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Strong convergence rates of probabilistic
integrators for ordinary differential equations

H. C. Lie∗ A. M. Stuart† T. J. Sullivan‡
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Abstract: Probabilistic integration of a continuous dynamical system is a way of systemati-
cally introducing model error, at scales no larger than errors inroduced by standard numerical
discretisation, in order to enable thorough exploration of possible responses of the system to
inputs. It is thus a potentially useful approach in a number of applications such as forward
uncertainty quantification, inverse problems, and data assimilation. We extend the conver-
gence analysis of probabilistic integrators for deterministic ordinary differential equations, as
proposed by Conrad et al. (Stat. Comput., 2016), to establish mean-square convergence in the
uniform norm on discrete- or continuous-time solutions under relaxed regularity assumptions
on the driving vector fields and their induced flows. Specifically, we show that randomised
high-order integrators for globally Lipschitz flows and randomised Euler integrators for dis-
sipative vector fields with polynomially-bounded local Lipschitz constants all have the same
mean-square convergence rate as their deterministic counterparts, provided that the variance
of the integration noise is not of higher order than the corresponding deterministic integrator.

Keywords: probabilistic numerical methods, ordinary differential equations, convergence
rates, dissipative systems, Burkholder–Davis–Gundy inequalities, uncertainty quantification
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1 Introduction

The recent work of Conrad et al. (2016) proposed the use of probabilistic solvers for deterministic ordi-
nary differential equations / initial value problems of the form

d

dt
u(t) = f(u(t)), for t ≥ 0, (1.1)

u(0) = u0,

for a trajectory [0, T ] ∋ t 7→ u(t) ∈ R
n. The role of the stochasticity in such solvers is to systematically

introduce and probe model error in order to enable thorough exploration of possible responses of the
system to inputs. It is thus a potentially useful methodology in a number of applied scenarios such as for-
ward uncertainty quantification (Smith, 2014; Sullivan, 2015), inverse problems (Kaipio and Somersalo,
2005; Stuart, 2010), and data assimilation (Law et al., 2015; Reich and Cotter, 2015). Just as with clas-
sical numerical analysis of deterministic integration schemes, it is natural to analyse the accuracy and
convergence properties of probabilistic solvers for the system (1.1), in order to properly quantify the
effect upon subsequent uncertainties.

∗Institute of Mathematics, Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany, hlie@math.fu-berlin.de
†Department of Computing and Mathematical Sciences, California Institute of Technology, CA 91125, United States of

America, astuart@caltech.edu
‡Institute of Mathematics, Free University of Berlin, and Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany,

sullivan@zib.de

1

http://arxiv.org/abs/1703.03680v1
mailto:hlie@math.fu-berlin.de
mailto:astuart@caltech.edu
mailto:sullivan@zib.de


1.1 Contribution and outline of the paper

One of the key results in the earlier work (Conrad et al., 2016, Theorem 2.2) was a convergence result for
the error between the random values Uk of a discrete-time numerical solution at discrete times tk := kτ ,
τ > 0, and the corresponding values uk := u(kτ) of the exact solution:

max
0≤kτ≤T

E
[
‖uk − Uk‖2

]
≤ Cτ2p∧2q , (1.2)

along with an analogous result in continuous time with the same exponent but possibly different constant.
Here, loosely speaking, τq is the global order of accuracy of a deterministic method underlying Uk and the
variance of a Gaussian model ξk for the truncation error over a time horizon [tk, tk+1] of length τ scales
like τ1+2p. This result can be interpreted as saying that the choice p = q introduces the maximum amount
of solution uncertainty consistent with preserving the order of accuracy of the underlying deterministic
integrator.
The purpose of this paper is to extend the convergence analysis of such probabilistic numerical inte-

grators in the following ways:
1. we extend the setting of the initial value problem (1.1) from R

n to a Hilbert space H;
2. we relax the assumption that all deviations are Gaussian, and work directly with conditions on

polynomial moments;
3. we bring the time supremum in (1.2) inside the expectation to yield

E

[
max

0≤kτ≤T
‖uk − Uk‖2

]
≤ Cτ2p∧2q , (1.3)

so that the mode of convergence is now the stronger case of convergence in mean square with
respect to the uniform norm on path space; and

4. the assumption that the vector field f is globally Lipschitz is weakened in two ways: for integrators
of arbitrary order, we consider Lipschitz flows; for Euler integrators, which have q = 1, we consider
dissipative vector fields with polynomially-growing locally Lipschitz constant.

The outline of the paper, therefore, is as follows:
• Section 2 establishes some notation and recalls some basic auxiliary results.
• Section 3 discusses the convergence properties of randomised one-step solvers of (1.1) of arbitrary
order when the true flow Φt is globally Lipschitz. We prove convergence with the time supremum
outside the expectation in Theorem 3.4 and with the time supremum inside the expectation in
Theorem 3.5.

• Section 4 considers the randomised implicit Euler method for vector fields that are locally Lipschitz
with polynomially bounded local Lipschitz coefficient and that satisfy a generalised dissipativity
property. The convergence result, namely mean-square-uniform convergence of order one, is split
across Theorems 4.19 (discrete time) and 4.23 (continuous time).

• Section 5 adapts the arguments of Section 4 to the explicit Euler method. Well-known instabilities
in the explicit Euler method, similar to those that affect the Euler–Maruyamamethod for stochastic
differential equations, mean that the convergence result (Theorem 5.8) is limited to the case of
almost surely bounded noise, which would be unnatural in an SDE context but is not unduly
restrictive when the noise is to be interpreted as a model for discretisation error.

It is particularly noteworthy that the results in Sections 3–5 all show the same convergence rate (1.3) as
the rate (1.2) shown by Conrad et al. (2016), so the bounds differ only in the constant prefactor C (as
well as the weaker regularity assumptions and stronger mode of convergence).
We remark that the proof techniques used in Sections 4 and 5 are very similar to those used to

analyse numerical methods for SDEs (Higham et al., 2002), but since the variance of the noise is smaller
than in the Brownian case, we obtain a qualitatively different behaviour in the limit as τ → 0, i.e. the
deterministic process u.
One interpretation of the convergence results presented here is that a natural scaling, as a function of

the time step τ > 0, of the model for the imperfectly known truncation error is p ≥ q, in the sense that
such a scaling will not disturb the familiar convergence rate of the deterministic method. However, there
is a great deal of freedom in the choice of covariance structure — and indeed non-Gaussian structure —
for ξ. It should also be acknowledged that systematic errors should be incorporated as a non-zero mean
for ξ. We reserve for future work the discussion of runtime calibration of the noise structure.
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1.2 Review of probabilistic numerical methods

Continuous relationships such as ODEs and PDEs are commonplace as forward models or Bayesian
likelihoods in modern statistical inverse problems (Kaipio and Somersalo, 2005; Stuart, 2010), and in
particular in data assimilation algorithms with critical everyday applications such as numerical weather
prediction (Law et al., 2015; Reich and Cotter, 2015). The use of a discretised solver for such forward
models is usually unavoidable in practice, but introduces an additional source of uncertainty both into
forward propagation of uncertainty and into subsequent inferences. While the solution to the ODE/PDE
may not be random in the frequentist sense, it is nonetheless only imperfectly known though the discre-
tised numerical solution, and probability in the subjective or Bayesian sense is one appropriate means
of representing this epistemic uncertainty, particularly if the ODE/PDE solution forms part of the for-
ward model in a Bayesian inverse problem. Failure to properly account for discretisation errors and
uncertainties can lead to biased, inconsistent, and over-confident inferences (Conrad et al., 2016).
Probabilistic numerical solutions to deterministic problems such as the solution of ODEs have a long

history. Modern foundations for this field were laid by the work of Diaconis (1988), O’Hagan (1992)
and Skilling (1992) under the term of “Bayesian numerical analysis”. More recently, such ideas have
received renewed attention under the term “probabilistic numerics” (Hennig et al., 2015; Cockayne et al.,
2017): the discussion of probabilistic numerical methods for ordinary differential equations given by
Schober et al. (2014), Conrad et al. (2016) and Chkrebtii et al. (2016) is particularly relevant here.
Also of interest in the field of probabilistic numerics, but not directly relevant to the present work,

are probabilistic numerical methods for linear algebra (Hennig, 2015), optimisation (Gonzalez et al.,
2016), partial differential equations (Cockayne et al., 2016; Owhadi, 2015, 2017; Raissi and Karniadakis,
2017), and quadrature (Briol et al., 2015). In particular, Cockayne et al. (2017) sets out some axiomatic
foundations for probabilistic numerical methods broadly conceived, and in particular what it means for
a probabilistic numerical method to be “Bayesian”.
Randomised solution of ODEs has also been studied in the context of stochastic or rough differ-

ential equations. In the case of non-autonomous ODEs driven by Carathéodory vector fields — that
are locally integrable in time and continuous in space — it has been observed that randomised Eu-
ler and Runge–Kutta methods outperform their deterministic counterparts: see e.g. Stengle (1990),
Jentzen and Neuenkirch (2009), Kruse and Wu (2017) and the references therein.
We note that analysing the convergence properties of numerical solutions to (1.1) in terms of the

approximation error for the solution, as in (1.2) and (1.3), is very much in the spirit of classical numerical
analysis. For uncertainty quantification of the discretised solution of (1.1) as a stand-alone forward
problem, this viewpoint is often sufficient. However, for applications in inference, including sequential
inference problems arising in data assimilation and filtering, an alternative approach is to directly examine
the impact of discretisation upon the quality of later inferences, e.g. as quantified by Bayes factors
(Capistrán et al., 2016). There is also the well-established literature of information-based complexity
and average-case analysis, with its greater emphasis on algorithmic aspects such as computational cost
and optimal accuracy for given classes of information (Novak, 1988; Ritter, 2000; Traub and Woźniakowsi,
1980; Traub et al., 1983).

2 Setup and notation

2.1 Notation

The following notation will be used throughout this article:
• H will denote a Hilbert space with inner product 〈 · , · 〉 and induced norm ‖ · ‖.
• (Ω,F ,P) will be a probability space sufficiently rich to serve as a common domain of definition for
all the random variables and stochastic processes under consideration, and E denotes expectation
(integration over Ω) with respect to P.

• d
= denotes equality in distribution of random variables.

• C, C′, etc. will denote non-negative constants whose value may change from one occurence to the
next, but will always be independent of any time step τ > 0 used to numerically solve the ODE of
interest.

• For real numbers a and b, a ∧ b denotes their minimum and a ∨ b their maximum.
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• Lip(Φ) denotes the minimal Lipschitz constant of a function Φ, defined on a subset of H and taking
values in H, i.e. Lip(Φ) is the least L ≥ 0 such that

‖Φ(x)− Φ(y)‖ ≤ L‖x− y‖ for all x, y ∈ domain(Φ).

• N denotes the natural numbers beginning with 1, and N0 := N ∪ {0}.

2.2 Problem statement

This paper considers the numerical solution of the initial value problem (1.1), where the solution u(t) at
time t and the initial condition u0 lie in H, and the vector field f : H → H is given. It will be assumed
throughout that the vector field f is sufficiently smooth that (1.1) has a unique solution up to a fixed,
deterministic terminal time T > 0.
Let Φt : H → H denote the flow map associated to the initial value problem (1.1), i.e. for each choice

of initial condition u0 ∈ H, Φt(u0) := u(t), the value of the solution to (1.1) at a later time t ≥ 0.
Obviously, Φ0 is the identity map, and later on it will be necessary to quantify the deviations of Φt from
the identity for small positive t.
For simplicity, we consider the numerial solution of the problem (1.1) on the fixed, deterministic time

interval [0, T ] using a constant time step τ > 0 such that K := T/τ ∈ N, and define

tk := kτ for k ∈ [K] := {0, 1, . . . ,K} (2.1)

We shall sometimes abuse notation and write [K] = {0, 1, . . . ,K − 1} or [K] = {1, 2, . . . ,K}. Let
uk := u(tk) ≡ Φτ (uk−1) denote the value of the exact solution to (1.1) at time tk. We also consider a
one-step numerical integration method, and hence a numerical flow map Ψτ : H → H, which gives an
approximation Uk to uk in terms of an approximation at the previous time step by Uk := Ψτ (Uk−1). This
setting encompasses many of the time-stepping methods in common use, such as Runge–Kutta methods
of all orders. For simplicity we shall assume that U0 = u0, so that there is no initial error. We will also
consider numerical approximations that provide continuous-time output U(t), t ∈ [0, T ].
Classical numerical analysis seeks to quantify the accuracy of the integration method either in terms

of its local order of accuracy, i.e.
sup
x∈H

‖Φτ (x) −Ψτ (x)‖,

or its global order of accuracy over the solution interval [0, T ], i.e.

sup
0≤k≤T/τ

‖uk − Uk‖.

