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Abstract The Bayesian framework is the standard
approach for data assimilation in reservoir modeling. This
framework involves characterizing the posterior distribu-
tion of geological parameters in terms of a given prior
distribution and data from the reservoir dynamics, together
with a forward model connecting the space of geological
parameters to the data space. Since the posterior distribu-
tion quantifies the uncertainty in the geologic parameters
of the reservoir, the characterization of the posterior is
fundamental for the optimal management of reservoirs.
Unfortunately, due to the large-scale highly nonlinear
properties of standard reservoir models, characterizing
the posterior is computationally prohibitive. Instead, more
affordable ad hoc techniques, based on Gaussian approx-
imations, are often used for characterizing the posterior
distribution. Evaluating the performance of those Gaussian
approximations is typically conducted by assessing their
ability at reproducing the truth within the confidence inter-
val provided by the ad hoc technique under consideration.
This has the disadvantage of mixing up the approximation
properties of the history matching algorithm employed
with the information content of the particular observations

A. M. Stuart · M. A. Iglesias (�)
University of Warwick, Coventry, UK
e-mail: m.a.iglesias-hernandez@warwick.ac.uk

A. M. Stuart
e-mail: A.M.Stuart@warwick.ac.uk

K. J. H. Law
CEMSE, King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia
e-mail: K.J.H.Law@warwick.ac.uk

used, making it hard to evaluate the effect of the ad hoc
approximations alone. In this paper, we avoid this disad-
vantage by comparing the ad hoc techniques with a fully
resolved state-of-the-art probing of the Bayesian posterior
distribution. The ad hoc techniques whose performance we
assess are based on (1) linearization around the maximum
a posteriori estimate, (2) randomized maximum likelihood,
and (3) ensemble Kalman filter-type methods. In order
to fully resolve the posterior distribution, we implement
a state-of-the art Markov chain Monte Carlo (MCMC)
method that scales well with respect to the dimension of
the parameter space, enabling us to study realistic forward
models, in two space dimensions, at a high level of grid
refinement. Our implementation of the MCMC method pro-
vides the gold standard against which the aforementioned
Gaussian approximations are assessed. We present numeri-
cal synthetic experiments where we quantify the capability
of each of the ad hoc Gaussian approximation in reproduc-
ing the mean and the variance of the posterior distribution
(characterized via MCMC) associated to a data assimila-
tion problem. Both single-phase and two-phase (oil–water)
reservoir models are considered so that fundamental dif-
ferences in the resulting forward operators are highlighted.
The main objective of our controlled experiments was to
exhibit the substantial discrepancies of the approximation
properties of standard ad hoc Gaussian approximations.
Numerical investigations of the type we present here will
lead to the greater understanding of the cost-efficient, but
ad hoc, Bayesian techniques used for data assimilation in
petroleum reservoirs and hence ultimately to improved
techniques with more accurate uncertainty quantification.
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1 Introduction

Simulating the dynamics of a reservoir involves solving
a large-scale numerical model that depends on parameters
related to petrophysical properties of the reservoir. These
properties need to be known at each discretization point of
the physical domain of the reservoir. Unfortunately, direct
measurements of petrophysical properties are only available
at a small number of locations within the domain of interest.
Therefore, a statistical description of the reservoir parame-
ters is required to properly account for the uncertainty in the
petrophsyical properties caused by the lack of information.
A prior distribution of geologically consistent reservoir
parameters can be generated, for example, from a vari-
ogram analysis conducted on static data from core samples.
Geostatistical techniques can then be used to generate real-
izations of reservoir parameters conditioned to static data
[11]. In some cases, information concerning geologic facies
may also be incorporated [3]. On the other hand, with the aid
of downhole permanent sensors, measurements of reservoir
flow can be continuously acquired. In a Bayesian frame-
work, the prior distribution of the petrophysical properties
is combined with these flow measurements, using a for-
ward reservoir model linking the parameter and data spaces,
to characterize the posterior distribution of the reservoir
parameters given the dynamic (flow) data. This posterior
distribution quantifies the uncertainty in the reservoir pre-
dictions, and it is essential for assessing the economical and
environmental risk of oil recovery procedures.

Markov chain Monte Carlo (MCMC) methods are the
standard techniques for sampling the posterior distribution
described above. In particular, the Metropolis–Hasting vari-
ant of MCMC has been typically used for data assimilation
in reservoir models [4, 13, 14, 16, 23, 25, 28]. In general, the
posterior distribution that arises from Bayesian data assim-
ilation does not admit a finite-dimensional parametrization,
with the exception of very few particular cases such as the
linear and Gaussian case. Therefore, strictly speaking, an
infinite number of samples are required to define it. This
implies, in practice, that hundreds of thousands or even mil-
lions of reservoir simulations may be required for standard
MCMC methods to accurately characterize the posterior
distribution. This computational disadvantage of standard
MCMC approaches has given rise to the development of
more computationally efficient MCMC techniques [9, 13,
16, 25]. With the increasing advancement of computational
power, the aforementioned MCMC methods may poten-
tially become viable tools for reservoir management in the
decades to come. At the present time, however, it is essential
to develop techniques that provide a reasonable charac-
terization of the posterior with a computational cost that
involves a limited number of reservoir model runs. It then
comes as no surprise that, in recent years, research on data

assimilation for uncertainty quantification applications has
mainly focused on improving the efficiency and accuracy of
ad hoc ensemble-based techniques that provide approxima-
tions of the posterior distribution and are typically based on
invocation of a Gaussian assumption at some point in their
derivation.

As pointed out in the recent literature review of [27],
there are three main approaches that have been consistently
adopted for sampling approximations of the posterior dis-
tribution: (1) linearization around the maximum a posteriori
(MAP) estimate (linearization around the MAP, LMAP), (2)
randomized maximum likelihood (RML) method, and (3)
ensemble Kalman filter (EnKF). Under a Gaussian prior and
a linear model, it can be shown that all these techniques pro-
vide samples of the posterior distribution [22, 26]. We there-
fore refer to those methods as Gaussian approximations
of the posterior. For standard (nonlinear) reservoir models,
the mathematical structure of the approximation provided
by the three approaches is still unknown. Nonetheless, the
aforementioned methods are widely applied for generating
model parameters conditioned to dynamics data, which are
then used for statistical analysis of reservoir performance.
Consequently, in the Bayesian framework, optimal deci-
sion making and risk management depend on the quality
of the underlying Gaussian approximations of the posterior.
It is therefore fundamental to understand the accuracy and
convergence properties of those Gaussian approximations
in order to interpret predictions of uncertainty made using
them and in order to develop improved methodologies from
them. Rigorous numerical studies of these Gaussian approx-
imate algorithms can shed light on these issues and can point
us towards theoretical analyses. In this paper, we therefore
provide a numerical evaluation of the performance of the
ad hoc Gaussian approximate algorithms LMAP and RML
and the variants of the EnKF methodology, by using an
expensive, but fully resolved, MCMC simulation as our gold
standard. This approach is analogous to the recent study
of similar Gaussian approximate algorithms arising in the
context of atmospheric data assimilation [21].

1.1 Literature review

Although the theoretical aspects of the approximation prop-
erties of LMAP, RML, and EnKF are unknown for the case
of nonlinear models, some numerical investigations have
been performed [4, 23]. To the best of our knowledge, only
the work in [23] has the purpose of assessing approximate
evaluation of approximate methods for sampling the pos-
terior. To accomplish this goal, Liu and Oliver [23] used
a standard random walk MCMC method to generate accu-
rate samples of the posterior. These, in turn, are used as the
gold standard against which the performance of the approx-
imate methods, LMAP and RML, and of the pilot point
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methods is compared. In their evaluation, Liu and Oliver
use synthetic data from a single-phase one-dimensional
reservoir discretized with 20 gridblocks. The main con-
clusion of [23] is that RML provides the best uncertainty
quantification when compared against the MCMC gold
standard. In particular, RML outperforms pilot point meth-
ods whose application to reservoir data assimilation prob-
lems has been lately abandoned.

Within the context of evaluating the uncertainty quan-
tification properties of data assimilation techniques, it is
relevant to mention the work of [4] where several methods
were compared for the synthetic PUNQ-S3 reservoir model.
The main goal of [4], however, is to evaluate the ability of
the corresponding techniques to provide confidence interval
that contains the truth estimate. Among those techniques,
MCMC is the only one that can potentially provide accu-
rate samples from the Bayesian posterior. Unfortunately, as
stated in [4], the MCMC results are not conclusive due to
the small chain used for their experiments. Thus, the eval-
uation in [4] does not provide an evaluation in the strict
sense of a Bayesian framework. It is worth mentioning that
the work of [4] and [23] appeared almost a decade ago
when EnKF had just been introduced to the history match-
ing community [1], and so EnKF was not assessed in [4,
23]. Almost a decade later and after hundreds of publi-
cations, EnKF-based methods are now perhaps the only
computationally feasible technique for real-time data assim-
ilation in petroleum reservoirs. For a comprehensive review
of EnKF for reservoir applications, we refer the reader
to [1].

In the recent work of [16], the EnKF is combined with
an MCMC algorithm to improve the efficiency of standard
MCMC methods for sampling the posterior in a Bayesian
framework. Although the analysis of the approximate prop-
erties of EnKF is not the main goal of [16], an implicit
evaluation of EnKF is displayed. Indeed, under the assump-
tion that the MCMC samples of [16] provide an accurate
characterization of the posterior, then [16] provides a par-
tial assessment of EnKF for approximating the posterior. It
is also worth mentioning the work of [17] where the his-
tory matching and uncertainty quantification properties of
several variants of Kalman-based methods are compared
with respect to the gold standard generated with an MCMC
approach similar to the one used in [23]. It is impor-
tant to note that the experiments [17] are conducted on a
rather small problem (30, one-dimensional), with a limited
amount of observations (12), for which the standard MCMC
approach used in [17] can be computed. While the afore-
mentioned work reveals advantages and limitations of EnKF
for sampling the posterior, an evaluation in the setup of
the more stringent model problems that we consider in this
paper, which are of high dimension, would not be possi-
ble using the standard MCMC techniques used in [17, 23]

due to their computational limitations. Our mesh-invariant
MCMC methods, however, will allow for the study to be
undertaken under these more stringent conditions.

In the context of evaluating the uncertainty quantifica-
tion properties of Gaussian approximations of the posterior,
we highlight the work of [18, 34]. For the PUNQ-S3 model
mentioned above, [18] compares the performance of EnKF
and RML. In [34], a new singular value decomposition
(SVD)-based RML is introduced and compared against
EnKF. It is important to mention, however, that [18, 34]
evaluate the capability of these Gaussian approximations
for reproducing the truth within the confidence interval of
the technique under consideration. While this is a natural
strategy for assessing uncertainty quantification properties,
it is an insufficient evaluation from the perspective of the
Bayesian framework. In other words, capturing the truth
within the spread of model predictions obtained with a
Gaussian approximation does not ensure that the spread cor-
rectly represents the uncertainty quantified by the posterior
distribution of Bayesian data assimilation. It is therefore
essential to develop a controlled experiment where standard
Gaussian approximation can be tested against the solution
to the Bayesian data assimilation problem: the posterior
distribution.

