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SUMMARY
A model of time-dependent porous-medium combustion is presented. The model

is of combustion in a three-dimensional porous medium. The typical situation
envisaged is the combustion of a non-deforming porous solid medium through which
a gas such as air passes. The model represents conservation of mass and energy for
both the gas and solid species, whilst the fluid flow is governed by Darcy's law and
the ideal-gas law. This model is highly complex and requires sophisticated computer
analysis.

Consequently we derive a simplified model as a one-dimensional version of the
equations, by a number of asymptotic considerations. Central to the analysis is the
concept of the large-activation-energy limit. This limit is shown to have entirely
different features from those which arise in conventional flame theory. This fact is a
consequence of the two-stage reaction rate governing porous-medium combustion;
the stages are first the diffusion of gas components between the gas mainstream and
the reaction sites in the solid and secondly the conventional AiThenius reaction.
Thus the overall reaction rate is not proportional to the Arrhenius reaction rate, but
is a rational function of it.

Because of this two-stage reaction rate, the limit £ - » » has a novel result not
encountered in conventional flame theory. A critical switching temperature Tc,
determined by A = exp(£/Tc), where A is the pre-exponential factor in the
Arrhenius reaction term, arises naturally from the large-activation-energy analysis.
For temperatures beneath Tc the reaction rate is negligible whereas for temperatures
above 7̂  the reaction is controlled by the ability of the active gas components to
diffuse into or out of the reaction sites in the solid. This rate of active gas-component
diffusion has been shown experimentally to be proportional to a power (approxim-
ately the square) of the gas temperature. Thus, when switched on, the rate-limiting
reaction rate grows algebraically with the temperature, in contrast to the explosive
exponential growth of the Arrhenius term which governs the switching process.

1. Introduction

IN SECTIONS 2 and 3 of this paper we present a time-dependent, three-
dimensional model of combustion in a porous medium consisting of gases
flowing under small pressure gradients through non-deforming combustible
materials. In sections 4 and 5 we examine solutions of the model equations
which vary in one space direction only, and consider a combination of
asymptotic limits under which the model equations simplify considerably.
This paper shows that for two-stage reaction rates, the correct simple
model, based on the large-activation-energy limit, is that of a process where
(Q. Jl Met*. «ppJ. Math., Vol. 42, PL 1,1989) © Oxfonl Vnhtattj Prea 1989
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160 J. NORBURY AND A. M. STUART

the heat production is switched on by a step function based on a threshold
temperature Tc. The role of the Arrhenius reaction term is to initiate the
reaction and to set a value for Tc; note that the Arrhenius term does not
appear in the reaction zone of the simplified model. The heat production
may be switched off in the combustion zone, where the temperature is
above Tc, by the exhaustion of either solid or gaseous reactants.

This type of porous-medium combustion has a number of applications.
For example, the burning of coal (1), the smouldering of polyurethane (2),
the use of catalytic converters as exhaust filters (3) and the burning of
cigarettes (4) are all examples of porous-medium combustion. The govern-
ing equations represent the conservation of mass and thermal energy for
both the solid and gas species, whilst the gas-velocity field and the pressure
are determined by Darcy's law and by the ideal-gas law. However, because
of the low viscosity of the fluid and/or the high porosity of the medium,
pressure variations are negligible compared with temperature variations,
and so we replace the ideal-gas law by Charles's law. The form of the
reaction rate is more complicated than for flame theory (5), and involves the
Arrhenius solid-temperature-dependent reaction rate in a nonlinear fashion
as well as the effect of the localized diffusion (which we take as
gas-temperature dependent) of gaseous products involved in the reaction.
Our two-stage reaction rate is similar to Langmuir-Hinshelwood kinetics,
see (6), and a description of these applied in coal combustion appears in (7).

Models describing combustion phenomena are often extremely complex,
involving the equations governing the chemical kinetics coupled to those
governing the fluid motion. The chemical kinetics involve changes in the
amounts of substances involved in the chemical reactions and production of
heat, whilst the fluid motion transports the gaseous substances and the heat.
In seeking to gain an understanding of combustion, asymptotic analysis
frequently plays an important role in elucidating the important features
of the process. In particular, the large-activation-energy limit of
Frank-Kamenetskii (8) has been fundamental in the development of an
understanding of the chemistry of combustion. Recently Matkowsky and
Sivashinsky (9) have employed more general asymptotic arguments, which
revolve around the large-activation-energy limit, to demonstrate how the
equations of fluid motion may be decoupled from the equations of flame
theory (5), providing a rigorous justification for the use of diffusional-thermal
models. In the second half of this paper we examine the equations gov-
erning one-dimensional porous-medium combustion and we consider the
form of the equations in a particular set of asymptotic limits. Specifically
we consider the limits of large activation energy E and small ratio of gas
heat storage to solid heat storage.

The nature of the large-activation-energy limit for porous-medium
combustion differs substantially from that in conventional flame theory. In
the latter case (see (5,9)) there are essentially two length scales in the
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POROUS-MEDIUM COMBUSTION 161

problem: the length of the pre-heat zone in which the temperature of the
reactant is raised from its equilibrium level to a level at which chemical
reaction is non-negligible, and the length of the reaction zone. Typically,
the ratio of the length of the reaction zone to that of the pre-heat zone is
small. Furthermore, the temperature variations within the reaction zone are
taken to be small, relative to the temperature T* (in the notation of (5))
beneath which the Arrhenius reaction rate is transcendentally small and
above which it is transcendentally large.