When the solution of (1.1) is merely a component of a larger statistical inference procedure, e.g. when
it is desired to infer governing parameters or initial conditions of (1.1) from noisy partial observations
of the solution at positive time, it is essential to understand the evolution of the error uk − Uk in order
to arrive at accurate inferences. In this paper, we consider random approximations Uk, the quality of
which will be assessed using the mean-square error, uniformly in time, i.e.

E

[
max

0≤kτ≤T
‖uk − Uk‖2

]
.

Indeed, we also construct probabilistic integrators that give continuous (random) output U(t) for t ∈
[0, T ] and analyse the corresponding mean-square uniform error in continuous time:

E

[
sup

0≤t≤T
‖u(t)− U(t)‖2

]
.

2.3 Some useful inequalities

The analysis of this paper will make repeated use of several useful inequalities, which are collected here
for reference. First, recall Young’s inequality for real numbers a, b ≥ 0, exponents r, s > 0 that are
Hölder conjugate (i.e. for which 1

r + 1
s = 1), and δ > 0:

ab ≤ δ

r
ar +

1

sδs/r
bs. (2.2)
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The special case r = s = 2 is sometimes known as the “Peter–Paul inequality”. Combining that inequality
with the Cauchy–Schwarz inequality in the Hilbert space H yields that, for all x, y ∈ H and δ > 0,

‖x− y‖2 ≤ (1 + δ)‖x‖2 + (1 + δ−1)‖y‖2, (2.3)

which will often be used either with δ = 1 or δ = τ .
The following discrete-time version of Grönwall’s inequality will also be useful:

Theorem 2.1 (Discrete Grönwall inequality: Holte, 2009). Let (xk)k∈N0 , (αk)k∈N0 , and (βk)k∈N0 be
non-negative sequences. If

xk ≤ αk +
∑

0≤j<k

βjxj for all k ∈ N0, (2.4)

then, for all k ∈ N0,

xk ≤ αk +
∑

0≤j<k

αjβj

∏

j<i<k

(1 + βi) (2.5)

≤ αk +
∑

0≤j<k

αjβj exp



∑

j<i<k

βi


 . (2.6)

A fortiori, if αk ≤ A for all k ∈ N0, then

xk ≤ A
∏

0≤j<k

(1 + βj) ≤ A exp



∑

0≤j<k

βj


 . (2.7)

3 High-order integration of Lipschitz flows

The purpose of this section is to establish a mean-square convergence result for randomised time-stepping
integrators for (1.1) when the true flow is globally Lipschitz, the underlying deterministic method is a
generic one with a known order of convergence, and the noise model has sufficiently small variance — these
assumptions are formalised in Assumptions 3.1, 3.2, and 3.3. Under these weakened assumptions, we
obtain that the randomised integrator has the same order of convergence as that obtained by Conrad et al.
(2016), but in the stronger topology of uniform convergence of paths over the compact time horizon [0, T ],
both in discrete and continuous time.
As just indicated, the first assumption is one about the exact flow map Φt associated to the problem

(1.1). Indeed, in this section, the vector field f is irrelevant and we may work purely in terms of the
semigroup (Φt)t≥0.

Assumption 3.1 (re: exact flow). Suppose that f is smooth enough that, for |t| small enough, its flow
map Φt is globally Lipschitz with Lipschitz constant Lip(Φt) ≤ 1 + C|t|.

As is well known, Assumption 3.1 holds if the generating vector field f is itself globally Lipschitz.
However, Assumption 3.1 holds if, for instance, f merely satisfies the one-sided Lipschitz inequality

〈f(x)− f(y), x− y〉 ≤ µ‖x− y‖2 (3.1)

for all x, y ∈ H, for some constant µ ∈ R; in this case, a quick calculation of d
dt‖u(t) − v(t)‖2 for

trajectories u and v starting at initial conditions u0, v0 ∈ H and an application of Grönwall’s inequality
for differential inequalities show that ‖u(t)− v(t)‖ ≤ exp(µ|t|)‖u0 − v0‖, so that Lip(Φt) ≤ 1+ 2|µ||t| for
small enough |t|.

Assumption 3.2 (re: numerical flow). Suppose that the numerical flow-map Ψτ has uniform local
truncation error of order q + 1: for some constant C ≥ 0,

sup
u∈H

‖Ψτ(u)− Φτ (u)‖ ≤ Cτq+1.
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We now define a new randomised integrator

Uk+1 := Ψτ (Uk) + ξk(τ),

where each ξk(t), t ∈ [0, τ ], is a continuous-time stochastic process which represents the numerical
truncation error of the integrator Ψτ . Note that this definition not only provides for forward propagation
of the the numerical state Uk, but also continuous output via

U(t) := Ψt−tk(Uk) + ξk(t− tk) for t ∈ [tk, tk+1).

On the other hand, if continuous output is not desired, then one can simply work with the random
variables ξk(τ) and ignore the values of the stochastic process (ξk(t))0<t<τ , and indeed this simplifies the
analysis slightly in the sense that the following Assumption 3.3 is sufficient for discrete time but must
be strengthened to (3.7) for continuous time.

Assumption 3.3 (re: random perturbation). The ξk are mutually independent and identically dis-
tributed mean-zero stochastic processes, and there are constants C ≥ 0 and p ≥ 1 such that, for all k
and all t ∈ [0, τ ],

E
[
‖ξk(t)⊗ ξk(t)‖

]
≤ Ct2p+1,

and, in particular, E
[
‖ξk(t)‖2

]
≤ Ct2p+1.

As noted in the introduction, the focus of this paper is on the convergence rate of the error ek := uk−Uk

and not on, say, the covariance operator of ek, though that information is also important in applications.
In keeping with that focus, Assumption 3.3 and similar assumptions later in the paper are only upper
bounds, and we do not actually work with the covariance operator of ξk. The precise construction of
stochastic models for discretisation and truncation error is an interesting topic in its own right at the
interface of numerical analysis and probability, which this paper will not address.

3.1 Convergence result with time supremum outside expectation

As a warm-up for the main results of this paper, which have the time supremum inside the expectation, we
first prove a weaker convergence result with the time supremum outside the expectation. The following
result is analogous to Theorem 2.2 of Conrad et al. (2016), but does not require the vector field f to be
globally Lipschitz nor ξ to be Gaussian.

Theorem 3.4 (Uniform mean-square convergence). Suppose that Assumptions 3.1, 3.2, and 3.3 hold.
Then there exist constants C ≥ 0 such that

max
0≤k≤K

E
[
‖uk − Uk‖2

]
≤ Cτ2p∧2q , (3.2)

sup
0≤t≤T

E
[
‖u(t)− U(t)‖2

]
≤ Cτ2p∧2q . (3.3)

Proof. Let ek := uk − Uk, so that

ek+1 =
(
Φτ (uk)− Φτ (Uk)

)
−
(
Ψτ (UK)− Φτ (Uk)

)
− ξk(τ). (3.4)

Then

‖ek+1‖2 =
∥∥(Φτ (uk)− Φτ (Uk)

)
−
(
Ψτ (Uk)− Φτ (Uk)

)∥∥2 + ‖ξk(τ)‖2
+ 2〈Φτ (uk)−Ψτ (Uk), ξk(τ)〉 by (3.4)

≤ (1 + τ)‖Φτ (uk)− Φτ (Uk)‖2 + (1 + τ−1)‖Ψτ (Uk)− Φτ (Uk)‖2

+ ‖ξk(τ)‖2 + 2〈Φτ (uk)−Ψτ (Uk), ξk(τ)〉 by (2.3) with δ = τ

≤ (1 + τ)(1 + Cτ)2‖ek‖2 + Cτ1+2q

+ ‖ξk(τ)‖2 + 2〈Φτ (uk)−Ψτ (Uk), ξk(τ)〉 by Assumptions 3.1 and 3.2,
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and so
‖ek+1‖2 − ‖ek‖2 ≤ Cτ‖ek‖2 + Cτ1+2q + ‖ξk(τ)‖2 + 2〈Φτ (uk)−Ψτ (Uk), ξk(τ)〉. (3.5)

Now apply E
[
·
]
to both sides of (3.5). Since ξk(τ) is independent of Uk, the expected value of the inner

product term in (3.5) is zero, and so

E
[
‖ek+1‖2 − ‖ek‖2

]
≤ CτE

[
‖ek‖2

]
+ Cτ1+2q + E

[
‖ξk(τ)‖2

]

≤ CτE
[
‖ek‖2

]
+ Cτ1+(2p∧2q) by Assumption 3.3

= Cτ

k−1∑

j=0

E
[
‖ej+1‖2 − ‖ej‖2

]
+ Cτ1+(2p∧2q) as a telescoping sum.

Hence, by the triangle inequality,

∣∣E
[
‖ek+1‖2 − ‖ek‖2

]∣∣ ≤ Cτ1+(2p∧2q) +
k−1∑

j=0

∣∣E
[
‖ej+1‖2 − ‖ej‖2

]∣∣ .

Hence, the discrete Grönwall inequality (2.7) with A = Cτ1+(2p∧2q) and every βj = Cτ implies that, for
all k < K = T/τ ,

∣∣E
[
‖ek+1‖2 − ‖ek‖2

]∣∣ ≤ Cτ1+(2p∧2q) exp(kCτ) ≤ Cτ1+(2p∧2q),

and this proves (3.2) via a telescoping sum: for k ≤ K = T/τ ,

E
[
‖ek‖2

]
≤ ‖e0‖2 +

k−1∑

j=0

∣∣E
[
‖ej+1‖2 − ‖ej‖2

]∣∣ ≤ T

τ
Cτ1+(2p∧2q) = Cτ2p∧2q .

For the result in continuous time, write e(t) := u(t)− U(t), so that

‖e(t)‖2 = ‖Φt−tk(uk)−Ψt−tk(Uk)‖2

+ 2〈Φt−tk(uk)−Ψt−tk(Uk), ξk(t− tk)〉
+ ‖ξk(t− tk)‖2.

Now take the conditional expectation of both sides, conditioned upon the σ-algebra Fk generated by
the ξk up to time tk: since ξk(t − tk) is independent of Uk, the conditional expected value of the inner
product vanishes, leaving

E
[
‖e(t)‖2

∣∣Fk

]
= E

[
‖Φt−tk(uk)−Ψt−tk(Uk)‖2

∣∣Fk

]
+ E

[
‖ξk(t− tk)‖2

∣∣Fk

]

≤ E
[
‖Φt−tk(uk)−Ψt−tk(Uk)‖2

∣∣Fk

]
+ Cτ2p+1.

Now, inequality (2.3) with δ = 1 yields

E
[
‖Φt−tk(uk)−Ψt−tk(Uk)‖2

∣∣Fk

]

≤ 2E
[
‖Φt−tk(uk)− Φt−tk(Uk)‖2

∣∣Fk

]
+ 2E

[
‖Φt−tk(Uk)−Ψt−tk(Uk)‖2

∣∣Fk

]

≤ 2(1 + Cτ)2E
[
‖ek‖2

∣∣Fk

]
+ Cτ2q+2

by Assumptions 3.1 and 3.2. Taking unconditional expectations of both sides yields, by (3.2),

E
[
‖e(t)‖2

]
≤ Cτ2p∧2q ,

as claimed.
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3.2 Convergence result with time supremum inside expectation

The next result strengthens Theorem 3.4 by bringing the time supremum inside the expectation. In the
discrete-time case, this can be done without additional assumptions; for the continuous-time result, we
strengthen Assumption 3.3 slightly.

Theorem 3.5 (Mean-square uniform convergence). Suppose that Assumptions 3.1, 3.2, and 3.3 hold.
Then there exists C ≥ 0 such that

E

[
max

0≤k≤K
‖uk − Uk‖2

]
≤ Cτ2p∧2q. (3.6)

If, in addition, Assumption 3.3 is strengthened to

E

[
sup

0≤t≤τ
‖ξ0(t)‖2

]
≤ Cτ1+2p, (3.7)

then

E

[
sup

0≤t≤T
‖u(t)− U(t)‖2

]
≤ Cτ2p∧2q . (3.8)

Proof. The strategy is to delay the application of expectation to (3.5) until after a time supremum has
been taken, and to estimate the inner temporal maximum using the Burkholder–Davis–Gundy inequality.
We apply the operation of E

[
maxk≤ℓ ·

]
, where ℓ ≤ K = T/τ , to the telescoping sum

‖ek‖2 − ‖e0‖2 =

k−1∑

j=0

(
‖ej+1‖2 − ‖ej‖2

)

and insert (3.5) for each ‖ej+1‖2 − ‖ej‖2. Then, since e0 := u0 − U0 = 0, it follows that

E

[
max
k≤ℓ

‖ek‖2
]
≤ E

[
max
k≤ℓ

k−1∑

j=0

(
τC‖ej‖2 + Cτ1+2q + ‖ξj(τ)‖2

)
]

+ 2E


max

k≤ℓ

∥∥∥∥∥∥

k−1∑

j=0

〈Φτ (uj)−Ψτ (Uj), ξj(τ)〉

∥∥∥∥∥∥


 .