1.2 The proposed work

In this paper, we propose the numerical evaluation of
LMAP, RML, and some standard versions of the ensemble
Kalman filter-type methods for approximating the poste-
rior distribution within the Bayesian framework of data
assimilation. We characterize the posterior distribution by
using a state-of-the art MCMC method that provides the
gold standard against which the aforementioned Gaussian
approximations is compared. In this sense, our work has
a similar goal to the one of [23]. However, there are
two recent algorithmic developments which motivate our
desire to revisit the perspective introduced in [23]. The
first, discussed in detail below, is that MCMC methodology
has evolved significantly, enabling the study of consider-
ably more sophisticated forward models and more highly
dimensional parameterizations of the unknown petrophysi-
cal quantities, leading to greater realism. The second new
aspect of our work, in comparison with [23], is the assess-
ment of ensemble Kalman filter-type methods. In particu-
lar, we consider the most standard EnKF implementations,
namely, (1) the perturbed observation EnKF and (2) the
square root filter (ensemble square root filter, EnSRF) of
[14, 30]. In both cases, we also evaluate the effect of
performing distance-based localization [6, 15].

We emphasize that, in contrast to other approaches
[4, 6, 15, 18, 34] where the aim is to recover the truth
within the confidence interval of relevant quantities and to
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history match data, here we are interested in assessing the
performance for characterizing the posterior distribution.
Evaluation of algorithms by their ability to recover the truth
within a confidence interval has the disadvantage of entan-
gling the approximation properties of the history matching
algorithm employed with the information content of the par-
ticular observations used, making it hard to evaluate the
effect of the ad hoc approximations alone. Our assessment
of the ability to probe the Bayesian posterior distribution is
conducted by quantifying the capability of each Gaussian
approximation in reproducing the mean and the variance
of the posterior distribution associated to a data assimila-
tion problem. Two prototypical reservoir models are used,
both in two spatial dimensions: (1) slightly compressible
single-phase Darcy flow model and (2) incompressible oil–
water reservoir model. In both models, the unknown is
the logarithm of the absolute permeability of the reservoir
u = log K . For the single-phase model, pressure data are
collected from production wells. For the oil–water model,
total flow rate is measured at the production wells while
bottom-hole pressure is collected at the injection wells. For
both models considered here, the corresponding parameter-
to-output map G(u) is nonlinear. Thus, even when the
prior distribution is Gaussian, the Bayesian posterior is
non-Gaussian. This constitutes the ideal scenario to evalu-
ate approximation properties of the techniques of interest,
provided that a gold standard is obtained from accurately
sampling the posterior as we described below.

As we indicated earlier, some MCMC methods have been
used for sampling the Bayesian posterior distribution in
reservoir models. However, some of these methods [13, 25]
rely on reducing the parameter space (e.g., via truncating
Karhunen–Loève expansion) and/or upscaling the model
to reduce the computational cost of the algorithm. In the
present experiment, however, we are interested in the more
general case where no reduction of the parameter space is
possible. In other words, we assume that the petrophysical
property is unknown at each location of the physical domain
of the reservoir. In this case, a standard MCMC technique
like the one used in [23] is computationally prohibitive
for larger size problems like the ones considered here. To
overcome this difficulty, we take advantage of recent devel-
opments in MCMC methodology and sample the posterior
by applying the preconditioned Crank–Nicolson MCMC
(pCN-MCMC) method described in [9] and derived from
the infinite-dimensional Bayesian framework developed in
[33]. In contrast to standard MCMC methods, the accep-
tance probability in the pCN-MCMC method is invariant
with respect to the dimension of the parameter space, there-
fore making pCN-MCMC ideal for large-scale problems
like the one studied here. The advantage of using pCN-
MCMC over standard MCMC for data assimilation in some
geophysical problems has been shown in [9]. For petroleum

reservoir applications, the computational efficiency of pCN-
MCMC with respect to other existing methods deserves
further investigation. Nevertheless, in the present work, we
apply pCN-MCMC and provide numerical evidence of con-
vergence so that the corresponding realizations generated
with pCN-MCMC are samples from the Bayesian poste-
rior. These, in turn, provide a gold standard against which
LMAP, RML, and standard versions of ensemble Kalman
filter-type of methods are compared. The proposed numer-
ical evaluation of the approximation techniques has two
concrete goals: (1) assess the capability to recover the mean
and variance of the posterior on the geological properties
of interest and (2) evaluate the performance for reproducing
the uncertainty (quantified by the posterior) in the reservoir
model predictions.

It is important to mention the recent literature on other ad
hoc ensemble methods for history matching and uncertainty
quantification in petroleum reservoirs [7, 12, 22, 31, 32].
These techniques have been shown to outperform standard
ensemble methods in the sense that they produce an ensem-
ble of geologic parameters whose corresponding model
predictions capture the one from the truth (or reference)
parameter within the ensemble spread. However, the uncer-
tainty quantification properties of those techniques with
respect to characterizing the posterior distributions are still
an open problem. Assessing these new techniques is beyond
the scope of the present paper. Nonetheless, we remark that
the aforementioned techniques are either EnKF-based or
RML-based techniques for which the proposed approach of
benchmarking and assessing the posterior distribution can
be extended. Undertaking such extensions would form an
interesting research direction, building on the work herein,
but is beyond the scope of this paper itself.

In Section 2, we describe the prototypical reservoir mod-
els that define the forward operators that we use for data
assimilation. The Bayesian framework for data assimila-
tion as well as the MCMC methodology for sampling
the posterior is introduced in Section 3. Methodologies
based on Gaussian approximations of the posterior are
described in Section 4. In Section 5, we report and dis-
cuss the numerical results and comparisons of our synthetic
experiments. The summary and final remarks are presented
in Section 6.

2 Forward reservoir models

In this section, we briefly outline the forward (reservoir)
models that we use for the evaluation of Gaussian approx-
imations of the posterior. On the one hand, we consider
simplified two-dimensional models for which a forward
model run is computationally inexpensive and therefore fea-
sible for the highly computationally challenging MCMC
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method. On the other hand, by sharing the mathemati-
cal structure of more sophisticated models, the models we
describe below are ideal for prototyping and evaluating
performance in a controlled fashion. For each of the fol-
lowing models, we consider a two-dimensional reservoir
whose physical domain, absolute permeability, and porosity
are denoted by D, K, and φ, respectively. The interval [0,T]
(T > 0) is the time interval of interest for the flow sim-
ulation. For each reservoir model, we define the forward
operator G:X → R

N that maps the parameter space X
into the observation space R

N . In other words, G(u) is the
model predictions corresponding to the parameter u ∈ X.
For simplicity, we assume that the only unknown parameter
is u = log K . Nevertheless, all the techniques and imple-
mentations that we describe in subsequent sections can be
extended to include additional parameters, such as porosity
which is routinely estimated alongside permeability in many
practical scenarios.

2.1 Single-phase Darcy flow

We consider a single-phase reservoir where oil is produced
at Nw production wells operated under prescribed produc-
tion rates {ql(t)}Nw

l=1 (t ∈ [0, T ]). The flow in the reservoir
is described in terms of the (state variable) fluid pressure
p(x, t) ((x, t) ∈ D × [0, T ]) which is governed by the
following equation [8]:

cφ
∂p

∂t
− ∇ · ν−1eu∇p =

Nw∑

l=1

qlδ(x − xl) in D

×(0, T ] (1)

where u ≡ log K , c is the total compressibility, ν is the vis-
cosity, and δ(x − xl) is (a possibly mollified) Dirac delta
centered at the lth well with location denoted by xl . In addi-
tion, we consider the initial condition p = p0 in D×{0} and
no-flow boundary conditions. As we indicated earlier, the
only uncertain parameter in Eq. (1) is the log permeability
u. Therefore, the additional model parameters c, φ, ν, and
p0 and the geometry D in Eq. (1) are prescribed.

In order to construct the forward operator, we first define
the model predictions of measurements. Let us then assume
that NM measurements of pressure from wells are collected
at times t1, . . . , tM . We define the measurement functional
as

Ml
n(p) = p(xl, tn) (2)

that corresponds to the fluid pressure at time tn and well
location xl . For the exposition of subsequent sections, we
also define the vector

Mn(p) = (M1
n(p), . . . , MNw

n (p)). (3)

We finally define N = NwNM, i.e., the total number of
observations from wells, and construct the forward operator

G(u) = (M1(p), . . . , MNM(p)). (4)

Note that p in Eq. (4) depends on u via Eq. (1).

2.2 Oil–water reservoir model

We consider an oil–water reservoir model initially saturated
with oil and irreducible water. Let us index by γ = w and
γ = o the water and oil phase, respectively. We assume
that both fluids and the rock are incompressible. We are
interested in a waterflood process where water is injected
at NI injection wells located at {xl

I}NI
l=1 . Water and oil are

produced at NP production wells located at {xl
P}NP

l=1. Addi-
tionally, we assume that injection wells are operated under
prescribed rates {ql(t)}NI

l=1 while production wells are con-

strained to bottom-hole pressure denoted by {P l
bh(t)}NP

l=1
. The reservoir dynamics in [0, T ] are described by the
(state variables) water saturation and the pressure, which
are denoted by s(x, t) and p(x, t), respectively ((x, t) ∈
D ×[0, T ]). From standard arguments, it can be shown that
(s, p) is the solution to the following system [8]:

− ∇ · λ(s)eu∇p =
NI∑

l=1

qlδ
(
x − xl

I

)

+
Nw∑

l=1

ωlλ(s)[P l
bh − p]δ

(
x − xl

P

)
, (5)

φ
∂s

∂t
− ∇ · λw(s)eu∇p =

NI∑

l=1

qlδ
(
x − xl

I

)

+
Nw∑

l=1

ωlλw(s)
[
P l

bh − p
]
δ
(
x − xl

P

)
, (6)

in D×(0, T ], where δ(x−xl
P) and δ(x−xl

I ) are the (possibly

mollified) Dirac deltas as defined before and {ωl}NP
l=1 is the

constant related to the well model [8]. Additionally, λw(s)

and λ(s) denote the water and total mobility defined by

λw(s) = krw(s)

νw
, λ(s) = kro(s)

νo
+ λw(s) (7)

where krγ (s) and νγ denote the relative permeability and the
viscosity of the γ -phase fluid, respectively. Furthermore, we
assume that

krw(s) = aw

[
s − siw

1 − siw − sor

]2

,

kro(s) = ao

[
1 − s − sor

1 − siw − sor

]2

(8)
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where aw, ao ∈ (0, 1], siw is the irreducible water saturation,
and sor is the residual oil saturation. We additionally pre-
scribe initial conditions for pressure and water saturation:

p = p0, s = s0 in D × {0}. (9)

For simplicity, no-flow boundary conditions are prescribed
on the reservoir boundary. Let us assume that there are NM

measurement times denoted as before {tn}NM
n=1. We assume

that measurements of bottom-hole pressure are collected at
the injection wells at {tn}NM

n=1. This, according to Peaceman’s
well model [8], is defined by

Ml,I
n (p, s)=P

l,I
bh (tn)=

[
ql(tn)

ωlλ
(
s
(
xl

I , tn
))+p

(
xl

I , tn

)]
(10)

for l = 1, . . . , NI and n = 1, . . . , NM . Analogously, we
consider measurements of total flow rate at the production
wells:

Ml,P
n (p, s) = ql,P(tn) = ωlλ

(
s
(
xl

P, tn

))

×
[
P l

bh(tn) − p
(
xl

P, tn

)]
(11)

for l = 1, . . . , NP and n = 1, . . . , NM . Let us denote by
Nw = NP + NI the total number of wells and define the
Nw-dimensional vector

Mn(p, s) =
(
M1,I

n (p, s), . . . , MNI,I
n (p, s),

M1,P
n (p, s), . . . , MNP,P

n (p, s)
)

. (12)

The total number of measurements N is defined as before
and the forward map G : X → R

N is then given by the
expression

G(u) = (M1(p, s), . . . , MNM(p, s)) (13)

which in this case comprises the production data obtained
from production and injection wells at the measurement
times.