The limit E—*•<*> in porous-medium combustion, however, provides three
length scales essential to the problem. First we have the preheat-zone length
scale on which the temperature of the solid reactant Ts is raised from its
equilibrium level to a level Tc, at which the chemical reaction becomes
significant. The temperature Tc (which is analogous to T*) is determined by
the magnitude of the pre-exponential factor in the Arrhenius term involved
in the reaction rate, and is defined in equation (4.1). Next we have the
length scale on which Ts ~ Tc, which is small relative to the first length scale.
Thirdly we have the length scale on which T, is greater than Tc by (at least)
an O(l) amount. This length scale is large relative to the second length
scale. Note that in conventional flame theory the third region is absent, and
attention is focused on the region where the temperature is close to the
critical value T*. Here the region Ts ~ Tc is small, and of little consequence
since the dominant heat processes occur in the third region where T, > Tc.
Now Tc is equivalent to the temperature T* (see (5)) in the neighbourhood
of which chemical reaction may be sustained in flame theory. Its role in the
theory of porous-medium combustion, however, is completely different. In
contrast to flame theory, chemical reaction can (and typically does) prevail
in regions for which T, > Tc and TS-^TC as £—•<». This important fact is a
consequence of the rate-limiting form of the reaction governing porous-
medium combustion: asymptotically, the temperature Tc merely acts as a
switch, below which the reaction is insignificant and above which the
reaction is limited by the rate of diffusion of the gaseous products in the
neighbourhood of the reaction sites. The temperature Tc is not an artificially
imposed switching parameter, but arises naturally from analysis of the
large-activation-energy limit.

In order to make explicitly clear the asymptotic structure discussed above
and used in section 4, we consider the simple model heat-equation problem

e) on - K x < l ,

where

This problem has a forcing term f(u, e) analogous to the two-stage
reaction-rate term that we take to typify porous-medium combustion (see
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162 J. NORBURY AND A. M. STUART

- 1 -5(0)

FIG. 1. The solution u(x, e) of the model problem, showing the outer
region (u < 1), where u is almost linear, the inner region (u > 1), where u is
almost quadratic, and the thin intermediate region where u ~ 1, the slope is

continuous, and s(e)-»j(0) as e-»0

(2.9)). Note that it differs from the more familiar Arrhenius term of flame
theory. The limit e—>0 is the large-activation-energy limit of chemical
kinetics or combustion theory.

In the Appendix we shall solve the steady-state version of this problem
explicitly, and investigate the dependence of the solution on the parameter
£. As Fig. 1 shows, the solution u has three asymptotic regions. In the outer
region where u<\ the reaction is essentially off (of size O{e(u~^c)), and
this region is similar to most outer regions in combustion analysis. In the
inner region where u > 1 the reaction term balances the other terms in the
equation at leading order, again as one would expect, except that here,
because the reaction is two-stage and eulB dominates eVe, we have
f(u, e) = A to leading order. Our exponential term increases more rapidly
than any algebraic term as e—>0, and so the reaction rate is essentially that
of the rate-limiting algebraic term which is a constant in this model
problem. Although the Arrhenius term is dominant, only the algebraic
rate-limiting term comes into the asymptotics of the inner layer.

The above inner layer is entirely new in porous-medium combustion
asymptotics, and its presence reduces the usual inner layer to a passive
intermediate layer. In this intermediate layer the Arrhenius term is of
comparable size to the algebraic term, but growing dramatically as the
reaction is being initiated. However, because of the small length scale of
this region, the reaction term does not appear in the lowest zero-order
asymptotic balance in the equation. That is, the growth of the Arrhenius
term from being negligible to dominating all other source terms appears
only in the smaller, asymptotically higher-order terms in the intermediate
layer, a somewhat unusual situation in asymptotic theory. The inner and
outer layers can be matched together across this layer without finding the
solution in the layer, by imposing continuity of u and its first derivative
across the layer.
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POROUS-MEDIUM COMBUSTION 163

For this reason we can replace the intermediate layer by a 'switch', a
Heaviside step function dependent on a threshold temperature, as long as
we insist that both the temperature and the temperature gradient are
continuous at the switch to leading order. In a single-stage reaction-rate
problem, as in flame theory, this intermediate layer would increase in length
scale and become the inner layer; our inner layer would not appear, being a
consequence of the second stage of the reaction.

In contrast to the use of a switch in flame theory in the early development
of that subject, our use of a switch is mathematically consistent with the
asymptotics as e—»0. Our use of a switch is also helpful in sorting out the
different physical cases that usually arise. Thus we find in Norbury and
Stuart (10) that, of the planar combustion waves propagating steadily in a
normal direction, those that are switched on by the presence of combustible
solid are stable, whereas those that are switched on by temperature
thresholds are unstable.

Our main interest is in the existence and stability of slowly varying
combustion waves (see Norbury and Stuart (10,11)), not in their ignition or
rapidly varying behaviour. We find that the large-activation-energy limit,
where our two-stage reaction is approximated by the product of step
functions (switches) and algebraic dependence on gas temperature, is an
appropriate qualitative model. The simplified model which we derive in the
second half of this paper involves four unknown quantities, the gas and solid
temperatures, the product of oxygen concentration and gas temperature,
and the solid heat capacity. The governing equations represent the
conservation of mass for each of the individual gas and solid reactants and
conservation of energy for each of the overall composite gas and solid
phases. There are three important parameters in the simplified model: fi,
the scaled driving velocity, A, linearly related to the solid specific heat and
a, which determines the ratio of the rate of oxygen consumption to that of
the solid. The model is designed to investigate the dependence of quantities
such as the maximum solid temperature, burning-zone length and speed of
propagation of combustion wave on the key parameters \i, A and a.