Hence, by the Burkholder–Davis–Gundy inequality (Ren, 2008), with [Y ]ℓ denoting the quadratic vari-
ation up to time ℓ of a process Yk:

E

[
max
k≤ℓ

‖ek‖2
]
≤ E

[
ℓ−1∑

j=0

(
τC‖ej‖2 + Cτ1+2q + ‖ξj(τ)‖2

)
]

+ CE

[
[〈Φτ (u•)−Ψτ (U•), ξ•(τ)〉]1/2ℓ−1

]

≤ CTτ2p∧2q + τC

ℓ−1∑

j−0

E
[
‖ej‖2

]

+ CE

[√√√√max
j≤ℓ

‖Φτ (uj)−Ψτ (Uj)‖2
ℓ−1∑

j=0

‖ξj(τ)− ξj−1(τ)‖2
]

≤ CTτ2p∧2q + τC

ℓ−1∑

j−0

E
[
‖ej‖2

]

+ CE

[
max
j≤ℓ

‖Φτ (uj)−Ψτ (Uj)‖

√√√√
ℓ−1∑

j=0

‖ξj(τ)− ξj−1(τ)‖2
]
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≤ τC
ℓ−1∑

j−0

E
[
‖ej‖2

]
+ CTτ2p∧2q +

1

2
E

[
max
k≤ℓ

‖ek‖2
]

≤ τC

ℓ−1∑

j−0

E

[
max
k≤j

‖ek‖2
]
+ CTτ2p∧2q +

1

2
E

[
max
k≤ℓ

‖ek‖2
]
.

Hence, by the discrete Grönwall inequality applied to the sequence
(
E
[
maxk≤ℓ ‖ek‖2

])
ℓ≥0

,

E

[
max
k≤ℓ

‖ek‖2
]
≤ 2CTτ2p∧2q exp(2TτC/τ) = Cτ2p∧2q ,

and this establishes (3.6).
In continuous time, for t ∈ [tk, tk+1], the error satisfies

e(t) = u(t)− U(t)

= Φt−tk(uk)−Ψt−tk(Uk)− ξk(t− tk)

= Φt−tk(uk)− Φt−tk(Uk) + Φt−tk(Uk)−Ψt−tk(Uk)− ξk(t− tk),

and so
‖e(t)‖2 ≤ C(1 + C(t− tk))

2‖ek‖2 + C(t− tk)
2+2q + C‖ξk(t− tk)‖2

Therefore

E

[
sup

0≤t≤T
‖e(t)‖2

]
= E

[
max

0≤k≤K
sup

tk≤t≤tk+1

‖e(t)‖2
]

≤ Cτ2p∧2q + CE

[
max

0≤k≤K
sup

tk≤t≤tk+1

‖ξk(t− tk)‖2
]

by the discrete-time result (3.6). Thus, it suffices to show that

E

[
max

0≤k≤K
sup

tk≤t≤tk+1

‖ξk(t− tk)‖2
]
≤ Cτ2p.

To show this, observe that

E

[
max

0≤k≤K
sup

tk≤t≤tk+1

‖ξk(t− tk)‖2
]
≤ E

[
K∑

k=0

sup
tk≤t≤tk+1

‖ξk(t− tk)‖2
]

=

K∑

k=0

E

[
sup

tk≤t≤tk+1

‖ξk(t− tk)‖2
]

=
T

τ
E

[
sup

0≤t≤τ
‖ξ0(t)‖2

]

since the ξk are i.i.d., and the claim now follows from (3.7).

The next result shows that the strengthened Assumption 3.3, (3.7), actually holds for at least one
reasonable model of truncation error, namely one that corresponds to the assumption that the true
solution u has one continuous derivative and a second derivative can be modelled as a Brownian process.

Proposition 3.6. The strengthened Assumption 3.3, (3.7), holds for ξ modelled on the time integral of

Brownian motion, ξ0(t) := τp−1
∫ t

0
B(s) ds, where B denotes a standard H-valued Brownian motion.

Proof. Recall that, for a standard Brownian motion B,
∫ T

0
B(t) dt is Gaussian N (0, 1

3T
3), and, for c > 0,

B(ct)
d
= c1/2B(t). Hence, in the special case ξ0(t) = τp−1

∫ t

0 B(s) ds, ξ0(τ) is Gaussian with mean zero
and variance

E
[
‖ξ0(τ)‖2

]
= τ2p−2 τ

3

3
=

τ2p+1

3
.
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Hence,

ξ0(t) = τp−1

∫ t

0

B(s) ds

= τp−1

∫ 1

0

B(tr)t dr

d
= τp−1t3/2

∫ 1

0

B(r) dr,

and so

E

[
sup

0≤t≤τ
‖ξ0(t)‖2

]
= τ2p−2

E

[
sup

0≤t≤τ
t3

(∫ 1

0

B(r) dr

)2]

= τ2p+1
E

[(∫ 1

0

B(r) dr

)2]

=
τ2p+1

3
.

See also Takács (1993) for further discussion of the distribution and moments of time-integrated
Brownian motion.

4 Implicit Euler integration of locally Lipschitz vector fields

This section considers the numerical integration of much less well behaved flows, but with a specific choice
of integrator, namely the implicit Euler scheme. Thus, the results of this section are simultaneously more
general (in terms of f) and more specific (in terms of the choice of Ψτ ) than those of Section 3. Again,
our aim is to establish mean-square convergence in the uniform norm on paths; in view of the fact that
the Euler method has order one, our aim is to show, under suitable assumptions on f and ξk, that

E

[
sup

0≤k≤T/τ

‖uk − Uk‖2
]
≤ Cτ2,

and similarly in continuous time.
In this section, we shall make the following assumptions concerning the vector field f , namely gener-

alised dissipativity and a polynomial growth condition on local Lipschitz constants:

Assumption 4.1 (Generalised dissipativity). Constants α ≥ 0 and β ∈ R are such that

〈f(v), v〉 ≤ α+ β‖v‖2 for all v ∈ H. (4.1)

Because we allow for positive values of β, Assumption 4.1 is more general than the usual dissipativity
property found in the literature (Humphries and Stuart, 1994, Equation (1.2)). Recent studies in nu-
merical methods for stochastic differential equations consider constraints on the drift and diffusion of
the SDEs that feature the same right-hand side above, e.g. Fang and Giles (2016) or Mao and Szpruch
(2013).
Furthermore, we assume that the vector field satisfies a polynomial growth condition; this condition

may be seen as a kind of local Lipschitz property (Higham et al., 2002, Assumption 4.1).

Assumption 4.2 (Polynomial growth condition). Constants D ≥ 1 and q ∈ N0 are such that

‖f(a)− f(b)‖2 ≤ D(1 + ‖a‖q + ‖b‖q)‖a− b‖2 for all a, b ∈ H. (4.2)

Remark 4.3. Note that the case q = 0 corresponds to the case that the vector field is globally Lipschitz.
Note also that the meaning of q has changed from Section 3: q no longer denotes the global order of
accuracy of the underlying deterministic integrator, which is now simply 1.
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As before, we denote the solution map associated to a numerical method with time step τ by Ψτ : H →
H. Given a sequence (ξk)k of i.i.d. copies of some stochastic process ξ0, consider a sequence (Uk)k of
approximations to the sequence of states of the flow (u(s))s∈[0,T ] evaluated at intervals of length τ , where

Uk+1 := Ψτ (Uk) + ξk(τ), k ∈ [K]. (4.3)

As usual, we employ the following expression for the error ek := uk −Uk between the exact deterministic
solution and the randomised approximate solution at time tk:

ek = Φτ (uk−1)− Φτ (Uk−1) + Φτ (Uk−1)−Ψτ (Uk−1)− ξk−1(τ).

In order to obtain uniform convergence in mean square for a randomised numerical scheme of the form
(4.3), we shall need to provide estimates for Φτ (uk−1)− Φτ (Uk−1), and Φτ (Uk−1)−Ψτ (Uk−1).

4.1 Moment bounds

The results of this section concern the implicit Euler method Ψτ : H → H, which is implicitly defined by

Ψτ (v) = v + τf(Ψτ (v)). (4.4)

In the sequel, we shall assume that f is such that we can always find a sufficiently small τ∗ > 0 such
that (4.4) is uniquely solvable for all 0 < τ < τ ′; all instances of τ shall hereafter satisfy this constraint.
Given a collection (ξk)k of random variables, and given the map Ψτ defined by the implicit Euler scheme
(4.4), we construct a randomised implicit Euler scheme according to (4.3).
We shall use the following lemmata throughout:

Lemma 4.4 (Generalised triangle inequality). Given arbitrary N ∈ N and (sj)
N
j=1 ⊂ R, it holds that

∣∣∣∣∣∣

N∑

j=1

sj

∣∣∣∣∣∣

p

≤ 2(N−1)(p−1)
N∑

j=1

|sj |p.

Proof. We prove the desired statements by induction. For p = 2 and N = 2, the statement follows from
Cauchy’s inequality:

|a+ b|2 = |a|2 + |b|2 + 2ab ≤ |a|2 + |b|2 + 2
1

2
(|a|2 + |b|2) = 2(|a|2 + |b|2).

Let N = 2. Suppose that the statement holds for p ≤ 2. To prove the statement for p+ 1, observe that

|a+ b|p+1 ≤ 2p−1(|a|p + |b|p)|a+ b|
≤ 2p−1(|a|p+1 + |b|p+1 + |a|p|b|+ |b|p|a|) (4.5)

by the inductive hypothesis. Thus, it suffices to prove that

|a|p|b| ≤ p

p+ 1
|a|p+1 +

1

p+ 1
|b|p+1, (4.6)

since by switching a and b in (4.6) we may obtain

|a|p|b|+ |b|p|a| ≤ |a|p+1 + |b|p+1,

which we may substitute into (4.5) to obtain the desired conclusion. Since (4.6) follows from Young’s
inequality, the proof of the statement for arbitrary p ∈ N and N = 2 follows. Now we allow N to vary.
Suppose that the desired statement holds for a fixed, arbitrary p ∈ N, and for some N ≤ 2. To show it
applies for N + 1, observe that

∣∣∣∣∣∣

N+1∑

j=1

sj

∣∣∣∣∣∣

p

=

∣∣∣∣∣∣

N∑

j=1

sj + sN+1

∣∣∣∣∣∣

p

≤ 2p−1




∣∣∣∣∣∣

N∑

j=1

sj

∣∣∣∣∣∣

p

+ |sN+1|p

 .
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By the inductive statement,

2p−1




∣∣∣∣∣∣

N∑

j=1

sj

∣∣∣∣∣∣

p

+ |sN+1|p

 ≤ 2p−1


2(N−1)(p−1)

N∑

j=1

|sj |p + |sN+1|


 ≤ 2N(p−1)

N+1∑

j=1

|sj |p,

which completes the proof.

Recall that (Ω,F ,P) is the probability space on which we have defined all random variables. The lemma
below applies (4.11) and Lemma 4.4 in order to derive useful estimates on the moments of maxi∈[K] ‖Ui‖.
We make the following assumption:

Assumption 4.5 (Sufficiently small integration time step). There exists κ > 1 such that τ satisfies

0 < τ < min

{
1,

κ− 1

2κ|β|

}
=⇒ 1 <

1

1− 2|β|τ ≤ κ.

