance probability αδ(xk,δ, ξ k) = 1 ∧ exp
( −

τ−1[Ψ (yk,δ) − Ψ (yk,δ)]) for xk,δ, yk,δ ∈ B0(R(ε)). Since the function z �→
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1 ∧ e−τ−1z is Lipschitz with constant τ−1, the definition of ‖Ψ ‖lip,ε shows that
the bound

1 − αδ(xk,δ, ξ k) ≤ τ−1 ‖Ψ ‖lip,ε ‖yk,δ − xk,δ‖s

≤ τ−1 ‖Ψ ‖lip,ε

{
[(1 − 2δ)

1
2 − 1] ‖xk,δ‖s + (2δτ)

1
2 ‖ξ k‖

}

�
√

δ (1 + ‖ξ k‖s)

holds for every xk,δ, yk,δ ∈ B0(R(ε)). Hence, there exists a constant K = K (ε)

such that α̂δ(ξ k) = 1 − K
√

δ (1 +‖ξ k‖s) satisfies αδ(xk,δ, ξ k) > α̂δ(ξ k) for every
xk,δ, yk,δ ∈ B0(R(ε)). Since the trajectory of the MCMC algorithm stays in the
ball B0(R(ε)) with probability at least 1 − 2ε the inequality

P[αδ(xk,δ, ξ k) > α̂δ(ξ k) for all 0 ≤ k ≤ T δ−1] > 1 − 2ε.

holds for every δ ∈ (0, 1
2 ).

– Second moment method
To prove that tδ(k) does not deviate too much from k, we show that its expectation
satisfies E[tδ(k)] ≈ k and we then control the error by bounding the variance. Since
the Bernoulli random variable γ k,δ = Bernoulli(αδ(xk,δξ k)) are not independent,
the variance of tδ(k) = ∑

l≤k γ l,δ is not easily computable. We thus introduce i.i.d.
auxiliary random variables γ̂ k,δ such that

∑
l≤k

γ̂ l,δ = t̂δ(k) ≈ tδ(k) =
∑
l≤k

γ l,δ.

As described below, the behaviour of t̂δ(k) is readily controlled since it is a sum
of i.i.d. random variables. The proof then exploits the fact that t̂δ(k) is a good
approximation of tδ(k).
The Bernoulli random variables γ k,δ can be described as γ k,δ = 1

(
Uk <

αδ(xk,δξ k)
)

where {Uk}k≥0 are i.i.d. random variables uniformly distributed on
(0, 1). As a consequence, with probability at least 1 − 2ε, the random variables
γ̂ k,δ = 1

(
Uk < α̂δ) satisfy γ k,δ ≥ γ̂ k,δ for all 0 ≤ k ≤ T δ−1. Therefore, with

probability at least 1 − 2ε, we have tδ(k) ≥ t̂δ(k) for all 0 ≤ k ≤ T δ−1 where
t̂δ(k) = ∑

l≤k γ̂ l,δ . Consequently, since tδ(k) ≤ k, to prove Lemma 16 it suffices to
show instead that the following limit in probability holds,

lim
δ→0

sup
{
δ · ∣∣̂tδ(k) − k

∣∣ : 0 ≤ k ≤ T δ−1} = 0. (72)

Contrary to the random variables {γ k,δ}k≥0, the random variables {γ̂ k,δ}k≥0 are
i.i.d. and are thus easily controlled. By Doob’s inequality we have

P

[
sup

{
δ·∣∣̂tδ(k)−E[̂tδ(k)]∣∣ : 0 ≤ k ≤ T δ−1} > η

]
≤ 2

Var
(̂
tδ(T δ−1)

)

(δ−1η)2 ≤ 2
δT

η2 .
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Since E[̂tδ(k)] = k · {
1 − K

√
δ (1 + E[‖ξ k‖s])

}
, Eq. (72) follows. This finishes

the proof of Lemma 16.
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