2. Hie basic model
In its essence a typical burning porous medium comprises a combustible

solid (carbon, C) through which a gas carrying oxygen O2 passes, the solid
and the oxygen combining to produce carbon dioxide CO2, and heat.
Usually the combustion leaves an ash skeleton of the solid matrix behind it.
Thus we may represent the situation by

solid + O2-> heat + CO2 + ash.

If we take the gas as (idealized) air, which is approximately 80 per cent
nitrogen and 20 per cent oxygen, then, as a minimum requirement, we
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164 J. NORBURY AND A. M. STUART

formulate a model with two solid species, carbon and ash, and three gas
species, carbon dioxide, oxygen and nitrogen. (In practice there is usually as
much carbon monoxide produced as there is carbon dioxide. We also ignore
the effect of water vapour.)

Although combustion typically comprises many hundreds of reactions, the
work of (12), among others, demonstrates that simple models involving a
limited number of reactions and reactants can be extremely effective in
modelling combustion. The reason appears to be that determining the total
amount of heat produced per unit of solid consumed is the basic
requirement of a model; the detailed chemistry can then be considered as an
extension (or iterative improvement) of the simplified model. Note,
however, that different temperature profiles lead to different chains of
reactions and hence different net heat outputs, so that the effectiveness of
the assumption of an overall heat-supply rate depends on the assumption of
the correct main chain reaction. In practice an experiment is designed to
reproduce the actual reaction chain. Analysis, and computer simulation,
tests the sensitivity of the model to the overall heat-supply rate.

The basic model equations are an extension to three dimensions of the
model used by Lawson and Norbury and outlined in (13,14). We define z
to be directed parallel to the inlet gas velocity (typically also the direction of
propagation of the combustion zone as shown in Fig. 2), and y, x to be
normal coordinates to z. The unknown quantities are defined as follows:

(i) y,, the mass of unburnt material (carbon) and y2, the mass of ash, per
unit volume of space;

(ii) <xx, a2 and a3, the mass, respectively, of carbon dioxide, oxygen and
nitrogen, per unit volume of space;

(iii) Ts and Tg, the temperatures of the solid and the gas phases
respectively;

(iv) Vx (or V2 or V3), the velocity of the composite gas in the x- (or
respectively y- or z-) direction.

T,<TC

Air —

Ash

Outer region

T,>TC

Combustion

Inner region

T,<TC

• Exhaust gas

O
u
t
I

Unburnt solid e

Outer region

0 z

FIG. 2. A sketch of a porous medium with gas blown in the z > 0 direction
supporting an inner combustion region where T, > Tc: shown in hatch are
the thin intermediate layers where T, ~ Tc (or y, ~ 0) and the Arrhenius

term is of the same magnitude as the gaseous diffusion term
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POROUS-MEDIUM COMBUSTION 165

Note that gas temperature, mass and velocity variables are not point
evaluations of these quantities, but are continuum averages denned in terms
of the energy and mass fluxes through the porous matrix. The solid
temperature is a local average defined in terms of the volume density of the
heat energy in the solid. (We could take at as the mass of a carbon
monoxide-carbon dioxide mixture.)

The fundamental physical properties involved in the model are conserva-
tion of energy and matter. Earlier models attempt to describe the energy
balances by use of a single variable representing the average temperatures
of the solid and the gas phases. However, experimental evidence shows that
the temperature differences between the gas and the solid phases, and the
heat transfer between the two phases, are significant, and so we treat the
two temperatures separately.

The equations governing the concentration of the solid and gas species
are simply mass-conservation laws. Since the solid is stationary the chemical
reaction is the only effect of any importance, so that equation (2.1) follows.
Since the gas is mobile, we require a convective flux-derivative to describe
the conservation of gas mass, as shown in (2.2). Note that in (2.1) and (2.2)
Qk and qk are reaction terms, to be defined later.

The processes governing the temperature of the solid medium are
chemical reaction, heat storage, heat transfer between the solid medium and
the gas mainstream, radiation and conduction. The effect of heat transfer is
modelled by a linear heat-exchange term and the effects of radiation and
conduction are combined to form a single nonlinear diffusion term. We take
the radiation coefficient of the form f$\T] since the usual radiation term
proportional to T? occurs between elements of the solid in the porous
medium that are near to each other and are separated by only small
temperature differences. The resultant equation is (2.3) which represents
conservation of heat energy in the solid phase of the medium. Note that the
heat capacity a, depends on the composition of the solid phase, as shown in
(2.7), and that DQ represents the heat source due to chemical reaction.
Hence D is the (overall) heat of the reaction.