Lemma 4.6 (Uniform bounds on numerical solution). Suppose that the vector field f satisfies Assump-
tions 4.1 and 4.2, and suppose that τ > 0 satisfies Assumption 4.5. For all n ∈ N, the numerical solution
(Uk)k∈[K] generated by (4.3) and (4.4) satisfies

max
i∈[T/τ ]

‖Ui‖2n ≤ 2n−1Cn



1 + τ−n




T/τ∑

i=1

‖ξi(τ)‖2



n

 (4.7)

uniformly in ω ∈ Ω, where

C1 = 2eκT (1+2|β|) max
{
1, ‖U0‖2 + 2ακT

}
. (4.8)

Proof. In what follows, we shall omit the dependence of all random variables on ω, with the understanding
that ω is arbitrary. Let n ∈ [K], where K = T/τ ∈ N. From (4.3) we have, by Young’s inequality (2.2),

‖Un+1‖2 ≤ (1 + τ) ‖Ψτ (Un)‖2 + (1 + τ−1)‖ξn(τ)‖2. (4.9)

Taking the inner product of (4.4) with Ψτ (Un), we obtain

‖Ψτ (Un)‖2 = 〈Ψτ (Un), Un〉+ τ〈f(Ψτ (Un)),Ψ
τ (Un)〉

≤ 1

2

(
‖Ψτ (Un)‖2 + ‖Un‖2

)
+ τ

(
α+ β ‖Ψτ (Un)‖2

)
by (4.1)

= ‖Ψτ (Un)‖2
(
1

2
+ βτ

)
+

1

2
‖Un‖2 + ατ.

Thus,

‖Ψτ (Un)‖2 ≤ 1

1− 2βτ

(
‖Un‖2 + 2ατ

)
≤ 1

1− 2|β|τ
(
‖Un‖2 + 2ατ

)
, (4.10)

where we used the inequality 1− 2|β|τ ≤ 1 + 2βτ for the second inequality. Then (4.9) and (4.10) yield

‖Un‖2 ≤ 1 + τ

1− 2|β|τ
(
‖Un−1‖2 + 2ατ

)
+

1 + τ

τ
‖ξn−1(τ)‖2. (4.11)

By (4.11), it follows that

‖Un‖2 − ‖Un−1‖2 ≤ τ
1 + 2|β|
1− 2|β|τ ‖Un−1‖2 + (1 + τ)

(
2ατ

1− 2|β|τ + τ−1‖ξn−1(τ)‖2
)
.

Using the telescoping sum

‖Un‖2 = ‖U0‖2 +
n∑

i=1

(
‖Ui‖2 − ‖Ui−1‖2

)
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it follows that

‖Un‖2 ≤ ‖U0‖2 +
n∑

i=1

(
τ
1 + 2|β|
1− 2|β|τ ‖Ui−1‖2 + (1 + τ)

(
2ατ

1− 2|β|τ + τ−1‖ξi−1(τ)‖2
))

.

Since n ≤ K := T/τ , and since the right-hand side of the inequality above is nonnegative,

‖Un‖2 ≤



‖U0‖2 + (1 + τ)



 2αT

1− 2|β|τ + τ−1

T/τ∑

i=1

‖ξi−1(τ)‖2






+ τ
(1 + 2|β|)
1− 2‖βτ‖

n−1∑

i=0

‖Ui‖2.

Applying the Grönwall inequality (Theorem 2.1), yields, for all n ∈ [K],

max
i∈[K]

‖Ui‖2 ≤



‖U0‖2 + (1 + τ)



 2αT

1− 2|β|τ + τ−1

T/τ∑

i=1

‖ξi−1(τ)‖2






 exp

(
T (1 + 2|β|)
1− 2|β|τ

)

≤ (1 + τ)



‖U0‖2 +
2αT

1− 2|β|τ + τ−1

T/τ∑

i=1

‖ξi−1(τ)‖2


 exp

(
T (1 + 2|β|)
1− 2|β|τ

)

≤ C1



1 + τ−1

T/τ∑

i=1

‖ξi−1(τ)‖2




which yields (4.7) for n = 1 with the desired constant C1 given by (4.8). By applying Lemma 4.4, we
obtain the general case.

Recall that (Ω,F ,P) is a probability space, and that (ξk)k∈[K] are i.i.d. processes that satisfy Assump-
tion 3.3. Given the polynomial growth condition, we shall need stronger regularity conditions on the
noise.

Assumption 4.7 ((p,R)-regularity condition on noise). It holds that ξ0(t) :=
∫ t

0 χ0(s) ds, where
χ0 : [0, τ ]× Ω → H, and there exists p ≥ 1, R ∈ N and C(R) ≥ 1 such that

E
[
‖ξ0(τ)‖r

]
≤ C(R)τr(2p+1)/2 for all r ∈ {1, . . . , R}.

Remark 4.8. Setting r = 1 in the inequality above implies that, in the limit of small τ , the mean of
ξ0(τ) converges to zero. However, this does not imply that the mean of ξ0(τ) itself must be zero.

The following lemma, like Proposition 3.6, shows that there exist processes that satisfy a strong version
of Assumption 4.7.

Lemma 4.9 (Integrated Brownian motion satisfies regularity condition). Let τ > 0 be fixed, 0 ≤ t ≤ τ ,

p ≥ 1 be arbitrary, and (Bt)t be H-valued Brownian motion. Then ξ0(t) := τp−1
∫ t

0
Bs ds satisfies

E

[
sup
t≤τ

‖ξ0(t)‖r
]
≤ 4τrp+r/2 for all r ∈ N. (4.12)

Proof. If r = 0, then the desired statement follows immediately. Therefore, let p, r ≥ 1, and let ξ0 be
the integrated P-Brownian motion process scaled by τp−1, so that

ξ0(t) := τp−1

∫ t

0

Bs ds.

Since ξ0(0) = 0, we may assume without loss of generality that t > 0. Then

‖ξ0(t)‖r = τr(p−1)tr
∥∥∥∥
1

t

∫ t

0

Bs ds

∥∥∥∥
r

≤ τr(p−1)tr
(
1

t

∫ t

0

‖Bs‖r ds
)

= τr(p−1)tr−1

∫ t

0

‖Bs‖r ds,
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where we applied Jensen’s inequality to the uniform probability measure on [0, t]. It follows that

E

[
sup
t≤τ

‖ξ0(t)‖r
]
≤ τr(p−1)

E

[
sup
t≤τ

tr−1

∫ t

0

‖Bs‖r ds
]

≤ τr(p−1)τr−1
E

[
sup
t≤τ

∫ t

0

‖Bs‖r ds
]

≤ τrp−1

∫ τ

0

E

[
sup

0≤t≤τ
‖Bt‖r

]
ds

= τrpE

[
sup

0≤t≤τ
‖Bt‖r

]
.

Above, we used the Fubini–Tonelli theorem to interchange expectation and integration with respect to
s, and the fact that E

[
supt≤τ ‖Bt‖r

]
is constant with respect to the variable of integration s.

By the Burkholder–Davis–Gundy inequality for martingales (Peškir, 1996, Equation (2.2)), the in-
equality

E

[
sup

0≤t≤τ
‖Bt‖r

]
≤ 4− r

2− r
τr/2

is sharp for 0 < r < 2 (Peškir, 1996). On the other hand, by Doob’s martingale inequality (Revuz and Yor,
1999, Theorem II.1.7),

E

[
sup

0≤t≤τ
‖Bt‖r

]
≤
(

r

r − 1

)r

τr/2

holds for r > 1. Since (4 − r)/(2 − r) = 3 for r = 1 and since f : (2,∞) → (0,∞) defined by f(r) :=(
r

r−1

)r
is continuously differentiable and monotonically decreasing on its domain, the desired conclusion

follows.

Lemma 4.10 (Estimates on moments of sums). Let n ∈ N be arbitrary, let T > 0 be fixed, let τ satisfy
Assumption 4.5, and set K := T/τ ∈ N. If the regularity Assumption 4.7 holds for some R ≥ 2n and
some p ≥ 1, then there exists a scalar C2 that does not depend on τ , such that

E

[(
∑

k∈[K]

‖ξk(τ)‖2
)n]

≤ (C2T )
nτ2pn. (4.13)

The proof below indicates that an admissible value of C2 is

C2 := C(2n), (4.14)

where, for any R ∈ N, C(R) is the constant in the bound on the rth absolute moment given in Assumption
4.7.

Proof. By the multinomial theorem and the independence of the ξi’s, we obtain

E

[(
∑

k∈[K]

‖ξk(τ)‖2
)n]

=
∑

∑
k∈[K] tk=n

n!

t1! · · · tK !
E

[
∏

k∈[K]

‖ξk(τ)‖2tk
]

≤
∑

∑
k∈[K] tk=n

n!

t1! · · · tK !

∏

k∈[K]

C(2tk)τ
tk(2p+1)

≤ Cn
2 τ

n(2p+1)
∑

∑
k∈[K] tk=n

n!

t1! · · · tK !
= Cn

2 τ
n(2p+1)

(
T

τ

)n

=
(
C2Tτ

2p
)n

,

thus proving (4.13). The inequality above follows from the constraint that
∑

k∈[K] tk = n, and from the

fact that C(r) = 1 for r = 0.
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Lemma 4.11 (Concavity of the square root). For every m ∈ N and x1, . . . , xm ≥ 0,

√√√√
m∑

i=1

xi ≤
m∑

i=1

√
xi. (4.15)

Proof. The statement follows by induction. Since the statement holds for m = 1, suppose m = 2. Then

√
x1 + x2 ≤ √

x1 +
√
x2 ⇐⇒ x1 + x2 ≤ x1 + x2 + 2

√
x1x2,

where the statement on the right-hand side holds by nonnegativity of x1 and x2. Now suppose that the
statement holds for m ≤ 2. To prove that it holds for m + 1, we define x′

1 :=
∑m

i=1 xi and x′
2 := xm+1,

apply the equivalence statement above, and use the assumption that the statement holds for m ≤ 2.

Proposition 4.12 (Bounds on even moments of maximum of numerical solution). Suppose that the
vector field f satisfies Assumpsions 4.1 and 4.2, that the noise ξ0 satisfies Assumption 4.7 for some
R ≥ 2n and some p ≥ 1, and that τ satisfies Assumption 4.5. Then

E

[
max
i∈[K]

‖Ui‖2n
]
≤ 2n−1Cn

1 + (C2T )
nτn(2p−1). (4.16)

for some scalars C1, C2 > 0 not depending on τ .

Proposition 4.12 indicates that, if the noise ξ0 has moments of orders up to 2n, then the maximum of
the absolute value of the randomised numerical solution (Uk)k∈[K] has moments of up to the same order.

Proof. Taking expectations of (4.7) and applying Lemma 4.10 yields the desired result. Furthermore,
we may take C1 and C2 as given in (4.8) and (4.14).

We end the following section by using Proposition 4.12 to derive a sufficient condition for the maximum
of the numerical solution to have a finite moment generating function on the real line.

Theorem 4.13 (Maximum of numerical solution has finite moment generating function on R). Suppose
that the vector field f satisfies Assumptions 4.1 and 4.2, that τ satisfies Assumption 4.5, and that there
is some p ≥ 1 such that the regularity assumption (Assumption 4.7) holds for all R ∈ N and such that
(C(R))R∈N is bounded. Then the moment generating function of maxi∈[K] ‖Ui‖ is finite on R.

Note that, by the boundedness condition on the sequence (C(R))R∈N, it follows that

E
[
exp (t‖ξ0(τ)‖)

]
≤
(
max
R∈N

C(R)

)
exp(τp+1/2).

Proof. By applying Jensen’s inequality and the concavity of the square root (Lemma 4.11), and by
replacing C2 in (4.16) with maxr∈NC(r), we obtain

E

[
max
i∈[K]

‖Ui‖n
]
≤ E

[
max
i∈[K]

‖Ui‖2n
]1/2

≤ (2C1)
n/2 +

(
T max

r∈N

C(r)τ2p−1

)n/2

.

The desired conclusion follows by using the Taylor series of the exponential.

4.2 Convergence result in discrete time

Define the difference of displacements operator V ( · , · ) : H×H → H by

V (u0, v0) := (Φτ (u0)− u0)− (Φτ (v0)− v0) , u0, v0 ∈ H. (4.17)

Lemma 4.14 (Bounds on differences of displacements). Given Assumption 4.2, and given arbitrary
τ > 0 and u0, v0 ∈ H, it holds that there exists a strictly positive scalar C4(u0, v0) such that

|〈u0 − v0, V (u0, v0)〉| ≤ 2τD (1 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + C4(u0, v0)τ
3, (4.18a)

‖V (u0, v0)‖2 ≤ 2τ2D (1 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + 2C4(u0, v0)τ
4. (4.18b)
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The proof below indicates than an admissible choice of C4 is given by

C4(u0, v0) := C4(u0, v0; f, q, τ) := 2

(
1 + max

s∈[0,τ ]
‖Φs(u0)‖q + max

s∈[0,τ ]
‖Φs(v0)‖q

)
. (4.19)

Later, we shall write C4(u0) := C4(u0, u0) for any u0 ∈ H. Note that C4(u0, v0; f, q, τ) converges to
2(1 + ‖u0‖q + ‖v0‖q) in the limit of small τ .