With both forward models written in terms of the forward
operator G, in the next section, we describe the Bayesian
inverse problem of finding u, given noisy observations
of G(u).

3 The Bayesian framework

We assume that the unknown parameter u and the data y ∈
Y are related by

y = G(u) + η (14)

where G is the forward map introduced in the previous sec-
tion and η ∈ R

N is a vector of random noise. Informally,
the Bayesian approach to inversion proceeds by placing a
prior probability distribution P(u) on u and assuming an
independent probability distribution on η. The likelihood,

namely, the probability of the observed data y, given a par-
ticular instance of the unknown parameter u, is then denoted
P(y|u). Bayes’ rule then states that the posterior probabil-
ity of the unknown parameter u, given the observed data y,
denoted by P(u|y), is determined by the formula

P(u|y)

P(u)
∝ P(y|u). (15)

In this section, we formulate this precisely in the case where
the unknown parameter is a function.

We define the norm || · ||B = ||B−1/2(·)|| for any covari-
ance operator B, and we use this notation throughout the
paper, in particular in the observation space, with B = 
,
and in the log permeability space with B = C. For sim-
plicity and following convention in the field, we will not
distinguish notationally between the random variable and
its realization, except in the case of the truth, which will
be important to distinguish by u† in subsequent sections in
which it will be prescribed and known.

3.1 An infinite-dimensional Bayesian framework

When approximating fields in finite dimensions, for exam-
ple, those arising as input to or solution of a partial
differential equation (PDE), the accuracy of the approxi-
mation improves as the mesh is refined and the dimension
increases; practitioners often want to take advantage of this
refinement to improve predictions. However, the benefits
resulting from approximation of the forward PDE model
are lost if it is subsequently embedded into a method
for inverse problems which degenerates under such mesh
refinements. Therefore, it is of interest to establish methods
for solving inverse problems, whose performance is invari-
ant with respect to increasing dimension of the underlying
unknown. Confronting the function space framework head
on guarantees this desirable invariance with respect to mesh
refinement of the forward model approximation.

We are interested in the inverse problem of charac-
terizing the posterior distribution of the unknown log
permeability function u, given finite-dimensional observa-
tional data denoted by y. We approach this inverse problem
by means of the infinite-dimensional Bayesian framework
of [33] that we now briefly describe. Assume that u ∈ X

where X is a Hilbert space, and denote by μ0 the prior prob-
ability measure on u. We assume that the unknown u and
the data y ∈ Y are related by Eq. (14). For simplicity, we
assume that η ∼ N(0, 
). Then, the rigorous interpretation
of Eq. (15) is that the posterior distribution on u|y is given
by measure μ satisfying

dμ

dμ0
(u) = exp(−�(u, y))∫

X
exp(−�(u, y))μ0(du)

(16)
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where the left-hand side of Eq. (16) is the ratio of infinites-
imal probabilities at the point u of the posterior distribution
μ(u) = P(u|y) and the prior μ0 = P(u) and

�(u, y) = 1

2
||y − G(u)||2
.

A sufficient condition for this to be well defined is that
�(·, y) is continuous as a mapping from X into R for each
fixed y and that μ0(X) = 1 so that functions drawn from μ0

are in X almost surely. Formula (16) then holds in infinite
dimensions, exhibiting the posterior density with respect to
the prior; in practical terms, this means that posterior expec-
tations can be found by reweighting prior expectations by
the right-hand side of Eq. (16).

The posterior distribution μ quantifies the uncertainty of
the logarithm of the absolute permeability given produc-
tion data, normalized by the prior. Since G is nonlinear, the
posterior is non-Gaussian even when the prior μ0 is Gaus-
sian. Thus, there is no useful closed-form expression for
the posterior distribution and it must be characterized by
approximation; we do this by means of sampling.

Before we describe the approach to sampling μ that we
adopt in this paper, we note that, if we assume the prior μ0

is Gaussian with mean u and covariance C, it follows (see
[10, 20]) that the MAP estimate uMAP is the minimizer of
the Tikhonov-regularized least squares functional

J (u) = �(u, y) + 1

2
||u − u||2C. (17)

The MAP estimator is the typical estimate computed in stan-
dard history matching problems where the goal is to recover
the truth by fitting historic production data. Note that the
Bayesian approach thus subsumes this classical approach
to inversion while also providing rigorous quantification of
uncertainty of predictions, given clear assumptions on the
prior and noise probabilities.

3.2 Sampling the posterior with Markov chain Monte
Carlo (MCMC)

For PDE-based inverse problems where the unknown is
a function, it is desirable that the resulting methods for
sampling the posterior distribution scale well with respect
to mesh refinement; this is because the ability to resolve
the mesh progresses with increased computer power and
practitioners will often seek to use improvements in com-
puter resources to further refine computational meshes as
they strive for greater fidelity. Designing sampling algo-
rithms which perform well under mesh refinement may be
achieved by conceiving of the algorithms on function space
(the limit of infinite mesh refinement) and only then dis-
cretizing; thus, these algorithms are built directly on the
infinite-dimensional Bayesian framework introduced in the
preceding subsection. A review of state-of-the-art MCMC

methods conceived in this way, together with numerical evi-
dence of the mesh-invariant properties of these methods,
may be found in [9]. Throughout this paper, we will use
the following pCN-MCMC [9, Section 5.2] method, which
may be viewed as the natural generalization of random walk
Metropolis methods to the sampling of measures μ defined
via Eq. (16) with μ0 as the Gaussian N(u, C):

min exp

All the probabilities are generated independently of one
another, leading to a Markov chain which is invariant with
respect to μ. Notice that the small change in proposal,
when compared with the standard random walk MCMC
[23], results in an acceptance probability defined via dif-
ferences of � and not J. Because � is finite with respect
to μ while J is not, this leads to a considerably improved
algorithm which has desirable dim(X)-independent prop-
erties when implemented on a sequence of approximat-
ing problems with dim(X) → ∞. Therefore, for large
dim(X) like the one considered here, pCN-MCMC pro-
vides a more robust and efficient technique than the stan-
dard MCMC approaches. In particular, the method does
not degenerate in the limit like the standard random walk
version does and is therefore robust to arbitrary mesh
refinement. Numerical evidence of these scaling proper-
ties, together with references to relevant theory, can be
found in [9].

The proposal chain in pCN-MCMC preserves the prior,
and so the accept/reject step serves only to reweight the
proposals so that their distribution is consistent with the
likelihood. In particular, the accept/reject step depends only
on the log likelihood � and not on the regularized log like-
lihood J; the latter contains terms from the prior which are
not needed because the proposal is exact for the prior. There
is a wealth of literature on choosing the optimal step size
β (see [9] and references therein), but typically, one must
do this either by trial and error or adaptively such that the
acceptance rate is far from 0 and from 1. Throughout this
paper, we have tuned β so that the acceptance rate is in the
range 0.2–0.3.
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Based on the forward models of Section 2, the pur-
pose of the present work is to design synthetic experiments
for solving the Bayesian data assimilation problem, i.e.,
finding the posterior distribution. By implementing the
pcN-MCMC algorithm, we characterize this posterior and
generate a gold standard against which the Gaussian approx-
imations that we introduce in the following section are
compared.

4 Gaussian approximations of the posterior

In this section, we introduce some standard ad hoc methods
that use Gaussian approximations to sample the poste-
rior distribution (see Eq. (16)). In particular, we consider
LMAP, RML, EnKF, and EnSRF which have been typi-
cally used for history matching and uncertainty quantifi-
cation in the Bayesian framework of data assimilation of
petroleum reservoirs. While many variants of the aforemen-
tioned techniques can be found in the literature [27], here
we focus on the most standard and typical implementations
used for history matching. For each of the aforementioned
techniques, the objective of the subsequent description is
twofold. First, we introduce the algorithm and the associated
computational cost. Second, we indicate the type of Gaus-
sian approximation made for the definition of the technique
under consideration.

4.1 Linearization around the MAP (LMAP)

As described in Section 3, the minimizer of J introduced in
Eq. (17) defines the MAP estimator, i.e.,

uMAP = argminu

{
�(u, y) + 1

2
||u − u||2C

}
. (20)

We can further define

CMAP = C − CQT (QCQT + 
)−1QC (21)

where Q ≡ DG(uMAP) is the Fréchet derivative of G eval-
uated at u = uMAP. The linearization around the MAP
[26, Section 10.5] consists of approximating the posterior μ

in Eq. (16) by μ ≈ N(uMAP, CMAP).
The LMAP algorithm approximates the posterior with

an ensemble of Ne realizations from N(uMAP, CMAP)

[26, Section 10.5]. This ensemble can then be used to
approximate integrals with respect to the posterior of non-
linear functions of u. Note that when G is linear, μ =
N(uMAP, CMAP) and then uMAP and CMAP are the mean and
covariance of the posterior. The algorithm, however, is well
defined in general and may thus be applied to cases in which
G is nonlinear.

Algorithm 2 [LMAP]

1. Compute uMAP and CMAP from Eqs. (20) and
(21),respectively.

2. Compute the Cholesky factor L of CMAP , i.e.,
CMAP = LLT .

3. For j ∈ {1, . . . , Ne},generate

u(j) = uMAP + LT z(j) (22)

where z(j) ∼ N(0, I ).

Samples generated by Eq. (22) are drawn from
N(uMAP, CMAP), and so the ensemble {u(j)}Ne

j=1 provides
an approximation to N(uMAP, CMAP) and hence the pos-
terior. The computational cost of LMAP depends on the
cost of computing the MAP estimator (see Eq. (20))
and the factorization of CMAP. For the present work,
we develop implementations of the Levenberg–Marquardt
algorithm of [26, Section 8.4] with the stopping criteria
given by (8.82) and (8.83) from [26, Section 8.5] with
ε0 = 10−3 and ε1 = 10−3. The selection of the LM
parameter λ is chosen according to the guidelines dis-
cussed in [26, Section 8.5] (see also [34]). The mean of
the prior distribution is used as the initial guess for the
LM method. It is worth mentioning that, within the con-
text of reservoir characterizations, multiple techniques for
computing the MAP estimator have been widely stud-
ied (e.g., BFGS, LBFGS, Gauss–Newton) [26, Section
8]. It is of interest to evaluate the optimal minimization
technique, but this is beyond the scope of our present
work.

4.2 Randomized maximum likelihood (RML)

The RML technique was developed as an attempt to accel-
erate MCMC methods for sampling the posterior from
Bayesian data assimilation in reservoir models [28]. The
main idea of RML is to construct an ensemble of MAP
estimators from randomized objective functions (see Eq.
(20)). A standard implementation of RML is presented in
the following algorithm:

Algorithm 3 [RML] For j ∈ {1, . . . , Ne} :
1. Generate u(j) ∼ N(u, C).
2. Define y(j) = y + η(j) with η(j) ∼ N(0, 
).
3. Compute

u
(j)

RML = argminu

{
�(u, y(j)) + 1

2
||u − u(j)||2C

}
. (23)

In the case where G is linear, the RML algorithm can
be shown to sample the posterior distribution (i.e., from
μ = N(uMAP, CMAP)) [22]. For the nonlinear case of inter-
est here, the RML algorithm provides an approximation of
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the nature which, to the best of our knowledge, has not been
systematically understood.