The processes governing the temperature dependence of the gas are
somewhat different; we assume that the reaction takes place in the solid, or
at least in a thin boundary layer in the neighbourhood of the solid-gas
interface. Consequently there is no direct production of heat by chemical
reaction in the gas phase (but note the effect of (2.8)). Furthermore, the
effect of conduction is negligible compared with that of convection. Hence
the two dominant processes involved in the conservation of energy in the
gas phase are heat transfer and convection. Thus equation (2.4) follows.
The effect of the reaction terms in (2.2) is to vary the composition of the
gas. Hence as changes, see (2.8), and the heat transfer between the reaction
site and the converting gas stream should allow for this. Note that a change
of one degree Kelvin in the gas temperature corresponds, in terms of
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166 J. NORBURY AND A. M. STUART

energy, roughly, to a one hundred mile per hour velocity change of the air,
so that the effect of mechanical energy is negligible.

Finally we turn to the equations governing the fluid motion. Since the air
passing through the porous solid medium is a mixture of ideal gases, we
take the ideal-gas law together with Darcy's law as the relevant constraints
to determine the pressure variations and the movement of the gas. The
porosities of the medium are typically greater than 0-5, so that over 50 per
cent of the medium is occupied by gas. The resultant driving-pressure
variations are small (of at most 10 per cent) and are negligible compared
with the temperature variations (at least 300 per cent—300 to 1500 °K is
typical). Thus we approximate the ideal-gas law by Charles's law, which
states that the product of gas temperature and gas density for a given parcel
of gas is constant, as stated in (2.5). (Note that the porosity <p is involved in
the constant of proportionality in (2.5); because the later analysis focuses on
the fluxes of mass and heat in one dimension this dependence on <f> is not
considered further.) Since Darcy's law states that the velocity field is
proportional to the gradient of the pressure, taking its curl yields (2.6).
(Note that if Darcy's law is not isotropic then we must scale the velocity
components before taking the curl.)

The governing equations are now listed together:

^ = MkQk, Ac = 1,2, (2.1)
at

d 9 d
+ (Viak) + (V2ak) + (V3ak) mkqk, k = 1, 2 and 3, (2.2)

at ox ay az

(57 1

fi2) —z'j + h(Tg - TM) + DQ, (2.3)

TgPg = Tgl ^ ak)/(p = constant on air parcels, (2-5)

and
dV1_3V1=9V1_3V1=dV1_dV1 = n

dy 3z 3x 3z dx 3y ' { '

where only two of the expressions in (2.6) are independent. Here Mk and
mk are the molecular weights of the solid and gas species respectively; D,
the heat of the reaction, is a positive constant since the reaction is
exothermic. We define the heat capacities of the composite solid and gas
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POROUS-MEDIUM COMBUSTION 167

species, respectively, by
2

c,= 5!wt (2.7)

and
3

^ (2.8)

Here csk and cgt are the specific heats of the individual solid and gas
components. The source terms Q, Qk and qk are all proportional to the
reaction rate r. Specifically, Q = r, Q} = —r, Q2 = r, qt = r, q2 = —r and
93 = 0.

We now derive the form of the reaction rate r. Because the reaction takes
place in and/or near the solid, but is fuelled by the oxygen in the gas
mainstream, the reaction is taken to be two-stage; the two stages are first
the diffusion of active gas components between the gas mainstream and the
reaction sites in or near the solid, and secondly the standard Arrhenius
reaction. Glassman (following Langmuir and Hinshelwood, see also (7))
derives an expression for the overall reaction rate by relating the oxygen
concentration in the reaction sites to the oxygen concentration in the gas
mainstream. This is done by estimating the changes in oxygen concentration
across the thin boundary layer in the neighbourhood of the solid reactant.
The reaction rate is found to be

(

Here [y,] and [a2] are the concentrations of carbon and oxygen respec-
tively, given by [y,] = yxlMx and [a2] = a2/m2. The quantity b is the rate of
diffusion of the active rate-limiting gas component (which may be either
CO2 or O2) and k is the Arrhenius reaction rate. Baker (15) has
demonstrated experimentally that b is given, for V2 = V\+V\ + V\, by

b = r,(<pyVTv
g, (2.10)

where rj is a constant proportional to <p and typically v ~ 2-5. This value for
v is in strong disagreement with the value of 0.9 which is predicted by
classical mass-transfer theory. The /V-dependence may be derived from
standard arguments about diffusion behaviour across a viscous (or tur-
bulent) boundary layer.

The Arrhenius reaction rate k is defined, as usual, by

k=Ac\p(-E/RTs), (2.11)

where the constants A and E depend upon the materials involved in the
combustion reaction. It is clear that the form of the overall reaction rate
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168 J. NORBURY AND A. M. STUART

(2.9) differs substantially from that which is found in most theories of
homogeneous combustion, and we now discuss this.

When the solid temperature is below about 500 °K then the reaction rate r
is similar to that of flame theory (and the Arrhenius-rate dependence on
solid temperature (2.11) is determined experimentally); this corresponds to
the ignition phase. When the solid temperature is about 1000 °K then the
Anhenius rate has increased (exponentially) from being negligible to being
dominant. The reaction is now rate-limited by the ability of the active gas
components to move from the gas mainstream to the reaction sites, which,
depending on the many hundreds of reactions, occur in and between the gas
mainstream and the solid interior. Oxygen is transported, often as carbon
monoxide, through the gas boundary layer; the detailed structure at the
solid-gas interface is complicated, and the penetration of oxygen into the
(charred) solid interior (itself breaking up under the effects of temperature
and the reactions) is often little understood. Our key assumption is to take
this rate-limiting process as being gas-temperature dependent (see (2.10)).