Proof. Recall that the solution map Φτ of the initial value problem (1.1) is defined by

Φτ (u0) = u0 +

∫ τ

0

f(u(s)) ds, u(0) = u0. (4.20)

Let u(·) and v(·) denote the solutions of (1.1) with the initial conditions u(0) = u0 and v(0) = v0. Then

V (u0, v0) =

∫ τ

0

f(u(s)) ds−
∫ τ

0

f(v(s)) ds.

Recall that, in the one-dimensional Euclidean setting, the error arising from approximating a Riemann
integral over a bounded interval by the corresponding left Riemann sum may be bounded by a term that
is proportional to the square of the length of the interval, where the constant of proportionality is related
to the maximum of the derivative of the integrand over the interval of integration. Since the assumption
of polynomial growth (Assumption 4.2) permits the estimation of finite difference ratios by a degree q
polynomial, this implies that we have

∥∥∥∥
∫ τ

0

f(u(s)) ds− τf(u0)

∥∥∥∥ ≤ D1/2

(
1 + 2 max

s∈[0,τ ]
‖Φs(u0)‖q

)1/2

τ2 =: D1/2C(u0)
1/2τ2. (4.21)

If f is itself not smooth, then we may approximate the vector field f by smooth vector fields to arrive
at a similar result. Therefore, by the triangle inequality,

‖V (u0, v0)‖ ≤ τ‖f(u0)− f(v0)‖+ τ2[C(u0) + C(v0)].

By applying the above inequality and Cauchy’s inequality, we obtain (4.18b). Inequality (4.18a) follows
from the Cauchy–Schwarz inequality and the above inequality, the fact that x1/2 ≤ x for all x ≥ 1,
Young’s inequality, and the constraint in Assumption 4.2 that D ≥ 1:

|〈u0 − v0, V (u0, v0)〉| ≤ τD1/2 (1 + ‖u0‖q + ‖v0‖q)1/2 ‖u0 − v0‖2 + [C(u0) + C(v0)]τ
2‖u0 − v0‖

≤ τD (1 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + [C(u0) + C(v0)]τ
2‖u0 − v0‖

≤ τD (1 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + τ‖u0 − v0‖2 + [C(u0) + C(v0)]
2τ3

≤ τD (2 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + [C(u0) + C(v0)]
2τ3.

Applying Cauchy’s inequality and the polynomial growth assumption yields

‖V (u0, v0)‖2 ≤ 2τ2‖f(u0)− f(v0)‖2 + 2τ4[C(u0) + C(v0)]
2

≤ 2τ2D (1 + ‖u0‖q + ‖v0‖q) ‖u0 − v0‖2 + 2τ4[C(u0) + C(v0)]
2.

It remains to estimate [C(u0) + C(v0)]
2, which we do using Cauchy’s inequality,

[C(u0) + C(v0)]
2 ≤ 2

(
1 + max

s∈[0,τ ]
‖Φs(u0)‖q + max

s∈[0,τ ]
‖Φs(v0)‖q

)
= C4(u0, v0),

thus yielding (4.18).

Recall that

ek := uk − Uk = Φτ (uk−1)− Φτ (Uk−1) + Φτ (Uk−1)−Ψτ (Uk−1)− ξk−1(τ).
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For k ∈ [K], define the difference of displacements Vk−1 and the numerical discrepancy Wk−1 by

Vk−1 := V (uk−1, Uk−1), Wk−1 := Φτ (Uk−1)−Ψτ (Uk−1). (4.22)

Then (4.20), (4.3), and the preceding definitions yield that

ek = ek−1 + Vk−1 +Wk−1 + ξk−1(τ) (4.23)

Proposition 4.15 and Proposition 4.16 provide estimates on the expected values of ‖Wk−1‖2 and of terms
that may be bounded in terms of ‖Vk−1‖ respectively.

Proposition 4.15 (Bounds on moments of numerical discrepancy). Let τ > 0 satisfy Assumption 4.5,
D ≥ 1 and q ∈ N0 be the parameters in the polynomial growth condition (Assumption 4.2), and n ∈ N be
arbitrary. If the regularity assumption (Assumption 4.7) holds for some R ≥ n(2q + 2) and some p ≥ 1,
then for every k − 1 ∈ [K], there exists a strictly positive scalar C5 such that

E
[
‖Wk−1‖2n

]
≤ C5τ

4n. (4.24)

The proof below indicates that an admissible choice of C5 is given by

C5(k, n) := (2D)2n
[
C4(Uk) + (1 + ‖Uk‖q + ‖Ψτ (Uk)‖q)2

(
‖Ψτ (Uk)‖2 + ‖f(0)‖2

)]n
. (4.25)

where we have abused notation and written C4(Uk−1) := C4(Uk−1, Uk−1) for C4(·, ·) defined in (4.19).

Proof. Approximating the integral in Φτ (Uk−1) by a left Riemann sum implies that

‖Φτ (Uk−1)− Uk−1 − τf(Uk−1)‖2 ≤ D

(
1 + 2 max

s∈[0,τ ]
‖Φs(Uk−1)‖q

)
τ4 < DC4(Uk−1)τ

4, (4.26)

by (4.21). Therefore, by the triangle inequality and Cauchy’s inequality,

‖Wk−1‖2 ≤ 2
(
DC4(Uk−1)τ

4 + ‖Uk−1 + τf(Uk−1)− Uk−1 − τf(Ψτ (Uk−1))‖2
)

≤ 2τ2
(
DC4(Uk−1)τ

2 + ‖f(Uk−1)− f(Ψτ (Uk−1)‖2
)
.

By the polynomial growth condition (4.2),

‖f(Uk−1)− f(Ψτ (Uk−1))‖2 ≤ D (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q) ‖Uk−1 −Ψτ (Uk−1)‖2

= D (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q) ‖τf(Ψτ (Uk−1))‖2

= τ2D (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q) ‖f(Ψτ (Uk−1))‖2 .

The triangle inequality and Lemma 4.4 imply

‖f(Ψτ (Uk−1))‖2 ≤ 2
(
‖f(Ψτ (Uk−1)− f(0)‖2 + ‖f(0)‖2

)

≤ 2
(
D (1 + ‖Ψτ (Uk−1)‖q) ‖Ψτ (Uk−1)‖2 + ‖f(0)‖2

)

≤ 2D (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q)
(
‖Ψτ (Uk−1)‖2 + ‖f(0)‖2

)
.

Thus,

‖Wk−1‖2 ≤ 4τ4D2
[
C4(Uk−1) + (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q)2

(
‖Ψτ (Uk−1)‖2 + ‖f(0)‖2

)]
,

and, for n ∈ N, Lemma 4.4 yields

‖Wk−1‖2n ≤ (2Dτ2)2n
[
C4(Uk−1) + (1 + ‖Uk−1‖q + ‖Ψτ (Uk−1)‖q)2

(
‖Ψτ (Uk−1)‖2 + ‖f(0)‖2

)]n
.
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Taking expectations and using (4.25) yields (4.24). It remains to show that C5 as defined in (4.25) is
finite. Since the regularity assumption holds for some R ≥ n(2q + 2), then it follows that the scalar
C4(Uk−1), which depends on ‖Uk−1‖q, has finite moments up to order 2n, by Lemma 4.6. The remaining
contributions to C5 can be similarly bounded by the absolute moments of ‖Uk−1‖ of up to order n(2q+2),
since by (4.10) and Lemma 4.4 we have

‖Ψτ (Uk−1)‖2n ≤ 2n−1(1 − 2|β|τ)−n
(
‖Uk−1‖2n + (2ατ)n

)

for all n ∈ N. This completes the proof.

Proposition 4.16 (Bounds on expected values of products of difference of displacements). Suppose that
Assumptions 4.1, 4.2, and 4.5 hold. Let Vk−1 be defined as in (4.22), let q ∈ N0 denote the exponent
in Assumption 4.2, and suppose that the regularity assumption (Assumption 4.7) holds with parameters
R = 2q + 2 and p ≥ 1. If
(i) q = 0, or
(ii) q ≥ 1 and

p ≥ max

{
2

q
+

1

2
, 1

}
(4.27)

then there exists a strictly positive scalar C′ = C′(k, q) that remains finite in the limit of small τ , such
that

E
[
|〈ek−1, Vk−1〉|

]
≤ C′(k − 1, q)

(
τE
[
‖ek−1‖2

]
+ τ3

)
(4.28a)

E
[
‖Vk−1‖2

]
≤ C′(k − 1, q)

(
τ2E

[
‖ek−1‖2

]
+ τ4

)
. (4.28b)

In particular, if the regularity assumption (Assumption 4.7) holds for some R ≥ 2q+2 and some p ≥ 5/2,
then the inequalities (4.28) hold.

Remark 4.17. For case (ii), it can be shown by an appropriate modification of Lemma 4.6 that the
regularity assumption can be weakened to holding for R ≥ q + 3, with the result that the condition
(4.27) must be strengthened to p ≥ max{4/q+1/2, 1}. However, since Proposition 4.15 already imposes
the requirement that R ≥ 2q + 2, the requirement in Proposition 4.16 above that R ≥ 2q imposes no
additional constraint.

The proof below indicates that an admissible choice of the constant C′ for both case (i) and (ii) is
given by

C′(k, q) := 2D

(
1 + max

k∈[K]
‖uk‖q + (22C1)

q/2

)
+ (22C1)

q/2
E
[
‖ek‖4

](q+2)/(2q+2)
(4.29)

+ 23
(
1 + max

s∈[0,τ ]
‖Φs(uk)‖q + E

[
max
s∈[0,τ ]

‖Φs(Uk)‖2q
])

where C1 is defined in (4.8).

Proof. By the definition of Vk−1 in (4.22) and by Lemma 4.14, we have the following estimates:

|〈ek−1, Vk−1〉| ≤ 2τD (1 + ‖uk−1‖q + ‖Uk−1‖q) ‖ek−1‖2 + C4(uk−1, Uk−1)τ
3 (4.30a)

‖Vk−1‖2 ≤ 2τ2D (1 + ‖uk−1‖q + ‖Uk−1‖q) ‖ek−1‖2 + 2C4(uk−1, Uk−1)τ
4. (4.30b)

We shall prove the statement in each case separately using (4.30). Observe that the definition of C4 in
(4.19) and Lemma 4.4 yield

E
[
C2

4 (uk−1, Uk−1)
]
≤ 22

(
1 + max

s∈[0,τ ]
‖Φs(uk−1)‖q + E

[
max
s∈[0,τ ]

‖Φs(Uk−1)‖2q
])

.

We consider cases (i) and (ii) separately. Let k − 1 ≥ 1.
Case (i): If q = 0, then the equations (4.30) immediately imply (4.28).
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Case (ii): Let q ∈ N. By the inequalities (4.30), it suffices to show that C4(uk−1, Uk−1) has finite
second moment, and that there exists some scalar C′ not depending on τ such that E

[
‖Uk−1‖q‖ek−1‖2

]

is bounded from above by C′
(
τ2 + E

[
‖ek−1‖2

])
. For example, from (4.30a) we have

E
[
|〈ek−1, Vk−1〉|

]
≤ 2τD

(
(1 + ‖uk−1‖q)E

[
‖ek−1‖2

]
+ E

[
‖Uk−1‖q‖ek−1‖2

])
+ E

[
C2

4 (uk−1, Uk−1)
]
τ3.

Since the regularity assumption holds for R ≥ 2q + 2, Proposition 4.12 implies that Φs(Uk−1) has finite
moment of order 2q, and thus the finiteness of the second moment of C4 follows. By (4.7) in Lemma 4.6,

max
i∈k

‖Ui‖2q ≤ 22q−1Cq
1

[
1 + τ−q

(
k−1∑

i=0

‖ξk(τ)‖2
)q]

.

Therefore, using the inequality ‖Uk−1‖q ≤ maxi≤k−1 ‖Ui‖q, and using the concavity of the square root,

E
[
‖Uk−1‖q‖ek−1‖2

]
≤
(
22q−1Cq

1

)1/2
E




(
1 + τ−q

(
k−2∑

i=0

‖ξi(τ)‖2
)q)1/2

‖ek−1‖2




≤
(
22q−1Cq

1

)1/2

E
[
‖ek−1‖2

]
+ τ−q/2

E







T/τ∑

k=1

‖ξk(τ)‖2



q/2

‖ek−1‖2




 .

Now, using Hölder’s inequality and Lemma 4.10,

E







T/τ∑

k=1

‖ξk(τ)‖2



q/2

‖ek−1‖2



≤ E







T/τ∑

k=1

‖ξk(τ)‖2



q+1



q/(2q+2)

E

[
‖ek−1‖(4q+4)/(q+2)

](q+2)/(2q+2)

≤
(
(C2T )

q+1
τ2p(q+1)

)q/(2q+2)

E

[
‖ek−1‖(4q+4)/(q+2)

](q+2)/(2q+2)

= (C2T )
q/2 τpqE

[
‖ek−1‖(4q+4)/(q+2)

](q+2)/(2q+2)

.