Note that, for each ensemble member, RML requires
the solution to the minimization problem (see Eq. (23)).
Nevertheless, since each minimization problem is inde-
pendent from one another, RML is then embarrassingly
parallelizable. Each of those minimization problems has
the same structure as the one that we solve for the MAP
estimator (see Eq. (20)). For a relatively small problem,
the computational cost of computing L in LMAP, given
Q which has already been constructed while solving Eq.
(20), as well as the generation of Eq. (22), is negligi-
ble compared to the cost of one forward model evalu-
ation. Thus, the computational cost of RML is roughly
Ne times the computational cost of LMAP, although the
effect of the multiplier Ne can be ameliorated in a parallel
context.

Similarly to our implementation of the MAP, for RML,
we consider the Levenberg–Marquardt method and the cor-
responding stopping criteria mentioned above. Each of
the corresponding samples u(j) of the prior distribution
is used as the initial guess for the LM method. Improv-
ing the optimization technique required for Eq. (23) can
reduce the overall computational cost of RML. Alterna-
tive methods to reduce the computational cost of RML
by means of a truncated SVD approach can be found
in [34].

4.3 Ensemble Kalman filter (EnKF)

Ensemble methods based on the Kalman filter have been
extensively applied for Bayesian data assimilation in
petroleum reservoir applications. For a complete review of
most of the EnKF implementations, we refer the reader to
the monograph of [1]. In this section, we briefly discuss
some relevant aspects of EnKF in the context of history
matching of petroleum reservoirs. These ensemble Kalman
filter-type algorithms make Gaussian approximations in a
sequential manner as we described below. As a result, for the
general case, those techniques do not provide correct sam-
pling of the posterior (see Eq. (16)). Nevertheless, due to its
ease of implementation and low computational cost, ensem-
ble Kalman filter-type methods are arguably the only fea-
sible techniques for online data assimilation in subsurface
applications.

4.3.1 Introduction and main algorithm

In order to introduce the algorithms, we first consider a
sequential formulation of the reservoir model. In particu-
lar, let us define vn as the state variable at time tn and S as
the state space. For example, for the single-phase model in

Section 2, vn = p(x, tn). We define the solution operator
�n : S × X → S:

vn = �n(vn−1, u) (24)

which, for a given parameter u, maps the state variable from
time t = tn−1 to t = tn. In practice, �n is simply the numer-
ical solver that arises from the time discretization of the
reservoir model under consideration. In addition, we assume
that data are given at each of these points in time and are
correlated between times only through the state itself, i.e.,

yn = Mn(vn) + ηn, (25)

where ηn ∼ N(0, 
n) and Mn : S → R
Nw is the measure-

ment functional acting on the state variable at time t = tn.
For the models in Section 2, Mn is defined by Eqs. (3) and
(12) and Nw is the number of total wells. Define

z =
⎛

⎝
u

v

w

⎞

⎠ , �n(z) =
⎛

⎝
u

�n(v, u)

Mn(�n(v, u))

⎞

⎠ . (26)

Since the permeability in the forward reservoir model does
not change in time, it follows that Eqs. (24) and (25) can be
written as

zn = �n(zn−1), (27)

yn = Hzn + ηn (28)

where H = (0, 0, I ). We now consider the following
standard perturbed observation version of EnKF [1]:

Algorithm 4 [EnKF] Construct an initial ensemble

z
(j,a)

0 =
⎛

⎝
u

(j)

0
v0

M0(v0)

⎞

⎠ (29)

where {u(j)

0 }Ne
j=1 ∼ μ0 and v0 is the initial condition for the

state variable. For n = 1, . . . , NM:

1. Prediction step: Propagate the ensemble of particles
forward under Eq. (27) giving

z
(j,f )
n = �n

(
z
(j,a)

n−1

)
j ∈ {1, . . . , Ne}. (30)

From this ensemble, we define a sample mean and
covariance as follows:

z
f
n = 1

Ne

∑Ne
j=1 z

(j,f )
n (31)

C
f
n = 1

(Ne−1)

∑Ne
j=1 z

(j,f )
n

(
z
(j,f )
n

)T − z
f
n

(
z
f
n

)T

.(32)

2. Analysis step: Compute the updated ensembles

z
(j,a)
n = z

(j,f )
n + Kn(y

(j)
n − Hz

(j,f )
n ) (33)

where

Kn = C
f
n HT

(
HC

f
n HT + 
n

)−1
(34)

and

y
(j)
n = yn + η

(j)
n , η

(j)
n ∼ N(0, 
n).

j ∈ {1, . . . , Ne} (35)
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Here, the η
(j)
n is chosen i.i.d. From Eq. (30) and the block

structure of the matrices involved, expression (33) can be
written as

z
(j,a)
n = �n

(
z
(j,a)

n−1

)
+ C

zw,f
n (C

ww,f
n + 
)−1

(
y

(j)
n − Mn

(
�n

(
v

(j,a)

n−1 , u
(j,a)

n−1

)))
(36)

where

C
zw,f
n =

⎛

⎜⎝
C

uw,f
n

C
vw,f
n

C
ww,f
n

⎞

⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1
Ne

∑Ne
j=1 u

(j,f )
n

(
w

(j,f )
n

)T − u
f
n

(
w

f
n

)T

1
Ne

∑Ne
j=1 v

(j,f )
n

(
w

(j,f )
n

)T − v
f
n

(
w

f
n

)T

1
Ne

∑Ne
j=1 w

(j,f )
n

(
w

(j,f )
n

)T − w
f
n

(
w

f
n

)T

⎞

⎟⎟⎟⎟⎠
.

We recall that w ∈ R
Nw where Nw is the number of wells.

Typically, Nw is much smaller than the dimensions of the
(discretized) parameter space X. Consequently, the compu-
tational cost of constructing Czw

n and Cww
n and inverting the

(Cww
n + 
n)−1 in Eq. (36) is negligible compared to the

cost of computing �n(z
(j,a)

n−1 ), which from Eq. (26) we can

see is mainly determined by the cost of �n(v
(a,j)

n−1 , u
(j,a)

n−1 )

(i.e., running the reservoir simulator in the time interval
[tn−1, tn]. Therefore, the computational cost of the EnKF
is approximately Ne times the cost of a forward model
simulation.

4.3.2 Derivation by Gaussian approximation of the filtering
distribution

We now indicate how a Gaussian approximation gives rise
to the EnKF algorithm presented above. We start by defining
the conditional measures for n1, n2 ≤ NM:

μn1|n2(zn1) = P
(
zn1 |{yk}n2

k=1

)
. (37)

In the filtering approach, the prior distribution (μn|n−1) of
zn and the data up to the previous time t = tn−1 are com-
bined with the data provided at the current time t = tn to
define the posterior distribution (μn|n−1) of zn (given data
up to the current time t = tn). The latter can be obtained
from Bayes’ rule:

μn|n(z)
μn|n−1(z)

∝ exp {−�n(z)} (38)

where

�n(z) = 1

2
||yn − Hz||2
. (39)

The EnKF approach then assumes that μn|n−1(z) is the

Gaussian measure N(z
f
n , C

f
n ) where z

f
n and C

f
n are the

ensemble mean and covariance defined in Eqs. (31) and

(32), respectively. Given this Gaussian assumption, it is
not difficult to see that Eq. (38) implies that μn|n(z) =
N(za

n, Ca
n) with

z(a)
n = z

(f )
n + Kn(yn − Hz

(f )
n ), (40)

Ca
n = (I − Kn)C

f
n , (41)

and Kn defined in Eq. (34). In [22, Appendix A], it has been
shown that the ensemble updates defined in Eq. (33) are
samples from μn|n(z) = N(za

n, Ca
n). In fact, [22, Appendix

B] shows that the analysis step (see Eq. (33)) can be derived
from an application of RML under the Gaussian approxima-
tion μn|n−1(z) ≈ N(z

f
n , C

f
n ). Indeed, it is straight forward

to show that Eq. (33) can be obtained from

z
(j,a)
n = argminz

(
||
− 1

2
n

(
y

(j)
n − Hz

)
||2

+||(Cf
n )−

1
2

(
z − z

(j,f )
n

)
||2

)
(42)

which is a sequential version of Eq. (23), for the augmented

state z with a prior N
(
z
f
n , C

f
n

)
and the linear measurement

operator H.
For our evaluation and comparison of techniques, we

consider the outcome of the EnKF algorithm after all data
have been assimilated in the time interval [0, T ]. In other
words, we are interested in μn|NM(zn) = P(zn|{yk}NM

k=1)

which corresponds to the probability of zn after all data have
been assimilated (recall NM is the total number of assimila-
tion times). Then, the posterior μn|NM(zn) computed via the
EnKF algorithm provides an approximation to μ defined in
Eq. (16).

4.3.3 Further modifications

While the standard version of EnKF has been successfully
applied for some history matching problems, several short-
comings due to sampling error have been identified. In
particular, when a small ensemble is used, spurious cor-
relations often cause gross overestimation of the physical
variables that EnKF aims at recovering (e.g., permeabil-
ity). In addition to the issues caused by small sample size,
standard EnKF with a small ensemble is suboptimal when
a large amount of data are assimilated. This can be eas-
ily observed from the two following properties of EnKF.
First, the ensemble updates Eq. (33), when a linear com-
bination of the initial ensemble members is projected into
the parameter space [22, 24]. Second, the ensemble updates
minimize Eq. (42), which involves fitting data at each assim-
ilation time. Therefore, when the prior ensemble is small,
the EnKF updates cannot fit large amount of data within
the subspace generated by the prior ensemble. These short-
comings of using standard EnKF have given rise to several
EnKF variants designed to reduce the spurious correlations



Comput Geosci (2013) 17:851–885 861

described above as well as increasing the number of degrees
of freedom. In this work, we focus on the application of
distance-based covariance localization which has recently
been investigated in [6, 15]. In particular, the EnKF with
localization that we implement for the forward models of
Section 2 is given by the same EnKF algorithm described
before, except that Eq. (34) is replaced by

Kn = ρ ◦ C
f
n HT

(
H(ρ ◦ C

f
n )HT + 
n

)−1
. (43)

Here, ρ, to be defined below, is a positive-definite matrix
which induces localization and the matrix ρ ◦ Cn is the
Schur product between ρ and Cn with entries defined by
[ρ ◦ Cn]ij = [ρ]ij [Cn]ij . Due to the spurious correla-

tions described above, matrix C
f
n may become positive

semi-definite and the parameter update then lies in smaller
subspace than the one generated by the prior ensemble.
With properly chosen ρ, the matrix ρ ◦ C

f
n has full rank,

and replacing C
f
n with ρ ◦ C

f
n increases the dimension of

the linear subspace where the parameter update is sought.
This, in turn, results in a better estimation. In terms of the
block structure previously described, covariance localiza-
tion becomes

z
(j,a)
n = z

(j,f )
n + ρzw ◦ Czw

n

(
ρww ◦ Cww

n + 
n

)−1

(
y

(j)
n − Mn

(
�n

(
v

(j,a)

n−1 , u
(j,a)

n−1

)))
. (44)

As in the covariance localization approach of [6], we con-
sider only localization in the u-component (e.g., for the log
permeability updates). In other words,

u
(j,a)
n = u

(j,f )
n + ρuw ◦ Cuw

n

(
ρww ◦ Cww

n + 
n

)−1

(
y

(j)
n − Mn

(
�n

(
v

(j,a)

n−1 , u
(j,a)

n−1

)))
. (45)

Following the implementation of [15], each column of the
localization matrix ρuw is defined as the fifth-order compact
function of Gaspari–Cohn [19] localized at the correspond-
ing measurement location. Each row of the matrix ρww in
Eq. (45) is obtained from ρuw by projecting it on the corre-
sponding measurement location. By construction, ρuw and
ρww are positive definite.