In fact, on the micro-level, the temperature of the medium will be
continuous as we pass from the gas into the solid; the interface will (usually)
not be a sharp boundary. Our lumped reaction term (2.10) summarizes all
these effects, and relates them essentially to the gas temperature, that is the
energy density in the gas phase. The solid temperature represents the
energy density in the solid phase, and the heat-transfer term relates the heat
exchange between the solid and the gas phases in terms of these quantities.
In section 4 we take the specific heats of oxygen and carbon dioxide as being
equal (note that we could alternatively take the exhaust gas as a given
CO-CO 2 mixture). This amounts to a convenient choice for the lumped
heat-energy transfer term, and is consistent with both our assumptions that
all the heat-energy release occurs in the solid and the large-activation-
energy asymptotics (note that, in practice, we are dealing with a fraction of
the 20 per cent of active gas components, and £ " ' —01).

Fortunately the increase in solid temperature from 500 to 1000 °K occurs
in a thin (compared to the combustion zone) layer, and to leading order (as
later analysis shows) we may ignore the details of this process and replace
the layer by a solid-temperature-dependent switch. Thus the lumped
reaction-rate term in the combustion zone covers, at the micro-level,
intricate chemistry, geometry and fluid dynamics. The heat constant D gives
the overall heat output per unit mass of solid consumed, and the two key
constants in (2.10) (and those in (2.11)) can be estimated from calibration
experiments. We view the main practical result of this work as showing that
such a simple lumped reaction rate (together with the switch concept) is
useful, both in estimating temperature and concentration profiles in the
reaction zone and in classifying the stability properties of planar combustion
waves.
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POROUS-MEDIUM COMBUSTION 169

3. The non-dfanensionalization
We introduce the following non-dimensional variables denoted by

overbars:
t = tot, z = zoi, y=yoy, x=x^c, yk = Toyk,

ak=Aoak, Tg = Tofg, T, = Tof,, V1 = VWVU V2 = V20V2,

V3=VXV3, ag = Y.gag, o, = X,o,, r = Rof.

These scalings imply scalings for the activation-energy constants A and E, as
discussed later. We first outline our choice of time scale t0, length scale ZQ
and temperature scale To, which leads to the key equation (3.3). The
variables r0) Hg and 2, are determined by the nature of the combustible
material and so they are fixed. The Mk and mk are physical constants; D is
the overall heat-supply rate, and is determined by the materials and the
reaction chain. Our assumption of a value for D prejudges the correct
chemistry—the value for D is usually taken from experiments; Vo is
determined by the inlet gas velocity under consideration, and for the typical
combustion processes where Vo is parallel to the z-axis in which we are
interested it is natural to choose V3o~0-1 to 1-Oms"1. Computational
results suggest that if we choose Ro = To/lOA^ then rmBX ~ 1.

In general we set, for fixed Ro, Vx, x0 and y0,

zo, V3O = x0V3O/zo, T0 =

Then, transforming equations (2.1) to (2.5) to the non-dimensional vari-
ables described above and dropping the bars, we obtain

dykldt = akr, a, = - l , a^MJM^, (3.1)

| ^ + i ( V i ^ ) + | ; ( v ^ ) + l ( ^ ) = v ' (32)

where bt = ml/rn2, b2= - 1 and b3 = 0,

lte\ + c{Tg~ Tt) + r> ( 3 3 )

TsPg = Tg\ 2 <*k)/<t> = constant on air parcels, (3.5)
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170 J. NORBURY AND A. M. STUART

and

The parameters e, h, c, dx and d2 are typically of order one (we can make.
e = 1 =h by suitable choice of x0, y0). Thus, inside the burning zone, where
T, is of order one (although not near one), the radiation term dxT

3, is
significant. Outside the burning zone, where T, is small, the term dxT\ is
negligible. The ratio d2ldx (c/dt) determines the importance of solid heat
conduction (heat transfer to the gas) compared with radiation in the burning
zone.

The form of the reaction rate (2.9) is unchanged although the constants in
(2.10) and (2.11) should now be reinterpreted in terms of the rescaled
quantities. Henceforth A and E represent respectively the non-dimensional-
ized pre-exponential factor and the activation energy divided by R. For the
moment we do not discuss appropriate boundary and initial conditions for
these equations.

4. The large-activation-energy limit

In this section we seek an asymptotic expansion of the solution of
equations (2.7) to (2.9) and (3.1) to (3.6) in the parameter regime E»l,
Hg/I,«l, & i - l « l and cgl-cg2«l- (Note that the latter two
conditions could be replaced by a, + a2«a3.) Combustion of carb-
onaceous material typically involves an activation energy E ~ 10, while the
fact that gases are much less dense than solids implies that 2g /2 J~0-01.
Since the active gas components in air typically comprise about one fifth of
the total amount of gas, and the exchange of CO2 for O2 involves a mass
gain of about one third, the total errors in (4.4) and (4.5) are about five per
cent, that is O(E~l) at most. Hence our assumptions are consistent with the
experimental values.

We exploit the magnitude of the activation energy to provide a
simplification of the complicated reaction rate defined by equations (2.9) to
(2.11). The pre-exponential factor A in equation (2.11) is large and so,
following Kapila (16) (and see (5)), we write

A=exp(E/Tc). z(4.1)

Thus, combining equations (2.11) and (4.1) gives us

Consequently, for T, — Tc not small, as E—*°°, k is either transcendentally
large if Ts > Tc, or transcendentally small if T, < Tc. Our aim is to show that r
takes the form (4.12) as £—»<». This involves showing that all variables are
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POROUS-MEDIUM COMBUSTION 171

continuous where the switch occurs, and that dTJdz is continuous there but
that d^Tjdz2 takes up the jump.