Since the regularity assumption holds for R ≥ 2q+2 and p ≥ 1, then by observing that (4q+4)/(q+2) < 4,
and by applying Jensen’s inequality and Lemma 4.11, we have

E

[
‖ek−1‖(4q+4)/(q+2)

](q+2)/(2q+2)

≤ E
[
‖ek‖4

]1/2 ≤ (23/2
(
‖uk‖4 + E

[
‖Uk‖4

])1/2
.

Thus we have shown

E







T/τ∑

k=1

‖ξk(τ)‖2



q/2

‖ek−1‖2

 ≤ (C2T )

q/2
23/2

(
‖uk‖4 + E

[
‖Uk‖4

])1/2
τpq . (4.31)

The finiteness of E[‖Uk‖4] follows from the fact that the regularity assumption holds up to R ≥ 2q+2 ≥ 4,
and from Proposition 4.12. Thus, we have shown that

E
[
‖Uk−1‖q‖ek−1‖2

]

≤
(
22q−1Cq

1

)1/2 (
E
[
‖ek−1‖2

]
+ (C2T )

q/2 τq(2p−1)/2
E
[
‖ek−1‖(4q+4)/(q+2)

](q+2)/(2q+2)
)
.

Since (4.27) implies that p ≥ 2/q+1/2, which in turn is equivalent to q(2p− 1)/2 ≥ 2, we obtain (4.28a)
with C′(k − 1, q) as given in (4.29). Applying the same argument to the estimate (4.30b) yields the
estimate (4.28b). This completes the proof.
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We now prove that the randomised implicit Euler method has order one. Note that for this result, we
assume that the random variable ξ0(τ) has mean zero.

Theorem 4.18 (Uniform mean-square convergence in discrete time). Suppose that Assumptions 4.1,
4.2, and 4.5 hold. Let q ∈ N0 denote the exponent in Assumption 4.2, and suppose that the regularity
assumption (Assumption 4.7) holds with parameters R ≥ 2q + 2 and p ≥ 1. If
(i) q = 0, or
(ii) q ≥ 1, E[ξ0(τ)] = 0, and (4.27) holds,

then there exists a strictly positive scalar C that remains bounded in the limit of small τ and does not
depend on k, such that

max
k≤T/τ

E
[
‖ek‖2

]
≤ Cτ2.

Proof. Given (4.23), it holds that

‖ek‖2 = ‖ek−1‖2 + ‖Vk−1‖2 + ‖Wk−1‖2 + ‖ξk−1(τ)‖2 + 2

(
〈ek−1, Vk−1〉+ 〈ek−1,Wk−1〉+

+ 〈ek−1, ξk−1(τ)〉 + 〈Vk−1,Wk−1〉+ 〈Vk−1, ξk−1(τ)〉 + 〈Wk−1, ξk−1(τ)〉
)
.

Taking expectations, using the independence of ξk(τ) from Uk, and using the mean-zero property of
ξk(τ) yield

E
[
‖ek‖2

]
≤ E

[
‖ek−1‖2 + ‖Vk−1‖2 + ‖Wk−1‖2 + ‖ξk−1(τ)‖2

]

+ 2
(
E
[
|〈ek−1,Wk−1〉|

]
+ E

[
|〈Vk−1,Wk−1〉|

]
+ E

[
|〈ek−1, Vk−1〉|

])
.

By Young’s inequality and Cauchy’s inequality,

|〈ek−1,Wk−1〉| ≤
τ

2
‖ek−1‖2 +

1

2τ
‖Wk−1‖2, |〈Vk−1,Wk−1〉| ≤

1

2
‖Vk−1‖2 +

1

2
‖Wk−1‖2, (4.32)

and hence

E
[
‖ek‖2 − ‖ek−1‖2

]
≤ E

[
τ‖ek−1‖2 + 2‖Vk−1‖2 +

(
2 +

1

τ

)
‖Wk−1‖2 + ‖ξk−1(τ)‖2

]

+ 2E
[
|〈ek−1, Vk−1〉|

]
.

Since e0 := u0 − U0 = 0, using a telescoping sum and the inequality above yields

max
i≤n

E
[
‖ei‖2

]

≤
n∑

k=1

E

[
τ‖ek−1‖2 + 2‖Vk−1‖2 +

(
2 +

1

τ

)
‖Wk−1‖2 + ‖ξk−1(τ)‖2 + 2|〈ek−1, Vk−1〉|

]

≤
n∑

k=1

(
E
[
τ(1 + 4C′)‖ek−1‖2

]
+ 2C′τ4 +

(
2 +

1

τ

)
C5τ

4 + C(2)τ2p+1 + 2C′τ3
)
,

where we used Proposition 4.16, Proposition 4.15, and the regularity assumption in the second inequality.
Replacing each instance of C′ = C′(k, q) and of C5 = C5(k, 2) in the last inequality above with C′ =
maxk≤T/τ C

′(k, q) and with C5 = maxk≤T/τ C5(k, 2) respectively, we obtain

max
i≤T/τ

E
[
‖ei‖2

]
≤ T

(
4C′τ2 + (2τ + 1)C5τ

2 + C(2)τ2p
)
+ τ(1 + 4C′)

n∑

k=1

max
i≤k−1

E
[
‖ei‖2

]
.

By Grönwall’s inequality (Theorem 2.1),

max
i≤T/τ

E
[
‖ei‖2

]
≤
[
T
(
4C′τ2 + (2τ + 1)C5τ

2 + C(2)τ2p
)]

exp (T (1 + 4C′)) ,

and since p ≥ 1, the right-hand side is O(τ2), as desired.
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The next result strengthens that of Theorem 4.18 by bringing the maximum inside the expectation
and not imposing the requirement that the noise ξ0 have mean zero (see Remark 4.8).

Theorem 4.19 (Mean-square uniform convergence in discrete time). Suppose that Assumptions 4.1,
4.2, and 4.5 hold. Let q ∈ N0 denote the exponent in Assumption 4.2, and suppose that the regularity
assumption (Assumption 4.7) holds with parameters R ≥ 2q + 2 and p ≥ 1. If
(i) q = 0, or
(ii) q ≥ 1 and

p ≥ max

{
2

q
+

1

2
,
3

2

}
, (4.33)

then there exists a strictly positive scalar C that remains bounded in the limit of small τ and does not
depend on k, such that

E

[
max
k≤T/τ

‖ek‖2
]
≤ Cτ2.

In particular, if the regularity assumption (Assumption 4.7) holds for some R ≥ 2q+2 and some p ≥ 5/2,
then the conclusion holds.

With the exception of (4.33) — which is stronger than (4.27) by the requirement that p ≥ 3/2 instead
of p ≥ 1 — the stated hypotheses are exactly those of Proposition 4.16. This is because, in order to obtain
the desired convergence result, one must ensure that the terms on an upper bound of E[maxk∈[K] ‖ek‖2]
are of sufficiently large order in τ . Of these terms, the most problematic — i.e. the ones arising due to
the polynomial growth condition — are controlled by Proposition 4.16.

Proof. Given (4.23), it holds that

‖ek‖2 ≤ ‖ek−1‖2 + ‖Vk−1‖2 + ‖Wk−1‖2 + ‖ξk−1(τ)‖2 + 2

(
|〈ek−1, Vk−1]〉|+ |〈ek−1,Wk−1〉|+

+ |〈ek−1, ξk−1(τ)〉| + |〈Vk−1,Wk−1〉|+ |〈Vk−1, ξk−1(τ)〉| + |〈Wk−1, ξk−1(τ)〉|
)

Using the telescoping sum ‖en‖2 = ‖e0‖2 +
∑n

k=1 ‖ek‖2 − ‖ek−1‖2 for n ∈ [K], and using that u0 = U0

implies e0 = 0, we obtain

‖en‖2 ≤
n∑

k=1

[
‖Vk−1‖2 + ‖Wk−1‖2 + ‖ξk−1(τ)‖2 + 2

(
|〈ek−1, Vk−1〉|+ |〈ek−1,Wk−1〉|+ |〈ek−1, ξk−1(τ)〉|

+ |〈Vk−1,Wk−1〉|+ |〈Vk−1, ξk−1(τ)〉| + |〈Wk−1, ξk−1(τ)〉|
)]

. (4.34)

Using Young’s inequality, we have

|〈ek−1,Wk−1〉| ≤
τ

2
‖ek−1‖2 +

1

2τ
‖Wk−1‖2, |〈ek−1, ξk−1(τ)〉| ≤

τ

2
‖ek−1‖2 +

1

2τ
‖ξk−1(τ)‖2.

To |〈Vk−1,Wk−1〉|, |〈Vk−1, ξk−1(τ)〉|, and |〈Wk−1, ξk−1(τ)〉|, we apply the Cauchy–Schwarz inequality
and Young’s inequality to obtain

‖en‖2 ≤
n∑

k=1

[
2τ‖ek−1‖2 + 2|〈ek−1, Vk−1〉|+ 3‖Vk−1‖2 +

(
3 +

1

τ

)
‖Wk−1‖2 +

(
3 +

1

τ

)
‖ξk−1(τ)‖2

]
.

Using the nonnegativity of the summands, the fact that 3+ τ−1 ≤ 4τ−1 by Assumption 4.5, and the fact
that n ≤ T/τ , we can obtain a stronger version of the inequality above:

max
i≤n

‖ei‖2 ≤
n∑

k=1

[
2τ max

i≤k−1
‖ei‖2 + 2|〈ek−1, Vk−1〉|+ 3‖Vk−1‖2 +

4

τ
‖Wk−1‖2 +

4

τ
‖ξk−1(τ)‖2

]
.
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We now take expectations of both sides. If either condition (i) or condition (ii) holds, then we may apply
Proposition 4.16 to obtain

n∑

k=1

E
[
‖Vk−1‖2 + |〈ek−1, Vk−1〉|

]
≤

n∑

k=1

C′(k, q)

(
τE

[
max
j≤k−1

‖ej‖2
]
+ τ3

)

From Proposition 4.15, it follows that E[‖Wk−1‖2] ≤ C5(k − 1, 2)τ4, where C5 is defined in (4.25). We
also have E[‖ξk−1(τ)‖2] ≤ C(2)τ2p+1 by the regularity assumption. Combining the above estimates, and
using the hypothesis that 2p ≥ 3, we obtain

E

[
max
i≤n

‖ei‖2
]
≤ C̃(n)

[
n∑

k=1

(
τE

[
max
i≤k−1

‖ei‖2
]
+ τ3

)]
≤ C̃(n)Tτ2 + C̃(n)τ

n∑

k=1

E

[
max
i≤k−1

‖ei‖2
]
,

where above,

C̃(n) := max

{
max
i≤n

C′(i, q),max
i≤n

C5(i, 2), C(2)

}
.

Using the Grönwall inequality (Theorem 2.1), and using the fact that n ≤ T/τ , we obtain

E

[
max
k≤T/τ

‖ek‖2
]
≤ T C̃(T/τ) exp(T C̃(T/τ))τ2,

as desired.

4.3 Convergence result in continuous time

In this section, we use the convergence result of Section 4.2 to obtain a similar result for the continuous-
time case, using similar ideas. Since the results follow from minor modifications of the proofs of their
analogues, we state the results without proof.
Given the collection of times (tk)k∈[K] as defined in (2.1), we shall define for k ∈ [K] and t ∈ (tk, tk+1]

ut = Φt−tk(uk) (4.35)

Φt−tk(a) = a+

∫ t−tk

0

f(ũ(s)) ds, ũ(0) = a (4.36)

Ut = Ψt−tk(Uk) + ξk(t− tk) (4.37)

Ψt−tk(Uk) = Uk + (t− tk)f(Ψ
t−tk(Uk)) (4.38)

V t−tk
k := (Φt−tk(uk)− uk)− (Φt−tk(Uk)− Uk)

=

∫ t−tk

0

f(u(tk + s))− f(ũ(k)(tk + s)) ds, u(k)(0) = Uk (4.39)

W t−tk
k := Φt−tk(Uk)−Ψt−tk(Uk)

=

∫ t−tk

0

f(ũ(k)(tk + s)) ds− (t− tk)f(Ψ
t−tk(Uk)). (4.40)

The error at time t defined by et := ut − Ut satisfies

et = ek + V t−tk
k +W t−tk

k + ξk(t− tk), (4.41)

analogously to (4.23). We have the following analogues of Propositions 4.15 and 4.16 respectively.