Recent publications [6, 15] have investigated optimal
choices for the critical length of the correlation function
used for distanced-based localization. The focus of those
investigations is to improve the ability of the EnKF with
localization to recover the truth within the confidence inter-
val provided by the ensemble. In contrast to [6, 15], our
goal is to assess the performance of EnKF with localization
for reproducing the uncertainty quantified by the poste-
rior. However, for the present work, we consider a fixed
critical length obtained from a simple trial–error proce-
dure, which enables us to observe a significant effect of
covariance localization in characterizing the posterior distri-
bution. While the optimal choice of covariance localization

is beyond the scope of the present work, we recognize
the importance for assessing optimal choices of covariance
localization for providing better Gaussian approximation of
the posterior distribution at a reasonable computational cost.
Moreover, additional forms of covariance regularization
(e.g., covariance inflation) should also be assessed.

4.3.4 Ensemble square root filter (EnSRF)

Sampling error that arises from perturbing the observations
in standard EnKF has been often associated with a poor per-
formance of history matching data. In order to avoid the
aforementioned sampling error, an EnSRF is often used.
Here, we consider the following EnSRF [14]:

Algorithm 5 [EnSRF] Construct an initial ensemble as in
Eq. (29). For n = 1, . . . , NM:

1. Prediction step: Propagate the ensemble of particles
forward under Eq. (27) yielding Eq. (30). Construct
the sample mean and covariance from Eqs. (31)–(32).
Additionally, define the deviations from the mean

�z
(j,f )
n = z

(j,f )
n − z

f
n . (46)

2. Analysis step: Compute the updated mean z
(a)
n via

formula (40) with Kn given by Eq. (34). Consider

the matrices �Z
f
n :=

[
�z

(1,f )
n �z

(2,f )
n · · · �z

(Ne,f )
n

]
,

with j th column �z
(j,f )
n , and �Za

n defined analo-
gously. Compute the matrix with updated deviations:

�Za
n = (I − K̃nH)�Z

(f )
n � (47)

with

K̃n = C
f
n HT

[
HnC

f
n HT

n + 
n

]−T/2

×
[(

HnC
f
n HT

n + 
n

)1/2 + 

1/2
n

]−1

. (48)

The updated ensemble is then obtained from the
expression

z
(j,a)
n = z(a)

n + �z
(j,a)
n .

j ∈ {1, . . . , Ne} (49)

In expression (47), � is a Ne × Ne mean-preserving
orthogonal random matrix constructed as suggested in
[30]. The mean-preserving property of � ensures that∑Ne

j=1 �z
(j,a)
n = 0 and so the analyzed ensemble (see Eq.

(49)) has mean z
(a)
n as required. In contrast to the EnKF,

where Eq. (41) is only exactly satisfied in the limit of arbi-
trarily large ensemble size, the sample covariance computed
from the EnSRF (finite) ensemble updates exactly satis-
fies Eq. (41), therefore providing a better approximation
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of μn|n(z); it is then hoped that this will lead to a better
approximation to the posterior distribution (see Eq. (16))
itself. A block structure similar to the one introduced before
applies to the EnSRF. From this structure, it is easy to appre-
ciate that only small matrices are involved in the square root
computations. Therefore, the computational cost of EnSRF
is essentially the same as EnKF, i.e., Ne times the number
of forward model evaluations.

Even though the implementation of the EnSRF avoids
the sampling error due to perturbing the observations,
limitations related to the small ensemble size still apply.
Distance-based localization can then be applied to the
EnSRF as suggested in [14]. Concretely, we replace Kn in
Eq. (34) with Eq. (43) and K̃n in Eq. (46) with

K̃n =
(
ρ ◦ C

f
n

)
HT

[
Hn

(
ρ ◦ C

f
n

)
HT

n + 
n

]−T/2

×
[(

Hn

(
ρ ◦ C

f
n

)
HT

n + 
n

)1/2 + 

1/2
n

]−1

. (50)

Similar to the localization procedure for the EnKF, EnSRF
is localized only in the u-component (log permeability ) of
Eq. (40) with the localization matrix ρ described above.

5 Numerical results

In this section, we present the results of three numeri-
cal experiments for assessing the Gaussian approximations
defined in Section 4. These experiments are described on the
three subsections which follow, each of which is organized
as follows: (i) details of the forward model and the gener-
ation of synthetic data are provided, (ii) numerical results
from the gold standard MCMC implementation described in
Section 3 are discussed, (iii) the numerical results of Gaus-
sian approximations are presented and the results in (iii) are
compared against the results from (ii) in terms of their abil-
ity to reproduce mean and variance; and (iv) we assess the

performance of the Gaussian approximation at quantifying
the uncertainty in reservoir model forecast.

5.1 Single-phase flow

For the first experiment, we consider the single-phase reser-
voir model of Section 2 on a square domain D=[0, L]×[0, L]
with the production wells located at the points labeled by
P1, . . . , P9 in Fig. 1 (middle). The spatial and temporal dis-
cretization of Eq. (1) is conducted with cell-centered finite
differences [29] and the backward Euler method, respec-
tively. Relevant information of this model is displayed in
the first column of Table 1. For each well term in the right-
hand side of Eq. (1), we prescribe a production rate constant
of 85 m3/day during the total simulation time of 50 days.
We recall that the measured variable in this model is the
pointwise evaluation of the pressure at the production wells
defined by Eq. (2). The reservoir domain and the time inter-
val [0, T ] are discretized on a 60×60 grid and 20 time steps,
respectively.

We consider a Gaussian prior distribution of log perme-
ability:

μ0(u) = N(u, C) (51)

where the covariance is defined by C = κA−α with the
operator A = −� defined on

D(A) =
{
v ∈ H 2(D)|∇v · n = 0 on ∂D,

∫

D

v = 0

}
, (52)

i.e., A is the negative Laplacian with no-flow boundary
conditions and restricted to the domain of functions that
have square-integrable second derivatives and average to
zero. Covariance operators from a class including the one
defined above have been used in the analysis of a range
of Bayesian inverse problems (see [33] for an overview).
The tunable parameters in Eq. (51) are defined as follows:
u(x, y) = log(5 × 10−13 m2) for all (x, y) ∈ D, κ = 2.0,
and α = 1.3. In Fig. 2, we show some realizations of the
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Fig. 1 Single-phase model. Left: True log permeability [log m2]. Middle: Well configuration. Right: Gelman–Rubin diagnostic
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Table 1 Reservoir model description

Variable Single-phase reservoir Water–oil reservoir Water–oil reservoir

(small number of wells) (large number of wells)

L [m] 103 2 × 103 5 × 103

c [Pa−1] 10−8 0.0 0.0

νo [Pa s] 10−2 10−2 10−2

T [years] 0.13 5 3.5

p0 [Pa]a 3.5 × 107 2.5 × 107 2.5 × 107

s0
a Not applicable 0.2 0.2

νw [Pa s] Not applicable 5 × 10−4 5 × 10−4

siw Not applicable 0.2 0.2

sro Not applicable 0.2 0.2

P l
bh [Pa]b Not applicable 2.7 × 107 2.0 × 107

ql
w [m3/day]b Not applicable 2.6 × 103 1.8 × 102

aw Not applicable 0.3 0.3

ao Not applicable 0.9 0.9

aConstant in �

bConstant in [0, T ]

prior distribution (see Eq. (51)). It is important to mention
that other choices of C can also be used. In particular, C
can be defined in terms of a standard correlation function
(e.g., spherical, exponential, etc.). Our choice, however,
has the advantage that C is diagonalized by cosine func-
tions, so that the fast Fourier transform can be used to
efficiently sample from the Gaussian N(0, C) as required
to implement Algorithm 1, the pCN-MCMC. Sampling
from the prior on the spectral domain is straightforward
and computationally inexpensive. This is a desirable prop-
erty since at each iteration of MCMC (see Eq. (18)), a
draw from the prior is generated for computing the pro-
posal. The spatial correlation function of draws from the
prior is, of course, simply the Green’s function of C−1

since the Green’s function of an operator is defined as the
kernel of the spatial integral operator representation of its
inverse.

For the generation of synthetic pressure data, we first
define the “true log permeability” denoted by u† and dis-
played in Fig. 1 (left). This true log permeability is gen-
erated from the prior distribution defined above. Synthetic
data are generated by first solving Eq. (1) for p with u = u†.
Then, G(u†) is calculated from Eq. (4). Finally, we add a
random error, i.e., y = G(u†)+η with η ∼ N(0, σ 2I ) with
σ = 4 × 105 Pa. The measurement times used in Eq. (2) are
t1 = 5, tn = 10n days, n = {2, . . . , 5}.

Synthetic data are used in the pCN-MCMC Algorithm 1
with β = 0.015. Our MCMC results consist of 110 chains

Fig. 2 Single-phase model.
Samples from the prior
distribution [log m2]
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starting from independent draws from the prior distribution.
After a burn-in period of 1 × 104, each chain generates
5 × 105 samples. Therefore, a total of 5.5 × 107 samples are
generated with our MCMC implementations. For assessing
the convergence of our chains, we consider the diagnostics
suggested by Gelman and Rubin in [5]. In Fig. 1 (right),
we display the maximum of the potential scale reduction
factor (PSRF) and the multivariate potential scale reduction
factor (MPSRF) for the smallest J = 16 frequencies that
account for 76 % of the total prior energy defined by e(J ) =∑J

j=1 λk/
∑∞

j=1 λk where λk is the eigenvalues of the prior
covariance C (ordered as λ1 ≥ λ2 ≥ . . . ). Convergence of
the chains is achieved when the maximum PSRF and the
MPSRF are close to 1. From Fig. 1 (right), the max(PSRF)
and the MPSRF have dropped below 1.1 after 5 × 105 iter-
ations where we establish the convergence of our MCMC
chains. From the numerical evidence of convergence of our
chains, we conclude that the MCMC provides samples from
the posterior. The associated mean and variance fields (com-
puted from our 5.5 × 107 MCMC samples), denoted by
upos(x) and σpos(x), are used as the gold standard for the
assessment of the Gaussian approximations that we discuss
below. In Fig. 3, we display some samples from the indepen-
dent chains (i.e., uncorrelated) obtained after convergence
was achieved. Although there are substantial differences
among those realizations, some common spatial features
can be observed. For example, note the high permeability
region around wells P1 and P6. Furthermore, the variability
is considerably lower than under the prior, as exhibited in
Fig. 2; this indicates that the data used are quite informative.