The outer (no combustion) and inner (combustion) regions

Here we assume that \TS — Tc\ E » 1, and that fcy, » b (the inner region)
or that kyy«b (the outer region—unless y} = 0). We examine solutions
with only one space dimension; that is, we assume that V2 = Vx = 0 and that
all other unknowns depend upon z and t only. Further, we assume that the
boundary conditions are compatible with this assumption. We seek expan-
sions of the variables in the form

OO OO OO

^ " * f—i ^ ^ r~> — i ^ " * w-'—i

O, = 2J otiE ', og = 2u ogiE ', pg = 2j PgiE >
(-0 /=0 (-0

i-0

Equation (3.2) gives, to lowest order in E l since 2^/2, « 1,

d
= V o , k = \, 2,3. (4.3)

Adding appropriate multiples of these equations gives us, to lowest order,

= 2>g*Vb = 0 (4.4)

and

0, (4.5)

since b'2=—l and b3 = 0, and we have assumed that 6 1 - 1 « 1 and
csi-cg2«l. Integrating (4.4), writing H = {y0og0)(-<x>)c*v0og(h and sub-
stituting into (3.4) yields, to lowest order in E~\

H —- = c(u0 - w0). (4.6)
oz

Here u is proportional to the inlet-gas heat flux. Furthermore, on
integrating (4.5), we have that the gas mass flux is constant in z to leading
order. Using (3.5), we have, to lowest order in £" ' ,

w0IVQ = constant in space. (4.7)

Thus we can eliminate Vo by use of the inlet-gas conditions.
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172 J. NORBURY AND A. M. STUART

Equation (3.3) simplifies to

By adding appropriate multiples of the solid-consumption equations (3.1)
we obtain

a2Vi + Yz — constant in time = a2. (4-9)
Here we have used the (usual) initial conditions that no ash is present in the
unburnt material, so that yx = 1 and y2 = 0» t o determine the constant of
integration. Using equations (2.7) and (4.9) we may find a linear relation-
ship between a, and yx of the form

a, = Ay, + T, (4.10)

where A = ctl — a2cl2 and T = cl2a2. Typically A is positive so that the overall
heat capacity of the solid a, decreases as solid is burned and ash is
produced. (In (11, Theorem 4.1) it is proved that A must be positive for
sustained combustion.) The governing equation for oM is

^ = - A r 0 . (4.11)

Examination of (2.9), which is scaled so that b = 0(1), in conjunction
with (4.2), shows that, since k »1 for T, > Tc (the inner region—unless
/! ~ 0) and k « 1 for T, < Tc (the outer region), r0 has the form

_ fb[a2] for T, > Tc and Jty2 » b,
r ° ~ l 0 forr,<:Tc or ky,«b.

Equations (4.6), (4.8), (4.11) form our basic model in these regions.
Thus, to complete our analysis as E~l—*0, we must solve the equations

(3.1) to (3.6) in the intermediate regions where T, ~ Tc or where fcy,~6.
Since Y\ 'S necessarily bounded (because it is a monotonically decreasing
function of time from equation (3.1)) the latter case can only arise for
Ts > Tc, that is for k » 1 in the inner region, which is the combustion zone.
We wish to show that it is not necessary to know the details of the solution
in these intermediate layers. If we match the inner-layer solution to the
outer-layer solution using continuity of all variables and continuity of the
heat flux in the solid then we shall get the correct outer and inner solutions
to leading order. Thus we justify the switch or step-function form for r0

given in (4.12).

The intermediate regions
We first examine the case in which T, ~ Tc. We seek expansions of the

variables T,, yk, ak and V, in the form
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From (4.2) we deduce that

and substituting this expression into (2.9) yields the leading-order behaviour
r = O(l) for the reaction rate. We rescale the independent variables z and t
by setting z = zE and t = tE. This scaling of the spatial and temporal
variables is consistent with a solution of equations (3.1) to (3.6) fairly close
in form to a plane combustion wave propagating with O(l) velocity. (If the
wave velocity gets large the modelling assumptions will probably be
violated.) Equation (3.3) yields, to lowest order,

( 2 \ p^'r r^T

Taking the limit E—* °o then implies that 9T/dz = constant in z across this
region. Hence, by matching TS = TC + E~1T + O(E~2) across this region, we
deduce that the outer variable dujdz (since dTjdz = df/dz + O{E~1)) is
continuous across this region where Tt ~ Tc. (To solve in this layer we
should take z = 0 to be centred in, and move with, the layer.) With the
same scalings, equation (3.2) yields to lowest order

Thus Vak = constant in space, and hence, by matching, the variable V^ar̂  is
also continuous across the region where Ts ~ Tc. Finally we consider
equation (3.1) which is the remaining equation involving the reaction rate r.
We obtain

Thus fk = constant across this region. Hence, by matching, y^ is continuous
across the region where T, ~ Tc. Equation (3.4) shows that Tg (and hence w0)
is continuous.