Proposition 4.20 (Bounds on moments of numerical discrepancy over small time interval). Let τ >
0 satisfy Assumption 4.5, D ≥ 1 and q ∈ N0 be the parameters in the polynomial growth condition
(Assumption 4.2), and n ∈ N be arbitrary. If the regularity assumption (Assumption 4.7) holds for some
R ≥ n(2q+2) and some p ≥ 1, then for every k ∈ [K], there exists a strictly positive scalar C5 such that

E

[
sup

t∈(tk,tk+1]

∥∥W t−tk
k

∥∥2n
]
≤ C5τ

4n.
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Proposition 4.21 (Bounds on expected values of products of difference of displacements over small
time interval). Suppose that Assumptions 4.1, 4.2, and 4.5 hold. Let V t−tk

k be defined as in (4.39), let
q ∈ N0 denote the exponent in Assumption 4.2, and suppose that the regularity assumption (Assumption
4.7) holds with parameters R ∈ N and p ≥ 1. If
(i) q = 0 and R ≥ 2, or
(ii) q ≥ 1, R ≥ 2q + 2, and (4.27) holds,

then there exists a strictly positive scalar C′ that remains bounded in the limit of small τ and does not
depend on k, such that

E

[
sup

t∈(tk,tk+1]

|〈ek, V t−tk
k 〉|

]
≤ C′

(
τE
[
‖ek‖2

]
+ τ3

)

E

[
sup

t∈(tk,tk+1]

∥∥V t−tk
k

∥∥2
]
≤ C′

(
τ2E

[
‖ek‖2

]
+ τ4

)
.

In particular, if the regularity assumption (Assumption 4.7) holds for some R ≥ 2q+2 and some p ≥ 5/2,
then the inequalities above hold.

Before we state the continuous-time convergence result, we state the following modification of As-
sumption 4.7:

Assumption 4.22 ((p,R)-strong regularity condition on noise). It holds that ξ0(t) :=
∫ t

0 χ0(s) ds, where
χ0 : [0, τ ]× Ω → H, and there exists a p ≥ 1 and R ∈ N such that

E

[
sup

t∈[0,τ ]

‖ξk(t)‖r
]
≤ C(R)τr(2p+1)/2 for all r ∈ {1, . . . , R}.

Theorem 4.23 (Mean-square uniform convergence in continuous time). Suppose that Assumptions 4.1,
4.2, and 4.5 hold. Let q ∈ N0 denote the exponent in Assumption 4.2, and suppose that the strong
regularity assumption (Assumption 4.22) holds with parameters R ∈ N and p ≥ 1. If

(i) q = 0 and R ≥ 2, or

(ii) q ≥ 1, R ≥ 2q + 2, and (4.33) holds,

then there exists a strictly positive scalar C that remains bounded in the limit of small τ and does not
depend on k, such that

E

[
sup

0≤t≤T
‖et‖2

]
≤ Cτ2.

In particular, if the strong regularity assumption (Assumption 4.22) holds for some R ≥ 2q+2 and some
p ≥ 5/2, then the conclusion holds.

Proof. Except for the strong regularity assumption, the stated hypotheses are exactly those of Theorem
4.18, which we shall use to prove both cases (i) and (ii). Since e0 = u0 − U0 = 0, it follows that

sup
0≤t≤T

‖et‖2 = max
k∈[K]

sup
t∈(tk,tk+1]

‖et‖2.

By applying Lemma 4.4 to (4.41), we obtain

E

[
max
k∈[K]

sup
t∈(tk,tk+1]

‖et‖2
]
≤ 23E

[
max
k∈[K]

(
‖ek‖2 + sup

t∈(tk,tk+1]

(∥∥V t−tk
k

∥∥2 +
∥∥W t−tk

k

∥∥2 + ‖ξk(t− tk)‖2
))]

By Theorem 4.18, the first term inside the expectation on the right-hand side of the inequality above is
O(τ2), as desired. Thus it remains to show that the other terms are all O(τ2). We have

E

[
max
k∈[K]

sup
t∈(tk,tk+1]

∥∥V t−tk
k

∥∥2
]
≤
∑

k∈[K]

E

[
sup

t∈(tk,tk+1]

∥∥V t−tk
k

∥∥2
]
≤ C′T

(
τ max

k∈[K]
E
[
‖ek‖2

]
+ τ3

)
≤ C′Tτ3,
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by applying Proposition 4.21 and Theorem 4.18, using that maxk∈[K] E[‖ek‖2] ≤ E[maxk∈[K] ‖ek‖2], and
using that K = T/τ . Next, we have

E

[
max
k∈[K]

sup
t∈(tk,tk+1]

∥∥W t−tk
k

∥∥2
]
≤
∑

k∈[K]

E

[
sup

t∈(tk,tk+1]

∥∥W t−tk
k

∥∥2
]
≤ C5Tτ

3,

by applying Proposition 4.20 in the second inequality, where we have abused the notation for C5 by
taking the maximum over k ∈ [K] of the prefactors C5 appearing in Proposition 4.20. Finally, we have

E

[
max
k∈[K]

sup
t∈(tk,tk+1]

‖ξk(t− tk)‖2
]
≤
∑

k∈[K]

E

[
sup

t∈(tk,tk+1]

‖ξk(t− tk)‖2
]
= C(2)Tτ2p,

by using the fact that the ξk are i.i.d. copies of ξ0 and by using the strong regularity assumption
(Assumption 4.22). Since the hypothesis (4.33) on p implies that 2p ≥ 3, the right-hand side is O(τ3).
Putting all the estimates together yields

E

[
max
k∈[K]

sup
t∈(tk,tk+1]

‖et‖2
]
≤ 23

(
E

[
max
k∈[K]

‖ek‖2
]
+max {C′, C5, C(2)}Tτ3

)
= O(τ2),

as desired.

5 Explicit Euler integration of locally Lipschitz vector fields

In this section, we adapt the arguments for implicit Euler integration for locally Lipschitz dissipative
flows to explicit Euler integration, i.e. for the numerical flow map Ψτ defined by

Ψτ (Un) = Un + τf(Un). (5.1)

We only consider the discrete-time convergence result, since the continuous-time convergence result can
be obtained from this as shown in Section 4. Since the desired convergence result follows from a very
similar sequence of arguments as for the section on implicit Euler integration, we shall reuse some of the
results from that section and only sketch the proofs. We find that in the case of explicit Euler integration,
we do not have a nice bound on the second moment of the stochastic process (Un)n generated by (4.3)
in terms of second order moments; see Proposition 5.2 below. As a result, the discrete-time convergence
result requires stronger assumptions on the noise, and on the process (Uk)k∈[K] itself.

5.1 Moment bounds

The next lemma establishes an analogue of Lemma 4.6. Recall that K = T/τ ∈ N.

Lemma 5.1 (Uniform bounds on numerical solution for explicit Euler). Suppose that the vector field f
satisfies Assumptions 4.1 and 4.2, and suppose that τ > 0 satisfies Assumption 4.5. For all n ∈ N, the
numerical solution (Uk)k∈[K] generated by (4.3) and (5.1) satisfies

max
k∈[K]

‖Uk‖2n ≤ 4n−1Cn
7

(
1 + τn max

k∈[K]
‖Uk‖(q+2)n + τ−n

(
K−1∑

i=0

‖ξi(τ)‖2
)n)

(5.2)

uniformly in ω ∈ Ω, where

C7 := exp (T (5D+ 2|β|))max
{
3, 4DT, ‖U0‖2 + T (2α+ 4D‖f(0)‖2)

}
. (5.3)

Proof. Substituting the explicit Euler map (5.1) into the randomised numerical scheme (4.3), we obtain

Un+1 = Ψτ (Un) + ξn(τ) = Un + τf(Un) + ξn(τ).
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Therefore,

‖Un+1‖2 = ‖Un‖2 + τ2‖f(Un)‖2 + ‖ξn(τ)‖2 + 2〈Un, τf(Un) + ξn(τ)〉 + 2〈τf(Un), ξn(τ)〉
≤ ‖Un‖2 + τ2‖f(Un)‖2 + ‖ξn(τ)‖2 + 2τ

(
α+ |β|‖Un‖2

)
+ 2〈Un, ξn(τ)〉 + 2〈τf(Un), ξn(τ)〉

≤ (1 + (1 + 2|β|)τ)‖Un‖2 + 2τ2‖f(Un)‖2 + (2 + τ−1)‖ξn(τ)‖2 + 2τα,

where we used Assumption 4.1) in the first inequality and Young’s inequality in the second inequality
for the bounds

2〈Un, ξn(τ)〉 ≤ τ‖Un‖2 + τ−1‖ξn(τ)‖2, 2〈τf(Un), ξn(τ)〉 ≤ τ2‖f(Un)‖2 + ‖ξn(τ)‖2.

By the triangle inequality and the polynomial growth assumption (Assumption 4.2), we have

‖f(Un)‖2 = ‖f(Un)− f(0) + f(0)‖2 ≤ 2D (1 + ‖Un‖q) ‖Un‖2 + 2‖f(0)‖2.

Combining the above inequalities, and using that τ < 1 and D ≥ 1 by Assumptions 4.2 and 4.5 respec-
tively, we have

‖Un+1‖2 − ‖Un‖2 ≤ τ(1 + 2|β|)‖Un‖2 + 4τ2D
(
‖Un‖2 + ‖Un‖q+2 + ‖f(0)‖2

)
+ 3τ−1‖ξn(τ)‖2 + 2τα

= τ(5D + 2|β|)‖Un‖2 + 4τ2D‖Un‖q+2 + 3τ−1‖ξn(τ)‖2 + τ(2α+ 4τD‖f(0)‖2).

Using a telescoping sum and the fact that D ≥ 1, we obtain

‖Un‖2 ≤ ‖U0‖2 +
n−1∑

i=0

τ(5D + 2|β|)‖Ui‖2 + 4τ2D‖Ui‖q+2 + 3τ−1‖ξi(τ)‖2 + τ(2α + 4τD‖f(0)‖2)

≤
[
‖U0‖2 +

n−1∑

i=0

4τ2D‖Ui‖q+2 + 3τ−1‖ξi(τ)‖2 + τ(2α+ 4τD‖f(0)‖2)
]

+ τ(5D + 2|β|)
n−1∑

i=0

‖Ui‖2.

Grönwall’s inequality and (5.3) yield

max
k∈[K]

‖Uk‖2 ≤
[
‖U0‖2 + T (2α+ 4D‖f(0)‖2 + 4τ2D

K−1∑

i=0

‖Ui‖q+2 + 3τ−1
K−1∑

i=0

‖ξi(τ)‖2
]
eT (5D+2|β|)

≤
[
‖U0‖2 + T (2α+ 4D‖f(0)‖2 + 4DTτ max

k∈[K]
‖Uk‖q+2 + 3τ−1

K−1∑

i=0

‖ξi(τ)‖2
]
eT (5D+2|β|)

≤ C7

(
1 + τ max

k∈[K]
‖Uk‖q+2 + τ−1

K−1∑

i=0

‖ξi(τ)‖2
)

and thus (5.2) for the case n = 1, with C7 defined as in (5.3). To obtain the general case, we apply the
generalised triangle inequality (Lemma 4.4).

Proposition 5.2 (Bounds on even moments of maximum of numerical solution for explicit Euler).
Suppose that the vector field f satisfies Assumptions 4.1 and 4.2, that the noise ξ0 satisfies Assumption
4.7 for some R ≥ 2n and some p ≥ 1, and that τ satisfies Assumption 4.5. Then

E

[
max
k∈[K]

‖Uk‖2n
]
≤ 4n−1Cn

7

(
1 + τnE

[
max
k∈[K]

‖Uk‖(q+2)n

]
+
(
C2Tτ

2p−1
)n
)
. (5.4)

for some scalars C1, C2 > 0 not depending on τ .

Note that we do not claim that the right-hand side of (5.4) above is finite.
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Proof. The result follows by taking expectations of both sides of (5.2) and using the estimates of moments
of sums of ξi(τ) from Lemma 4.10.

Modulo scalar multiplicative factors, the sole difference between Proposition 5.2 and its analogous
result for implicit Euler integration is the presence of the term E[maxk∈[K] ‖Uk‖(q+2)n]. If q > 0, then
this extra term implies that, even if one assumes that maxk∈[K] ‖Uk‖q+2 has finite moments of all orders,
it does not follow that the moment generating function of maxk∈[K] ‖Uk‖ is finite on R.