The numerical implementation of the following Gaussian
approximations are conducted: LMAP, RML, EnKF, EnKF
with localization, EnSRF, and EnSRF with localization. We
consider two sets of experiments corresponding to ensem-
ble sizes Ne = 50 and Ne = 150. For the localization

matrix, we chose a critical length equal to the length of the
edge of the reservoir domain L. This choice of the critical
length is sufficient to appreciate the effect of localization
for characterizing the posterior distribution. However, we
remark that optimal choices of this critical length should
be further studied in future work. It is also important to
note that the mean and variance for (the sequential methods)
EnKF, EnKF with localization, EnSRF, and EnSRF with
localization are computed after all the measurements have
been assimilated. In other words, exactly the same data
used to sample the posterior via MCMC are also used for
all the Gaussian approximations under consideration. From
each of these approximations, we compute the mean and
variance which we compare against the mean upos and vari-
ance σpos of the posterior distribution generated with the
MCMC method. However, since the results from each of the
Gaussian approximations depend on the particular choice
of initial (prior) ensemble [35, 36], we conduct a set of 50
experiments corresponding to 50 different initial ensembles.
The mean and variance for one of those experiments in the
case Ne = 50 are shown in Figs. 4 and 5, respectively. In
Table 2, we display the relative errors of the deviation of
the mean with respect to u (the prior mean) and the relative
error of the variance defined by

εu = ||(û − u) − (upos − u)||L2(D)

||(upos − u)||L2(D)

and

εσ = ||σ̂ − σpos||L2(D)

||σpos||L2(D)

, (53)

averaged over 50 experiments associated with different
initial ensembles. In the previous expression, û and σ̂

are the mean and variance of the Gaussian approxima-
tion under consideration. We reiterate that û − u, σ̂ , etc.

Fig. 3 Single-phase model.
Samples from the posterior
distribution (characterized with
MCMC) [log m2]
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Fig. 4 Single-phase model.
Mean of the posterior
distribution (characterized with
MCMC) and Gaussian
approximations [log m2]

Fig. 5 Single-phase model.
Variance of the posterior
distribution (characterized with
MCMC) and Gaussian
approximations [(log m2)2]



866 Comput Geosci (2013) 17:851–885

Table 2 Evaluation of Gaussian approximations on the single-phase model

Method Relative error Relative error Computational cost

in the mean εu in the variance εσ (forward model runs)

MCMC 0.000 0.000 5.5 × 107

MAP 0.030 0.094 2.5 × 101

LMAP (Ne = 50) 0.145 0.239 2.5 × 101

RML (Ne = 50) 0.148 0.240 1.25 × 103

EnKF (Ne = 50) 0.839 0.448 5.0 × 101

EnKF (localization, Ne = 50) 0.621 0.333 5.0 × 101

EnSRF (Ne = 50) 0.665 0.306 5.0 × 101

EnSRF (localization, Ne = 50) 0.518 0.231 5.0 × 101

LMAP (Ne = 150) 0.088 0.158 2.5 × 101

RML (Ne = 150) 0.087 0.159 3.75 × 103

EnKF (Ne = 150) 0.472 0.154 1.5 × 102

EnKF (localization, Ne = 150) 0.453 0.123 1.5 × 102

EnSRF (Ne = 150) 0.370 0.121 1.5 × 102

EnSRF (localization, Ne = 150) 0.403 0.130 1.5 × 102

EnKF (Ne = 1,250) 0.192 0.075 1.25 × 103

EnKF (Ne = 2,500) 0.120 0.089 2.5 × 103

EnKF (Ne = 5,000) 0.102 0.094 5.0 × 103

are (discrete approximations of) fields in the space of
square-integrable functions L2(D) and the distance is there-
fore measured with a standard L2(D) (Euclidean) norm.
The error of both mean and variance is therefore quan-
tified by relative root-mean-square error over the domain
D. The right column of Table 2 indicates the compu-
tational cost for computing each of the techniques (per
experiment) in terms of forward model runs. As stated in
Section 4, while the computational cost of the Kalman
filter-type methods is stable with respect to the details of
the implementation, the cost of RML and LMAP depends
crucially on the optimization technique used for solving
Eqs. (20) and (23). Our implementation of the Levenberg–
Marquardt technique costs around five forward model runs
per iteration. Furthermore, in average, each of optimiza-
tion problems (see Eq. (23)) converged into five iterations
and so the average computational cost of Eq. (23) is 25
forward model runs. This computational cost can be poten-
tially reduced by applying a more efficient optimization
technique.

Since we are assessing the Gaussian approximations
only in terms of mean and variance, we can addition-
ally measure the error (with respect to the posterior) of
the exact mean and variance of N(uMAP, CMAP) given
directly in Eqs. (20) and (21), respectively. The cor-
responding relative errors are provided in the “MAP”
row in Table 2. From construction, it is clear that the
mean and covariance of LMAP are uMAP and CMAP for

sufficiently large Ne. The results for this experiment
indicate that N(uMAP, CMAP) provides a good approxima-
tion to the posterior in terms of mean and variance.
Therefore, more samples from LMAP can be generated at a
negligible cost so that its mean and variance approach uMAP

and CMAP, respectively.
Table 2 also indicates that, among the all the Gaus-

sian approximation with Ne = 50 and Ne = 150, RML
provides the best approximation in terms of the mean. In
those cases, the worst performance in terms of mean and
variance was obtained with EnKF. However, for the case
of small ensemble size Ne = 50, considerable improve-
ment was obtained by applying the localization approach
described in the preceding section (see Eq. (45)). Addition-
ally, note that the application of localization in the EnSRF
(see expression (46)) further reduces the relative errors in
the mean and variance. In fact, among all the techniques
with Ne = 50, the best approximation in terms of vari-
ance is given by the EnSRF with localization. It is clear
that sampling error causes severe limitations in the perfor-
mance of EnKF and EnSRF for small ensemble sizes. It is
worth mentioning that issues of the EnKF and EnSRF due
to sampling error have been often reported [6, 27] and used
as motivation for covariance regularization. However, this
existing work is focused on (1) history matching production
data, (2) recovering the true permeability, and (3) recovering
data generated with the true permeability within the esti-
mated confidence interval. In contrast, here we assess the
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performance in terms of the posterior distribution of the
Bayesian framework.

For the case of larger ensemble size Ne = 150, sampling
error is reduced and all Kalman-based techniques provide
similar results in terms of mean and variance. Although the
ability to use large ensembles is constrained by the compu-
tational resources at hand, it is instructive to consider cases
with large ensembles. Therefore, we additionally consider
three implementations of EnKF for larger ensembles: Ne =
1,250, Ne = 2,500, and Ne = 5,000. These results appear
at the end of Table 2. Note that Ne = 1,250 corresponds
to the case where the computational cost of EnKF coin-
cides with the cost of our implementation of RML for Ne =
50. While the performance of EnKF improved significantly
for Ne = 1,250, RML still provides a better approxima-
tion in terms of the mean. In addition, we observe that
although increasing the size of the ensemble may reduce the
sampling error, this is not associated to the convergence to
the posterior. Actually, it is clear from this experiment that
the variance of EnKF for large Ne seems to diverge from the
variance of the posterior.

With the previous results, we are able to appreciate and
evaluate the differences in the approximations provided
by each of the Gaussian approximations of the posterior.
This posterior is the conditional probability of the unknown
(permeability) given production data collected during the
50 days of simulation. For practical applications, it is of
particular interest to assess how different Gaussian approx-
imations fare at reproducing the probability distribution of
various predicted quantities with respect to the posterior, in
other words to assess how the approximate algorithms fare
in the quantification of uncertainty in these predictions. The
assessment of performance in terms of the distribution of
predictions under the posterior is conducted by creating a
new flow scenario as we now describe. Assume that after
the initial 50 days of simulation (that we used to generate
synthetic data), we now drill new wells labeled by P10, P11,
P12, and P13 in Fig. 1. These new wells are operated at a
constant production rate of 60 m3/day during 100 days.
During this 100 days of forecast, the old wells P1, . . . , P9

are first shut down for a pressure build-up time window
of 50 days, followed by a constant production rate of
60 m3/day during the remaining 50 days. In Fig. 6, we
show, as a function of time, the pressure at the well loca-
tions P1, P6, and P11. The first 50 days corresponds to the
data assimilation phase, and the subsequent 100 days is the
prediction. In the first row of Fig. 6, we display the pressure
obtained from the reservoir simulation with 100 permeabil-
ities obtained from the prior distribution (see Eq. (51)). The
second row corresponds to the pressure obtained from the
simulation with the samples from the posterior obtained
from independent MCMC chains. Subsequent rows of
Fig. 6 correspond to the pressure obtained from

simulating the permeabilities obtained from some of the
Gaussian approximations under consideration (obtained
from one of the 50 experiments with Ne = 50). The vertical
line divides the data assimilation phase from the forecast.
Additionally, since we are interested in the performance
with respect to the posterior, for each curve presented in
Fig. 6, we include a red curve of the pressure at the corre-
sponding well location obtained by simulating the mean of
the posterior distribution (i.e., top-left field of Fig. 4).

We expect the uncertainty in the model predictions to be
considerably smaller at the old wells (where measurements
were assimilated) than the one at the wells drilled after
the assimilation. Indeed, note from Fig. 6 that in P11, the
posterior under the model predictions is visually closer to
the prior than the ones at P1 and P6 (where data were assim-
ilated). This, in turn, indicates the uninformative effect of
the data at the location of P11 where measurements were not
collected. For the new wells where uncertainty is larger, we
can appreciate the performance on the Gaussian approxima-
tions. Note from Fig. 6 that the EnKF (without localization)
at well P11 underestimates the uncertainty in the model
predictions.

Substantial differences in the performance of the Gaus-
sian approximation with respect to the posterior is observed
in Table 2. Interestingly, these differences are not always
reflected in terms of the model predictions under the poste-
rior. In Fig. 7, we display the distribution of the pressure at
wells P1, P6, P11, and P13 at the final time of t = 150 days.
The horizontal line corresponds to the value of the pres-
sure at the corresponding location obtained from simulating
the model with the posterior mean. In Figs. 8 and 9, we
display the probability density estimate for the pressure at
t = 150 days measured at wells P1 and P11. From this fig-
ures, we confirm that model predictions (pressure) under
the posterior is a peaked distribution with small uncertainty
for those wells where measurements were collected (e.g.,
P1). In contrast, for the new wells (e.g., P11), the pressure
under the posterior is visually close to the prior, indicating
the uninformative effect of the data for the location of the
new wells.

5.2 Oil–water reservoir: small number of wells

In this subsection, we consider the oil–water reservoir
model described in Section 2. The reservoir is a square
D = [0, L] × [0, L] with a five-spot well configuration
consisting of production wells P1, . . . , P4 and one injec-
tion well I1 as displayed in Fig. 10 (middle, well P5 will
play a role in later discussions). For the spatial discretization
of Eqs. (5) and (6), we consider cell-centered finite differ-
ences and the upwind method. The resulting approximations
are then solved implicitly with the backward Euler method
as presented in [2, Section 6.2]. Relevant information
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Fig. 6 Single-phase model. Pressure from wells P11 (right column), P6 (middle column), and P1 (left column) simulated with permeabilities
sampled from (top to bottom rows) the prior, the posterior, LMAP, RML, EnKF, and EnKF with localization
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Fig. 7 Single-phase model. Distribution of pressure at wells P1, P6, P11 and P13 at the final simulation time of
t = 150 days

concerning this model is displayed in Table 1. The reservoir
domain and the time interval [0, T ] are discretized on a 60×
60 grid and 30 time steps, respectively. We recall that the
production and injection wells are operated under pre-
scribed bottom-hole pressure and flow rate, respectively.
The measured variables for this model are bottom-hole
pressure at the injection wells and total flow rate at the
production wells. The prior distribution of log permeabil-
ity is defined by the Gaussian measure defined in Eq. (51)
with same parameters except κ which for this experiment is
κ = 4.0. With these parameters, similar realizations to those
of Fig. 2 are obtained but with a range of variability with
respect to the prior mean u increased by a factor of

√
2.