These results about the continuity of dujdz, Vo t̂o and yw imply that the
effect on the reaction rate r0 of the region in which T, ~ Tc is merely to act as
a switch between regimes in which the reaction rate is negligible and
regimes in which it is dominated by the rate of active gas-component
diffusion. No higher-order discontinuities are imposed. Thus r0 has been
demonstrated to have the form, where Yi > 0 as £—* °°,

= ( 0 c ) [ 2 ] y i (
r° lO for Jty, « 1 .

Here H(X) is the Heaviside step function defined by H(X) = 0 for X =£ 0

We now analyse equations (3.1) to (3.6) in an intermediate region where
k»\ and kyx = O(\); k, defined by (4.2), is transcendentally large in E,
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while Y\~0 because nearly—all the combustible solid is burnt up. The
analysis of such a region is complicated because of the fact that y,, the
concentration of solid, always remains positive. However, for kyx«1 the
reaction rate (2.9) becomes negligible so that, to O(E~l), this inner region
terminates when kyx = O(E~l). The result of a similar, but slightly more
delicate argument to the one in the intermediate region examined above
shows that

ro = H(y1)H(uo-Tc)b[a2]. (4.12)

We outline the key arguments in deriving the expression (4.12). Before
the region is reached in which kyx = 0(1) a region occurs in which
Yx = O(E~l); thus we define yx = y £ ~ ' in this region. The reaction rate,
however, is of 0 (1) and thus we set t = ~tEZx to obtain, from (3.1),

dy/dl = — b[a2] + higher-order terms.

As before we note that the solution is similar to a combustion wave
propagating with an 0(1) velocity and so we suspect that the length scale on
which yx = O(E~l) is O(E~l). Employing this length scale it may be shown
that in this region the variables V3, ak, Tg, Ts and dTsldz are constant to
first order. Hence y decreases linearly until it becomes zero.

As y—»0 we make a transition into a region in which yx is transcenden-
tally small and kyx = 0(1) . Thus we rescale y t , t and z accordingly by
setting Yx = y/k, t = i/k and z=2/k. Here k is obtained from (4.2) by
taking Ts = t, = constant > Tc. We justify this assumption on Ts a posteriori.
The resultant equation for y is, from (3.1),

dy yb[a2]
-# = -7^777- (413)

The reaction rate r becomes negligible when y decreases to O(E ') for then
/fcy, = 0(£~1) and thus, from (2.9), r = O(E~1). Solving (4.13) with b and
a2 held constant (which we may again justify a posteriori) shows that y
decreases to 0(£~') on a time scale i = 0(ln E). Thus the appropriate time
and length scales in the region in which y, is transcendentally small are
0(ln Elk) « 1, which justifies the assumption that all other variables remain
constant to lowest order. Consequently the effect of the non-uniformity
which arises if yi-»0 is to switch off the reaction rate in the manner
prescribed by (4.12). No higher-order discontinuities are introduced.

5. A simplified model
We now go on to produce a simplified model, which is analysed in

(10,11) for the existence and stability of travelling-wave solutions. The
analysis in these papers enables us to find the qualitative properties of the
travelling combustion-wave solutions and relate these properties to the
types of switch at the end of the combustion zone. The qualitative
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properties are broadly in agreement with earlier numerical calculations of
the full model (13, 14).

Together with the reaction rate (4.12), equations (4.3), (4.6) to (4.8) and
(4.11) determine the leading-order behaviour of equations (3.1) to (3.6)
under the assumptions listed at the beginning of section 4. If we eliminate Vo

between (4.3) and (4.7) and define a new variable to be g = w0a2, the flux
of oxygen, then we obtain

3g/dz = -aro/n, (5.1)

where a is a constant. Equations (2.10) and (4.7) show that, in terms of the
new variable g, the reaction rate r0 may be written

r0 = (jilatH{oM - T)tf(uo - TJw^g- (5.2)

We now rescale equations (4.6), (4.8), (4.11) and (5.1), (5.2) to eliminate
certain constants. We define, in order to rescale and for ease of notation,

a - o,0, u = «0, w = w0, uc =TC, z = Jczljd2,

i = ct, fL = (il{cd2i
i, r = ro/c.

Substituting these rescaled variables into equations (4.6), (4.8), (4.11)
and (5.1), (5.2) and dropping the bars yields

doldt = -kr, (5.3)

H dwldz = (u - H-), (5.4)

f ! { f } " - " + r (5-5)
and

dgldz = -ar/t*. (5.6)

Here a and d are positive constants. The reaction rate r is given by

r = H{o-T)H(u-ue)ttgf{w). (5.7)

In the case of porous-medium combustion we expect that f(w) = wy~^,
where typically \ — \~2.

If we assume that the gas temperature and gas flux are prescribed
upstream and that the solid temperature is prescribed up- and downstream
then the appropriate boundary conditions are

tt(±», <) = «., (5-8)

w,(-oo, i) = ua, (5.9)

Together with initial conditions on the variables o, u, v and g, equations
(5.3) to (5.10) form an initial boundary-value problem. The unknown
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variables a, u, w and g represent, respectively, the solid heat capacity, the
solid temperature, the gas temperature and a quantity proportional to the
product of oxygen concentration and gas temperature. These quantities
arise naturally from the four conservation laws for solid and gas mass and
energy. The effect of Charles's law, which governs the fluid motion, has
been replaced by the dependence of the system of equations (5.3) to (5.10)
on the parameter \i, proportional to the inlet-gas mass flux.