Theorem 5.3. Let U0 be fixed and nonrandom, and let q ∈ N0 be the exponent of polynomial growth in
Assumption 4.2. If the noise ξ0 is P-almost surely bounded, then the stochastic process (Uk)k∈[K] satisfies

E

[
exp

(
t max
k∈[K]

‖Uk‖q
)]

< ∞ for all t ∈ R.

Proof. Let b > 0 be such that P(‖ξ0‖ ≤ b) = 1. Since the (ξk)k∈[K] are i.i.d. copies of ξ0, it follows that

P

(
max
k∈[K]

‖Uk‖ ≤ ‖U0‖+Kb

)
= 1.

Hence we may bound the moment generating function by exp(t(‖U0‖+Kb)q) for all t ∈ R.

5.2 Convergence result: discrete time

Let V ( · , · ) be the difference of displacements operator, defined as in (4.17), let Vk−1 and Wk−1 be
defined as in (4.22) as

Vk−1 := V (uk−1, Uk−1), Wk−1 := Φτ (Uk−1)−Ψτ (Uk−1).

Recall that, by (4.23), the error ek := uk − Uk satisfies

ek = ek−1 + Vk−1 +Wk−1 + ξk−1(τ).

The proof of the following proposition is much simpler than that of Proposition 4.15, because explicit
Euler integration corresponds to the approximation of an integral by a left Riemann sum.

Proposition 5.4 (Bounds on moments of numerical discrepancy for explicit Euler). Let τ > 0 satisfy
Assumption 4.5, D ≥ 1 and q ∈ N0 be the parameters in the polynomial growth condition (Assumption
4.2). For every n ∈ N, it holds that

E
[
‖Wk−1‖2n

]
≤ Dn

E [Cn
4 (Uk−1)] τ

4n, (5.5)

where C4(Uk−1) := C4(Uk−1, Uk−1) for C4( · , · ) defined in (4.19).

Remark 5.5. By the definition (4.19) of C4( · , · ), a sufficient condition for C4(Uk−1) to have finite
absolute moment of order n is that Uk−1 has finite absolute moment of order n.

Proof of Proposition 5.4. Recall that Wk−1 = Φτ (Uk−1) − Ψτ (Uk−1). By (5.1), the left-hand side of
(4.26) equals ‖Wk−1‖2. Thus, we obtain (5.5) by raising both sides of (4.26) to the nth power and taking
expectations.

Define

G := σ

(
max
k∈[K]

‖Uk‖
)
, U∗ := D

(
1 + max

k∈[K]
‖uk‖q + max

k∈[K]
‖Uk‖q

)
. (5.6)

Note that G is a proper sub-σ-algebra of the σ-algebra generated by the collection of random variables
(ξk(τ))k∈[K]. Thus, maxk∈[K] ‖Uk‖q is measurable with respect to G. Furthermore, note that the random
variable U∗ is measurable with respect to G.
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Proposition 5.6 (Bounds on conditional expectations of products of difference of displacements for
explicit Euler). Suppose that Assumptions 4.1, 4.2, and 4.5 hold. Let Vk−1 be defined as in (4.22), let
q ∈ N0 denote the exponent in Assumption 4.2, and suppose that the regularity assumption (Assumption
4.7) holds for all R ∈ N. If the moment generating function of maxk∈[K] ‖Uk‖q is finite, then

E
[
|〈ek−1, Vk−1〉|

∣∣G
]
≤ 2τDU∗

E
[
‖ek−1‖2

∣∣G
]
+ τ3E

[
C4(uk−1, Uk−1)

∣∣G
]

(5.7a)

E
[
‖Vk−1‖2

∣∣G
]
≤ 2τ2DU∗

E
[
‖ek−1‖2

∣∣G
]
+ 2τ4E

[
C4(uk−1, Uk−1)

∣∣G
]
, (5.7b)

for any k ∈ [K], where C4(u0, v0) is defined in Lemma 4.14.

Proof. Taking the conditional expectation of (4.30) with respect to G yields

E
[
|〈ek−1, Vk−1〉|

∣∣G
]
≤ 2τDE

[
(1 + ‖uk−1‖q + ‖Uk−1‖q) ‖ek−1‖2

∣∣G
]
+ E

[
C4(uk−1, Uk−1)

∣∣G
]
τ3

E
[
‖Vk−1‖2

∣∣G
]
≤ 2τ2DE

[
(1 + ‖uk−1‖q + ‖Uk−1‖q) ‖ek−1‖2

∣∣G
]
+ 2E

[
C4(uk−1, Uk−1)

∣∣G
]
τ4.

Bounding (1 + ‖uk−1‖q + ‖Uk−1‖q) by U∗ and using that U∗ is measurable with respect to G yields the
desired result.

Proposition 5.7 (Bounds on expected values of products of difference of displacements for explicit Euler
and sufficiently fast polynomial growth). Suppose that Assumptions 4.1, 4.2, and 4.5 hold, with q being
the exponent of polynomial growth. If q ≥ 6, the (p,R)-regularity assumption (Assumption 4.7) holds
with parameters R ≥ 2q and p ≥ 1, and the random variable maxk∈[K] ‖Uk‖(q+2)q is integrable, then the
estimates (4.28) hold.

Note that we must formulate the integrability of maxk∈[K] ‖Uk‖(q+2)q as a separate condition from
that of the regularity assumption holding for R ≥ 2q, because Proposition 5.2 does not guarantee that
this random variable is integrable. Note also that, for explicit Euler integration, a suitable constant C′

for (4.28) is given by

C′(k − 1, q) := 4q−1Cq
7 max

{
1, (C2T )

q/2
E
[
‖ek−1‖4

]1/2
,

(
E

[
max

i∈[k−1]
‖Ui‖(q+2)q

]
E
[
‖ek−1‖4

])1/2
}
,

which differs from C′ for implicit Euler integration (as defined in (4.29)).

Proof. The proof proceeds in a similar fashion to the proof of case (ii) in Proposition 4.16, with the
exception that we must control the expectation of the product ‖Uk−1‖q‖ek−1‖2 using Proposition 5.2
instead of Proposition 4.12. By (5.2) in Lemma 5.1,

max
k∈[K]

‖Uk‖2q ≤ 4q−1Cq
7

(
1 + τn max

k∈[K]
‖Uk‖(q+2)q + τ−q

(
K−1∑

i=0

‖ξi(τ)‖2
)q)

.

For simplicity, we shall omit the multiplicative factor 4q−1Cq
7 in what follows; we shall reinsert it later.

Using ‖Uk‖q ≤ maxi≤k ‖Uk‖q and the concavity of the square root,

E
[
‖Uk−1‖q‖ek−1‖2

]
≤ E



(
1 + τq max

i∈[k−1]
‖Ui‖(q+2)q + τ−q

(
k−1∑

i=0

‖ξi(τ)‖2
)q)1/2

‖ek−1‖2



≤ E
[
‖ek−1‖2

]
+ τ−q/2

E






∑

i∈[k−1]

‖ξi(τ)‖2



q/2

‖ek−1‖2



+ τq/2E

[
max

i∈[k−1]
‖Ui‖(q+2)q/2‖ek−1‖2

]
.

The first two terms on the right-hand side of the last inequality were bounded in the proof of Proposition
4.16, and in particular (4.31); we use the assumption that the (p,R) regularity condition holds for R ≥ 2q
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and p ≥ 1 for (4.31). Since q ≥ 6 and the random variable maxk∈[K] ‖Uk‖(q+2)/q is integrable, the terms
considered thus far are finite. It remains to consider the term that does not appear in the proof of
Proposition 4.12, which we do now. By Young’s inequality,

E

[
max

i∈[k−1]
‖Ui‖(q+2)q/2‖ek−1‖2

]
≤
(
E

[
max

i∈[k−1]
‖Ui‖(q+2)q

]
E
[
‖ek−1‖4

])1/2

.

By the assumptions that q ≥ 6 and that maxk∈[K] ‖Uk‖(q+2)q is integrable, the right-hand side is finite.
We have thus shown that

E
[
‖Uk−1‖q‖ek−1‖2

]
≤ C′

(
E
[
‖ek−1‖2

]
+ τq(2p−1)/2 + τq/2

)
. (5.9)

Since q ≥ 6 and p ≥ 1, both exponents of τ on the right-hand side are bounded from below by 3, and
the desired conclusion follows from the estimates (4.30).

We now state the discrete-time convergence result for randomised explicit Euler. We omit the case
q = 0, since this corresponds to a globally Lipschitz vector field, and this situation is covered by the
results of Section 3.

Theorem 5.8 (Mean-square uniform convergence in discrete time). Suppose that Assumptions 4.1, 4.2,
and 4.5 hold. Let q ∈ N denote the exponent in Assumption 4.2. If p ≥ 3/2 and either
(i) q ≥ 6, Assumption 4.7 holds for R ≥ 2q, and maxk∈[K] ‖Uk‖(q+2)q is integrable, or
(ii) the moment generating function of maxk∈[K] ‖Uk‖q is finite on R,

then there exists a strictly positive scalar C that remains bounded in the limit of small τ and does not
depend on k, such that

E

[
max
k∈[K]

‖ek‖2
]
≤ Cτ2.

In particular, if Assumption 4.7 holds for all R ∈ N and ξ0(τ) is P-almost surely bounded, then randomised
explicit Euler integration converges with order one.

Proof. Note that the final statement of the theorem follows from the first, by Theorem 5.3. We proceed
as in the proof of Theorem 4.19 up to the inequality

max
i≤n

‖ei‖2

≤
n∑

k=1

[
2τ max

i≤k−1
‖ei‖2 + 2|〈ek−1, Vk−1〉|+ 3‖Vk−1‖2 +

(
3 +

1

τ

)
‖Wk−1‖2 +

(
3 +

1

τ

)
‖ξk−1(τ)‖2

]
.

At this point, we consider the two cases separately.

Case (i) The assumptions in this case permit the application of Proposition 5.7. Continuing the proof
of Theorem 4.19 yields the desired result.

Case (ii) Taking the conditional expectation with respect to G, using Proposition 5.6, bounding ‖ek−1‖2
by maxi≤k−1 ‖ei‖2, collecting terms, and using that τ < 1 by Assumption 4.5 in order to bound τ2 by τ
and (3 + τ−1) by 4τ−1, we obtain

E

[
max
i≤n

‖ei‖2
∣∣∣∣G
]
≤

n∑

k=1

(2 + 3)2τDU∗
E

[
max
i≤k−1

‖ei‖2
∣∣∣∣G
]

+

n∑

k=1

(
E
[
4τ−1‖Wk−1‖2 + 4τ−1‖ξk−1(τ)‖2 + (2 + 3)2τ3C4(uk−1, Uk−1)

∣∣G
])

.
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Applying Grönwall’s inequality, and using the measurability of U∗ with respect to G, we obtain

E

[
max
i≤n

‖ei‖2
∣∣∣∣G
]

≤ exp(10TDU∗)

K∑

k=1

(
4τ−1

E
[
‖Wk−1‖2 + ‖ξk−1(τ)‖2

∣∣G
]
+ 10τ3E

[
C4(uk−1, Uk−1)

∣∣G
])

≤
K∑

k=1

4τ−1
E
[
exp(10TDU∗)

(
‖Wk−1‖2 + ‖ξk−1(τ)‖2

) ∣∣G
]

+ 10τ3E
[
exp(10TDU∗)C4(uk−1, Uk−1)

∣∣G
]
.

Upon taking expectations and applying the towering property of conditional expectation, we obtain

E

[
max
i≤n

‖ei‖2
]
≤

K∑

k=1

E

[
exp(10TDU∗)

(
4

τ

(
‖Wk−1‖2 + ‖ξk−1(τ)‖2

)
+ 10τ3C4(uk−1, Uk−1)

)]
.

it remains to show that the three resulting sums are of the correct order in τ . We do this using the
Cauchy–Schwarz inequality, the conclusion (5.5) of Proposition 5.4, Assumption 4.7, and Theorem 5.3:

4τ−1
K∑

k=1

E
[
‖Wk−1‖2 exp(10TDU∗)

]
≤ 4

τ

T

τ

(
Cτ8E [exp (20TDU∗)]

)1/2
= O(τ2)

4τ−1
K∑

k=1

E
[
‖ξk−1‖2 exp(10TDU∗)

]
≤ 4

τ

T

τ

(
C(4)τ2(2p+1)

E [exp (20TDU∗)]
)1/2

= O(τ2p−1)

10τ3
K∑

k=1

E [exp (10TDU∗)C4(uk−1, Uk−1)] ≤ 10Tτ2 max
k∈[K]

E
[
C2

4 (uk−1, Uk−1)
]
= O(τ2).

By the assumption that p ≥ 3/2, it follows that all three sums are of order 2 in τ , as desired.
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