Similarly to the previous example, for the generation
of synthetic data, we define the true log permeability u†

displayed in Fig. 10 (left). This true log permeability is
generated from the prior distribution described in the pre-
ceding paragraph. Note that u† is the same as the one used
for the previous experiment (see Fig. 1, left) but with the
magnitude of u† − u multiplied by

√
2. The generation of

synthetic data is now conducted by computing (p, s) from
Eqs. (5) and (6) with u = u†. Equation (13) is then used
to compute G(u†), and zero mean Gaussian random error
η is added to generate data y = G(u†) + η. The measure-
ment times used in Eqs. (10) and (11) are tn = 0.67n years,
n = {1, . . . , 7}. According to the structure of Eqs. (12) and
(13), η has the following form:

η = (η1, . . . , ηNM),

ηn =
(
η1,I

n , ·, ηNI,I
n , η1,P

n , . . . , ηNP,P
n

)
. (54)

We generate the components of η as follows:

η1,I
n ∼ N

(
0,

(
3.2 × 104 Pa

)2
)

η1,P
n ∼ N

(
0,

(
0.25 m3/day

)2
)

η2,P
m , η3,P

n , η4,P
n ∼ N

(
0,

(
0.02 m3/day

)2
)

. (55)
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Fig. 8 Single-phase model. Probability density estimate of pressure at well P1 at the final simulation time of t = 150 days, computed with
different Gaussian approximations
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Fig. 9 Single-phase model. Probability density estimate of pressure at well P11 at the final simulation time of t = 150 days, computed with
different Gaussian approximations
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Fig. 10 Two-phase model (small number of wells). Left: True log permeability [log m2]. Middle: Well configuration. Right: Gelman–Rubin
diagnostic

for all n ∈ {1, . . . , 7}. In the previous definitions, we con-
sider larger measurement error at the production well P1

since larger total flow rates are obtained. This is caused by
the larger permeability region around P1 and so the early
water breakthrough at this well.

The pCN-MCMC Algorithm 1 with β = 0.015 is applied
to this problem with the synthetic data previously described.
Starting from independent draws from the prior distribution,
110 chains are generated. A burn-in period of 1.5 ×104 was
observed after which the chains were run 5 × 105 iterations.
By using the same Gelman–Rubin diagnostic indicated in
the previous example, we determine convergence of our
chains. This numerical evidence is presented in Fig. 10
where, after 5×105 iterations, both the maximum PSRF and
MPSRF for the highest energy models converge to 1. Some

uncorrelated samples (from independent chains) are shown
in Fig. 11.

The 5.5 × 107 samples of the posterior generated with
MCMC define our gold standard. These are then used to
compare the performance of Gaussian approximations in
terms of mean and variance. Analogous to the previous
example, we use two sets of experiments with ensemble
sizes of Ne = 50 and Ne = 150 . Then we com-
pute the mean and variance with LMAP, RML, EnKF,
EnKF with localization, EnSRF and EnSRF with local-
ization, for 50 experiments corresponding to 50 differ-
ent choices of the initial ensemble. The averaged relative
errors of the mean and variance (see expression (53))
with respect to the posterior distribution are provided in
Table 3. For one of the 50 experiments with Ne = 50,

Fig. 11 Two-phase model
(small number of wells).
Samples from the posterior
distribution (characterized with
MCMC) [log m2]
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Table 3 Evaluation of Gaussian approximations for the two-phase model (the case with small number of wells)

Method Relative error Relative error Computational cost

in the mean εu in the variance εσ (forward model runs)

MCMC 0.000 0.000 5.5 × 107

MAP 0.277 0.143 6.0 × 101

LMAP (Ne = 50) 0.316 0.271 6.0 × 101

RML (Ne = 50) 0.235 0.415 3.0 × 103

EnKF (Ne = 50) 0.834 0.391 5.0 × 101

EnKF (localization, Ne = 50) 0.563 0.252 5.0 × 101

EnSRF (Ne = 50) 0.701 0.354 5.0 × 101

EnSRF (localization, Ne = 50) 0.508 0.234 5.0 × 101

LMAP (Ne = 150) 0.290 0.191 6.0 × 101

RML (Ne = 150) 0.197 0.351 9.0 × 103

EnKF (Ne = 150) 0.571 0.151 1.5 × 102

EnKF (localization, Ne = 150) 0.447 0.179 1.5 × 102

EnSRF (Ne = 150) 0.478 0.150 1.5 × 102

EnSRF (localization, Ne = 150) 0.397 0.210 1.5 × 102

EnKF (Ne = 1,000) 0.353 0.209 1.0 × 103

EnKF (Ne = 3,000) 0.301 0.222 3.0 × 103

EnKF (Ne = 8,000) 0.337 0.216 8.0 × 103

Fig. 12 Two-phase model
(small number of wells). Mean
of the posterior distribution
(characterized with MCMC) and
Gaussian approximations
[log m2]
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Fig. 13 Two-phase model
(small number of wells).
Variance of the posterior
distribution (characterized with
MCMC) and Gaussian
approximations [(log m2)2]

in Figs. 12 and 13 we present the mean and variance,
respectively.

In contrast to the previous experiment, the error in the
approximation given by N(uMAP, CMAP) is relatively large.
The relative errors of mean and variance are 27 and 14 %,
respectively. Similar to the previous experiment, RML
provided the best approximation of the posterior in terms
of the mean. However, the variance of the posterior was
significantly overestimated by RML. The performance of
the standard EnKF for Nen = 50 was very poor. From
Fig. 12, we observe large values of the estimated field,
which are typically found in standard EnKF applications
with small ensemble sizes. Nevertheless, for the same size,
covariance localization has a positive effect by reducing
the error in the mean and variance with respect to the
posterior. Similar to the previous experiment, EnKF and
EnKF with localization were outperformed by the cor-
responding EnSRF implementations. As in the previous
experiment, EnSRF with localization provided, among the

techniques with Ne = 50, the best approximation in terms of
variance.

Unlike the preceding experiment, here we observe that
increasing the size of the ensemble does not result in a
decrease of the error with respect to the mean. This can
be observed at the end part of Table 3 where we report
the results of EnKF implementations for Nen = 1,000,
Nen = 3,000, and Nen = 8,000. Both in terms of mean and
variance, EnKF for large ensembles does not exhibit conver-
gence to the posterior. Note that EnKF with Nen = 3,000
corresponds to the same computational cost of RML. Yet
the latter provides a better approximation in terms of the
mean. Among all the techniques, LMAP provides reason-
able approximations of both the mean and variance of the
posterior.

In order to assess the performance of the approximate
posterior samples at reproducing the predicting distribution,
we consider an additional simulation period of 5 years of
forecast. For this additional 5 years, a new well labeled as
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Fig. 14 Two-phase model (small number of wells). Total flow rates
from P1 (left column), P5 (middle column), and bottom-hole pressure
from I1 (right column) simulated with permeabilities sampled from

(top to bottom rows) the prior, the posterior, LMAP, RML, EnKF, and
EnKF with localization
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Fig. 15 Two-phase model (small number of wells). Distribution of cumulative oil production at wells P1, . . . , P5 at the final simulation time of
t = 10 years

P5 in Fig. 10 (middle) is drilled and operated under constant
fixed bottom-hole pressure of P 5

bh = 2.7×107 Pa. In Fig. 14,
we present the total flow rates (from P1 and P5) and bottom-
hole pressure (from I1) simulated with permeabilities from
the prior (first row), the posterior (second row), and some of

the Gaussian approximations under analysis (third to sixth
row). The vertical line divides the assimilation from the
prediction. The red curve is computed from the posterior
mean at the corresponding location. We note that the poor
performance of EnKF is reflected in the model predictions
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Fig. 16 Two-phase model (small number of wells). Probability density estimate of cumulative oil production at well P1 at the final simulation
time of t = 10 years
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Fig. 17 Two-phase model (small number of wells). Probability density estimate of cumulative oil production at well P5 at the final simulation
time of t = 10 years
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Fig. 18 Two-phase model (large number of wells). Left: True log permeability [log m2]. Middle: Well configuration. Right: Gelman-Rubin
diagnostic

whose ensemble does not capture the prediction based on
the mean of the posterior. These issues are alleviated by
localization as what we have observed in Fig. 14 (last row).

In Fig. 15, we display the distribution of the final time
cumulative oil production simulated from the posterior and
the Gaussian approximation. Note that even though LMAP
provides a reasonable approximation in terms of both mean
and variance, the approximation provides a deficient char-
acterization of the predicting distribution. In general, all
the Gaussian approximations exhibit poor performance at
reproducing the predicting distribution. In Figs. 16 and
17, we display the probability density estimates of cumu-
lative oil production at the final time of simulation at
wells P1 and P5. Similar to the experiment in the previous

section, for the model predictions under the posterior, a
peaked distribution with small variance is obtained at the
wells where measurements were collected. In contrast to
the previous experiment, however, the Gaussian approxima-
tions performed poorly at characterizing the distribution of
the model under the posterior.

5.3 Oil–water reservoir: large number of wells

In this subsection, we consider again the oil–water reser-
voir model described in Section 2. The well configuration
for this case is displayed in Fig. 22 (middle), and rele-
vant information can be found in Table 1. The aim of this
experiment was to evaluate the performance of Gaussian

Fig. 19 Two-phase model
(small number of wells).
Samples from the posterior
distribution (characterized with
MCMC) [log m2]
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Table 4 Evaluation of Gaussian approximations for the two-phase model (the case with large number of wells)

Method Relative error Relative error Computational cost

in the mean εu in the variance εσ (forward model runs)

MCMC 0.000 0.000 5.5 × 107

MAP 0.131 0.165 3.5 × 102

LMAP (Ne = 50) 0.185 0.286 3.5 × 102

RML (Ne = 50) 0.175 0.299 1.85 × 104

EnKF (Ne = 50) 0.910 0.796 5.0 × 101

EnKF (localization, Ne = 50) 0.543 0.621 5.0 × 101

EnSRF (Ne = 50) 0.818 0.643 5.0 × 101

EnSRF (localization, Ne = 50) 0.517 0.471 5.0 × 101

LMAP (Ne = 250) 0.143 0.195 3.5 × 102

RML (Ne = 250) 0.130 0.215 9.25 × 104

EnKF (Ne = 250) 0.432 0.171 2.5 × 102

EnKF (localization, Ne = 250) 0.296 0.119 2.5 × 101

EnSRF (Ne = 250) 0.347 0.115 2.5 × 102

EnSRF (localization, Ne = 250) 0.255 0.102 2.5 × 102

EnKF (Ne = 1,000) 0.243 0.101 1.0 × 103

EnKF (Ne = 3,000) 0.161 0.137 3.0 × 103

EnKF (Ne = 6,000) 0.127 0.148 6.0 × 103

EnKF (large Ne = 18,500) 0.111 0.154 1.85 × 104

approximations when measurements from many wells are
available. The prior distribution of log permeability is
defined by the Gaussian measure defined in Eq. (51) with
the same tunable parameters used in the experiment in
Section 5.1.

Generation of synthetic data was conducted with the
same procedure described before. The true log permeability
u† is displayed in Fig. 18 (left). The random error η added
to G(u†) has the form of Eq. (54) with NI = 9 and NP = 16
and

η
j,I
n ∼ N

(
0, 2.7 × 104 Pa

)
, j ∈ {1, . . . , NI},

η
j,P
n ∼ N

(
0, 0.06 m3/day

)
, j ∈ {1, . . . , NP} (56)

for all n ∈ {1, . . . , 7}. Measurement times are tn =
0.467n years, n = {1, . . . , 7}. pCN-MCMC Algorithm 1
is applied to generate 110 chains starting from independent
draws from the prior distribution. After a burn-in period of
1.5 × 104, the chains are run for 5 × 105 iterations. The
Gelman-Rubin diagnostic is conducted as described in the
preceding sections. Figure 18 (right) shows the PSRF and
MPSRF as defined previously. Uncorrelated samples (from
independent chains) are shown in Fig. 19.