The problem contains eight parameters—a, d, n, A, uc, ua, z, and a
constant of proportionality in the function f(w). The parameters of
particular interest are a, [i and A. The parameter a determines the rate of
depletion of the variable g and represents the ratio of the rate of oxygen
consumption to that of solid consumption. The parameter \i is proportional
to the inlet-gas mass flux. The parameter A relates the amount of
combustible solid present to the heat content of the solid, and thus A and a
depend upon the nature of the solid being burned. From its definition A is
seen to be a linear function of c,u the specific heat of the combustible solid.
The remaining parameters are all of 0(1) for our typical combustion process
and we do not consider them as important in determining the mathematical
structure of solutions of equations (5.3) to (5.10).

Finally we note that it is possible to simplify equation (5.5) by replacing
the nonlinear radiation-diffusion term by an overall effective linear-
conduction term. A further rescaling then renders the coefficient of such a
term unity. We believe that equations (5.3) to (5.7) will form the essence of
most macro-models of burning porous media where air is blown through the
combustion zone. For small a the stable combustion waves are those whose
combustion is terminated by exhaustion of solid, not by the lowering of the
solid temperature (10).
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A P P E N D I X
In this section we solve the following ordinary-differential-cquation boundary-

value problem and explore the dependence of the solution on e as e —» 0. Here A and
E are strictly positive constants, and we are only interested in solutions which have
u > 1 somewhere:

d2u Xeu" -A
dx2~ e"" + e1"~l + e«-'y" 0 < x < 1 '

where du/dx = 0 at x = 0 and u = 0 at x = 1.
We first note that u(x, e) strictly decreases from its value u , = u(0, e) > 1 at x = 0

through u(x, e) = 1 at x = s(e) to u(x, e) = 0 at x = 1. Then the solution u(x, e) of
our problem is given implicitly by

F ( " ' " * ' e ) = I [log {1 + exp ((«. - l ) /e )} - log {1 + exp ((u - l ) / e ) } ]* = ( 2 A f ) *'
(A.I)

where u, is related to e, for fixed A > 0, by

F(0, « . , e) = (2AE)*. (A.2)

(This solution is found by noting that a first integral of the differential equation is

where we use du/dx = 0 at x = 0 to evaluate the constant of integration.)
Having found the formula (A.I) for the solution, we now evaluate its behaviour as

e-»0. We are led directly to consider the three regions u>l (the inner layer),
u - 1 = O(e) (the intermediate layer), and 0 < u < 1 (the outer layer) as e-*0. We
find that u(x, e)—»Uo(x) as e—»0 uniformly for 0 « x « 1 , where

{(i-xwi-sm, 5(0)*x*i, { '
and

l/A=s(0)(l-*(0)); (A.4)

and that s(e)-*s{0) as c-»0.

 at U
niversity of W

arw
ick on February 8, 2016

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 

http://qjmam.oxfordjournals.org/


178 J. NORBURY AND A. M. STUART

Note that u^x) = 1 at x = 5(0), and that du^x)ldx is continuous at x = s(0)
because of the condition on A. Since both these conditions hold it is not necessary to
examine the details of the solution u(x, e) near x = 5(0) in order to determine ujjc)
uniquely. The function Uo(x) may be found by solving the formal limit problem as
e-*0 separately in both x<s(0), u > 1 and x>s(0), u < 1, and then matching for
the free boundary x = 5(0) by using the continuity conditions on u^x) and du^/dx at
X=5(0).

To prove the above assertions we need to evaluate F(u, ut, e) for e—*0 separately
in u > l and u<\. This is straightforward once we know that ut = u(0, e)—*
l + \te(0)2 and 5(e)->5(0) as e-*0, where 5(0) 6 (0, 1) satisfies (A.4). The latter
condition on s(e) follows from the identity F(l, «», e) = (2Ae)'5(e) when we know
the behaviour of M» as e—>0. So the crucial step is to solve (A.2) for ut as e—»0
with A given by (A.4).

If we write

w(x, e) = log (1 + exp [(u - l)/e]), Ĥ  = log (1 + exp (-1/e)),

then (A.2) becomes

I Jedw ,
i / , 7—^? ri = (2A)i. (A.5)
'^ (1-exp(-tv))(tv. - tv)5

We note that u = l corresponds to »v = log2, while u = u» > 1 corresponds to
tv = w, ~ (u. - l)/e » 1, and u = 0 corresponds to tv = t v o ~ e x p ( - l / e ) « 1, as
e—*•(). Hence the integrand in (A.5) has the three regions

(i) tv~0, where the integrand is approximately Je/wjwt: this is the outer layer
of (A.I);

(ii) tv = O(l), where the integrand is approximately /e / / tv , ( l — exp(—tv)): this
is the intermediate layer of (A.I);

(iii) tv » 1, where the integrand is approximately /e / / ( tv , — tv): this is the inner
layer of (A.I).

Thus the integral in (A.5) may be uniformly approximated as e—»0, and we
obtain, for tV] = e~',

W u . ) l - e x p ( - H ' ) J^ (w*-w)l

= E(U. - l)-l{log (exp (H-,) - 1) - log (exp (exp (-1/e)) - 1)}

+ 2/e (H-, - H-,)* + O(e-4)

Hence

where 5(0) satisfies (A.4). Thus F(l, « „ e) = (2Ae)*5(e) shows that 5(e)-»5(0) as
e—»0, and it is now straightforward to see that u(x, e) satisfying (A.I) will tend to
UQ(X), given by (A.3), as e-»0.
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