Similar to the previous section, 5.5 × 107 samples of the
posterior generated with our converged chains provide the
gold standard against which the performance of Gaussian
approximations in terms of mean and variance is compared.

The first part of Table 4 provides the results when an ensem-
ble of size Ne = 50 is used. These results, similar to the
ones from the previous sections, are averaged over 50 exper-
iments with different initial ensembles. In Figs. 20 and 21,
we display the mean and variance, respectively.

Among all the ensemble methods with Ne = 50, RML
provides the best approximation in terms of the mean.
Note that the approximation provided by N(uMAP, CMAP)

provides the best approximation in terms of combined
mean and variance. Additionally, even with localization,
both EnKF and EnSRF provide a very poor approxima-
tion in terms of mean and variance. It is worth mentioning
that RML and LMAP provided a better approximation (in
terms of mean and variance) than the ensemble Kalman
filter-type methods for Ne = 50. In Fig. 22, we show
the total flow rates (from P1 and P5) and bottom-hole
pressure (from I1) simulated with permeabilities from the
prior (first row), the posterior (second row), and some
of the Gaussian approximations under analysis (third to
sixth row). The vertical line divides the assimilation from
the prediction. In this case, prediction is performed by
simulating an additional 3.5 years under the same well
configuration. The red curve is computed from the pos-
terior mean at the corresponding location. In Fig. 23, we
display the distribution of the final time cumulative oil
production simulated from the posterior and the Gaus-
sian approximation. The poor performance of EnKF and
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Fig. 20 Two-phase model
(large number of wells). Mean
of the posterior distribution
(characterized with MCMC) and
Gaussian approximations
[log m2]

EnSRF is reflected in the poor performance at charac-
terizing the predicting distribution. In Figs. 24 and 25,
we display the probability density estimate of the cumula-
tive oil production, at the final simulation time, at wells P1

and P12. Measurements for all wells have been collected.
Therefore, substantial differences between the posterior and
the prior are reflected in the model predictions under these
distributions.

As we mentioned earlier, limitations of the EnKF and
EnSRF arise when a large number of measurements are
assimilated. In the present work, we are interested in the
associated detrimental effect on the approximation of the
posterior distribution. In order to observe that effect, we
now consider application of our Gaussian approximation on
a larger ensemble Ne = 250. These results are presented in
the second part of Table 4. For Nen = 250, Table 4 indi-
cates that RML provides again the best approximation in
terms of the mean. The performance of EnKF, EnSRF, and
their localizations is considerably improved with respect to
the ones for Ne = 50. As in previous examples, EnSRF

with localization provides the best approximation in terms
of variance. Also, similarly to the previous experiments,
increasing the size of the standard EnKF does not improve
the approximation in terms of variance. On the other hand,
in this case, the variance increases with the size of ensem-
ble. This can be observed from the last part of Table 4
where EnKF was implemented for Nen = 1,000, Nen =
3,000, Nen = 6,000, and Nen = 18,500. Note that the
computational cost of EnKF for Nen = 18,500 coincides
with the cost of our implementation of RML with Nen = 50.

6 Conclusions

The controlled experiments from the preceding sections
enable us to numerically assess the performance of widely
used ad hoc Gaussian approximations with respect to their
ability to correctly reproduce the mean and variance under
the true Bayesian posterior distribution. The true poste-
rior is obtained by use of the expensive, but accurate,
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Fig. 21 Two-phase model
(large number of wells).
Variance of the posterior
distribution (characterized with
MCMC) and Gaussian
approximations [(log m2)2]

gold standard pCN-MCMC method. The forward operators
associated to the reservoir models under consideration are
nonlinear. Therefore, even though a Gaussian prior is con-
sidered, the posterior distribution associated to each exper-
iment is non-Gaussian. Indeed, for all our experiments, a
significant discrepancy between the MAP estimate and the
mean of the posterior distribution was obtained, giving clear
numerical evidence that the posteriors for the Bayesian data
assimilation problems under consideration are not Gaussian.
Even in the single-phase reservoir whose associated for-
ward operator is “less” nonlinear (the PDE (Eq. (1) is
linear with respect to p), we find that the relative error in
the MAP estimator with respect to the mean of the pos-
terior was 3 %. For the two-phase reservoirs, this relative
error was 27 and 13 % in the case of small and large
number of wells, respectively. Thus, the problems that we
study demonstrate a range of deviations from Gaussianity
in the posterior. This makes them a suitable range of test
problems for the ad hoc algorithms, all of which can be
systematically derived in the linear Gaussian scenario, but

whose accuracy in the non-Gaussian case is, in general,
unclear.

We clearly observe substantial differences in the approx-
imation properties of the posterior distribution with respect
to the choice of method, reservoir model, and well configu-
ration. For all the experiments conducted here, we conclude
that, among all the Gaussian approximations under analy-
sis, LMAP is arguably the best technique at reproducing
the posterior distribution in terms of combined variance and
mean. It is interesting to speculate why this might be so
and what it tells us about the posterior. The LMAP algo-
rithm is the only Gaussian approximation which samples
from N(uMAP, CMAP) where uMAP is the MAP estimate
and CMAP is the associated covariance matrix defined by
Eqs. (20) and (21), respectively. This suggests that, out of
all the Gaussian approximations considered, the posterior
distribution in all our examples can be best approximated,
in terms of mean and variance, by N(uMAP, CMAP). We
emphasize that this does not imply that the posterior dis-
tribution is near Gaussian since the errors of this best
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Fig. 22 Two-phase model (large number of wells). Total flow rates
from P1 (left column), P5 (middle column), and bottom-hole pressure
from I1 (right column) simulated with permeabilities sampled from

(top to bottom rows) the prior, the posterior, LMAP, RML, EnKF, and
EnKF with localization
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Fig. 23 Two-phase model (large number of wells). Distribution of cumulative oil production at wells P7, P10, P12, P14, and P16 at the final
simulation time of t = 10 years

approximation are still large, i.e., the best approximation
is still not a good approximation in terms of mean and
variance.

We recall that all the techniques described in Section 4
produce samples of the posterior distribution in the linear
Gaussian case. In other words, they sample from the exact

posterior distribution N(uMAP, CMAP). In our experiments,
however, we observe clear differences in the approximations
obtained with each of the techniques under consideration.
For example, note from all our experiments that the RML
provided the best approximation of the posterior in terms
of the mean. In addition, in the case of the single-phase
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Fig. 24 Two-phase model (small number of wells). Distribution of cumulative oil production at well P1 at the final simulation time of t = 10 years

model, RML provides a reasonable approximation of the
posterior variance (like the one obtained with LMAP).
It is worth mentioning that favorable RML results for

single-phase reservoirs are also reported in [23]. In con-
trast, for the two-phase model, we find examples where
the error of the RML variance is the largest compared
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Fig. 25 Two-phase model (small number of wells). Distribution of cumulative oil production at well P12 at the final simulation time of
t = 10 years
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to other Gaussian approximations. These observations
are likely to be related to the higher nonlinearity in
the two-phase forward operator (see Eq. (13)) that
results from the nonlinear PDE system (see Eqs. (5)
and (6)). Due to the aforementioned higher nonlinear-
ity, large changes in the absolute values of the log
permeability field may not necessarily correspond to
large changes in the production data. In fact, produc-
tion data may typically have smaller sensitivity to the
permeability values far from (or in between) the well loca-
tions. On the other hand, we recall from the RML algorithm
that each ensemble member u

(j)

RML (see Eq. (23)) produces

a model output G(u
(j)

RML) that is close to the perturbed data

y(j) while keeping u
(j)
RML close to the corresponding sample

from the prior u(j). Due to the aforementioned small sen-
sitivity of production data to the log permeability in some
regions of the domain, it may be possible that the penalty
term ||u(j)

RML − u(j)|| in Eq. (23) may not provide suffi-

cient constraint to avoid possible large values of |u(j)

RML|
in the aforementioned regions for which the (perturbed)
production data are minimally affected by the large value of
permeability. Although in our controlled experiment LMAP
outperformed the RML in terms of combined mean and
variance, it has been reported that RML has the advan-
tage of approximating multimodal distribution for which
N(uMAP, CMAP), and therefore LMAP, is suboptimal. The
assessment of techniques where multimodal posterior distri-
bution arises deserves further investigation; however, it has
not formed part of our studies which have been confined
to problems with unimodal posteriors. Moreover, we recall
that the computational cost of RML can be amortized if
each ensemble member is computed in parallel. Therefore,
the cost of the parallel implementation of RML equals the
cost of LMAP. Note also that, for very large problems, the
factorization of CMAP used in Eq. (22) may be computation-
ally prohibitive while the covariance of RML is computed
directly from the ensemble at a negligible cost.

For each of our experiments, very poor approximations
of the posterior distribution are obtained with EnKF with a
small ensemble size. However, covariance localization leads
to a significant reduction in the relative error of the mean
and variance with respect to the posterior. Note for exam-
ple that, in the two-phase model with a small number of
wells, localization reduces the relative error in the mean
and the variance by a factor of 2. Additionally, EnSRF pro-
vides better approximations of the posterior (in terms of
mean and variance) than the ones obtained with EnKF. Fur-
thermore, in all our experiments, the ensemble generated
with EnSRF with localization provides the best approxima-
tion of the posterior in terms of variance. The advantage
of using covariance localization as well as using EnSRF
instead of EnKF has been widely investigated in terms of

reconstructing the truth and/or recovering the truth within
the confidence intervals provided by the ensemble approx-
imations. Our results offer now numerical evidence of
the advantage of using covariance localization and square
root filters for reconstructing the posterior distribution.
The choice of covariance localization that provides optimal
approximation of the posterior distribution must be further
investigated.

Reducing the detrimental effect of sampling error due to
the small ensemble size and the possible large amount data
is essential in practical applications where a small number
of ensemble members is required to avoid high compu-
tational cost in data assimilation. Nonetheless, our results
indicate that even for a large ensemble size where pre-
sumably sampling error issues are attenuated, we find that
EnKF does not converge to the posterior distribution. In
fact, as the ensemble sizes increased, the converged Gaus-
sian approximation provided by EnKF resulted in errors of
at least 10 % both in mean and variance. In addition, the
approximations provided with those large-size ensembles
do not coincide with the approximations provided by either
LMAP or RML.

In summary, our study sheds light on various aspects of
the ad hoc Gaussian approximate filters used in practice
to approximate high-dimensional posterior distributions on
geological reservoir properties. The study has been made
possible by use of a fully resolved gold standard MCMC
computation which allows for a clear and well-founded
evaluation of the ad hoc algorithms. In our opinion, more
evaluations of this kind will be beneficial in guiding the
future evolution of the ad hoc Gaussian approximate filters
that are so widely used in practice. Further evaluation of
recently proposed methods [7, 12, 22, 31, 32] may be use-
ful to understand and improve the uncertainty quantification
properties of these techniques under more general condi-
tions. For example, it is relevant to consider the case where
non-Gaussian priors characterize the geology for which
ensemble methods such as the Gaussian mixture filters [12,
31, 32] have been proposed.
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